Linear Algebra and its Applications 435 (2011) 1813-1822

Contents lists available at ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

Signless Laplacian spectral radii of graphs with given chromatic number

Guanglong Yu^{a,b}, Yarong Wu^{b,d}, Jinlong Shu, ^{a,c,*,1}

^a Department of Mathematics, East China Normal University, Shanghai 200241, China

^b Department of Mathematics, Yancheng Teachers University, Yancheng, 224002 Jiangsu, China

^c Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China

^d SMU College of Art and Science, Shanghai maritime University, Shanghai 200135, China

ARTICLEINFO

Article history: Received 17 November 2010 Accepted 1 March 2011 Available online 7 May 2011

Submitted by R.A. Brualdi

AMS classification: 05C50

Keywords: Signless Laplacian Spectral radius Chromatic number

ABSTRACT

Let *G* be a simple graph with vertices v_1, v_2, \ldots, v_n , of degrees $\Delta = d_1 \ge d_2 \ge \cdots \ge d_n = \delta$, respectively. Let *A* be the (0, 1)-adjacency matrix of *G* and *D* be the diagonal matrix diag (d_1, d_2, \ldots, d_n) . Q(G) = D + A is called the signless Laplacian of *G*. The largest eigenvalue of Q(G) is called the signless Laplacian spectral radius or *Q*-spectral radius of *G*. Denote by $\chi(G)$ the chromatic number for a graph *G*. In this paper, for graphs with order *n*, the extremal graphs with both the given chromatic number and the maximal *Q*-spectral radius are characterized, the extremal graphs with both the given chromatic number $\chi \neq 4, 5, 6, 7$ and the minimal *Q*-spectral radius are characterized as well.

© 2011 Elsevier Inc. All rights reserved.

LINEAR

oplications

1. Introduction

All graphs considered here are simple, connected and undirected. Denote by V(G) the vertex set and E(G) the edge set for a graph G. Let G be a graph with vertices v_1, v_2, \ldots, v_n , of degrees $\Delta = d_1 \ge$ $d_2 \ge \cdots \ge d_n = \delta$, respectively. If vertex v_i is adjacent to v_j , we denote by $v_i \sim v_j$. We denote by $N_G(v)$ or N(v) the neighbor set of vertex v in graph G. The degree of vertex v in graph G, denoted by $d_G(v)$ or d(v), is equal to $|N_G(v)|$. We denote by K_n , P_n , C_n for a complete graph, a path and a cycle with order n, respectively, in this paper.

* Corresponding author at: Department of Mathematics, East China Normal University, Shanghai 200241, China. *E-mail addresses:* yglong01@163.com (G. Yu), wuyarong1@yahoo.com.cn (Y. Wu), jlshu@math.ecnu.edu.cn. (J. Shu).

¹ Supported by the National Natural Science Foundation of China (Nos. 11071078, 11075057), APNSF (No. 10040606Q45).

0024-3795/\$ - see front matter @ 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2011.03.018

Denote by |M| the determinant for a square matrix M. Let $A = (a_{ij})_{n \times n}$ be the (0, 1)-adjacency matrix of G, and let D be the diagonal matrix diag (d_1, d_2, \ldots, d_n) . The matrix L(G) = D - A is the Laplacian of G, while Q(G) = D + A is called the signless Laplacian of G.

The matrix Q(G) is symmetric and nonnegative, and when *G* is connected, it is irreducible. If *M* is the $n \times m$ vertex-edge incidence matrix of the (n, m)-graph *G*, then $Q(G) = MM^T$. Thus Q(G) is positive semi-definite, and its eigenvalues can be arranged as:

$$q = q_1 \geqslant q_2 \geqslant \cdots \geqslant q_n \geqslant 0$$

q is called the signless Laplacian spectral radius or *Q*-spectral radius of *G*. The *Q*-characteristic polynomial of a graph *G*, denoted by $P_Q(\lambda)$ or $P_{Q(G)}(\lambda)$, is the characteristic polynomial of Q(G). Denoted by \tilde{G} the complement of graph *G*, and denoted by $P_{\tilde{Q}}(\lambda)$ or $P_{Q(\tilde{G})}(\lambda)$ the *Q*-characteristic polynomial of \tilde{G} .

Computer investigations of graphs with up to 11 vertices [4] suggest that the spectrum of D + A performs better than the spectrum of A or D - A in distinguishing non-isomorphic graphs, study of the spectrum of D + A is of interests in the literature (see [2,6], for example) recently.

In this paper, we consider the signless Laplacian spectral radii of graphs with order n and given chromatic number χ . For graphs with order n, the extremal graphs with both the given chromatic number and the maximal Q-spectral radius are characterized, the extremal graphs with both the given chromatic number $\chi \neq 4, 5, 6, 7$ and the minimal Q-spectral radius are characterized as well. This paper is organized as follows: Section 1 introduces the basic ideas and their supports; Section 2 characterizes the extremal graphs with the maximal Q-spectral radius; Section 3 characterizes the extremal graphs with the minimal Q-spectral radius.

2. Maximal Q-spectral radius

Definition 2.1 [3]. A semi-edge walk (of length k) in an (undirected) graph G is an alternating sequence $v_1, e_1, v_2, e_2, \ldots, v_k, e_k, v_{k+1}$ of vertices $v_1, v_2, \ldots, v_{k+1}$ and edges e_1, e_2, \ldots, e_k such that for any $i = 1, 2, \ldots, k$, the vertices v_i and v_{i+1} are end-vertices (not necessarily distinct) of the edge e_i .

Lemma 2.2 [3]. Let Q be the signless Laplacian matrix of a graph G. The (i, j)-entry of the matrix Q^k , denoted by $q_{(i,j)}^{(k)}$, is equal to the number of semi-edge walks of length k starting at vertex i and terminating at vertex j.

Let *G* be a graph with *n* vertices and *m* edges, N_k ($k \ge 0$) denote the number of all the semi-edge walks with length *k* in *G*, and let $N_0 = 1$. Clearly, $N_1 = 2\sum_{i=1}^n d_i = 4m$. Let $H_Q(t) = \sum_{k=0}^\infty N_k t^k$ be the generating function of N_k ($k \ge 0$). Then we have the following lemma.

Theorem 2.3. Let G be a simple connected graph with n vertices. Then

$$H_{\mathbb{Q}}(t) = \frac{1}{t} \left(\frac{(-1)^n P_{\widetilde{\mathbb{Q}}}\left(\frac{tn-2t-1}{t}\right)}{P_{\mathbb{Q}}\left(\frac{1}{t}\right)} - 1 \right).$$

Proof. Suppose *M* is a nonsingular $n \times n$ square matrix and *J* is a $n \times n$ square matrix in which all the entries are 1. Let $||M||_1 = \sum_{i,j} M_{i,j}$. Then the adjugate $adjM = |M|M^{-1}$ and $|M+xJ| = |M|+x||adjM||_1$. Let *I* denote the identity matrix. Note that

$$\sum_{k=0}^{\infty} Q^k t^k = (I - tQ)^{-1} = |I - tQ|^{-1} adj (I - tQ) \quad \left(t \leq \frac{1}{q}\right)$$
$$\sum_{k=0}^{\infty} \|Q^k\|_1 t^k = \sum_{k=0}^{\infty} N_k t^k = |I - tQ|^{-1} \|adj(I - tQ)\|_1.$$

Hence

$$H_{Q}(t) = \frac{\|adj(I - tQ)\|_{1}}{|(I - tQ)|}$$

Let M = I - tQ. Then

$$|I - tQ + tJ| = |I - tQ| + t ||adj(I - tQ)||_1$$

Note that

$$I - tQ + tJ = I - tQ + tJ + (n - 2)tI - (n - 2)tI = (2t - tn + 1)I + tQ.$$

From (1), we know that $||adj(I - tQ)||_1 = \frac{1}{t}(|I - tQ + tJ| - |I - tQ|)$. Hence

$$H_{Q}(t) = \frac{1}{t} \left(\frac{|(2t - tn + 1)I + t\tilde{Q}|}{|I - tQ|} - 1 \right) = \frac{1}{t} \left(\frac{(-1)^{n} P_{\tilde{Q}}\left(\frac{tn - 2t - 1}{t}\right)}{P_{Q}\left(\frac{1}{t}\right)} - 1 \right). \quad \Box$$

Corollary 2.4. Let $G = K_{n_1, n_2, \dots, n_s}$ be a complete s-partite graph with $\sum_{i=1}^{s} n_i = n$. Then

$$P_{Q}(\lambda) = (-1)^{n} \left(\sum_{i=1}^{s} \frac{n_{i}}{n - 2n_{i} - \lambda} + 1 \right) \prod_{i=1}^{s} (n - 2n_{i} - \lambda)(n - n_{i} - \lambda)^{n_{i} - 1}.$$
(2)

Proof. Let $H_{\tilde{Q}}(t)$ denote the semi-edge walk number generating function of \tilde{G} . Let B_i denote a complete graph with n_i vertices and $N_k^{(i)}$ denote the number of semi-edge walks with length k in B_i . By Theorem 2.3, then

$$H_{\tilde{Q}}(t) = \frac{1}{t} \left(\frac{(-1)^n P_Q\left(\frac{tn-2t-1}{t}\right)}{P_{\tilde{Q}}\left(\frac{1}{t}\right)} - 1 \right) = \sum_{k=0}^{\infty} \sum_{i=1}^{s} N_k^{(i)} t^k$$
$$= \sum_{k=0}^{\infty} \sum_{i=1}^{s} n_i (2(n_i - 1))^k t^k = \sum_{i=1}^{s} \frac{n_i}{1 - 2(n_i - 1)t}.$$

Hence

$$(-1)^{n} P_{Q}\left(\frac{tn-2t-1}{t}\right) = \left(t \sum_{i=1}^{s} \frac{n_{i}}{1-2(n_{i}-1)t} + 1\right) P_{\tilde{Q}}\left(\frac{1}{t}\right).$$

Let $\lambda = \frac{tn-2t-1}{t}$. Then $t = \frac{1}{n-2-\lambda}$, and then (2) follows immediately. \Box

Lemma 2.5 [8]. Let $\mathcal{M}_n = \{M | M \text{ is a } n \times n \text{ square matrix}\}$. Suppose $A, B \in \mathcal{M}_n (n \ge 2)$, A is nonnegative irreducible and $|B| \le A$ (namely $|B_{i,j}| \le A_{i,j}$ for each pair of i, j). Denote by $\rho(A)$ the largest eigenvalue of A. For any eigenvalue λ of B, we have $|\lambda| \le \rho(A)$, and equality holds if and only if $B = e^{i\theta} DAD^{-1}$ where $\rho(A)e^{i\theta} = \lambda$ and D is a diagonal U-matrix.

Definition 2.6. The Turán graph $T_{(n,r)}$ is an *n*-vertex graph formed by partitioning the set of vertices into *r* parts of equal or nearly-equal size, and connecting two vertices by an edge whenever they belong to two different parts. In fact, $T_{(n,r)}$ is an *n*-vertex complete *r*-partite graph with each part of equal or nearly-equal size.

Theorem 2.7. Suppose complete s-partite graph $G = K_{n_1,n_2,...,n_s}$ with $\sum_{i=1}^{s} n_i = n$. Then $q(G) \leq q(T_{n,s})$ with equality if and only if $G \cong T_{n,s}$.

(1)

Proof. Denote by $\mu(G)$ the Laplacian spectral radius for a graph *G*. From spectral graph theory, we know that $\mu(G) = n$ if \tilde{G} is not connected. By Lemma 2.5, we get $q(G) \ge \mu(G) \ge n$. By Corollary 2.4, we know that q(G) is the largest zero of $\sum_{i=1}^{s} \frac{n_i}{n-2n_i-\lambda} + 1 = 0$.

Suppose $n_1 \ge n_2 \ge \cdots \ge n_s$. If $n_1 - n_s \ge 2$, let

$$f(\delta, \lambda) = \frac{n_1 - \delta}{n - 2(n_1 - \delta) - \lambda} + \sum_{i=2}^{s-1} \frac{n_i}{n - 2n_i - \lambda} + \frac{n_s + \delta}{n - 2(n_s + \delta) - \lambda} + 1$$

where $0 \leq \delta \leq \frac{n_1 - n_s}{2}$. So f(0, q(G)) = 0. Taking the derivative with respect to δ , for $\lambda \geq q(G)$, we have

$$\frac{df(\delta,\lambda)}{d\delta} = \frac{\lambda - n}{(2(n_1 - \delta) + \lambda - n)^2} - \frac{\lambda - n}{(2(n_s + \delta) + \lambda - n)^2} \leqslant 0.$$

Hence $f(\delta, \lambda)$ is decreasing with respect to δ for $\lambda \ge q(G)$, and $f(\delta, \lambda)$ is strictly decreasing with respect to δ if $0 < \delta < \frac{n_1 - n_s}{2}$. Thus, for $\lambda \ge q(G)$, $f(\delta, \lambda) \le 0$ if $\delta \le \frac{n_1 - n_s}{2}$ and $f(\delta, \lambda) < 0$ if $0 < \delta < \frac{n_1 - n_s}{2}$. This means that if we increase n_s by δ and decrease n_1 by δ in G, then q(G) will increase. \Box

Corollary 2.8. Let *G* be a simple connected graph with *n* vertices and chromatic number χ . Then $q(G) \leq q(T_{n,\chi})$ with equality if and only if $G \cong T_{n,\chi}$.

Proof. It is well known that q(G + e) > q(G) if $e \notin E(G)$. Hence the *Q*-spectral radius of *G* is less than or equal to the *Q*-spectral radius of a complete χ -partite graph. Then the Corollary follows from Theorem 2.7. \Box

3. Minimal Q-spectral radius

An internal path in some graph is a path $v_0v_1 \cdots v_{k+1}$ for which $d(v_0)$, $d(v_{k+1}) \ge 3$ and $d(v_i) = 2$ for $i = 1, \ldots, k$ (here $k \ge 0$, or $k \ge 2$ whenever $v_0 = v_{k+1}$).

Lemma 3.1 [2]. Let G_{uv} be the graph obtained from a connected graph *G* by subdividing its edge *uv*. Then the following holds:

- (i) if uv belongs to an internal path then $q(G_{uv}) < q(G)$;
- (ii) if $G \neq C_n$ for some $n \ge 3$, and if uv is not on any internal path of G, then $q(G_{uv}) > q(G)$. Otherwise, if $G = C_n$ then $q(G_{uv}) = q(G) = 4$.

Lemma 3.2 [2]. Let G(k, l) $(k, l \ge 0)$ be the graph obtained from a non-trivial connected graph *G* by attaching pendant paths of lengths *k* and *l* at some vertex *v*. If $k \ge l \ge 1$ then q(G(k, l)) > q(G(k + 1, l - 1)).

Lemma 3.3 [7]. Let A be an $n \times n$ real symmetric irreducible nonnegative matrix and $X \in \mathbb{R}^n$ be an unit vector. If $\rho(A) = X^T A X$, then $A X = \rho(A) X$.

Definition 3.4. We say that a graph *G* is (color) *k*-critical if $\chi(G) = k$ and $\chi(H) < \chi(G)$ for every proper subgraph *H* of *G*.

Lemma 3.5 [5]. Suppose the chromatic number $\chi(G) = k \ge 4$. Let G be a k-critical graph on more than k vertices (so $G \neq K_k$). Then

$$|E(G)| \ge \left(\frac{k-1}{2} + \frac{k-3}{2(k^2 - 2k - 1)}\right) |V(G)|$$

Fig. 3.1. $G_1v_0v_1P_{k+1}$.

Lemma 3.6 [9]. Let $P(n, \lambda)$ denote the (adjacency) characteristic polynomial of path P_n and $r \ge 2$ be a fixed real number. If $\lambda \ge r$, then for any $n \ge 0$, $P(n + 1, \lambda) > \frac{r + \sqrt{r^2 - 4}}{2}P(n, \lambda) > 0$, where $P(0, \lambda) = 1$.

Let *G*, *H* be two disjoint connected graphs, and *GuvH* denotes the graph obtained from the union of graphs *G* and *H* by adding edge uv ($u \in V(G)$), $v \in V(H)$. Let G + v be obtained from *G* by adding a pendant edge uv and let H + u be obtained from *H* by adding a pendant edge vu.

Lemma 3.7 [2]. Let G, H be two connected graphs. Then

$$P_{\mathcal{Q}(GuvH)}(\lambda) = \frac{1}{\lambda} \left(P_{\mathcal{Q}(G+v)}(\lambda) P_{\mathcal{Q}(H)}(\lambda) + P_{\mathcal{Q}(H+u)}(\lambda) P_{\mathcal{Q}(G)}(\lambda) - (\lambda-2) P_{\mathcal{Q}(G)}(\lambda) P_{\mathcal{Q}(H)}(\lambda) \right).$$

Let $G = G_1 v_0 v_1 P_k$ denote the graph obtained from graph G_1 and path P_k by adding an edge $v_0 v_1$ between the vertex v_0 of G_1 and a pedant vertex v_1 of P_k (in G, $v_0 v_1 P_k$ is also called the pedant path of G_1 , see Fig. 3.1). If G_1 is a complete graph K_s , $G_1 v_0 v_1 P_k$ can be denoted by $K_s^{(k)}$ ($K_s^{(k)}$ is also known as path complete graph which is denoted by $PC_{n,1,k}$, see [1]).

Lemma 3.8. Suppose $d_{G_1}(v_0) \ge 2$, $P_k = v_1v_2 \cdots v_k$. Let connected graph $G = G_1v_0v_1P_k$ (see Fig. 3.1) with order n, q_i $(1 \le i \le n)$ be the eigenvalues of Q(G). Suppose $X_i = (x_{i,0}, x_{i,1}, x_{i,2}, \dots, x_{i,k}, x_{i,k+1}, \dots, x_{i,n-1})^T$ is an eigenvector corresponding to eigenvalue q_i and $x_{i,s}$ ($0 \le s \le n-1$) corresponds to vertex v_s . Let $f_1 = q_i - 1$ and $f_{j+1} = q_i - 2 - \frac{1}{f_i}$. Then $x_{i,k-j} = f_j x_{i,k-j+1}$ for $1 \le j \le k$, and we have

(i)
$$\frac{q_i-2}{2} \leq f_j \leq q_i - 2$$
, if $q_i \geq 4$, $j \geq 2$;
(ii) $f_j < f_{j-1}$ if $q_i \geq 4$, $2 \leq j \leq k$.

Proof. Note that $x_{i,k-1} = (q_i - 1)x_{i,k} = f_1 x_{i,k}$ and $x_{i,k-2} + x_{i,k} = (q_i - 2)x_{i,k-1}$, we get

$$x_{i,k-2} = \left(q_i - 2 - \frac{1}{q_i - 1}\right) x_{i,k-1} = \left(q_i - 2 - \frac{1}{f_1}\right) x_{i,k-1} = f_2 x_{i,k-1}.$$

So, we can get $f_{j+1} = q_i - 2 - \frac{1}{f_j}$ and $x_{i,k-j} = f_j x_{i,k-j+1}$ for $1 \le j \le k$ by induction.

(i) It is easy to check that $\frac{q_i-2}{2} \leq f_2 \leq q_i - 2$ if $q_i \geq 4$. Suppose $\frac{q_i-2}{2} \leq f_j \leq q_i - 2$ for $2 \leq j < N$, then

$$-\frac{2}{q_i-2} \leqslant -\frac{1}{f_{N-1}} \leqslant -\frac{1}{q_i-2}, \quad q_i-2-\frac{2}{q_i-2} \leqslant f_N \leqslant q_i-2-\frac{1}{q_i-2}$$

because $f_N = q_i - 2 - \frac{1}{f_{N-1}}$. Note that $q_i - 2 - \frac{2}{q_i-2} \ge \frac{q_i-2}{2}$ if $q_i \ge 4$, so $\frac{q_i-2}{2} \le f_N \le q_i - 2$. By induction, then (i) follows.

(ii) By (i), $f_2 < f_1$ clearly. Suppose $f_j \leq f_{j-1}$ for $2 \leq j < N$, then

$$q_i - 2 - \frac{1}{f_{N-1}} \leqslant_i -2 - \frac{1}{f_{N-2}},$$

namely $f_N \leq f_{N-1}$. By induction, then (ii) follows. \Box

Corollary 3.9. Suppose $d_{G_1}(v_0) \ge 2$, $P_k = v_1 v_2 \cdots v_k$. Let connected graph $G = G_1 v_0 v_1 P_k$ (see Fig. 3.1) with order *n*. Suppose $X = (x_0, x_1, x_2, \dots, x_k, x_{k+1}, \dots, x_{n-1})^T$ is Perron vector of Q(G) in which x_s $(0 \le s \le n-1)$ corresponds to vertex v_s . If $|E(G)| \ge n$, then

 $x_0 \geqslant x_1 \geqslant x_2 \geqslant \cdots \geqslant x_k.$

Proof. If $|E(G)| \ge n$, then *G* contains cycle. Hence $q(G) \ge 4$. Thus the corollary follows from Lemma 3.8. \Box

Corollary 3.10. Suppose $P_k = v_1 v_2 \cdots v_k$. Let connected graph $G = G_1 v_0 v_1 P_k = K_{n-k}^{(k)}$ (see Fig. 3.1). Suppose $X = (x_0, x_1, x_2, \dots, x_k, x_{k+1}, \dots, x_{n-1})^T$ is Perron vector of Q(G) in which x_s ($0 \le s \le n-1$) corresponds to vertex v_s . If $n - k \ge 3$, then

 $x_{k+1} = x_{k+2} = \cdots = x_{n-1} \ge x_i$

for j = 1, 2, ..., k.

Proof. By symmetry, we have $x_{k+1} = x_{k+2} = \cdots = x_{n-1}$. Note that

$$q(G)x_{k+1} = (2n - 2k - 3)x_{k+1} + x_0, \quad q(G)x_1 = 2x_1 + x_0 + x_2,$$

then

$$x_0 = (q(G) - (2n - 2k - 3))x_{k+1}, \quad x_0 = (q(G) - 2)x_1 - x_2 \ge (q(G) - 3)x_1,$$

and $x_{k+1} \ge x_1$. Then the corollary follows from Corollary 3.9. \Box

Let $V(K_t) = \{v_1, v_2, \dots, v_t\}$. $K_t^{(1,s_1;2,s_2;\dots;t,s_t)}$ $(t \ge 3, s_i \ge 0, i = 1, 2, \dots, t)$ is obtained by adding an edge between v_i $(1 \le i \le t)$ and a pendant vertex of path P_{s_i} (see Fig. 3.2, for example). In particular, $s_i = 0$ means that no path joining to v_i . Then we have the following lemma.

Lemma 3.11. If there are at least two in $\{s_i | 1 \le i \le t\}$ which are all at least 1 in $K_t^{(1,s_1;2,s_2;...;t,s_t)}$ $(t \ge 3, t + \sum_{i=1}^t s_i = n)$, then $q(K_t^{(1,s_1;2,s_2;...;t,s_t)}) > q(K_t^{n-t})$.

Proof. In K_t^{n-t} , let $V(K_t) = \{v_1, v_2, \dots, v_t\}$, and let the pedant path be $\mathcal{P} = v_1 v_{t+1} v_{t+2} \dots v_n$. Let $X = (x_1, x_2, \dots, x_n)^T$ be the Perron vector of K_t^{n-t} in which x_i corresponds v_i $(1 \le i \le n)$. From Corollary 3.10, we know that $x_2 = x_3 = \dots = x_t \ge x_j$ $(t+1 \le j \le n)$. Among s_1, s_2, \dots, s_t , suppose $s_{i_1} \ge 1, s_{i_2} \ge 1, \dots, s_{i_\theta} \ge 1$ $(1 \le \theta \le t)$. Let

$$G^* = K_t^{n-t} - \left(v_{n-s_{i_2}+1}v_{n-s_{i_2}} + v_{n-s_{i_2}-s_{i_3}+1}v_{n-s_{i_2}-s_{i_3}} + \dots + v_{n-\sum_{l=2}^{l=\theta}s_{i_l}+1}v_{n-\sum_{l=2}^{l=\theta}s_{i_l}} \right) + v_2v_{n-s_{i_2}+1} + v_2v_{n-s_{i_2}-s_{i_3}+1} + \dots + v_{\theta}v_{n-\sum_{l=2}^{l=\theta}s_{i_l}+1}.$$

Then

$$\begin{aligned} X^{T}(Q(G^{*}) - Q(K_{t}^{n-t}))X &= 2(x_{2} + 2x_{n-s_{i_{2}}+1} + x_{n-s_{i_{2}}})(x_{2} - x_{n-s_{i_{2}}}) \\ &+ (x_{3} + 2x_{n-s_{i_{2}}-s_{i_{3}}+1} + x_{n-s_{i_{2}}-s_{i_{3}}})(x_{3} - x_{n-s_{i_{2}}-s_{i_{3}}}) \\ &+ \dots + \left(x_{\theta} + 2x_{n-\sum_{l=2}^{l=\theta} s_{l_{l}}+1} + x_{n-\sum_{l=2}^{l=\theta} s_{l_{l}}}\right) \left(x_{\theta} - x_{n-\sum_{l=2}^{l=\theta} s_{l_{l}}}\right) \\ &\geqslant 0. \end{aligned}$$

This means that $q(G^*) \ge q(K_t^{n-t})$. Suppose that $q(G^*) = q(K_t^{n-t})$. Then $X^T(Q(G^*) - Q(K_t^{n-t}))X = 0$ and $X^TQ(G^*)X = q(K_t^{n-t})$. By Lemma 3.3, we know that X is also the Perron vector of G^* . But in G^* ,

$$Q_2(G^*)X = (2t-3)x_2 + x_1 + x_{n-s_{i_2}+1} > q(K_t^{n-t})x_2,$$

where $Q_2(G^*)$ denotes the row corresponding to vertex v_2 . So, $q(G^*) > q(K_t^{n-t})$. Note that $G^* \cong K_t^{(1,s_1;2,s_2;...;t,s_t)}$, hence $q(K_t^{(1,s_1;2,s_2;...;t,s_t)}) > q(K_t^{n-t})$. \Box

Lemma 3.12. Let G be a connected graph with chromatic number $\chi \ge 4$ and order $\chi + 1$. Then G contains K_{χ} as subgraph, and $q(G) \ge q(K_{\chi}^1)$ with equality if and only if $G \cong K_{\chi}^1$.

Proof. Suppose $V(G) = \{v_1, v_2, ..., v_{\chi+1}\}$. In a χ -coloring of G, there must be two vertices colored the same color. For convenience, suppose the two vertices are v_1, v_2 . Then vertices $v_3, v_4, ..., v_{\chi+1}$ induce a complete graph in G. Let $S = \{v_3, v_4, ..., v_{\chi+1}\}$. There must be $(S \setminus N_G(v_1)) \cap (S \setminus N_G(v_2)) = \phi$, and no case $|S \setminus N_G(v_1)| \ge 1$, $|S \setminus N_G(v_2)| \ge 1$. Otherwise, G is $\chi - 1$ colorable, contradicting that G is χ colorable. Hence there must be at least one of v_1, v_2 whose degree is $\chi - 1$, and then G contains K_{χ} as subgraph. Note that for a connected graph H, if $e \notin E(H)$, then q(H + e) > q(H), so $q(G) \ge q(K_{\chi}^1)$, and equality holds if and only if $G \cong K_{\chi}^1$. \Box

Lemma 3.13. *If* $k \ge 8$, $l \ge 2$, *then*

$$q(K_k^l) < 2(k-1) + \frac{2(k-3)}{k^2 - 2k - 1}.$$

Proof. Note that

$$P_{Q(K_k^1)}(\lambda) = \begin{vmatrix} \lambda - (k-1) & -1 & \cdots & -1 & -1 & 0 \\ -1 & \lambda - (k-1) & \cdots & -1 & -1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ -1 & -1 & \cdots & \lambda - (k-1) & -1 & 0 \\ -1 & -1 & \cdots & -1 & \lambda - k & -1 \\ 0 & 0 & \cdots & 0 & -1 & \lambda - 1 \end{vmatrix}_{(k+1) \times (k+1)}$$

$$= \begin{vmatrix} \lambda - (k-1) & -1 & \cdots & -1 & -1 & 0 \\ -1 & \lambda - (k-1) & \cdots & -1 & -1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ -1 & -1 & \cdots & \lambda - (k-1) & -1 & 0 \\ -1 & -1 & \cdots & -1 & \lambda - (k-1) & -1 \\ 0 & 0 & \cdots & 0 & -\lambda & \lambda - 1 \end{vmatrix}_{(k+1) \times (k+1)}$$

G. Yu et al. / Linear Algebra and its Applications 435 (2011) 1813-1822

$$= -\lambda \begin{vmatrix} \lambda - (k-1) & -1 & \cdots & -1 \\ -1 & \lambda - (k-1) & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & \lambda - (k-1) \end{vmatrix} \Big|_{(k-1) \times (k-1)} \\ + (\lambda - 1) \begin{vmatrix} \lambda - (k-1) & -1 & \cdots & -1 & -1 \\ -1 & \lambda - (k-1) & \cdots & -1 & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & \cdots & \lambda - (k-1) & -1 \\ -1 & -1 & \cdots & \lambda - (k-1) \end{vmatrix} \Big|_{k \times k} \\ = -\lambda (\lambda - (2k-3)) (\lambda - (k-2))^{k-2} + (\lambda - 1) (\lambda - (2k-2)) (\lambda - (k-2))^{k-1} \\ = (\lambda - (k-2))^{k-2} (\lambda^3 - (3k-2)\lambda^2 + (2k^2 - k - 3)\lambda - 2(k-1)(k-2)). \end{aligned}$$

By Lemma 3.7, we have

$$P_{Q(K_{k}^{l})}(\lambda) = \frac{1}{\lambda} \left\{ P_{Q(K_{k}^{1})}(\lambda) P_{Q(P_{l})}(\lambda) + P_{Q(K_{k})}(\lambda) (P_{Q(P_{l+1})}(\lambda) - (\lambda - 2)P_{Q(P_{l})}(\lambda)) \right\}$$

$$= \frac{1}{\lambda} (\lambda - k + 2)^{k-2} \{ (\lambda^{3} - (3k - 2)\lambda^{2} + (2k^{2} - k - 3)\lambda - 2(k - 1)(k - 2))P_{Q(P_{l})}(\lambda) + (\lambda - 2(k - 1))(\lambda - k + 2) \times (P_{Q(P_{l+1})}(\lambda) - (\lambda - 2)P_{Q(P_{l})}(\lambda)) \}$$

$$= \frac{1}{\lambda} (\lambda - k + 2)^{k-2} \{ ((1 - k)\lambda + 2(k - 1)(k - 2))P_{Q(P_{l})}(\lambda) + (\lambda^{2} - (3k - 4)\lambda + 2(k - 1)(k - 2))P_{Q(P_{l+1})}(\lambda) \}.$$
(3)

Notice that for a graph G with incidence matrix M, we have

 $MM^T = D + A, \quad M^TM = 2I_l + A_l,$

where A_l is the adjacency matrix of the line graph of G. So

$$P_{\mathbb{Q}(P_l)}(\lambda) = \lambda P(l-1, \lambda-2), \quad P_{\mathbb{Q}(P_{l+1})}(\lambda) = \lambda P(l, \lambda-2).$$

By Lemma 3.6, when $\lambda \ge 4$, then

$$\begin{aligned} (3) > & (\lambda - k + 2)^{k-2} P(l-1, \lambda - 2) \{ (1-k)\lambda + 2(k-1)(k-2) \\ & + \frac{\lambda - 2 + \sqrt{(\lambda - 2)^2 - 4}}{2} (\lambda^2 - (3k-4)\lambda + 2(k-1)(k-2)) \}. \end{aligned}$$

Let

$$g(\lambda) = (1-k)\lambda + 2(k-1)(k-2) + \frac{\lambda - 2 + \sqrt{(\lambda - 2)^2 - 4}}{2} (\lambda^2 - (3k-4)\lambda + 2(k-1)(k-2)) \ (\lambda \ge 4).$$
(4)

Notice that, when $\lambda \ge 4$,

$$(4) = (1-k)\lambda + 2(k-1)(k-2) + \frac{\lambda - 2 + \sqrt{\lambda(\lambda - 4)}}{2} (\lambda^2 - (3k-4)\lambda + 2(k-1)(k-2)) \ge (1-k)\lambda + 2(k-1)(k-2) + (\lambda - 3)(\lambda^2 - (3k-4)\lambda + 2(k-1)(k-2)).$$

Let

$$f(\lambda) = (1-k)\lambda + 2(k-1)(k-2) + (\lambda-3)(\lambda^2 - (3k-4)\lambda + 2(k-1)(k-2)).$$

Then

$$f(2(k-1) + \frac{2(k-3)}{k^2 - 2k}) = \left(2k - 5 + \frac{2(k-3)}{k^2 - 2k}\right) \frac{2(k-3)}{k^2 - 2k} \left(\frac{2(k-3)}{k^2 - 2k} + k\right) \\ - \left(2 + \frac{2(k-3)}{k^2 - 2k}\right)(k-1) > \frac{2k^2 - 20k + 36}{k-2} \\ > 0 \quad (k \ge 8).$$
(5)

For $g(\lambda)$, taking the derivative with respect to λ , we get

$$g'(\lambda) = 1 - k + \left(\frac{1}{2} + \frac{\lambda - 2}{2\sqrt{(\lambda - 2)^2 - 4}}\right)(\lambda^2 - (3k - 4)\lambda + 2(k - 1)(k - 2)) + \frac{\lambda - 2 + \sqrt{(\lambda - 2)^2 - 4}}{2}(2\lambda - 3k + 4) > 1 - k + \lambda^2 - (3k - 4)\lambda + 2(k - 1)(k - 2) + (\lambda - 3)(2\lambda - 3k + 4).$$

Hence, when $k \ge 4$, $\lambda \ge 2k - 1$, then

$$g'(\lambda) \ge g'(2k-1) > 2k^2 - 6 > 0,$$

and then $g(\lambda)$ is increasing with respect to λ . From (5) we know that, when $\lambda \ge 2(k-1) + \frac{2(k-3)}{k^2-2k}$, then $g(\lambda) > 0$. So

$$q(K_k^l) < 2(k-1) + \frac{2(k-3)}{k^2 - 2k} < 2(k-1) + \frac{2(k-3)}{k^2 - 2k - 1}.$$

Corollary 3.14. Let G be a connected graph with chromatic number $\chi \ge 8$, and with order n. If G does not contain K_{χ} as subgraph, then $q(G) \ge q(K_{\chi}^{n-\chi})$ with equality if and only if $G \cong K_{\chi}^{n-\chi}$.

Proof. By Lemma 3.12, we know that $n \ge \chi + 2$. We assume that *G* contains a χ -critical subgraph *H*. Then $q(G) \ge q(H)$. By Lemma 3.5, we have

$$q(G) \ge q(H) \ge \frac{4|E(H)|}{|V(H)|} \ge 2(k-1) + \frac{2(k-3)}{k^2 - 2k - 1}.$$

Then the Corollary follows from Lemma 3.13. \Box

Theorem 3.15. Let G be a connected graph with chromatic number χ ($\chi \neq 4, 5, 6, 7$) and n vertices. Then

- (1) If $\chi = 2$, then $q(G) \ge q(P_n)$ with equality if and only if $G \cong P_n$;
- (2.1) If $\chi = 3$ and n is odd, then $q(G) \ge q(C_n)$ with equality if and only if $G \cong C_n$; (2.2) If $\chi = 3$ and n is even, then $q(G) \ge q(C_{n-1}^1)$ with equality if and only if $G \cong C_{n-1}^1$, where C_{n-1}^1 is obtained from the cycle C_{n-1} by adding one pendent edge;

(3) If $\chi \ge 8$, then $q(G) \ge q(K_{\chi}^{(l)})$ with equality if and only if $G \cong K_{\chi}^{(l)}$.

Proof. Fact 1. For a connected graph H, q(H + e) > q(H) if $e \notin E(H)$.

Fact 2. For a connected graph H, q(H - v) < q(H) if $v \in V(H)$.

Using Lemma 3.2 and Fact 1 repeatedly, (1) follows.

Using Facts 1, 2 and Lemma 3.1 repeatedly, (2.1), (2.2) follows.

We prove (3) next.

Case 1. *G* does not contain K_{χ} as subgraph. By Lemma 3.12, then $n \ge \chi + 2$, and then (3) follows from Lemma 3.13 and Corollary 3.14.

Case 2. *G* contains K_{χ} as subgraph.

If $n = \chi + 1$, then (3) follows from Lemma 3.12.

If $n \ge \chi + 2$, using Fact 1, Lemma 3.2 repeatedly, then (3) follows from Lemma 3.11. \Box

Acknowledgment

Many thanks to the referees for their kind reviews and helpful suggestions.

References

- [1] S. Belhaiza, P. Hansen, N.M.M. Abreu, C.S. Oliveira, Variable neigborhood search for extremal graphs XI: bounds on algebraic connectivity, in: Graph Theory and Combinatorial Optimization, Springer, 2005, pp. 1-16.
- [2] D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, I, Publications De línstitut Mathématique, Nouv. série, tome 85 (99) (2009) 19-33.
- [3] D. Cvetković, Peter Rowlinson, S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171.
- [4] E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectrum, Linear Algebra Appl. 373 (2003) 241-272.
- [5] M. Krivelevich, An improved upper bound on the minimal number of edges in color-critical graphs, Electron. J. Combin. 1 (1998) R4.
- [6] C.S. Oliveira, L.S. de Lima, N.M.M. de Abreu, P. Hansen, Bounds on the index of the signless Laplacian of a graph, Discrete Appl. Math. 158 (2010) 355-360.
- [7] J.L. Shu, Y. Hong, R.K. Wen, A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph, Linear Algebra Appl. 347 (2002) 123-129.
- [8] H. Wiedant, Unzerlegbare nicht-negative matrizen, Math. Z 52 (1950) 642-648.
- [9] M. Zhai, R. Liu, J. Shu, Minimizing the least eigenvalue of unicyclic graphs with fixed diameter, Discrete Math. 310 (2010) 947–955.