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We study a matrix model obtained by dimensionally reducing Chern–Simons theory on S3. We find that
the matrix integration is decomposed into sectors classified by the representation of SU(2). We show that
the N-block sectors reproduce SU(N) Yang–Mills theory on S2 as the matrix size goes to infinity.
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1. Introduction

Matrix models have been proposed as non-perturbative formu-
lation of superstring or M-theory [1–3]. Since low energy physics
predicted by string theory depends on topological aspects of com-
pactification, it is relevant to investigate how they are incorporated
in matrix models. The topological field theories have been devel-
oped to efficiently describe the topological aspects of field theories.
It is, therefore, worthwhile to study realization of the topological
field theories in matrix models.

Hinted by the work [4], the authors of [5] found the follow-
ing classical relationships among Chern–Simons (CS) theory on S3,
two-dimensional Yang–Mills (2d YM) on S2 and a matrix model.
The latter two theories are obtained by dimensionally reducing
the first theory. The theory around each multiple monopole back-
ground of 2d YM is obtained by expanding the matrix model
around a certain multiple fuzzy sphere background in the contin-
uum limit (see also [6]). CS theory is obtained by applying an ex-
tension of compactification in matrix models developed in [4,6,7]
to the theory around a multiple monopole background of 2d YM.
Eventually, CS theory is obtained by expanding the matrix model
around a certain multiple fuzzy sphere background and imposing
the orbifolding condition. 2d YM is also viewed as BF theory with
a mass term on S2. The matrix model takes the form of the super-
potential for N = 1∗ theory. The classical relationships between CS
on S3 and 2d YM on S2 are generalized to those between CS the-
ory on a U (1) bundle over a Riemann surface Σg of genus g and
2d YM on Σg .
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In this Letter, we show that 2d YM on S2 is obtained from the
matrix model also at quantum level. We find that the matrix inte-
gration is decomposed into sectors classified by the representation
of SU(2). We show that the N-block sectors reproduce the parti-
tion function of 2d SU(N) YM on S2.

It has been already shown in [8,9] that different types of matrix
models give 2d YM on S2. Moreover, the authors of [9] have shown
that the localization works also for the matrix model in the same
way as it works for the continuum 2d YM. We hope to elucidate
the relation of our work with [8,9] in the future.

This Letter is organized as follows. In Section 2, we briefly
review part of the results in [5], which are associated with the
present work. In Section 3, we reduce the path-integral in the ma-
trix model to the integral over the eigenvalues of a single matrix,
which is decomposed into the sectors classified by the representa-
tion of SU(2). In Section 4, we show that part of the above sectors
reproduce 2d YM on S2. Section 5 is devoted to conclusion and
outlook. In appendix, we summarize some useful properties of S3

and S2.

2. Classical relationships among CS theory, 2d YM and a matrix
model

In this section, we briefly review only part of the results in [5]
which are concerned with the present Letter. We start with CS
theory on S3 with the gauge group U (M):

SCS = k

4π

∫
S3

Tr

(
A ∧ dA + 2

3
A ∧ A ∧ A

)
. (2.1)

We expand the gauge field in terms of the right-invariant 1-form
defined in (A.3) as

A = i Xi Ei . (2.2)

https://core.ac.uk/display/82753612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:ishiki@post.kek.jp
mailto:kohta@tuhep.phys.tohoku.ac.jp
mailto:shinji@het.phys.sci.osaka-u.ac.jp
mailto:satsuch@ipc.shizuoka.ac.jp
http://dx.doi.org/10.1016/j.physletb.2009.01.038
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


290 G. Ishiki et al. / Physics Letters B 672 (2009) 289–293
Then, we rewrite (2.1) as

SCS = − k

4π

∫
dΩ3

(μ/2)3
Tr

(
iμε i jk Xi L j Xk + μX2

i + 2i

3
ε i jk Xi X j Xk

)
,

(2.3)

where Li is the Killing vector dual to Ei and defined in (A.7).
By dropping the derivative of the fiber direction y, we obtain a

gauge theory on S2:

SBF = − 1

g2
BFμ

∫
dΩ2

μ2
Tr

(
iμε i jk Xi L

(0)
j Xk + μX2

i + 2i

3
ε i jk Xi X j Xk

)
,

(2.4)

where g2
BF = 1/k1 and L(0)

i are the angular momentum operators
on S2 given in (A.13) with q = 0. In order to see that (2.4) is BF
theory with a mass term, we define L(0)μ

i (μ = θ,ϕ) by L(0)
i =

L(0)μ
i ∂μ and introduce Ni (i = 1,2,3) given by

N1 = sin θ cosϕ, N2 = sin θ sinϕ, N3 = cos θ. (2.5)

Then, it is easy to see that L(0)μ
i and Ni satisfy the following rela-

tions:

L(0)μ
i L(0)ν

i = −gμν, Ni Ni = 1, L(0)μ
i Ni = 0,

L(0)μ
i ∂μL(0)ν

j − L(0)μ
j ∂μL(0)ν

i = iεi jk L(0)ν
k ,

L(0)μ
i ∂μN j − L(0)μ

j ∂μNi = 2iεi jk Nk,

εi jk Ni L
(0)μ
j L(0)ν

k = −εμν, (2.6)

where gμν and εμν can be read off from (A.12). We expand Xi as
[6,10]

Xi = μ
(
iL(0)μ

i aμ + Niχ
)
. (2.7)

aμ and χ turn out to be the gauge field and a scalar filed on S2,
respectively. By using the relations (2.6), we can show that (2.4) is
equivalent to

SBF = − μ2

g2
BF

∫
dΩ2

μ2
Tr

(
χεμν fμν − χ2), (2.8)

where fμν = ∂μaν − ∂νaμ + i[aμ,aν ] is the field strength. Indeed,
the first term is the BF term and the second term is a mass term.

By integrating χ out in (2.8), we obtain 2d YM on S2:

S2dYM = μ4

g2
YM

∫
dΩ2

μ2
Tr

(
1

4
f μν fμν

)
, (2.9)

where 1/g2
YM = −2/(g2

BFμ
2).

By dropping all the derivatives in (2.4) and rescale Xi as Xi →
μXi , we obtain N = 1∗ matrix model:

S = − 1

g2
Tr

(
X2

i + i

3
ε i jk Xi[X j, Xk]

)
, (2.10)

where 1/g2 = 4π/g2
BF. In the sense of the Dijkgraaf–Vafa theory

[11], this matrix model is regarded as a mass deformed super-
potential of N = 4 supersymmetric Yang–Mills theory (super-YM),
which gives the so-called N = 1∗ theory. We call the matrix model
(2.10) the N = 1∗ matrix model in this Letter.

1 While k in (2.1) must be integer, such a restriction is not imposed on k in (2.4).
Inversely, we can obtain the BF theory with the mass term from
the matrix model as follows. The matrix model (2.10) possesses the
following classical solution,

X̂i = Li =

⎛
⎜⎜⎜⎝

L[ j1]
i

L[ j2]
i

. . .

L[ jN ]
i

⎞
⎟⎟⎟⎠ , (2.11)

where L[ js]
i (s = 1, . . . , N) are the spin js representation of the

SU(2) generators obeying [L[ js]
i , L[ js]

j ] = iεi jk L[ js]
k , and the relation∑N

s=1(2 js + 1) = M is satisfied. We label the blocks by s. We put
2 js + 1 = N0 + ns with N0 and ns integers and take the limit in
which

N0 → ∞ with
N0

g2
= 4π

g2
BF

= − 8π2

g2
YM A

= fixed, (2.12)

where A = 4π/μ2 is the area of S2. Then, we can show classically
[5] that the theory around (2.11) is equivalent to the theory around
the following classical solution of (2.4),

μL(0)
i + X̂i = μdiag

(
L(q1)

i , L(q2)

i , . . . , L(qN )

i

)
, (2.13)

where qs = ns/2, and L(qs)

i are the angular momentum operators in
the presence of a monopole with the monopole charge qs , which
are given in (A.13). This theory can also be viewed as the theory
around the following classical solution of (2.8),

χ̂ = −diag(q1,q2, . . . ,qN),

âθ = 0,

âϕ = (cos θ ∓ 1)χ̂ , (2.14)

where the upper sign is taken in the region 0 � θ < π and the
lower sign in the region 0 < θ � π , and âθ and âϕ represent the
monopole configuration.

3. Exact integration of the partition function

In this section, we evaluate the partition function of (2.10). We
reduce the path-integral in the matrix model to the integral over
the eigenvalues of a single matrix. In (2.10), we redefine the ma-
trices as

Z = X1 + i X2, Z † = X1 − i X2, Φ = X3. (3.1)

Z is an M × M complex matrix while Φ is an M × M Hermitian
matrix. Using (2.10) and (3.1), we define the partition function of
N = 1∗ matrix model (2.10) by

Z = lim
ε→0

∫
dΦ dZ dZ † e

− i
g2 Tr(Z [Φ,Z †]+(1−iε)Z Z †+Φ2)

, (3.2)

where we introduce the ‘−iε ’ term in the action to make the inte-
gral converge. Integral over Z and Z † leads to a one matrix model
with respect to Φ [11–13]

Z = lim
ε→0

∫
dΦ

1

det([Φ, ·] + 1 − iε)
e
− i

g2 Φ2

,

where [Φ, ·] represents an adjoint action. Furthermore, if we diag-
onalize Φ as Φ = diag(φ1, φ2, . . . , φM), the matrix integral reduces
integrals over the eigenvalues φi

Z = 1

M! lim
ε→0

∫ ∏
i

dφi

∏
i �= j

φi − φ j

φi − φ j + 1 − iε
e
− i

g2

∑
i φ

2
i , (3.3)

where
∏

i �= j(φi −φ j) in the numerator of the integrand comes from
the Vandermonde determinant owing to the diagonalization of Φ .
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As a simple example, we consider the M = 2 case. In this case,
(3.3) is explicitly written as

Z = 1

2
lim
ε→0

∫
dφ1 dφ2

(φ1 − φ2)(φ2 − φ1)

(φ1 − φ2 + 1 − iε)(φ2 − φ1 + 1 − iε)

× e
− i

g2 (φ2
1+φ2

2 )
. (3.4)

In what follows, we frequently use the identity

lim
ε→0

1

x − iε
= P.V.

1

x
+ iπδ(x), (3.5)

where P.V. stands for Cauchy’s principal value of an integral. Ap-
plying (3.5) to (3.4) leads to

Z = 1

2
P.V.

∫
dφ1 dφ2

(φ1 − φ2)(φ2 − φ1)

(φ1 − φ2 + 1)(φ2 − φ1 + 1)
e
− i

g2 (φ2
1+φ2

2 )

− iπ

4

∫
dφ1

(
e
− i

g2 (φ2
1+(φ1+1)2) + e

− i
g2 (φ2

1+(φ1−1)2))
= 1

2
P.V.

∫
d φ1 dφ2

(φ1 − φ2)(φ2 − φ1)

(φ1 − φ2 + 1)(φ2 − φ1 + 1)
e
− i

g2 (φ2
1+φ2

2 )

− iπ

2
e
− i

2g2

∫
dφ e

− 2i
g2 φ2

. (3.6)

We generalize the above calculation to the case of arbitrary M .
We apply (3.5) to the factor in the integrand of (3.3),∏
i �= j

φi − φ j

φi − φ j + 1 − iε
, (3.7)

and obtain the sum of the terms, each of which includes some
delta functions. It is easily seen that any term giving non-vanishing
contribution must be proportional to

(−iπ

2

)∑N
s=1 2 js

δ
(
φ

(1)
1 − φ

(1)
2 − 1

)
δ
(
φ

(1)
2 − φ

(1)
3 − 1

) · · ·

× δ
(
φ

(1)
2 j1

− φ
(1)
2 j1+1 − 1

)
× δ

(
φ

(2)
1 − φ

(2)
2 − 1

)
δ
(
φ

(2)
2 − φ

(2)
3 − 1

) · · · δ(φ(2)
2 j2

− φ
(2)
2 j2+1 − 1

)
× · · ·
× δ

(
φ

(N)
1 − φ

(N)
2 − 1

)
δ
(
φ

(N)
2 − φ

(N)
3 − 1

) · · ·
× δ

(
φ

(N)
2 jN

− φ
(N)
2 jN +1 − 1

)
, (3.8)

where we have reordered and relabeled the eigenvalues of Φ , φi
(i = 1, . . . , M), as

Φ = diag
(
φ

(1)
1 , . . . , φ

(1)
2 j1+1, φ

(2)
1 , . . . , φ

(2)
2 j2+1, . . . , φ

(N)
1 , . . . , φ

(N)
2 jN +1

)
,

(3.9)

with
∑N

s=1(2 js + 1) = M , such that the form of (3.8) is obtained.

φ
(s)
i (i = 1, . . . ,2 js + 1) represents the ith component of the sth

block. (3.8) and (3.9) specify an M-dimensional irreducible repre-
sentation of SU (2) consisting of N blocks as seen in (2.11), with
a U (1) degree of freedom in each block. We label the irreducible
representation by r and denote the U (1) part in the sth block by
as , putting as ≡ φ

(s)
2 js+1 + js . Then, we find that the contribution of

(3.8) to (3.2) is

Nr(−iπ)M−N
N∏

s=1

1

2 js + 1

× P.V.
∫ N∏

s=1

das

∏
s �=t

js∏
ms=− js

jt∏
mt=− jt

as + ms − at − mt

as + ms − at − mt + 1

× e
− i

g2

∑N
s=1

∑ js
ms=− js

(as+ms)
2

, (3.10)
where

Nr =
∏ 1

(� of blocks with the same length)! (3.11)

and the other factor in (3.10) is obtained from the following calcu-
lation:

N∏
s=1

(−iπ

2

)2 js N∑
s=1

2 js∏
k=2

(
k2

k2 − 1

)2 js−k+1

= (−iπ)M−N
N∏

s=1

1

2 js + 1
.

(3.12)

We further do some algebra for the exponent in (3.10):

N∑
s=1

js∑
ms=− js

(as + ms)
2 =

N∑
s=1

(
(2 js + 1)a2

s + 1

3
js( js + 1)(2 js + 1)

)
.

(3.13)

By composing the angular momenta, we also evaluate the product
appearing in (3.10):

∏
s �=t

js∏
ms=− js

jt∏
mt=− jt

as + ms − at − mt

as + ms − at − mt + 1

=
∏
s �=t

js+ jt∏
J=| js− jt |

J∏
m=− J

m + as − at

1 + m + as − at

=
∏
s �=t

js+ jt∏
J=| js− jt |

J + as − at

− J − 1 + as − at

=
∏
s<t

( js − jt)
2 − (as − at)

2

( js + jt + 1)2 − (as − at)2
. (3.14)

Gathering all the above results, we eventually find that (3.3) results
in

Z =
∑

r

Nr(−iπ)M−N
N∏

s=1

1

2 js + 1
e
− i

3g2

∑N
s=1 tr(L[ js ]

i )2

× P.V.
∫ N∏

s=1

das

∏
s<t

( js − jt)
2 − (as − at)

2

( js + jt + 1)2 − (as − at)2

× e
− i

g2

∑N
s=1(2 js+1)a2

s
, (3.15)

where L[ js]
i is the spin js representation of the SU(2) generators

seen in (2.11). Thus the partition function of the N = 1∗ matrix
model is decomposed into the sectors classified by the irreducible
representation of SU(2). Indeed, it is ensured by P.V. that the whole
integral region of as are decomposed into these sectors without
overlap, which means that the full matrix integral over X1, X2, X3
is decomposed into these sectors without overlap.

4. Relation to continuum field theory

In this section, we reproduce 2d YM on S2 from the N = 1∗
matrix model in the large matrix size limit. As we will see, the
number of the matrix blocks in the irreducible representation of
SU(2), N , corresponds to the rank of the gauge group of 2d YM.
Since there is no overlap between the decomposed sectors in the
matrix model partition function (3.15), we can extract the sectors
with a fixed N . But one question arises: What type of the partition
of blocks is dominated in the large matrix size limit with fixed N?

To see this, let us investigate the “potential” in the N-block sec-
tors in the partition function (3.15)

V (	a, 	d, λ) =
N∑(

dsa2
s + 1

12
ds

(
d2

s − 1
)) + λ

(
N∑

ds − M

)
,

s=1 s=1
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where we put ds = 2 js + 1 and λ is a Lagrange multiplier for
the constraint

∑N
s=1 ds = M . This potential is minimized at as = 0

and ds = M/N for ∀s, that is, a configuration of almost equal size
blocks is dominated.

Thus we now consider the fluctuation around the dominated
configuration

ds ≡ N0 + ns,

where M = N N0 and
∑N

s=1 ns = 0. In the large matrix size limit,
we take the limit (2.12) with fixed N , which reduces the N-block
sectors to

ZN = C
∑

∑
s ns=0

∫
∑

s a′
s=0

N∏
s=1

da′
s

∏
1�s<t�N

{
(a′

s − a′
t)

2 − 1

4
(ns − nt)

2
}

× e
8π2 i
g2

YM A

∑N
s=1(a′

s
2+n2

s /4)

, (4.1)

where a′
s = as − 1

N a, a = ∑
s as and the integral over a has been

performed. Irrelevant constants and divergences are absorbed into
a renormalized constant C . In this limit, the poles in the integral
measure have disappeared, then we have taken integral domains
as whole space of integral variables a′

s . By rescaling a′
s by ys ≡ 2a′

s
and making an analytical continuation g2

YM → −ig2
YM, we finally

obtain

ZN = C ′ ∑
∑

s ns=0

∫
∑

s ys=0

N∏
s=1

dys

∏
1�s<t�N

{
(ys − yt)

2 − (ns − nt)
2}

× e
− 2π2

g2
YM A

∑N
s=1(y2

s +n2
s )

, (4.2)

where irrelevant constants are again absorbed into a constant C ′ .
ZN exactly agrees with the partition function of 2d SU(N) YM on
S2 [14–18].2

The physical meaning of the integers ns can be understood from
the following argument. The localization theorem in the contin-
uum SU(N) YM on S2 [15,18] says that the path integral of the
partition function is localized at the solutions of the classical equa-
tion of motion

Dμ f μν = 0, (4.3)

which are given by (2.14). Substituting the solution (2.14) into the
YM action (2.9) which gives the equation of motion (4.3) yields

S2dYM = μ4

g2
YM

∫
S2

dΩ2

μ2
Tr

(
1

4
f μν fμν

)
= 2π2

g2
YM A

N∑
s=1

n2
s . (4.4)

This coincides with the exponent appearing in (4.2). Thus we can
identify the fluctuations of the size of blocks ns with the monopole
charges of the classical solution, which is consistent with the clas-
sical equivalence reviewed in Section 2 and suggests that the lo-
calization works for the matrix model in a manner analogous to
the case of the continuum field theory.

5. Conclusion and discussion

In this Letter, we study the N = 1∗ matrix model which is ob-
tained by dimensionally reducing CS theory on S3. We decompose
the matrix integral into the sectors classified by the representation
of SU(2). We show that the N-blocks sectors reproduce 2d SU(N)

YM on S2 in the large matrix size limit.

2 Note that (3.7) in [16] represents the partition function of U (N) YM on S2. By
applying the procedure in [16] to the partition function of SU(N) YM in [18], it is
easy to see that the corresponding expression of the partition function of SU(N) YM
takes the form (4.2).
We reproduced the partition function of 2d YM on S2 from the
N = 1∗ matrix model. It is relevant to investigate whether the cor-
relation functions of the physical observables in 2d YM on S2 can
be reproduced from the matrix model. For instance, the vev of
TrR eΦ , where the trace is taken over a representation R of the
matrix Φ , is easily calculated in the matrix model. This kind of the
observables should be interpreted as a Wilson loop-like operator
in 2d YM.

Our result suggests that the localization also works for the
N = 1∗ matrix model as for 2d YM theory. It has been discussed
in [9] by using a different matrix model. We need further investi-
gation on the localization mechanism of N = 1∗ matrix model and
relationship of our work to [9].

We expect that CS theories on S3 and the lens space S3/Zq are
obtained from the N = 1∗ matrix model also at quantum level as
N = 4 super-YM on R × S3 is obtained from the plane wave ma-
trix model [19–21]. In this case, the operator TrR eΦ in the matrix
model should correspond to the Wilson loop operator in CS theory
[5], and hopefully the knot invariant is derived from the matrix
model.

The N = 1∗ matrix model is also interesting from the point of
view of 4d super-YM, since the large N limit of the matrix model
describes the effective superpotential of N = 1∗ theory which is
mass deformed theory from N = 4 theory [11,13]. The different
sectors of the SU(2) representations that we have investigated
should be related to the different Higgs branches of the N = 1∗
theory. The effective superpotential in the different Higgs branches
can be investigated by using the direct integration of the matrix
model partition function.

While we have extracted the N-block sectors ‘by hand’ in the
present Letter, we may expect that the large N limit with the large
N0 limit realizes 2d large N YM on S2 naturally, as the planar limit
of N = 4 super-YM is realized in [19]. The large N limit seems
relevant for the following reason. It has been already pointed out
that the 1/N expansion of 2d YM describes the genus expansion
of (non-critical) string theory [22]. One can deduce a world-sheet
description of string theory from the partition function of 2d YM.
On the other hand, in this Letter, we have derived the partition
function of 2d YM from the N = 1∗ matrix model in the large
matrix size limit. Matrix models are often regarded as regulariza-
tion of (non-critical) string theory, giving world-sheet description
in the large matrix size limit. Our investigation strongly suggests
the relationship between the matrix models in the large matrix
size limit, gauge theory in the large N limit and string theory and
the N = 1∗ matrix model is a good example to understand the re-
lationship (see also [23,24]). Further investigation of the N = 1∗
matrix model may shed lights on nonperturbative definition of
string theory.
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Appendix A. S3 and S2

In this appendix, we summarize some useful facts about S3 and
S2 (see also [6,19]). S3 is viewed as the SU(2) group manifold. We
parameterize an element of SU(2) in terms of the Euler angles as
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g = e−iϕσ3/2e−iθσ2/2e−iψσ3/2, (A.1)

where 0 � θ � π , 0 � ϕ < 2π , 0 � ψ < 4π . The periodicity with
respect to these angle variables is expressed as

(θ,ϕ,ψ) ∼ (θ,ϕ + 2π,ψ + 2π) ∼ (θ,ϕ,ψ + 4π). (A.2)

The isometry of S3 is SO(4) = SU(2)×SU(2), and these two SU(2)’s
act on g from left and right, respectively. We construct the right-
invariant 1-forms,

dg g−1 = −iμEiσi/2, (A.3)

where the radius of S3 is given by 2/μ. They are explicitly given
by

E1 = 1

μ
(− sinϕ dθ + sin θ cosϕ dψ),

E2 = 1

μ
(cosϕ dθ + sin θ sinϕ dψ),

E3 = 1

μ
(dϕ + cos θ dψ), (A.4)

and satisfy the Maure–Cartan equation

dEi − μ

2
εi jk E j ∧ Ek = 0. (A.5)

The metric is constructed from Ei as

ds2 = Ei Ei = 1

μ2

(
dθ2 + sin2 θ dϕ2 + (dψ + cos θ dϕ)2). (A.6)

The Killing vector dual to Ei is given by

Li = − i

μ
E M

i ∂M , (A.7)

where M = θ,ϕ,ψ and E M
i are inverse of Ei

M . The explicit form of
the Killing vector is

L1 = −i

(
− sinϕ ∂θ − cot θ cosϕ ∂ϕ + cosϕ

sin θ
∂ψ

)
,

L2 = −i

(
cosϕ ∂θ − cot θ sinϕ ∂ϕ + sinϕ

sin θ
∂ψ

)
,

L3 = −i∂ϕ. (A.8)

Because of the Maure–Cartan equation (A.5), the Killing vector sat-
isfies the SU(2) algebra [Li, L j] = iεi jk Lk .

One can also regard S3 as a U (1) bundle over S2 = SU(2)/U (1).
S2 is parametrized by θ and ϕ and covered with two local patches:
the patch I defined by 0 � θ < π and the patch II defined by 0 <

θ � π . In the following expressions, the upper sign is taken in the
patch I while the lower sign in the patch II. The element of SU(2)

in (A.1) is decomposed as

g = L · h (A.9)

with

L = e−iϕσ3/2e−iθσ2/2e±iϕσ3/2,

h = e−i(ψ±ϕ)σ3/2. (A.10)

L represents an element of S2, while h represents the fiber U (1).
The fiber direction is parametrized by y = ψ ± ϕ . Note that L has
no ϕ-dependence for θ = 0,π . The zweibein of S2 is given by
the i = 1,2 components of the left-invariant 1-form, −iL−1 dL =
μeiσi/2. It takes the form

e1 = 1

μ
(± sinϕ dθ + sin θ cosϕ dϕ),

e2 = 1

μ
(− cosϕ dθ ± sin θ sinϕ dϕ). (A.11)
This zweibein gives the standard metric of S2 with the radius 1/μ:

ds2 = eiei = 1

μ2

(
dθ2 + sin2 θ dϕ2). (A.12)

Making a replacement ∂y → −iq in (A.8) leads to the angular mo-
mentum operator in the presence of a monopole with magnetic
charge q at the origin [25]:

L(q)
1 = i(sinϕ ∂θ + cot θ cosϕ ∂ϕ) − q

1 ∓ cos θ

sin θ
cosϕ,

L(q)
2 = i(− cosϕ ∂θ + cot θ sinϕ ∂ϕ) − q

1 ∓ cos θ

sin θ
sinϕ,

L(q)
3 = −i∂ϕ ∓ q, (A.13)

where q is quantized as q = 0,± 1
2 ,±1,± 3

2 , . . . , because y is a pe-
riodic variable with the period 4π . These operators act on the local
sections on S2 and satisfy the SU(2) algebra [L(q)

i , L(q)

j ] = iεi jk L(q)

k ,
Note that when q = 0, these operators are reduced to the ordinary
angular momentum operators (A.13) on S2 (or R3), which generate
the isometry group of S2, SU(2). The SU(2) acting on g from left
survives as the isometry of S2.
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