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We propose a new class of natural inflation models based on a hidden scale invariance. In a very 
generic Wilsonian effective field theory with an arbitrary number of scalar fields, which exhibits scale 
invariance via the dilaton, the potential necessarily contains a flat direction in the classical limit. This 
flat direction is lifted by small quantum corrections and inflation is realised without need for an 
unnatural fine-tuning. In the conformal limit, the effective potential becomes linear in the inflaton field, 
yielding to specific predictions for the spectral index and the tensor-to-scalar ratio, being respectively: 
ns − 1 ≈ −0.025 

(
N�

60

)−1
and r ≈ 0.0667 

(
N�

60

)−1
, where N� ≈ 30–65 is a number of efolds during 

observable inflation. This predictions are in reasonable agreement with cosmological measurements. 
Further improvement of the accuracy of these measurements may turn out to be critical in falsifying 
our scenario.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Cosmic inflation is an attractive paradigm for the very early 
universe that resolves some outstanding puzzles of the standard 
hot Big Bang cosmology, such as the horizon and flatness problems 
[1–3] (for important precursor works see also [4–6]). In addition, 
it provides a natural mechanism for generation of nearly scale-
invariant inhomogeneities through the quantum fluctuations of the 
inflaton field, that at later stages result in the observed large scale 
structure of the universe [7]. Observations on Cosmic Microwave 
Background (CMB) radiation and the large scale structure provide 
a strong support for cosmic inflation.

The basic theory of inflation involves a scalar field, the in-
flaton (ϕ), which slowly rolls down the potential hill. In order 
to reproduce the CMB anisotropy measurements [8] and satisfy 
the requirement of sufficient inflation, the scale that defines the 
height of the inflaton potential must be many orders of magnitude 
smaller than the scale that defines its width, that is, the poten-
tial must be very flat. To maintain the hierarchy between these 
two different scales under the quantum corrections a precise ad-
justment of couplings is typically required. This is known as the 
fine-tuning problem of inflation.
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Another potential source that may destabilise the delicate bal-
ance between the height and slope of the inflaton potential is 
higher order operators, which start to contribute significantly for 
large variations of the inflaton field during inflation. The effective 
field theory approximation, which favours |ϕ| � M P , breaks down 
in such cases and inflationary predictions become unreliable.

A class of natural inflation models has been suggested in [10]
as a symmetry-motivated solution to the above fine-tuning prob-
lem. The inflaton in this class of models is a pseudo-Goldstone 
boson of some spontaneously broken anomalous global symme-
try. The flatness of the pseudo-Goldstone potential is guaranteed 
by an approximate shift symmetry, although the underlying global 
symmetry may be the subject of large explicit breaking by non-
renormalisable operators supposedly induced via quantum gravity. 
It seems, however, that the simplest models of natural inflation are 
now disfavoured at 95% CL [8].

In some earlier works [11,12] and more recently in [13,14] the 
scale invariance was advocated as a possible symmetry which is 
also capable of explaining the hierarchy of different scales with-
out fine-tuning. A variety of specific scale-invariant inflationary 
models have been presented in recent years [15–25]. In [16] a uni-
versality class of models has been identified within the conformal 
supergravity framework [see also Ref. [18]]. The importance of the 
underlying scale invariance for natural inflation models has also 
been stressed in [20].

In this paper we would like to propose a new class of natu-
ral inflation models based on a hidden scale invariance, realised 
through the pseudo-Goldstone boson of a spontaneously broken 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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anomalous scaling symmetry, the dilaton. Our key observation is 
that in a very generic scale-invariant model, with an arbitrary 
number of scalar fields and non-renormalisable operators in the 
scalar potential, there always exists a direction in field space which 
is absolutely flat in the classical limit. This flat direction is lifted 
upon quantum corrections being taken into account. Inflation pro-
ceeds along this direction, while other fields reside in their respec-
tive (meta)stable minima. As will be shown below, in the confor-
mal coupling limit within the leading perturbative approximation, 
the generic model is reduced to a one-field model with a potential 
linear in the inflaton field, V (ϕ) ∼ ϕ , with the linear term being 
radiatively induced. In this regime, the model predicts a character-
istic relation between the spectral index ns and the tensor-to-scalar 
ratio r:

ns ≈ 1 − 3

8
r (1)

This relation is in a reasonable agreement with the currently avail-
able data [8,9]. Further improvement on the accuracy of ns and/or 
r measurements may confirm or falsify our scenario.

2. Description of the model

Consider a Wilsonian effective field theory that describes the 
Standard Model, or its extension, coupled to gravity at an ultravio-
let scale �:

S� =
∫

dx4√−g

[(
M2

P

2
+

N∑
i=1

ξi(�)φ2
i

)
R

− 1

2

N∑
i=1

∂μφi∂
μφi − V (φi) + . . .

]
, (2)

where M P ≈ 2.4 · 1018 GeV and we use the mostly positive sig-
nature for the metric tensor. Here we have displayed only the 
scalar sector, which comprises of a set of N scalar fields {φi}
(i = 1, 2, . . . , N) that includes the Standard Model Higgs boson. The 
scalar potential V (φi) is a generic polynomial of the scalar fields 
{φi} respecting the relevant symmetries of the theory:

V (φi) =
∑
{in}

λi1,...,in(�)φi1 ...φin . (3)

where λi1,...,in (�) is a coupling of mass dimension (4 − n) de-
fined at the Wilsonian cut-off �, while ξi(�) is a dimensionless 
non-minimal coupling of the scalar field φi to gravity. The scale in-
variance is explicitly broken in (2) by the ultraviolet cut-off �, the 
Einstein–Hilbert term ∼ M2

P R and dimensionful couplings σi1,...,in
(n �= 4).

We suppose that the underlying theory exhibits a hidden (spon-
taneously broken) scale invariance, which in the effective low-
energy theory is implemented in the (nonlinear) pseudo-Goldstone 
boson, the dilaton χ . A simple way to incorporate the dilaton field 
χ is to rescale the dimensionful parameters in (2) by the respec-
tive powers of χ/ f , f being the dilaton “decay constant”. More 
specifically:

� → �
χ

f
≡ λχ , M2

P → M2
P

(
χ

f

)2

≡ ξχ2 , (4)

λi1,...,in(�) → λi1,...,in(�χ/ f )

(
χ

f

)4−n

≡ σi1,...,in(λχ)χ4−n (5)

Thus, instead of (2) we consider a new action:
Sλχ =
∫

dx4√−g

[(
ξχ2 +

N∑
i=1

ξi(λχ)φ2
i

)
R − 1

2
∂μχ∂μχ

− 1

2

N∑
i=1

∂μφi∂
μφi − V (φi,χ) + . . .

]
,

V (φi,χ) =
∑
{in}

σi1,...,in(λχ) χ(4−n)φi1 ...φin . (6)

This action is manifestly scale invariant in the classical limit, 
the scale invariance being broken at the quantum level through 
the renormalisation group (RG) running of the couplings, i.e., 
∂σi1,...,in

∂χ �= 0, etc.
It is convenient to use a ‘hyperspherical’ representation for the 

set of scalar fields {φi, χ}:

φi = ρ cos (θi)

i−1∏
k=1

sin (θk) , (i = 1,2, . . . , N)

χ = ρ

N∏
k=1

sin (θk) . (7)

Expressing the action (6) through the fields in the above represen-
tation, we observe that the modulus field ρ factors out. That is, 
the first term in the action and the scalar potential presented in 
Eq. (6) can be written as ∼ ρ2ζ(θi)R and ∼ ρ4U (θi), respectively, 
in which

ζ(θi) = ξ(λχ)

N∏
k=1

sin2 (θk) +
N∑

i=1

ξi(λχ) cos2 (θi)

i−1∏
k=1

sin2 (θk) ,

(8)

U (θi) =
N∏

k=1

sin4−n (θk)
∑
{in}

σi1,...,in (λχ) cos
(
θi1

)

×
i1−1∏
k=1

sin (θk) ... cos
(
θin

) in−1∏
k=1

sin (θk) . (9)

We further assume that θi fields are relaxed in their stable or 
sufficiently long-lived (with lifetime longer than the duration of 
the observable inflation) minima 〈θi〉 = θ c

i at very early stages in 
the evolution of the universe. Hence, their dynamics is of no in-
terest to us in what follows and, instead of the full action (6), we 
consider the following reduced one:

S̄ρ =
∫

dx4√−g

[
ζ(ρ)ρ2 R − 1

2
∂μρ∂μρ − V (ρ)

]
, (10)

V (ρ) = σ(ρ)ρ4 , (11)

where ζ ≡ ζ(θ c
i ) and σ ≡ U (θ c

i ). Hence, we arrive at an effec-
tive single-field model with a quartic potential and non-minimal 
coupling [26], but without the standard Einstein–Hilbert term. It 
resembles also the large field limit of the Higgs inflation model 
[27].

In order to reproduce the Einstein–Hilbert term in (10) the 
modulus field ρ has to develop non-zero vacuum expectation 
value, 〈ρ〉 ≡ ρ0. If the vacuum configuration {ρ0, θ c

i } describes 
the current vacuum state of the universe, than ρ0 = M P√

2ζ(ρ0)
with 

ζ(ρ0) ≡ ζ0 > 0. Furthermore, the vacuum energy density, σ(ρ0)M4
P

4ζ 2
0

, 
in this case must be vanishingly small to satisfy the observations. 
That is, the scalar potential must be tuned so that σ(ρ0) ≡ σ0 ∼
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12ζ 2
0 H2

0/M2
P ≈ 0, where H0 is the present value of the Hubble pa-

rameter. However, inflation may end in a metastable state, which 
subsequently decays into the current vacuum state. Hence, we 
keep ρ0 and σ0 as a free parameters.

The ρ-dependence of dimensionless couplings in Eqs. (10), (11)
are determined by computing the quantum-corrected effective po-
tential. We use the closed form effective potential computed in 
Ref. [28] to obtain in the 1-loop approximation:

ζ(ρ) = ζ0 + (12ζ0 + 1)σ0

8π2
ln

(
ρ

ρ0

)
, (12)

σ(ρ) = σ0 + 9σ 2
0

2π2
ln

(
ρ

ρ0

)
. (13)

In the classical limit ζ and σ are ρ-independent constants and the 
action (10) is scale-invariant. The field ρ represents a flat direc-
tion, i.e., the potential (11) is constant for any value of ρ in the 
Einstein frame. Furthermore, for the special value ζ0 = −1/12 (the 
conformal coupling), ρ is a fictitious degree of freedom which dis-
appears from action in the Einstein frame. In this case, the action 
(10) is in fact describes pure Einstein gravity with a cosmological 
constant.

The classical scale invariance is broken by radiative corrections, 
which is illustrated in the ρ dependence of couplings, Eqs. (12), 
(13). Note that σ0 → 0 is a conformal fixed-point of the theory, 
since the ρ dependence disappears in Eqs. (12), (13) in this limit. 
The conformal coupling ζ0 = −1/12 is also a fixed-point as ζ(ρ) =
ζ0. Hence, having σ small or ζ close to −1/12 near the respective 
fixed points is natural in the technical sense. All these attractive 
features motivate us to consider scale invariance as an essential 
symmetry for natural inflation, with ρ being the inflaton field.

3. Predictions of the model

To compute inflationary observables we first take the action 
(10) to the Einstein frame via Weyl rescaling:

gμν → �2 gμν , �2 = 2ζρ2

M2
P

(14)

We also bring the kinetic term for the inflaton field ρ to the 
canonical form by making the following field redefinition:

ρ = ρ0 exp

⎛
⎜⎝

√
ζ̃

M P
ϕ

⎞
⎟⎠ , (15)

where ζ̃ = 2ζ
1+12ζ

with ζ > 0 or ζ < −1/12. With this the action 
(10) in the Einstein frame reads:

S̄ϕ =
∫

dx4√−g

[
M2

P

2
R − 1

2
∂μϕ∂μϕ − V (ϕ)

]
, (16)

V (ρ(ϕ)) = M4
P

4

σ(ρ(ϕ))

ζ 2(ρ(ϕ))
. (17)

Given the potential (17), the slow roll parameters can be com-
puted using:

ε� ≡ M2
P

2

(
Vϕ

V

)2
∣∣∣∣∣
ϕ=ϕ�

, (18)

η� ≡ M2
P

Vϕϕ

V

∣∣∣∣ . (19)

ϕ=ϕ�
The power spectrum of scalar perturbations, P s , the tensor-to-
scalar ratio, r, and the spectral index ns are then given by:

P s = 1

24π2M4
P

V�

ε�

, (20)

r = 16ε� , (21)

ns = 1 − 6ε� + 2η� , (22)

All quantities with subscript ‘�’ in the above equations are eval-
uated at a field value ϕ = ϕ� that corresponds to a number of 
e-folds of the ‘visible’ inflation, N� ≈ 30–65:

N� � 1

M P

ϕ�∫
0

dϕ√
2ε

. (23)

In order to proceed with the actual calculations of the above 
observables, we plug Eqs. (12), (13) into Eq. (17) and using Eq. (15)
we express the effective potential in terms of inflaton field ϕ in 
the Einstein frame. Next, let us consider now the conformal limit 
where σ0 → 0 and ζ0 → −1/12. The latter limit implies that ζ
evolves slowly, ζ ≈ ζ0. Assuming further, σ 2

0

√
2ζ0

1+12ζ0
approaches 

to some constant C , the potential (17) is well approximated by a 
potential which is linear in the inflaton field ϕ1:

V (ϕ) ≈ 162C

π2
M3

P ϕ . (24)

The linear potential (24) can be used to compute inflationary ob-
servables (18)–(23). This immediately implies η = 0 and hence the 
relation in Eq. (1). In terms of observable efolds N� the predictions 
read:

ns − 1 ≈ −0.025

(
N�

60

)−1

, (25)

r = 0.0667

(
N�

60

)−1

. (26)

P s � 10−9 in turn implies C ≈ 5.5 · 10−12
(

N�

60

)−3/2
. The predic-

tions in Eq. (25) are in a reasonable agreement with the most 
recent analysis of the cosmological data [9], which suggests:

ns = 0.9669 ± 0040 (68% C.L.) , (27)

r0.01 < 0.0685 (95% C.L.) , (28)

for �−CDM+r model. Further improvement of the accuracy of 
cosmological measurements will be critical for our scenario.

Note that for large (ξ → ∞) and small (ξ → 0) non-minimal 
couplings ns � 1, and thus the model is excluded by observation in 
these limits.

4. Conclusion

We have proposed a new class of natural inflation models with 
hidden scale invariance realised via the dilaton field. A very generic 
Wilsonian potential with an arbitrary number of scalar fields con-
tain a flat direction in the classical limit, which is lifted by quan-
tum corrections. Thus inflation can naturally, without fine-tuning, 
proceed when the inflaton field evolves along this direction. We 
find that in the conformal limit, the inflaton potential is linear,

1 A linear potential was obtained in a different limit of the non-minimally cou-
pling in [29]
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yielding to the specific predictions in Eqs. (25) and (26). While 
they are still in agreement with observations, more accurate cos-
mological measurements may turn critical in falsifying our sce-
nario.
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