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Let G be a simple graphwith vertices v1, v2, . . . , vn, of degrees� =
d1 � d2 � · · · � dn = δ, respectively. LetAbe the (0, 1)-adjacency
matrix of G andD be the diagonal matrix diag(d1, d2, . . . , dn).Q(G)
= D + A is called the signless Laplacian of G. The largest eigenvalue

of Q(G) is called the signless Laplacian spectral radius or Q-spectral

radius of G. Denote by χ(G) the chromatic number for a graph G. In

this paper, for graphs with order n, the extremal graphs with both

the given chromatic number and the maximal Q-spectral radius are

characterized, the extremal graphs with both the given chromatic

number χ �= 4, 5, 6, 7 and the minimal Q-spectral radius are char-

acterized as well.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

All graphs considered here are simple, connected and undirected. Denote by V(G) the vertex set

and E(G) the edge set for a graph G. Let G be a graphwith vertices v1, v2, . . . , vn, of degrees� = d1 �
d2 � · · · � dn = δ, respectively. If vertex vi is adjacent to vj , we denote by vi ∼ vj . We denote by

NG(v) or N(v) the neighbor set of vertex v in graph G. The degree of vertex v in graph G, denoted by

dG(v) or d(v), is equal to |NG(v)|. We denote by Kn, Pn, Cn for a complete graph, a path and a cycle with

order n, respectively, in this paper.
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Denote by |M| the determinant for a square matrix M. Let A = (aij)n×n be the (0, 1)-adjacency
matrix of G, and let D be the diagonal matrix diag(d1, d2, . . . , dn). The matrix L(G) = D − A is the

Laplacian of G, while Q(G) = D + A is called the signless Laplacian of G.

The matrix Q(G) is symmetric and nonnegative, and when G is connected, it is irreducible. If M

is the n × m vertex-edge incidence matrix of the (n,m)-graph G, then Q(G) = MMT . Thus Q(G) is

positive semi-definite, and its eigenvalues can be arranged as:

q = q1 � q2 � · · · � qn � 0.

q is called the signless Laplacian spectral radius or Q-spectral radius of G. The Q-characteristic poly-

nomial of a graph G, denoted by PQ (λ) or PQ(G)(λ), is the characteristic polynomial of Q(G). Denoted

by G̃ the complement of graph G, and denoted by PQ̃ (λ) or PQ(G̃)(λ) the Q-characteristic polynomial

of G̃.

Computer investigations of graphs with up to 11 vertices [4] suggest that the spectrum of D + A

performs better than the spectrum of A or D − A in distinguishing non-isomorphic graphs, study of

the spectrum of D + A is of interests in the literature (see [2,6], for example) recently.

In this paper, we consider the signless Laplacian spectral radii of graphs with order n and given

chromatic number χ . For graphs with order n, the extremal graphs with both the given chromatic

number and the maximal Q-spectral radius are characterized, the extremal graphs with both the

given chromatic number χ �= 4, 5, 6, 7 and the minimal Q-spectral radius are characterized as well.

This paper is organized as follows: Section 1 introduces the basic ideas and their supports; Section

2 characterizes the extremal graphs with the maximal Q-spectral radius; Section 3 characterizes the

extremal graphs with the minimal Q-spectral radius.

2. Maximal Q -spectral radius

Definition 2.1 [3]. A semi-edgewalk (of length k) in an (undirected) graphG is an alternating sequence

v1, e1, v2, e2, . . . , vk, ek, vk+1 of vertices v1, v2, . . . , vk+1 and edges e1, e2, . . . , ek such that for any

i = 1, 2, . . . , k, the vertices vi and vi+1 are end-vertices (not necessarily distinct) of the edge ei.

Lemma 2.2 [3]. Let Q be the signless Laplacian matrix of a graph G. The (i, j)-entry of the matrix Qk,

denoted by q
(k)
(i,j), is equal to the number of semi-edge walks of length k starting at vertex i and terminating

at vertex j.

Let G be a graph with n vertices and m edges, Nk (k � 0) denote the number of all the semi-edge

walks with length k in G, and let N0 = 1. Clearly, N1 = 2
∑n

i=1 di = 4m. Let HQ (t) = ∑∞
k=0 Nkt

k be

the generating function of Nk (k � 0). Then we have the following lemma.

Theorem 2.3. Let G be a simple connected graph with n vertices. Then

HQ (t) = 1

t

⎛⎝ (−1)nPQ̃

(
tn−2t−1

t

)
PQ

(
1
t

) − 1

⎞⎠ .

Proof. SupposeM is a nonsingular n× n square matrix and J is a n× n square matrix in which all the

entries are1. Let‖M‖1 = ∑
i,j Mi,j . Then theadjugateadjM = |M|M−1 and |M+xJ| = |M|+x‖adjM‖1.

Let I denote the identity matrix. Note that

∞∑
k=0

Qktk = (I − tQ)−1 = |I − tQ |−1adj(I − tQ)

(
t � 1

q

)
,

∞∑
k=0

‖Qk‖1t
k =

∞∑
k=0

Nkt
k = |I − tQ |−1‖adj(I − tQ)‖1.
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Hence

HQ (t) = ‖adj(I − tQ)‖1

|(I − tQ)| .

LetM = I − tQ . Then

|I − tQ + tJ| = |I − tQ | + t‖adj(I − tQ)‖1. (1)

Note that

I − tQ + tJ = I − tQ + tJ + (n − 2)tI − (n − 2)tI = (2t − tn + 1)I + tQ̃ .

From (1), we know that ‖adj(I − tQ)‖1 = 1
t
(|I − tQ + tJ| − |I − tQ |). Hence

HQ (t) = 1

t

( |(2t − tn + 1)I + tQ̃ |
|I − tQ | − 1

)
= 1

t

⎛⎝ (−1)nPQ̃

(
tn−2t−1

t

)
PQ

(
1
t

) − 1

⎞⎠ . �

Corollary 2.4. Let G = Kn1,n2,...,ns be a complete s-partite graph with
∑s

i=1 ni = n. Then

PQ (λ) = (−1)n

⎛⎝ s∑
i=1

ni

n − 2ni − λ
+ 1

⎞⎠ s∏
i=1

(n − 2ni − λ)(n − ni − λ)ni−1. (2)

Proof. LetHQ̃ (t)denote the semi-edgewalk number generating function of G̃. LetBi denote a complete

graph with ni vertices and N
(i)
k denote the number of semi-edge walks with length k in Bi. By Theorem

2.3, then

HQ̃ (t) = 1

t

⎛⎝ (−1)nPQ
(
tn−2t−1

t

)
PQ̃

(
1
t

) − 1

⎞⎠ =
∞∑
k=0

s∑
i=1

N
(i)
k tk

=
∞∑
k=0

s∑
i=1

ni(2(ni − 1))ktk =
s∑

i=1

ni

1 − 2(ni − 1)t
.

Hence

(−1)nPQ

(
tn − 2t − 1

t

)
=

⎛⎝t

s∑
i=1

ni

1 − 2(ni − 1)t
+ 1

⎞⎠ PQ̃

(
1

t

)
.

Let λ = tn−2t−1
t

. Then t = 1
n−2−λ

, and then (2) follows immediately. �

Lemma 2.5 [8]. LetMn = {M|M is a n×n squarematrix}. Suppose A, B ∈ Mn (n � 2), A is nonnegative

irreducible and |B| � A (namely |Bi,j| � Ai,j for each pair of i, j). Denote by ρ(A) the largest eigenvalue of

A. For any eigenvalue λ of B, we have |λ| � ρ(A), and equality holds if and only if B = eiθDAD−1 where

ρ(A)eiθ = λ and D is a diagonal U-matrix.

Definition 2.6. The Turán graph T(n,r) is an n-vertex graph formed by partitioning the set of vertices

into r parts of equal or nearly-equal size, and connecting two vertices by an edgewhenever they belong

to two different parts. In fact, T(n,r) is an n-vertex complete r-partite graph with each part of equal or

nearly-equal size.

Theorem 2.7. Suppose complete s-partite graph G = Kn1,n2,...,ns with
∑s

i=1 ni = n. Then q(G) � q(Tn,s)
with equality if and only if G ∼= Tn,s.
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Proof. Denote by μ(G) the Laplacian spectral radius for a graph G. From spectral graph theory, we

know that μ(G) = n if G̃ is not connected. By Lemma 2.5, we get q(G) � μ(G) � n. By Corollary 2.4,

we know that q(G) is the largest zero of
∑s

i=1
ni

n−2ni−λ
+ 1 = 0.

Suppose n1 � n2 � · · · � ns. If n1 − ns � 2, let

f (δ, λ) = n1 − δ

n − 2(n1 − δ) − λ
+

s−1∑
i=2

ni

n − 2ni − λ
+ ns + δ

n − 2(ns + δ) − λ
+ 1

where 0 � δ � n1−ns
2

. So f (0, q(G)) = 0. Taking the derivative with respect to δ, for λ � q(G), we

have

df (δ, λ)

dδ
= λ − n

(2(n1 − δ) + λ − n)2
− λ − n

(2(ns + δ) + λ − n)2
� 0.

Hence f (δ, λ) is decreasing with respect to δ for λ � q(G), and f (δ, λ) is strictly decreasing with

respect to δ if 0 < δ < n1−ns
2

. Thus, for λ � q(G), f (δ, λ) � 0 if δ � n1−ns
2

and f (δ, λ) < 0 if

0 < δ < n1−ns
2

. This means that if we increase ns by δ and decrease n1 by δ in G, then q(G) will

increase. �

Corollary 2.8. Let G be a simple connected graph with n vertices and chromatic number χ . Then q(G) �
q(Tn,χ ) with equality if and only if G ∼= Tn,χ .

Proof. It is well known that q(G + e) > q(G) if e /∈ E(G). Hence the Q-spectral radius of G is less

than or equal to the Q-spectral radius of a complete χ-partite graph. Then the Corollary follows from

Theorem 2.7. �

3. Minimal Q -spectral radius

An internal path in some graph is a path v0v1 · · · vk+1 for which d(v0), d(vk+1) � 3 and d(vi) = 2

for i = 1, . . . , k (here k � 0, or k � 2 whenever v0 = vk+1).

Lemma 3.1 [2]. Let Guv be the graph obtained from a connected graph G by subdividing its edge uv. Then

the following holds:

(i) if uv belongs to an internal path then q(Guv) < q(G);
(ii) if G �= Cn for some n � 3, and if uv is not on any internal path of G, then q(Guv) > q(G). Otherwise,

if G = Cn then q(Guv) = q(G) = 4.

Lemma 3.2 [2]. Let G(k, l) (k, l � 0) be the graph obtained from a non-trivial connected

graph G by attaching pendant paths of lengths k and l at some vertex v. If k � l � 1 then q(G(k, l)) >
q(G(k + 1, l − 1)).

Lemma 3.3 [7]. Let A be an n × n real symmetric irreducible nonnegative matrix and X ∈ Rn be an unit

vector. If ρ(A) = XTAX, then AX = ρ(A)X.

Definition 3.4. We say that a graph G is (color) k-critical if χ(G) = k and χ(H) < χ(G) for every

proper subgraph H of G.

Lemma 3.5 [5]. Suppose the chromatic number χ(G) = k � 4. Let G be a k-critical graph on more than

k vertices (so G �= Kk). Then

|E(G)| �
(
k − 1

2
+ k − 3

2(k2 − 2k − 1)

)
|V(G)|.
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Fig. 3.1. G1v0v1Pk+1.

Lemma 3.6 [9]. Let P(n, λ) denote the (adjacency) characteristic polynomial of path Pn and r � 2 be a

fixed real number. If λ � r, then for any n � 0, P(n+ 1, λ) > r+√
r2−4
2

P(n, λ) > 0, where P(0, λ) = 1.

Let G, H be two disjoint connected graphs, and GuvH denotes the graph obtained from the union

of graphs G and H by adding edge uv (u ∈ V(G)), v ∈ V(H). Let G + v be obtained from G by adding a

pendant edge uv and let H + u be obtained from H by adding a pendant edge vu.

Lemma 3.7 [2]. Let G, H be two connected graphs. Then

PQ(GuvH)(λ) = 1

λ

(
PQ(G+v)(λ)PQ(H)(λ) + PQ(H+u)(λ)PQ(G)(λ) − (λ − 2)PQ(G)(λ)PQ(H)(λ)

)
.

Let G = G1v0v1Pk denote the graph obtained from graph G1 and path Pk by adding an edge v0v1
between the vertex v0 of G1 and a pedant vertex v1 of Pk (in G, v0v1Pk is also called the pedant path

of G1, see Fig. 3.1). If G1 is a complete graph Ks, G1v0v1Pk can be denoted by K
(k)
s (K

(k)
s is also known as

path complete graph which is denoted by PCn,1,k , see [1]).

Lemma 3.8. Suppose dG1
(v0) � 2, Pk = v1v2 · · · vk. Let connected graph G = G1v0v1Pk (see Fig. 3.1)

with order n, qi (1 � i � n) be the eigenvalues of Q(G). Suppose Xi = (xi,0, xi,1, xi,2, . . . , xi,k, xi,k+1,

. . . , xi,n−1)
T is an eigenvector corresponding to eigenvalue qi and xi,s (0 � s � n − 1) corresponds to

vertex vs. Let f1 = qi − 1 and fj+1 = qi − 2 − 1
fj
. Then xi,k−j = fjxi,k−j+1 for 1 � j � k, and we have

(i)
qi−2

2
� fj � qi − 2, if qi � 4, j � 2;

(ii) fj < fj−1 if qi � 4, 2 � j � k.

Proof. Note that xi,k−1 = (qi − 1)xi,k = f1xi,k and xi,k−2 + xi,k = (qi − 2)xi,k−1, we get

xi,k−2 =
(
qi − 2 − 1

qi − 1

)
xi,k−1 =

(
qi − 2 − 1

f1

)
xi,k−1 = f2xi,k−1.

So, we can get fj+1 = qi − 2 − 1
fj
and xi,k−j = fjxi,k−j+1 for 1 � j � k by induction.

(i) It is easy to check that
qi−2

2
� f2 � qi − 2 if qi � 4. Suppose

qi−2

2
� fj � qi − 2 for 2 � j < N,

then

− 2

qi − 2
� − 1

fN−1

� − 1

qi − 2
, qi − 2 − 2

qi − 2
� fN � qi − 2 − 1

qi − 2

because fN = qi − 2 − 1
fN−1

. Note that qi − 2 − 2
qi−2

� qi−2

2
if qi � 4, so

qi−2

2
� fN � qi − 2.

By induction, then (i) follows.

(ii) By (i), f2 < f1 clearly. Suppose fj � fj−1 for 2 � j < N, then

qi − 2 − 1

fN−1

�i −2 − 1

fN−2

,

namely fN � fN−1. By induction, then (ii) follows. �
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1

2 3

4

Fig. 3.2. K
(1,0;2,1;3,2;4,3)
4 .

Corollary 3.9. Suppose dG1
(v0) � 2, Pk = v1v2 · · · vk. Let connected graph G = G1v0v1Pk (see Fig. 3.1)

with order n. Suppose X = (x0, x1, x2, . . . , xk, xk+1, . . . , xn−1)
T is Perron vector of Q(G) in which xs

(0 � s � n − 1) corresponds to vertex vs. If |E(G)| � n, then

x0 � x1 � x2 � · · · � xk.

Proof. If |E(G)| � n, then G contains cycle. Hence q(G) � 4. Thus the corollary follows from

Lemma 3.8. �

Corollary 3.10. Suppose Pk = v1v2 · · · vk. Let connected graph G = G1v0v1Pk = K
(k)
n−k (see Fig. 3.1).

Suppose X = (x0, x1, x2, . . . , xk, xk+1, . . . , xn−1)
T is Perron vector of Q(G) in which xs (0 � s � n−1)

corresponds to vertex vs. If n − k � 3, then

xk+1 = xk+2 = · · · = xn−1 � xj

for j = 1, 2, . . . , k.

Proof. By symmetry, we have xk+1 = xk+2 = · · · = xn−1. Note that

q(G)xk+1 = (2n − 2k − 3)xk+1 + x0, q(G)x1 = 2x1 + x0 + x2,

then

x0 = (q(G) − (2n − 2k − 3))xk+1, x0 = (q(G) − 2)x1 − x2 � (q(G) − 3)x1,

and xk+1 � x1. Then the corollary follows from Corollary 3.9. �

Let V(Kt) = {v1, v2, . . . , vt}. K(1,s1;2,s2;...;t,st)
t (t � 3, si � 0, i = 1, 2, . . . , t) is obtained by

adding an edge between vi (1 � i � t) and a pendant vertex of path Psi (see Fig. 3.2, for example). In

particular, si = 0 means that no path joining to vi. Then we have the following lemma.

Lemma 3.11. If there are at least two in {si|1 � i � t}which are all at least 1 in K
(1,s1;2,s2;...;t,st)
t (t � 3,

t + ∑t
i=1 si = n), then q(K

(1,s1;2,s2;...;t,st)
t ) > q(Kn−t

t ).

Proof. In K
n−t
t , let V(Kt) = {v1, v2, . . . , vt}, and let the pedant path be P = v1vt+1vt+2 . . . vn. Let

X = (x1, x2, . . . , xn)
T be the Perron vector of K

n−t
t in which xi corresponds vi (1 � i � n). From

Corollary 3.10, we know that x2 = x3 = · · · = xt � xj (t + 1 � j � n). Among s1, s2, . . . , st , suppose
si1 � 1, si2 � 1, . . . , siθ � 1 (1 � θ � t). Let

G∗ = Kn−t
t −

(
vn−si2+1vn−si2

+ vn−si2−si3+1vn−si2−si3
+ · · · + vn−∑l=θ

l=2 sil+1vn−∑l=θ
l=2 sil

)
+ v2vn−si2+1 + v2vn−si2−si3+1 + · · · + vθvn−∑l=θ

l=2 sil+1.
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Then

XT (Q(G∗) − Q(Kn−t
t ))X = 2(x2 + 2xn−si2+1 + xn−si2

)(x2 − xn−si2
)

+ (x3 + 2xn−si2−si3+1 + xn−si2−si3
)(x3 − xn−si2−si3

)

+ · · · +
(
xθ + 2xn−∑l=θ

l=2 sil+1 + xn−∑l=θ
l=2 sil

) (
xθ − xn−∑l=θ

l=2 sil

)
� 0.

This means that q(G∗) � q(Kn−t
t ). Suppose that q(G∗) = q(Kn−t

t ). Then XT (Q(G∗) − Q(Kn−t
t ))X = 0

and XTQ(G∗)X = q(Kn−t
t ). By Lemma 3.3, we know that X is also the Perron vector of G∗. But in G∗,

Q2(G
∗)X = (2t − 3)x2 + x1 + xn−si2+1 > q(Kn−t

t )x2,

where Q2(G
∗) denotes the row corresponding to vertex v2. So, q(G

∗) > q(Kn−t
t ). Note that G∗ ∼=

K
(1,s1;2,s2;...;t,st)
t , hence q(K

(1,s1;2,s2;...;t,st)
t ) > q(Kn−t

t ). �

Lemma 3.12. Let G be a connected graphwith chromatic numberχ � 4 and orderχ +1. Then G contains

Kχ as subgraph, and q(G) � q(K1
χ ) with equality if and only if G ∼= K1

χ .

Proof. Suppose V(G) = {v1, v2, . . . , vχ+1}. In a χ-coloring of G, there must be two vertices colored

the same color. For convenience, suppose the two vertices are v1, v2. Then vertices v3, v4, . . . , vχ+1

induce a complete graph in G. Let S = {v3, v4, . . . , vχ+1}. Theremust be (S\NG(v1))
⋂

(S\NG(v2)) =
φ, and no case |S\NG(v1)| � 1, |S\NG(v2)| � 1. Otherwise, G is χ − 1 colorable, contradicting that G

isχ colorable. Hence theremust be at least one of v1, v2 whose degree isχ −1, and thenG contains Kχ

as subgraph. Note that for a connected graph H, if e /∈ E(H), then q(H + e) > q(H), so q(G) � q(K1
χ ),

and equality holds if and only if G ∼= K1
χ . �

Lemma 3.13. If k � 8, l � 2, then

q(Kl
k) < 2(k − 1) + 2(k − 3)

k2 − 2k − 1
.

Proof. Note that

PQ(K1
k )(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − (k − 1) −1 · · · −1 −1 0

−1 λ − (k − 1) · · · −1 −1 0

...
...

. . .
...

...
...

−1 −1 · · · λ − (k − 1) −1 0

−1 −1 · · · −1 λ − k −1

0 0 · · · 0 −1 λ − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(k+1)×(k+1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − (k − 1) −1 · · · −1 −1 0

−1 λ − (k − 1) · · · −1 −1 0

...
...

. . .
...

...
...

−1 −1 · · · λ − (k − 1) −1 0

−1 −1 · · · −1 λ − (k − 1) −1

0 0 · · · 0 −λ λ − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(k+1)×(k+1)
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= −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − (k − 1) −1 · · · −1

−1 λ − (k − 1) · · · −1

...
...

. . .
...

−1 −1 · · · λ − (k − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(k−1)×(k−1)

+ (λ − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − (k − 1) −1 · · · −1 −1

−1 λ − (k − 1) · · · −1 −1

...
...

. . .
...

...

−1 −1 · · · λ − (k − 1) −1

−1 −1 · · · −1 λ − (k − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

= −λ(λ − (2k − 3))(λ − (k − 2))k−2 + (λ − 1)(λ− (2k − 2))(λ − (k − 2))k−1

= (λ − (k − 2))k−2(λ3 − (3k − 2)λ2 + (2k2 − k − 3)λ − 2(k − 1)(k − 2)).

By Lemma 3.7, we have

PQ(Kl
k)
(λ) = 1

λ

{
PQ(K1

k )(λ)PQ(Pl)(λ) + PQ(Kk)(λ)(PQ(Pl+1)(λ) − (λ − 2)PQ(Pl)(λ))
}

= 1

λ
(λ − k + 2)k−2{(λ3 − (3k − 2)λ2 + (2k2 − k − 3)λ

−2(k − 1)(k − 2))PQ(Pl)(λ) + (λ − 2(k − 1))(λ − k + 2)

×(PQ(Pl+1)(λ) − (λ − 2)PQ(Pl)(λ))}
= 1

λ
(λ − k + 2)k−2{((1 − k)λ + 2(k − 1)(k − 2))PQ(Pl)(λ)

+(λ2 − (3k − 4)λ + 2(k − 1)(k − 2))PQ(Pl+1)(λ)}. (3)

Notice that for a graph G with incidence matrixM, we have

MMT = D + A, MTM = 2Il + Al,

where Al is the adjacency matrix of the line graph of G. So

PQ(Pl)(λ) = λP(l − 1, λ − 2), PQ(Pl+1)(λ) = λP(l, λ − 2).

By Lemma 3.6, when λ � 4, then

(3) > (λ − k + 2)k−2P(l − 1, λ − 2){(1 − k)λ + 2(k − 1)(k − 2)

+ λ − 2 +
√

(λ − 2)2 − 4

2
(λ2 − (3k − 4)λ + 2(k − 1)(k − 2))}.

Let

g(λ) = (1 − k)λ + 2(k − 1)(k − 2)

+ λ − 2 +
√

(λ − 2)2 − 4

2
(λ2 − (3k − 4)λ + 2(k − 1)(k − 2)) (λ � 4). (4)
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Notice that, when λ � 4,

(4) = (1 − k)λ + 2(k − 1)(k − 2)

+ λ − 2 + √
λ(λ − 4)

2
(λ2 − (3k − 4)λ + 2(k − 1)(k − 2))

� (1 − k)λ + 2(k − 1)(k − 2) + (λ − 3)(λ2 − (3k − 4)λ + 2(k − 1)(k − 2)).

Let

f (λ) = (1 − k)λ + 2(k − 1)(k − 2) + (λ − 3)(λ2 − (3k − 4)λ + 2(k − 1)(k − 2)).

Then

f (2(k − 1) + 2(k − 3)

k2 − 2k
) =

(
2k − 5 + 2(k − 3)

k2 − 2k

)
2(k − 3)

k2 − 2k

(
2(k − 3)

k2 − 2k
+ k

)

−
(
2 + 2(k − 3)

k2 − 2k

)
(k − 1) >

2k2 − 20k + 36

k − 2

> 0 (k � 8). (5)

For g(λ), taking the derivative with respect to λ, we get

g
′
(λ) = 1 − k +

⎛⎝1

2
+ λ − 2

2

√
(λ − 2)2 − 4

⎞⎠ (λ2 − (3k − 4)λ + 2(k − 1)(k − 2))

+ λ − 2 +
√

(λ − 2)2 − 4

2
(2λ − 3k + 4)

> 1 − k + λ2 − (3k − 4)λ + 2(k − 1)(k − 2) + (λ − 3)(2λ − 3k + 4).

Hence, when k � 4, λ � 2k − 1, then

g′(λ) � g′(2k − 1) > 2k2 − 6 > 0,

and then g(λ) is increasing with respect to λ. From (5) we know that, when λ � 2(k − 1) + 2(k−3)
k2−2k

,

then g(λ) > 0. So

q(Kl
k) < 2(k − 1) + 2(k − 3)

k2 − 2k
< 2(k − 1) + 2(k − 3)

k2 − 2k − 1
. �

Corollary 3.14. Let G be a connected graph with chromatic number χ � 8, and with order n. If G does

not contain Kχ as subgraph, then q(G) � q(K
n−χ
χ ) with equality if and only if G ∼= K

n−χ
χ .

Proof. By Lemma 3.12, we know that n � χ + 2. We assume that G contains a χ-critical subgraph H.

Then q(G) � q(H). By Lemma 3.5, we have

q(G) � q(H) � 4|E(H)|
|V(H)| � 2(k − 1) + 2(k − 3)

k2 − 2k − 1
.

Then the Corollary follows from Lemma 3.13. �

Theorem 3.15. Let G be a connected graph with chromatic number χ (χ �= 4, 5, 6, 7) and n vertices.

Then
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(1) If χ = 2, then q(G) � q(Pn) with equality if and only if G ∼= Pn;

(2.1) If χ = 3 and n is odd, then q(G) � q(Cn) with equality if and only if G ∼= Cn;

(2.2) If χ = 3 and n is even, then q(G) � q(C1
n−1) with equality if and only if G ∼= C1

n−1, where C1
n−1 is

obtained from the cycle Cn−1 by adding one pendent edge;

(3) If χ � 8, then q(G) � q(K(l)
χ ) with equality if and only if G ∼= K(l)

χ .

Proof. Fact 1. For a connected graph H, q(H + e) > q(H) if e /∈ E(H).
Fact 2. For a connected graph H, q(H − v) < q(H) if v ∈ V(H).
Using Lemma 3.2 and Fact 1 repeatedly, (1) follows.

Using Facts 1, 2 and Lemma 3.1 repeatedly, (2.1), (2.2) follows.

We prove (3) next.

Case 1. G does not contain Kχ as subgraph. By Lemma 3.12, then n � χ + 2, and then (3) follows

from Lemma 3.13 and Corollary 3.14.

Case 2. G contains Kχ as subgraph.

If n = χ + 1, then (3) follows from Lemma 3.12.

If n � χ + 2, using Fact 1, Lemma 3.2 repeatedly, then (3) follows from Lemma 3.11. �
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