Signless Laplacian spectral radii of graphs with given chromatic number

Guanglong Yu ${ }^{\mathrm{a}, \mathrm{b}}$, Yarong $\mathrm{Wu}{ }^{\text {b,d }}$, Jinlong Shu, ${ }^{\mathrm{a}, \mathrm{c}, *, 1}$
${ }^{a}$ Department of Mathematics, East China Normal University, Shanghai 200241, China
${ }^{\mathrm{b}}$ Department of Mathematics, Yancheng Teachers University, Yancheng, 224002 Jiangsu, China
${ }^{\text {c }}$ Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China
${ }^{\mathrm{d}}$ SMU College of Art and Science, Shanghai maritime University, Shanghai 200135, China

ARTICLEINFO

Article history:

Received 17 November 2010
Accepted 1 March 2011
Available online 7 May 2011
Submitted by R.A. Brualdi

AMS classification:

05C50
Keywords:
Signless Laplacian
Spectral radius
Chromatic number

Abstract

Let G be a simple graph with vertices $v_{1}, v_{2}, \ldots, v_{n}$, of degrees $\Delta=$ $d_{1} \geqslant d_{2} \geqslant \cdots \geqslant d_{n}=\delta$, respectively. Let A be the $(0,1)$-adjacency matrix of G and D be the diagonal matrix $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right) . Q(G)$ $=D+A$ is called the signless Laplacian of G. The largest eigenvalue of $Q(G)$ is called the signless Laplacian spectral radius or Q-spectral radius of G. Denote by $\chi(G)$ the chromatic number for a graph G. In this paper, for graphs with order n, the extremal graphs with both the given chromatic number and the maximal Q-spectral radius are characterized, the extremal graphs with both the given chromatic number $\chi \neq 4,5,6,7$ and the minimal Q-spectral radius are characterized as well.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

All graphs considered here are simple, connected and undirected. Denote by $V(G)$ the vertex set and $E(G)$ the edge set for a graph G. Let G be a graph with vertices $v_{1}, v_{2}, \ldots, v_{n}$, of degrees $\Delta=d_{1} \geqslant$ $d_{2} \geqslant \cdots \geqslant d_{n}=\delta$, respectively. If vertex v_{i} is adjacent to v_{j}, we denote by $v_{i} \sim v_{j}$. We denote by $N_{G}(v)$ or $N(v)$ the neighbor set of vertex v in graph G. The degree of vertex v in graph G, denoted by $d_{G}(v)$ or $d(v)$, is equal to $\left|N_{G}(v)\right|$. We denote by K_{n}, P_{n}, C_{n} for a complete graph, a path and a cycle with order n, respectively, in this paper.

[^0]Denote by $|M|$ the determinant for a square matrix M. Let $A=\left(a_{i j}\right)_{n \times n}$ be the $(0,1)$-adjacency matrix of G, and let D be the diagonal matrix $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. The matrix $L(G)=D-A$ is the Laplacian of G, while $Q(G)=D+A$ is called the signless Laplacian of G.

The matrix $Q(G)$ is symmetric and nonnegative, and when G is connected, it is irreducible. If M is the $n \times m$ vertex-edge incidence matrix of the (n, m)-graph G, then $Q(G)=M M^{T}$. Thus $Q(G)$ is positive semi-definite, and its eigenvalues can be arranged as:

$$
q=q_{1} \geqslant q_{2} \geqslant \cdots \geqslant q_{n} \geqslant 0 .
$$

q is called the signless Laplacian spectral radius or Q-spectral radius of G. The Q-characteristic polynomial of a graph G, denoted by $P_{Q}(\lambda)$ or $P_{Q(G)}(\lambda)$, is the characteristic polynomial of $Q(G)$. Denoted by \widetilde{G} the complement of graph G, and denoted by $P_{\tilde{Q}}(\lambda)$ or $P_{Q(\widetilde{G})}(\lambda)$ the Q-characteristic polynomial of \widetilde{G}.

Computer investigations of graphs with up to 11 vertices [4] suggest that the spectrum of $D+A$ performs better than the spectrum of A or $D-A$ in distinguishing non-isomorphic graphs, study of the spectrum of $D+A$ is of interests in the literature (see [2,6], for example) recently.

In this paper, we consider the signless Laplacian spectral radii of graphs with order n and given chromatic number χ. For graphs with order n, the extremal graphs with both the given chromatic number and the maximal Q-spectral radius are characterized, the extremal graphs with both the given chromatic number $\chi \neq 4,5,6,7$ and the minimal Q-spectral radius are characterized as well. This paper is organized as follows: Section 1 introduces the basic ideas and their supports; Section 2 characterizes the extremal graphs with the maximal Q-spectral radius; Section 3 characterizes the extremal graphs with the minimal Q-spectral radius.

2. Maximal Q-spectral radius

Definition 2.1 [3]. A semi-edge walk (of length k) in an (undirected) graph G is an alternating sequence $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{k}, e_{k}, v_{k+1}$ of vertices $v_{1}, v_{2}, \ldots, v_{k+1}$ and edges $e_{1}, e_{2}, \ldots, e_{k}$ such that for any $i=1,2, \ldots, k$, the vertices v_{i} and v_{i+1} are end-vertices (not necessarily distinct) of the edge e_{i}.

Lemma 2.2 [3]. Let Q be the signless Laplacian matrix of a graph G. The (i, j)-entry of the matrix Q^{k}, denoted by $q_{(i, j)}^{(k)}$, is equal to the number of semi-edge walks of length k starting at vertex i and terminating at vertex j.

Let G be a graph with n vertices and m edges, $N_{k}(k \geqslant 0)$ denote the number of all the semi-edge walks with length k in G, and let $N_{0}=1$. Clearly, $N_{1}=2 \sum_{i=1}^{n} d_{i}=4 m$. Let $H_{Q}(t)=\sum_{k=0}^{\infty} N_{k} t^{k}$ be the generating function of $N_{k}(k \geqslant 0)$. Then we have the following lemma.

Theorem 2.3. Let G be a simple connected graph with n vertices. Then

$$
H_{\mathrm{Q}}(t)=\frac{1}{t}\left(\frac{(-1)^{n} P_{\widetilde{Q}}\left(\frac{t n-2 t-1}{t}\right)}{P_{\mathrm{Q}}\left(\frac{1}{t}\right)}-1\right) .
$$

Proof. Suppose M is a nonsingular $n \times n$ square matrix and J is a $n \times n$ square matrix in which all the entries are 1. Let $\|M\|_{1}=\sum_{i, j} M_{i, j}$. Then the adjugate $a d j M=|M| M^{-1}$ and $|M+x J|=|M|+x\|\operatorname{adj} M\|_{1}$. Let I denote the identity matrix. Note that

$$
\begin{aligned}
& \sum_{k=0}^{\infty} Q^{k} t^{k}=(I-t Q)^{-1}=|I-t Q|^{-1} \operatorname{adj}(I-t Q) \quad\left(t \leqslant \frac{1}{q}\right) \\
& \sum_{k=0}^{\infty}\left\|Q^{k}\right\|_{1} t^{k}=\sum_{k=0}^{\infty} N_{k} t^{k}=|I-t Q|^{-1}\|\operatorname{adj}(I-t Q)\|_{1}
\end{aligned}
$$

Hence

$$
H_{Q}(t)=\frac{\|\operatorname{adj}(I-t Q)\|_{1}}{|(I-t Q)|} .
$$

Let $M=I-t Q$. Then

$$
\begin{equation*}
|I-t Q+t j|=|I-t Q|+t\|\operatorname{adj}(I-t Q)\|_{1} . \tag{1}
\end{equation*}
$$

Note that

$$
I-t Q+t J=I-t Q+t J+(n-2) t I-(n-2) t I=(2 t-t n+1) I+t \widetilde{Q} .
$$

From (1), we know that $\|\operatorname{adj}(I-t Q)\|_{1}=\frac{1}{t}(|I-t Q+t||-|I-t Q|)$. Hence

$$
H_{Q}(t)=\frac{1}{t}\left(\frac{|(2 t-t n+1) I+t \widetilde{Q}|}{|I-t Q|}-1\right)=\frac{1}{t}\left(\frac{(-1)^{n} P_{\tilde{Q}}\left(\frac{t n-2 t-1}{t}\right)}{P_{Q}\left(\frac{1}{t}\right)}-1\right) .
$$

Corollary 2.4. Let $G=K_{n_{1}, n_{2}, \ldots, n_{s}}$ be a complete s-partite graph with $\sum_{i=1}^{s} n_{i}=n$. Then

$$
\begin{equation*}
P_{Q}(\lambda)=(-1)^{n}\left(\sum_{i=1}^{s} \frac{n_{i}}{n-2 n_{i}-\lambda}+1\right) \prod_{i=1}^{s}\left(n-2 n_{i}-\lambda\right)\left(n-n_{i}-\lambda\right)^{n_{i}-1} \tag{2}
\end{equation*}
$$

Proof. Let $H_{\tilde{Q}}(t)$ denote the semi-edge walk number generating function of \widetilde{G}. Let B_{i} denote a complete graph with n_{i} vertices and $N_{k}^{(i)}$ denote the number of semi-edge walks with length k in B_{i}. By Theorem 2.3, then

$$
\begin{aligned}
H_{\widetilde{Q}}(t) & =\frac{1}{t}\left(\frac{(-1)^{n} P_{\mathrm{Q}}\left(\frac{t n-2 t-1}{t}\right)}{P_{\tilde{Q}}\left(\frac{1}{t}\right)}-1\right)=\sum_{k=0}^{\infty} \sum_{i=1}^{s} N_{k}^{(i)} t^{k} \\
& =\sum_{k=0}^{\infty} \sum_{i=1}^{s} n_{i}\left(2\left(n_{i}-1\right)\right)^{k} t^{k}=\sum_{i=1}^{s} \frac{n_{i}}{1-2\left(n_{i}-1\right) t} .
\end{aligned}
$$

Hence

$$
(-1)^{n} P_{Q}\left(\frac{t n-2 t-1}{t}\right)=\left(t \sum_{i=1}^{s} \frac{n_{i}}{1-2\left(n_{i}-1\right) t}+1\right) P_{\tilde{Q}}\left(\frac{1}{t}\right) .
$$

Let $\lambda=\frac{t n-2 t-1}{t}$. Then $t=\frac{1}{n-2-\lambda}$, and then (2) follows immediately.

Lemma 2.5 [8]. Let $\mathscr{M}_{n}=\{M \mid M$ is a $n \times n$ square matrix $\}$. Suppose $A, B \in \mathscr{M}_{n}(n \geqslant 2)$, A is nonnegative irreducible and $|B| \leqslant A$ (namely $\left|B_{i, j}\right| \leqslant A_{i, j}$ for each pair of i, j). Denote by $\rho(A)$ the largest eigenvalue of A. For any eigenvalue λ of B, we have $|\lambda| \leqslant \rho(A)$, and equality holds if and only if $B=e^{i \theta} D A D^{-1}$ where $\rho(A) e^{i \theta}=\lambda$ and D is a diagonal U-matrix.

Definition 2.6. The Turán graph $T_{(n, r)}$ is an n-vertex graph formed by partitioning the set of vertices into r parts of equal or nearly-equal size, and connecting two vertices by an edge whenever they belong to two different parts. In fact, $T_{(n, r)}$ is an n-vertex complete r-partite graph with each part of equal or nearly-equal size.

Theorem 2.7. Suppose complete s-partite graph $G=K_{n_{1}, n_{2}, \ldots, n_{s}}$ with $\sum_{i=1}^{s} n_{i}=n$. Then $q(G) \leqslant q\left(T_{n, s}\right)$ with equality if and only if $G \cong T_{n, s}$.

Proof. Denote by $\mu(G)$ the Laplacian spectral radius for a graph G. From spectral graph theory, we know that $\mu(G)=n$ if \widetilde{G} is not connected. By Lemma 2.5, we get $q(G) \geqslant \mu(G) \geqslant n$. By Corollary 2.4, we know that $q(G)$ is the largest zero of $\sum_{i=1}^{s} \frac{n_{i}}{n-2 n_{i}-\lambda}+1=0$.

Suppose $n_{1} \geqslant n_{2} \geqslant \cdots \geqslant n_{s}$. If $n_{1}-n_{s} \geqslant 2$, let

$$
f(\delta, \lambda)=\frac{n_{1}-\delta}{n-2\left(n_{1}-\delta\right)-\lambda}+\sum_{i=2}^{s-1} \frac{n_{i}}{n-2 n_{i}-\lambda}+\frac{n_{s}+\delta}{n-2\left(n_{s}+\delta\right)-\lambda}+1
$$

where $0 \leqslant \delta \leqslant \frac{n_{1}-n_{s}}{2}$. So $f(0, q(G))=0$. Taking the derivative with respect to δ, for $\lambda \geqslant q(G)$, we have

$$
\frac{d f(\delta, \lambda)}{d \delta}=\frac{\lambda-n}{\left(2\left(n_{1}-\delta\right)+\lambda-n\right)^{2}}-\frac{\lambda-n}{\left(2\left(n_{s}+\delta\right)+\lambda-n\right)^{2}} \leqslant 0 .
$$

Hence $f(\delta, \lambda)$ is decreasing with respect to δ for $\lambda \geqslant q(G)$, and $f(\delta, \lambda)$ is strictly decreasing with respect to δ if $0<\delta<\frac{n_{1}-n_{s}}{2}$. Thus, for $\lambda \geqslant q(G), f(\delta, \lambda) \leqslant 0$ if $\delta \leqslant \frac{n_{1}-n_{s}}{2}$ and $f(\delta, \lambda)<0$ if $0<\delta<\frac{n_{1}-n_{s}}{2}$. This means that if we increase n_{s} by δ and decrease n_{1} by δ in G, then $q(G)$ will increase.

Corollary 2.8. Let G be a simple connected graph with n vertices and chromatic number χ. Then $q(G) \leqslant$ $q\left(T_{n, \chi}\right)$ with equality if and only if $G \cong T_{n, \chi}$.

Proof. It is well known that $q(G+e)>q(G)$ if $e \notin E(G)$. Hence the Q-spectral radius of G is less than or equal to the Q-spectral radius of a complete χ-partite graph. Then the Corollary follows from Theorem 2.7.

3. Minimal Q-spectral radius

An internal path in some graph is a path $v_{0} v_{1} \cdots v_{k+1}$ for which $d\left(v_{0}\right), d\left(v_{k+1}\right) \geqslant 3$ and $d\left(v_{i}\right)=2$ for $i=1, \ldots, k$ (here $k \geqslant 0$, or $k \geqslant 2$ whenever $v_{0}=v_{k+1}$).

Lemma 3.1 [2]. Let $G_{u v}$ be the graph obtained from a connected graph G by subdividing its edge $u v$. Then the following holds:
(i) if uv belongs to an internal path then $q\left(G_{u v}\right)<q(G)$;
(ii) if $G \neq C_{n}$ for some $n \geqslant 3$, and if uv is not on any internal path of G, then $q\left(G_{u v}\right)>q(G)$. Otherwise, if $G=C_{n}$ then $q\left(G_{u v}\right)=q(G)=4$.

Lemma 3.2 [2]. Let $G(k, l)(k, l \geqslant 0)$ be the graph obtained from a non-trivial connected graph G by attaching pendant paths of lengths k and l at some vertex v. If $k \geqslant l \geqslant 1$ then $q(G(k, l))>$ $q(G(k+1, l-1))$.

Lemma 3.3 [7]. Let A be an $n \times n$ real symmetric irreducible nonnegative matrix and $X \in R^{n}$ be an unit vector. If $\rho(A)=X^{T} A X$, then $A X=\rho(A) X$.

Definition 3.4. We say that a graph G is (color) k-critical if $\chi(G)=k$ and $\chi(H)<\chi(G)$ for every proper subgraph H of G.

Lemma 3.5 [5]. Suppose the chromatic number $\chi(G)=k \geqslant 4$. Let G be a k-critical graph on more than k vertices (so $G \neq K_{k}$). Then

$$
|E(G)| \geqslant\left(\frac{k-1}{2}+\frac{k-3}{2\left(k^{2}-2 k-1\right)}\right)|V(G)| .
$$

Fig. 3.1. $G_{1} v_{0} v_{1} P_{k+1}$.

Lemma 3.6 [9]. Let $P(n, \lambda)$ denote the (adjacency) characteristic polynomial of path P_{n} and $r \geqslant 2$ be a fixed real number. If $\lambda \geqslant r$, then for any $n \geqslant 0, P(n+1, \lambda)>\frac{r+\sqrt{r^{2}-4}}{2} P(n, \lambda)>0$, where $P(0, \lambda)=1$.

Let G, H be two disjoint connected graphs, and GuvH denotes the graph obtained from the union of graphs G and H by adding edge $u v(u \in V(G)), v \in V(H)$. Let $G+v$ be obtained from G by adding a pendant edge $u v$ and let $H+u$ be obtained from H by adding a pendant edge $v u$.

Lemma 3.7 [2]. Let G, H be two connected graphs. Then

$$
P_{Q(G u v H)}(\lambda)=\frac{1}{\lambda}\left(P_{Q(G+v)}(\lambda) P_{Q(H)}(\lambda)+P_{Q(H+u)}(\lambda) P_{Q(G)}(\lambda)-(\lambda-2) P_{Q(G)}(\lambda) P_{Q(H)}(\lambda)\right) .
$$

Let $G=G_{1} v_{0} v_{1} P_{k}$ denote the graph obtained from graph G_{1} and path P_{k} by adding an edge $v_{0} v_{1}$ between the vertex v_{0} of G_{1} and a pedant vertex v_{1} of P_{k} (in $G, v_{0} v_{1} P_{k}$ is also called the pedant path of G_{1}, see Fig. 3.1). If G_{1} is a complete graph $K_{s}, G_{1} v_{0} v_{1} P_{k}$ can be denoted by $K_{s}^{(k)}\left(K_{s}^{(k)}\right.$ is also known as path complete graph which is denoted by $P C_{n, 1, k}$, see [1]).

Lemma 3.8. Suppose $d_{G_{1}}\left(v_{0}\right) \geqslant 2, P_{k}=v_{1} v_{2} \cdots v_{k}$. Let connected graph $G=G_{1} v_{0} v_{1} P_{k}$ (see Fig. 3.1) with order $n, q_{i}(1 \leqslant i \leqslant n)$ be the eigenvalues of $Q(G)$. Suppose $X_{i}=\left(x_{i, 0}, x_{i, 1}, x_{i, 2}, \ldots, x_{i, k}, x_{i, k+1}\right.$, $\left.\ldots, x_{i, n-1}\right)^{T}$ is an eigenvector corresponding to eigenvalue q_{i} and $x_{i, s}(0 \leqslant s \leqslant n-1)$ corresponds to vertex v_{s}. Let $f_{1}=q_{i}-1$ and $f_{j+1}=q_{i}-2-\frac{1}{f_{j}}$. Then $x_{i, k-j}=f_{j} x_{i, k-j+1}$ for $1 \leqslant j \leqslant k$, and we have
(i) $\frac{q_{i}-2}{2} \leqslant f_{j} \leqslant q_{i}-2$, if $q_{i} \geqslant 4, j \geqslant 2$;
(ii) $f_{j}<f_{j-1}$ if $q_{i} \geqslant 4,2 \leqslant j \leqslant k$.

Proof. Note that $x_{i, k-1}=\left(q_{i}-1\right) x_{i, k}=f_{1} x_{i, k}$ and $x_{i, k-2}+x_{i, k}=\left(q_{i}-2\right) x_{i, k-1}$, we get

$$
x_{i, k-2}=\left(q_{i}-2-\frac{1}{q_{i}-1}\right) x_{i, k-1}=\left(q_{i}-2-\frac{1}{f_{1}}\right) x_{i, k-1}=f_{2} x_{i, k-1}
$$

So, we can get $f_{j+1}=q_{i}-2-\frac{1}{f_{j}}$ and $x_{i, k-j}=f_{j} x_{i, k-j+1}$ for $1 \leqslant j \leqslant k$ by induction.
(i) It is easy to check that $\frac{q_{i}-2}{2} \leqslant f_{2} \leqslant q_{i}-2$ if $q_{i} \geqslant 4$. Suppose $\frac{q_{i}-2}{2} \leqslant f_{j} \leqslant q_{i}-2$ for $2 \leqslant j<N$, then

$$
-\frac{2}{q_{i}-2} \leqslant-\frac{1}{f_{N-1}} \leqslant-\frac{1}{q_{i}-2}, \quad q_{i}-2-\frac{2}{q_{i}-2} \leqslant f_{N} \leqslant q_{i}-2-\frac{1}{q_{i}-2}
$$

because $f_{N}=q_{i}-2-\frac{1}{f_{N-1}}$. Note that $q_{i}-2-\frac{2}{q_{i}-2} \geqslant \frac{q_{i}-2}{2}$ if $q_{i} \geqslant 4$, so $\frac{q_{i}-2}{2} \leqslant f_{N} \leqslant q_{i}-2$. By induction, then (i) follows.
(ii) By (i), $f_{2}<f_{1}$ clearly. Suppose $f_{j} \leqslant f_{j-1}$ for $2 \leqslant j<N$, then

$$
q_{i}-2-\frac{1}{f_{N-1}} \leqslant i-2-\frac{1}{f_{N-2}}
$$

namely $f_{N} \leqslant f_{N-1}$. By induction, then (ii) follows.

Fig. 3.2. $K_{4}^{(1,0 ; 2,1 ; 3,2 ; 4,3)}$.

Corollary 3.9. Suppose $d_{G_{1}}\left(v_{0}\right) \geqslant 2, P_{k}=v_{1} v_{2} \cdots v_{k}$. Let connected graph $G=G_{1} v_{0} v_{1} P_{k}$ (see Fig. 3.1) with order n. Suppose $X=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n-1}\right)^{T}$ is Perron vector of $Q(G)$ in which x_{s} $(0 \leqslant s \leqslant n-1)$ corresponds to vertex v_{s}. If $|E(G)| \geqslant n$, then

$$
x_{0} \geqslant x_{1} \geqslant x_{2} \geqslant \cdots \geqslant x_{k} .
$$

Proof. If $|E(G)| \geqslant n$, then G contains cycle. Hence $q(G) \geqslant 4$. Thus the corollary follows from Lemma 3.8.

Corollary 3.10. Suppose $P_{k}=v_{1} v_{2} \cdots v_{k}$. Let connected graph $G=G_{1} v_{0} v_{1} P_{k}=K_{n-k}^{(k)}$ (see Fig. 3.1). Suppose $X=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n-1}\right)^{T}$ is Perron vector of $Q(G)$ in which $x_{S}(0 \leqslant s \leqslant n-1)$ corresponds to vertex v_{s}. If $n-k \geqslant 3$, then

$$
x_{k+1}=x_{k+2}=\cdots=x_{n-1} \geqslant x_{j}
$$

for $j=1,2, \ldots, k$.
Proof. By symmetry, we have $x_{k+1}=x_{k+2}=\cdots=x_{n-1}$. Note that

$$
q(G) x_{k+1}=(2 n-2 k-3) x_{k+1}+x_{0}, \quad q(G) x_{1}=2 x_{1}+x_{0}+x_{2},
$$

then

$$
x_{0}=(q(G)-(2 n-2 k-3)) x_{k+1}, \quad x_{0}=(q(G)-2) x_{1}-x_{2} \geqslant(q(G)-3) x_{1},
$$

and $x_{k+1} \geqslant x_{1}$. Then the corollary follows from Corollary 3.9.
Let $V\left(K_{t}\right)=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\} . K_{t}^{\left(1, s_{1} ; 2, s_{2} ; \ldots ; t, s_{t}\right)}\left(t \geqslant 3, s_{i} \geqslant 0, i=1,2, \ldots, t\right)$ is obtained by adding an edge between $v_{i}(1 \leqslant i \leqslant t)$ and a pendant vertex of path $P_{s_{i}}$ (see Fig. 3.2, for example). In particular, $s_{i}=0$ means that no path joining to v_{i}. Then we have the following lemma.

Lemma 3.11. If there are at least two in $\left\{s_{i} \mid 1 \leqslant i \leqslant t\right\}$ which are all at least 1 in $K_{t}^{\left(1, s_{1} ; 2, s_{2} ; \ldots ; t, s_{t}\right)}(t \geqslant 3$, $\left.t+\sum_{i=1}^{t} s_{i}=n\right)$, then $q\left(K_{t}^{\left(1, s_{1} ; 2, s_{2} ; \ldots ; t, s_{t}\right)}\right)>q\left(K_{t}^{n-t}\right)$.

Proof. In K_{t}^{n-t}, let $V\left(K_{t}\right)=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$, and let the pedant path be $\mathcal{P}=v_{1} v_{t+1} v_{t+2} \ldots v_{n}$. Let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be the Perron vector of K_{t}^{n-t} in which x_{i} corresponds $v_{i}(1 \leqslant i \leqslant n)$. From Corollary 3.10, we know that $x_{2}=x_{3}=\cdots=x_{t} \geqslant x_{j}(t+1 \leqslant j \leqslant n)$. Among $s_{1}, s_{2}, \ldots, s_{t}$, suppose $s_{i_{1}} \geqslant 1, s_{i_{2}} \geqslant 1, \ldots, s_{i_{\theta}} \geqslant 1(1 \leqslant \theta \leqslant t)$. Let

$$
\begin{aligned}
G^{*}= & K_{t}^{n-t}-\left(v_{n-s_{i 2}+1} v_{n-s_{i_{2}}}+v_{n-s_{i_{2}}-s_{i_{3}}+1} v_{n-s_{i_{2}}-s_{i_{3}}}+\cdots+v_{n-\sum_{l=2}^{l=\theta} s_{i}+1} v_{n-\sum_{l=2}^{l=\theta} s_{i_{l}}}\right) \\
& +v_{2} v_{n-s_{i_{2}}+1}+v_{2} v_{n-s_{i_{2}}-s_{i_{3}}+1}+\cdots+v_{\theta} v_{n-\sum_{l=2}^{l=\theta} s_{i l}+1} .
\end{aligned}
$$

Then

$$
\begin{aligned}
X^{T}\left(Q\left(G^{*}\right)-Q\left(K_{t}^{n-t}\right)\right) X= & 2\left(x_{2}+2 x_{n-s_{i_{2}}+1}+x_{n-s_{i_{2}}}\right)\left(x_{2}-x_{n-s_{i_{2}}}\right) \\
& +\left(x_{3}+2 x_{n-s_{i_{2}}-s_{i_{3}}+1}+x_{n-s_{i_{2}}-s_{i_{3}}}\right)\left(x_{3}-x_{n-s_{i_{2}}-s_{i_{3}}}\right) \\
& +\cdots+\left(x_{\theta}+2 x_{n-\sum_{l=2}^{l=\theta} s_{i l}+1}+x_{n-\sum_{l=2}^{l=\theta} s_{i_{l}}}\right)\left(x_{\theta}-x_{n-\sum_{l=2}^{l=\theta} s_{i l}}\right) \\
& \geqslant 0 .
\end{aligned}
$$

This means that $q\left(G^{*}\right) \geqslant q\left(K_{t}^{n-t}\right)$. Suppose that $q\left(G^{*}\right)=q\left(K_{t}^{n-t}\right)$. Then $X^{T}\left(Q\left(G^{*}\right)-Q\left(K_{t}^{n-t}\right)\right) X=0$ and $X^{T} Q\left(G^{*}\right) X=q\left(K_{t}^{n-t}\right)$. By Lemma 3.3, we know that X is also the Perron vector of G^{*}. But in G^{*},

$$
Q_{2}\left(G^{*}\right) X=(2 t-3) x_{2}+x_{1}+x_{n-s_{i}+1}>q\left(K_{t}^{n-t}\right) x_{2},
$$

where $Q_{2}\left(G^{*}\right)$ denotes the row corresponding to vertex v_{2}. So, $q\left(G^{*}\right)>q\left(K_{t}^{n-t}\right)$. Note that $G^{*} \cong$ $K_{t}^{\left(1, s_{1} ; 2, s_{2} ; \ldots ; t, s_{t}\right)}$, hence $q\left(K_{t}^{\left(1, s_{1} ; 2, s_{2} ; \ldots ; t, s_{t}\right)}\right)>q\left(K_{t}^{n-t}\right)$.

Lemma 3.12. Let G be a connected graph with chromatic number $\chi \geqslant 4$ and order $\chi+1$. Then G contains K_{χ} as subgraph, and $q(G) \geqslant q\left(K_{\chi}^{1}\right)$ with equality if and only if $G \cong K_{\chi}^{1}$.

Proof. Suppose $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{\chi+1}\right\}$. In a χ-coloring of G, there must be two vertices colored the same color. For convenience, suppose the two vertices are v_{1}, v_{2}. Then vertices $v_{3}, v_{4}, \ldots, v_{\chi+1}$ induce a complete graph in G. Let $S=\left\{v_{3}, v_{4}, \ldots, v_{\chi+1}\right\}$. There must be $\left(S \backslash N_{G}\left(v_{1}\right)\right) \cap\left(S \backslash N_{G}\left(v_{2}\right)\right)=$ ϕ, and no case $\left|S \backslash N_{G}\left(v_{1}\right)\right| \geqslant 1,\left|S \backslash N_{G}\left(v_{2}\right)\right| \geqslant 1$. Otherwise, G is $\chi-1$ colorable, contradicting that G is χ colorable. Hence there must be at least one of v_{1}, v_{2} whose degree is $\chi-1$, and then G contains K_{χ} as subgraph. Note that for a connected graph H, if $e \notin E(H)$, then $q(H+e)>q(H)$, so $q(G) \geqslant q\left(K_{\chi}^{1}\right)$, and equality holds if and only if $G \cong K_{\chi}^{1}$.

Lemma 3.13. If $k \geqslant 8, l \geqslant 2$, then

$$
q\left(K_{k}^{l}\right)<2(k-1)+\frac{2(k-3)}{k^{2}-2 k-1} .
$$

Proof. Note that

$$
\begin{aligned}
P_{Q\left(K_{k}^{1}\right)}(\lambda) & =\left|\begin{array}{cccccc}
\lambda-(k-1) & -1 & \cdots & -1 & -1 & 0 \\
-1 & \lambda-(k-1) & \cdots & -1 & -1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
-1 & -1 & \cdots & \lambda-(k-1) & -1 & 0 \\
-1 & -1 & \cdots & -1 & \lambda-k & -1 \\
0 & 0 & \cdots & 0 & -1 & \lambda-1
\end{array}\right|_{(k+1) \times(k+1)} \\
& =\left|\begin{array}{cccccc}
\lambda-(k-1) & -1 & \cdots & -1 & -1 & 0 \\
-1 & \lambda-(k-1) & \cdots & -1 & -1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
-1 & -1 & \cdots & \lambda-(k-1) & -1 & 0 \\
-1 & -1 & \cdots & -1 & \lambda-(k-1) & -1 \\
0 & 0 & \cdots & 0 & -\lambda & \lambda-1
\end{array}\right|_{(k+1) \times(k+1)}
\end{aligned}
$$

$$
\begin{aligned}
= & -\lambda\left|\begin{array}{ccccc}
\lambda-(k-1) & -1 & \cdots & -1 \\
-1 & \lambda-(k-1) & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & \lambda-(k-1)
\end{array}\right|_{(k-1) \times(k-1)} \\
& +(\lambda-1)\left|\begin{array}{ccccc}
\lambda-(k-1) & -1 & \cdots & -1 & -1 \\
-1 & \lambda-(k-1) & \cdots & -1 & -1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
-1 & -1 & \cdots & \lambda-(k-1) & -1 \\
-1 & -1 & \cdots & -1 & \lambda-(k-1)
\end{array}\right|_{k \times k} \\
= & -\lambda(\lambda-(2 k-3))(\lambda-(k-2))^{k-2}+(\lambda-1)(\lambda-(2 k-2))(\lambda-(k-2))^{k-1} \\
= & (\lambda-(k-2))^{k-2}\left(\lambda^{3}-(3 k-2) \lambda^{2}+\left(2 k^{2}-k-3\right) \lambda-2(k-1)(k-2)\right) .
\end{aligned}
$$

By Lemma 3.7, we have

$$
\begin{align*}
P_{Q\left(K_{k}^{\prime}\right)}(\lambda)= & \frac{1}{\lambda}\left\{P_{Q\left(K_{k}^{1}\right)}(\lambda) P_{Q\left(P_{l}\right)}(\lambda)+P_{Q\left(K_{k}\right)}(\lambda)\left(P_{Q\left(P_{l+1}\right)}(\lambda)-(\lambda-2) P_{Q\left(P_{l}\right)}(\lambda)\right)\right\} \\
= & \frac{1}{\lambda}(\lambda-k+2)^{k-2}\left\{\left(\lambda^{3}-(3 k-2) \lambda^{2}+\left(2 k^{2}-k-3\right) \lambda\right.\right. \\
& -2(k-1)(k-2)) P_{Q\left(P_{l}\right)}(\lambda)+(\lambda-2(k-1))(\lambda-k+2) \\
& \left.\times\left(P_{Q\left(P_{l+1}\right)}(\lambda)-(\lambda-2) P_{Q\left(P_{l}\right)}(\lambda)\right)\right\} \\
= & \frac{1}{\lambda}(\lambda-k+2)^{k-2}\left\{((1-k) \lambda+2(k-1)(k-2)) P_{Q\left(P_{l}\right)}(\lambda)\right. \\
& \left.+\left(\lambda^{2}-(3 k-4) \lambda+2(k-1)(k-2)\right) P_{Q\left(P_{l+1}\right)}(\lambda)\right\} . \tag{3}
\end{align*}
$$

Notice that for a graph G with incidence matrix M, we have

$$
M M^{T}=D+A, \quad M^{T} M=2 I_{l}+A_{l},
$$

where A_{l} is the adjacency matrix of the line graph of G. So

$$
P_{Q\left(P_{l}\right)}(\lambda)=\lambda P(l-1, \lambda-2), \quad P_{Q\left(P_{l+1}\right)}(\lambda)=\lambda P(l, \lambda-2) .
$$

By Lemma 3.6, when $\lambda \geqslant 4$, then

$$
\begin{aligned}
(3)> & (\lambda-k+2)^{k-2} P(l-1, \lambda-2)\{(1-k) \lambda+2(k-1)(k-2) \\
& \left.+\frac{\lambda-2+\sqrt{(\lambda-2)^{2}-4}}{2}\left(\lambda^{2}-(3 k-4) \lambda+2(k-1)(k-2)\right)\right\} .
\end{aligned}
$$

Let

$$
\begin{align*}
g(\lambda)= & (1-k) \lambda+2(k-1)(k-2) \\
& +\frac{\lambda-2+\sqrt{(\lambda-2)^{2}-4}}{2}\left(\lambda^{2}-(3 k-4) \lambda+2(k-1)(k-2)\right)(\lambda \geqslant 4) . \tag{4}
\end{align*}
$$

Notice that, when $\lambda \geqslant 4$,

$$
\begin{aligned}
(4)= & (1-k) \lambda+2(k-1)(k-2) \\
& +\frac{\lambda-2+\sqrt{\lambda(\lambda-4)}}{2}\left(\lambda^{2}-(3 k-4) \lambda+2(k-1)(k-2)\right) \\
\geqslant & (1-k) \lambda+2(k-1)(k-2)+(\lambda-3)\left(\lambda^{2}-(3 k-4) \lambda+2(k-1)(k-2)\right) .
\end{aligned}
$$

Let

$$
f(\lambda)=(1-k) \lambda+2(k-1)(k-2)+(\lambda-3)\left(\lambda^{2}-(3 k-4) \lambda+2(k-1)(k-2)\right)
$$

Then

$$
\begin{align*}
f\left(2(k-1)+\frac{2(k-3)}{k^{2}-2 k}\right)= & \left(2 k-5+\frac{2(k-3)}{k^{2}-2 k}\right) \frac{2(k-3)}{k^{2}-2 k}\left(\frac{2(k-3)}{k^{2}-2 k}+k\right) \\
& -\left(2+\frac{2(k-3)}{k^{2}-2 k}\right)(k-1)>\frac{2 k^{2}-20 k+36}{k-2} \\
& >0 \quad(k \geqslant 8) . \tag{5}
\end{align*}
$$

For $g(\lambda)$, taking the derivative with respect to λ, we get

$$
\begin{aligned}
g^{\prime}(\lambda)= & 1-k+\left(\frac{1}{2}+\frac{\lambda-2}{2 \sqrt{(\lambda-2)^{2}-4}}\right)\left(\lambda^{2}-(3 k-4) \lambda+2(k-1)(k-2)\right) \\
& +\frac{\lambda-2+\sqrt{(\lambda-2)^{2}-4}}{2}(2 \lambda-3 k+4) \\
> & 1-k+\lambda^{2}-(3 k-4) \lambda+2(k-1)(k-2)+(\lambda-3)(2 \lambda-3 k+4) .
\end{aligned}
$$

Hence, when $k \geqslant 4, \lambda \geqslant 2 k-1$, then

$$
g^{\prime}(\lambda) \geqslant g^{\prime}(2 k-1)>2 k^{2}-6>0,
$$

and then $g(\lambda)$ is increasing with respect to λ. From (5) we know that, when $\lambda \geqslant 2(k-1)+\frac{2(k-3)}{k^{2}-2 k}$, then $g(\lambda)>0$. So

$$
q\left(K_{k}^{l}\right)<2(k-1)+\frac{2(k-3)}{k^{2}-2 k}<2(k-1)+\frac{2(k-3)}{k^{2}-2 k-1} .
$$

Corollary 3.14. Let G be a connected graph with chromatic number $\chi \geqslant 8$, and with order n. If G does not contain K_{χ} as subgraph, then $q(G) \geqslant q\left(K_{\chi}^{n-\chi}\right)$ with equality if and only if $G \cong K_{\chi}^{n-\chi}$.

Proof. By Lemma 3.12, we know that $n \geqslant \chi+2$. We assume that G contains a χ-critical subgraph H. Then $q(G) \geqslant q(H)$. By Lemma 3.5, we have

$$
q(G) \geqslant q(H) \geqslant \frac{4|E(H)|}{|V(H)|} \geqslant 2(k-1)+\frac{2(k-3)}{k^{2}-2 k-1} .
$$

Then the Corollary follows from Lemma 3.13.
Theorem 3.15. Let G be a connected graph with chromatic number $\chi(\chi \neq 4,5,6,7)$ and n vertices. Then
(1) If $\chi=2$, then $q(G) \geqslant q\left(P_{n}\right)$ with equality if and only if $G \cong P_{n}$;
(2.1) If $\chi=3$ and n is odd, then $q(G) \geqslant q\left(C_{n}\right)$ with equality if and only if $G \cong C_{n}$;
(2.2) If $\chi=3$ and n is even, then $q(G) \geqslant q\left(C_{n-1}^{1}\right)$ with equality if and only if $G \cong C_{n-1}^{1}$, where C_{n-1}^{1} is obtained from the cycle C_{n-1} by adding one pendent edge;
(3) If $\chi \geqslant 8$, then $q(G) \geqslant q\left(K_{\chi}^{(l)}\right)$ with equality if and only if $G \cong K_{\chi}^{(l)}$.

Proof. Fact 1. For a connected graph $H, q(H+e)>q(H)$ if $e \notin E(H)$.
Fact 2. For a connected graph $H, q(H-v)<q(H)$ if $v \in V(H)$.
Using Lemma 3.2 and Fact 1 repeatedly, (1) follows.
Using Facts 1, 2 and Lemma 3.1 repeatedly, (2.1), (2.2) follows.
We prove (3) next.
Case 1. G does not contain K_{χ} as subgraph. By Lemma 3.12, then $n \geqslant \chi+2$, and then (3) follows from Lemma 3.13 and Corollary 3.14.

Case 2. G contains K_{χ} as subgraph.
If $n=\chi+1$, then (3) follows from Lemma 3.12.
If $n \geqslant \chi+2$, using Fact 1 , Lemma 3.2 repeatedly, then (3) follows from Lemma 3.11.

Acknowledgment

Many thanks to the referees for their kind reviews and helpful suggestions.

References

[1] S. Belhaiza, P. Hansen, N.M.M. Abreu, C.S. Oliveira, Variable neigborhood search for extremal graphs XI: bounds on algebraic connectivity, in: Graph Theory and Combinatorial Optimization, Springer, 2005, pp. 1-16.
[2] D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, I, Publications De línstitut Mathématique, Nouv. série, tome 85 (99) (2009) 19-33.
[3] D. Cvetković, Peter Rowlinson, S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171.
[4] E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectrum, Linear Algebra Appl. 373 (2003) 241-272.
[5] M. Krivelevich, An improved upper bound on the minimal number of edges in color-critical graphs, Electron. J. Combin. 1 (1998) R4.
[6] C.S. Oliveira, L.S. de Lima, N.M.M. de Abreu, P. Hansen, Bounds on the index of the signless Laplacian of a graph, Discrete Appl. Math. 158 (2010) 355-360.
[7] J.L. Shu, Y. Hong, R.K. Wen, A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph, Linear Algebra Appl. 347 (2002) 123-129.
[8] H. Wiedant, Unzerlegbare nicht-negative matrizen, Math. Z 52 (1950) 642-648.
[9] M. Zhai, R. Liu, J. Shu, Minimizing the least eigenvalue of unicyclic graphs with fixed diameter, Discrete Math. 310 (2010) 947-955.

[^0]: * Corresponding author at: Department of Mathematics, East China Normal University, Shanghai 200241, China. E-mail addresses: yglong01@163.com (G. Yu), wuyarong1@yahoo.com.cn (Y. Wu), jlshu@math.ecnu.edu.cn. (J. Shu).
 ${ }^{1}$ Supported by the National Natural Science Foundation of China (Nos. 11071078, 11075057), APNSF (No. 10040606Q45).

