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The main aim of this paper is to propose a new and simple algorithm namely the optimal q-homotopy
analysis method (Oq-HAM), to obtain approximate analytical solutions of the convection diffusion (CD)
equation. Comparison of Oq-HAM with the homotopy analysis method (HAM) and the homotopy pertur-
bation method (HPM) is made. The results reveal that the Oq-HAM has more accuracy than the others.
Finally, numerical example is given to illustrate the accuracy and stability of this method. Comparison
of the approximate solution with the exact solutions shows that the proposed method is very efficient
and computationally attractive. A new efficient approach is proposed to obtain the optimal value of
convergence controller parameter �h to guarantee the convergence of the obtained series solution.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nonlinear partial differential equations are known to describe a
wide variety of phenomena not only in physics, where applications
extend over magneto fluid dynamics, water surface gravity waves,
electromagnetic radiation reactions, and ion acoustic waves in
plasma, just to name a few, but also in biology and chemistry,
and several other fields.

Several methods have been suggested to solve nonlinear equa-
tions. These methods include the homotopy perturbation method
(HPM) [1], Lyapunov’s artificial small parameter method [2], Ado-
mian decomposition method [3,4], variation iterative method [5,6]
and so on. Homotopy analysis method (HAM), first proposed by
Liao in his Ph.D dissertation [7], is an elegant method which has
proved its effectiveness and efficiency in solving many types of
nonlinear equations [8–14]. The HAM contains a certain auxiliary
parameter h, which provides us with a simple way to adjust and
control the convergence region and rate of convergence of the ser-
ies solution [15]. In 2005 Liao [16] has pointed out that the HPM is
only a special case of the HAM (The case of h = �1). El-Tawil and
Huseen [17] proposed a method namely q-homotopy analysis
method (q-HAM) which is a more general method of homotopy
analysis method (HAM). The q-HAM contains an auxiliary
parameter n as well as h such that the cases of (q-HAM; n = 1)
the standard homotopy analysis method (HAM) can be reached.
The q-HAM has been successfully applied to solve many types of
nonlinear problems [17–24]. In addition to the auxiliary parameter
h present in HAM, q-HAM contains a fraction factor that gives it
much flexibility to adjust and control the convergence region and
rate of convergence of the series of solution. Hamed et al.
[25–29], used the improved and generalized ðG0=GÞ-expansion
method to construct explicit traveling wave solutions involving
parameters of the fractional generalized Kolmogrove–Petrovskii
Piskunov equation. Also some partial differential equations such
as: (3 + 1)-dimensional potential-YTSF equation, combined KdV
and mKdV equations, FitzHugh–Nagumo equation, fifth-order
KdV equation and combined KdV and mKdV equations. The exact
solutions for the generalized fractional Kolmogrove–Petrovskii
Piskunov equation by using the generalized ðG0=GÞ)-expansion
method are obtained by Hamed et al. [30]. Hamed et al. [31],
applied a complex transformation using a modified chain rule to
convert fractional generalized coupled MKDV and KDV of an ordi-
nary differential equation and then we obtain a new exact solution.
Hamed et al. [32], applied a fractional complex transform with
optimal homotopy analysis method (OHAM) to obtain numerical
and analytical solutions for the nonlinear time–space fractional
Fornberg–Whitham. The results reveal that the method is very
effective, simple and controls the convergence region and rate of
convergence of the series solution. Mohamed S. Mohamed and
Hamed [33], used the optimal q-homotopy analysis method
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(Oq-HAM) to solve the fractional Fornberg–Whitham equation.
Shaheed N. Huseen [34], illustrated the application of a newly
developed efficient method namely, optimal q-homotopy analysis
method (Oq-HAM) for solving second order initial and boundary
value problems. The results reveal that the Oq-HAM has high accu-
racy to determine the convergence-control parameter; hence the
results match well with the exact solutions and this proves the
effectiveness of the method.

Convection diffusion (CD) equation is a combination of the
diffusion and convection (advection) equations, and describes
physical phenomena where particles, energy, or other physical
quantities are transferred inside a physical system due to two
processes: diffusion and convection. This equation is a parabolic
partial differential equation which describes physical phenomena.
Some numerical and analytical methods for solving it have been
presented so far, which are sorted by explicit and implicit methods
in general [35].

In [35] the CD equation was solved with HAM, the Adomian
decomposition method was used to solve CD equation and in the
homotopy perturbation method was applied to find the solution
of CD equation. In this work, we consider the following linear CD
equation and the Oq-HAM is applied to solve it:

@u
@t

þ c
@u
@x

¼ c
@2u
@x2

; 0 6 x 6 l; t P 0; ð1Þ

subject to the initial condition

uðx;0Þ ¼ f ðxÞ; 0 6 x 6 l; ð2Þ
where c and c are arbitrary constants.

The rest of this paper is as follows. In Section 2, we introduce
the basic definitions of optimal q-homotopy analysis method. In
Section 3, examples solved to show the importance of the proposed
method and in the last section the conclusion is stated.

2. Basic idea of the optimal q-homotopy analysis method
(Oq-HAM)

To describe the basic ideas of the optimal Oq-HAM for nonlinear
partial differential equations. Let us consider the following nonlin-
ear partial differential equation:

N½uðx; tÞ� ¼ 0; ð3Þ

where N is linear and nonlinear operator for this problem, x and t
denote the independent variables, and uðx; tÞ is an unknown func-
tion. We first construct the zero-order deformation equation as
follows:

ð1� nqÞL½/ðx; t; qÞ � u0ðx; tÞ� ¼ qhHðx; tÞN½/ðx; t; qÞ�; ð4Þ
where n > 1; q 2 ½0; 1n� is the embedding parameter, h–0 is an auxil-
iary parameter, Hðx; tÞ–0 is an auxiliary function, L is an auxiliary
linear operator and u0ðx; tÞ is an initial guess. Clearly, when q ¼ 0
and q ¼ 1

n, Eq. (4) becomes:

/ðx; t;0Þ ¼ u0ðx; tÞ; / x; t;
1
n

� �
¼ uðx; tÞ; ð5Þ

respectively. so, as q increases from 0 to 1
n the solution /ðx; t; qÞ var-

ies from the initial guess u0ðx; tÞ to the solution uðx; tÞ. If u0ðx; tÞ,
L;h;Hðx; tÞ are chosen appropriately, solution of Eq. (5) exists for
q 2 ½0; 1n�.

Taylor series expression of /ðx; t; qÞwith respect to q in the form

uðx; t; qÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞqm; ð6Þ

where
umðx; tÞ¼
1
m!

@muðx; t; qÞ
@qm

����
q¼0

: ð7Þ

We assume that the auxiliary linear operator, the initial guess, the
auxiliary parameter h and the auxiliary function Hðx; tÞ is selected
such that the series (7) is convergent when q ! 1

n, then the
approximate solution (6) takes the form:

uðx; tÞ ¼ u x; t;
1
n

� �
¼ u0ðx; tÞ þ

X1
m¼1

umðx; tÞ 1
n

� �m

: ð8Þ

Let us define the vector

u!
n ðtÞ ¼ fu0ðx; tÞ;u1ðx; tÞ;u2ðx; tÞ; . . . ;unðx; tÞg:

Differentiating (4) m times with respect to q, then setting q ¼ 0 and
dividing then by m!, we have the mth-order deformation equation
[7,8] as

L½umðx; tÞ � vmum�1ðx; tÞ� ¼ hHðx; tÞRmðu!
m�1ðx; tÞÞ; ð9Þ

with initial conditions

uðkÞ
m ðx; tÞ ¼ 0; k ¼ 0;1;2;3; . . . ;m� 1

where

Rmðu!
m�1ðx; tÞÞ¼

1
ðm� 1Þ!

@m�1N½uðx; t; qÞ�
@qm�1

�����
q¼0

; ð10Þ

and

vm ¼ 0 m 6 1;
n m > 1:

�
ð11Þ

It should be emphasized that umðx; tÞ for mP 1 is governed by the
linear equation (9) with linear boundary conditions that come from
the original problem. Due to the existence of the factor ð1nÞ

m, more
chances for convergence may occur or even much faster conver-
gence can be obtained better than the standard HAM. It should be
noted that the cases of n = 1 in Eq. (4), standard HAM can be
reached.

The h-curves cannot tell us the best convergence-control
parameter, which corresponds to the fastest convergent series. In
2007, Yabushita et al. [36] applied the HAM to solve two coupled
nonlinear ODEs. They suggested the so-called optimization method
to find out the two optimal convergence-control parameters by
means of the minimum of the squared residual error of governing
equations. In 2008, Akyildiz and Vajravelu [37] gained optimal
convergence-control parameter by the minimum of squared resid-
ual of governing equation, and found that the corresponding
homotopy-series solution converges very quickly.

Basiri et al. [38] and Mohamed S. Mohamed et al. [13] have dis-
cussed the optimization method to find out the optimal conver-
gence control parameters by minimum of the square residual
error integrated in the whole region having physical meaning.
Their approach is based on the square residual error.

Let DðhÞ denote the square residual error of the governing
equation (3) and expressed as:

DðhÞ ¼
Z
X
ðN½unðtÞ�Þ2dX; ð12Þ

where

umðtÞ ¼ u0ðtÞ þ
Xm
k¼1

ukðtÞ: ð13Þ

The optimal value of the auxiliary parameter h is given by solving
the following nonlinear algebraic equation

dDðhÞ
dh

¼ 0: ð14Þ



Fig. 2. h-curve for the HAM (q-HAM; n = 2) approximation solution U5 (x, t; 2) of
problem (15) at different values of x and hoptmal = �1.99.
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3. Numerical results

To demonstrate the effectiveness of the Oq-HAM algorithm dis-
cussed above, example of variation problems will be studied in this
section. In this section, example is solved according to the men-
tioned algorithm in previous section. The results have been pro-
vided by Mathematica.

Consider the CD equation:

ut � 0:02uxx þ 0:1ux ¼ 0 0 6 x 6 1; ð15Þ
with the initial condition

uðx;0Þ ¼ e1:1771243x;

with the exact solution

uðx; tÞ ¼ e1:1771243x�t : ð16Þ
This problem is solved by HAM [35]. For Oq-HAM solution we
choose the linear operator

L½/ðx; t; qÞ� ¼ @/ðx; t; qÞ
@t

;

with the property that

L½c� ¼ 0; where c is constant:

We define a nonlinear operator as

N½/ðx; t; qÞ� ¼ @/ðx; t; qÞ
@t

� 0:02
@/2ðx; t; qÞ

@x2
þ 0:1

@/ðx; t; qÞ
@x

: ð17Þ

We construct the zero order deformation equation

ð1� nqÞL½/ðx; t; qÞ � u0ðx; tÞ� ¼ qhHðx; tÞN½/ðx; t; qÞ�:
For q ¼ 0 and q ¼ 1, we can write

uðx; t;0Þ ¼ u0ðx; tÞ ¼ uðx;0Þ;
uðx; t;1Þ ¼ uðx; tÞ:
We can take Hðx; tÞ ¼ 1; and the mth-order deformation equation is

Lðumðx; tÞ � vmum�1ðx; tÞÞ ¼ hRmðu!
m�1ðx; tÞÞ; ð18Þ

with the initial conditions for mP 1

umðx;0Þ ¼ 0; ð19Þ
where vm as defined by (11) and

Rmðu!
m�1Þ ¼

@um�1

@t
� 0:02

@2

@x2
þ 0:1

@

@x
um�1: ð20Þ
Fig. 1. h-curve for the HAM (q-HAM; n = 1) approximation solution U5 (x, t; 1) of
problem (15) at different values of x and hoptmal = �0.97.
Now the solution of the mth-order deformation equations for
m P 1 becomes

umðx; tÞ ¼ vmum�1ðx; tÞ þ h
Z

Rmðu!
m�1ðx; sÞÞdsþ c1; ð21Þ

where the constant of integration c1 is determined by the initial
conditions (19). Then, the components of the solution using
Oq-HAM are
Fig. 3. h-curve for the HAM (q-HAM; n = 5) approximation solution U5 (x, t; 5) of
problem (15) at different values of x and hoptmal = �4.5.

Fig. 4. h-curve for the HAM (q-HAM; n = 10) approximation solution U5 (x, t; 10) of
problem (15) at different values of x and hoptmal = �11.45.



Fig. 5. h-curve for the HAM (q-HAM; n = 20) approximation solution U5 (x, t; 20) of
problem (15) at different values of x and thoptmal = �16.75.

Fig. 6. h-curve for the HAM (q-HAM; n = 50) approximation solution U5 (x, t; 50) of
problem (15) at different values of x and hoptmal = �22.05.

Fig. 7. h-curve for the HAM (q-HAM; n = 100) approximation solution U5 (x, t; 100)
of problem (15) at different values of x and hoptmal = �55.65.

Fig. 8. h-curve for the HAM (q-HAM; n = 50) approximation solution U10 (x, t; 50) of
problem (15) at different values of x and hoptmal = �10.25.

Fig. 9. h-curve for the HAM (q-HAM; n = 100) approximation solution U10 (x, t; 100)
of problem (15) at different values of x and hoptmal = �15.43.

Fig. 10. Comparison between U5, U7, U10 of (q-HAM; nn = 100) and exact solution of
(16) at x = 1 with hoptmal = �15.43, 0 < t 6 8.
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Fig. 11. The residual of the 5th order approximation for N = 1 and hoptmal =�1.65954
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uðx;0Þ ¼ e1:17712434446770x;
u1ðx; tÞ ¼ 0:09e1:17712434446770xht;

u2ðx; tÞ ¼ htð0:09hþ 0:09nÞ þ 0:00405e1:17712434446770xh2t2;

� � �
� � �

ð22Þ
and x = 0.2.



Table 1
The errors of the approximate solution at the points (x; 0.1).

x 0 0.1 0.2 0.3 0.4 0.5

Error 1.11022E�16 2.22045E�16 4.44089E�16 8.88178E�16 1.33227E�15 4.44089E�16
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According to the optimal q-homotopy analysis, we can conclude
that

uðx; t;n; hÞ ’ Umðx; t;n; hÞ ¼
XM
i¼0

uiðx; t;n; hÞ 1
n

� �i

: ð23Þ

Eq. (23) is an approximate solution to the problem (15) in terms of
convergence parameter h and n. Then we have,

uapp ¼ u0ðx; tÞ þ 1
n

� �
u1ðx; tÞ þ 1

n

� �2

u2ðx; tÞ þ 1
n

� �3

u3ðx; tÞ

þ 1
n

� �4

u4ðx; tÞ þ � � �

¼ e1:17712434446770x þ 0:09e1:17712434446770xht þ htð0:09h
þ 0:09nÞ þ 0:00405e1:17712434446770xh2t2 þ � � � : ð24Þ

As special case if n = 1 and h = �1, then we obtain the same result in
[26].

Eq. (24) is an approximate solution to the problem (15) in terms
of the convergence parameters h and n. To find the valid region of
h, the h-curves given by the 5th order q-HAM approximation at dif-
ferent values of x, t, and n are drawn in Figs. 1–9. These figures
show the interval of h at which the value of U5(x, t; n) is constant
at certain values of x, t and n. We choose the horizontal line parallel
to x-axis (h) as a valid region which provides us with a simple way
to adjust and control the convergence region of the series solution.
From these figures, the valid intersection region of h for the values
of x, t and n in the curves becomes larger as n increases.

Remark 1. Using the h-curve, it is possible to locate the valid
region of h which corresponds to the line segment nearly parallel
to the horizontal axis.

Fig. 10 shows the comparison between U5, U7 and U10 using dif-
ferent values of n with the exact solution (16). Therefore, based on
these present results, we can say that q-HAM is more effective than
HAM and HPM.

Fig. 11 shows the residual error of the approximate solution of
Eq. (15) at N = 1 and x = 0.2 (see Fig. 11 and Table 1).

4. Comparison between the optimal q-homotopy analysis
method and the homotopy analysis method

A. Fallahzadeh and Shakibi. [35], used the HAM to solve a linear
convection–diffusion equation. The convergence theorem
was proved to ensure the validity and reliability of the pro-
posed method. The examples showed the accuracy and effi-
ciency of the method. Therefore, the HAM is able to evaluate
a satisfactory solution for CD equation.

B. In our study, we applied optimal q-homotopy analysis
method to get the approximate solutions of CD equation. It
was shown that the convergence of Oq-HAM is faster than
the convergence of HAM and this method is powerful and
efficient in finding exact and approximate solutions for
equations.

5. Conclusions

An approximate solution of CD equation was found by using the
Oq-homotopy analysis method. The results show that the conver-
gence region of series solutions obtained by Oq-HAM is increasing
as q is decreased. The comparison of Oq-HAM with the HAM and
HPM [35] was made. It was shown that the convergence of Oq-
HAM is faster than the convergence of HAM and HPM. The results
show that the method is powerful and efficient in finding exact and
approximate solutions for equations and also, this method uses
simple computation with acceptable solution. Our results show
that Oq-HAM can be applied to many complicated linear and
strongly nonlinear partial differential equations. The method to
choose the appropriate auxiliary parameter h for better conver-
gence of the series solution is given in the h-curve. All the numer-
ical analyses in this study were carried out using Mathematica 9.
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