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di > dy > -+ > d, = §,respectively. Let Abe the (0, 1)-adjacency
matrix of G and D be the diagonal matrix diag(dy, do, ..., d;).Q(G)
= D + Ais called the signless Laplacian of G. The largest eigenvalue
of Q(G) is called the signless Laplacian spectral radius or Q-spectral
radius of G. Denote by yx (G) the chromatic number for a graph G. In
this paper, for graphs with order n, the extremal graphs with both
the given chromatic number and the maximal Q-spectral radius are
characterized, the extremal graphs with both the given chromatic
number x # 4,5, 6, 7 and the minimal Q-spectral radius are char-
acterized as well.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

All graphs considered here are simple, connected and undirected. Denote by V(G) the vertex set
and E(G) the edge set for a graph G. Let G be a graph with vertices v, v, ..., vy, of degrees A = d; >
dy = .-+ > dy = §, respectively. If vertex v; is adjacent to vj, we denote by v; ~ v;. We denote by
Ng(v) or N(v) the neighbor set of vertex v in graph G. The degree of vertex v in graph G, denoted by
dc(v) ord(v),is equal to |[Ng(v)|. We denote by K, P,,, C;, for a complete graph, a path and a cycle with
order n, respectively, in this paper.
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Denote by |M| the determinant for a square matrix M. Let A = (a;j)nxn be the (0, 1)-adjacency
matrix of G, and let D be the diagonal matrix diag(dy, da, ..., dy). The matrix L(G) = D — A is the
Laplacian of G, while Q(G) = D + A is called the signless Laplacian of G.

The matrix Q (G) is symmetric and nonnegative, and when G is connected, it is irreducible. If M
is the n x m vertex-edge incidence matrix of the (n, m)-graph G, then Q(G) = MM”. Thus Q(G) is
positive semi-definite, and its eigenvalues can be arranged as:

q=q1 =2q2 =2 ---2>(qn = 0.

q is called the signless Laplacian spectral radius or Q-spectral radius of G. The Q-characteristic poly-
nomial of a graph G, denoted by Pq (1) or Py () (2), is the characteristic polynomial of Q (G). Denoted
by G the complement of graph G, and denoted by Pg (%) or Py ) () the Q-characteristic polynomial
of G.

Computer investigations of graphs with up to 11 vertices [4] suggest that the spectrum of D + A
performs better than the spectrum of A or D — A in distinguishing non-isomorphic graphs, study of
the spectrum of D + A is of interests in the literature (see [2,6], for example) recently.

In this paper, we consider the signless Laplacian spectral radii of graphs with order n and given
chromatic number x. For graphs with order n, the extremal graphs with both the given chromatic
number and the maximal Q-spectral radius are characterized, the extremal graphs with both the
given chromatic number y # 4, 5, 6, 7 and the minimal Q-spectral radius are characterized as well.
This paper is organized as follows: Section 1 introduces the basic ideas and their supports; Section
2 characterizes the extremal graphs with the maximal Q-spectral radius; Section 3 characterizes the
extremal graphs with the minimal Q-spectral radius.

2. Maximal Q-spectral radius

Definition 2.1 [3]. A semi-edge walk (of length k) in an (undirected) graph G is an alternating sequence
vy, €1, V2, €2, ..., Vi, €k, Vk+1 Of vertices vy, va, . . ., Vk+1 and edges eq, ez, . . ., e such that for any
i=1,2,...,k the vertices v; and v;;1 are end-vertices (not necessarily distinct) of the edge e;.

Lemma 2.2 [3]. Let Q be the signless Laplacian matrix of a graph G. The (i, j)-entry of the matrix Q,
denoted by qgf}), is equal to the number of semi-edge walks of length k starting at vertex i and terminating
at vertex j.

Let G be a graph with n vertices and m edges, Ny (k > 0) denote the number of all the semi-edge
walks with length k in G, and let Ng = 1. Clearly, Ny = 23>, di = 4m. Let Ho(t) = 2.2, Ntk be
the generating function of Ni (k > 0). Then we have the following lemma.

Theorem 2.3. Let G be a simple connected graph with n vertices. Then

i ((—mPQ (m=2=1) 1)

HQ(t)=? P (%)

Proof. Suppose M is a nonsingular n x n square matrix and J is an x n square matrix in which all the
entriesare 1.Let [M|l; = >; ; M; j. Then the adjugate adjM = [IM|M~'and [M+x]| = [M|+x|adjM]||;.
Let I denote the identity matrix. Note that

Softt =1 -t =1 —tQ| "adi(l — Q) (f < ;)
k=0

o0 o0
ST It = D Ntk = |1 — Q| ladj(l — tQ) 1.
k=0 k=0
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Hence
ladj(I — tQ) |1
Ho(t) = ————.
°® =" ")
Let M = I — tQ. Then
I = tQ + 4l = I - Q| + thadil — Q) 1. (1)
Note that

[—tQ+t=1—tQ+t+ (n—2)tl —(n—2)tI = 2t — tn + DI + tQ.
From (1), we know that |ladj(I — tQ)||; = %(|I —tQ + tJ| — |I — tQ|). Hence

: (Kzr_mﬂ)[ﬂé' —1)_ ! <(_])"PQ (W) _1) a

HQ(t):f |I—tQ| = t PQ (%)

t
n; be a complete s-partite graph with >}, nj = n. Then

Corollary 2.4. Let G = Ky, n,

.....

Po(X) = (=1)" (Z % + 1) [T —2n; — 0y —ny — )M (2)

i=1"" " 21’11 i=1

Proof. Let Hg (t) denote the semi-edge walk number generating function of G.Let B; denote a complete

graph with n; vertices and N,Ei) denote the number of semi-edge walks with length k in B;. By Theorem
2.3, then

_1\n tn—2t—1 0o s .
Hy(t) = % <( D i? E]) : ) — l) = I(Z;‘).Z;N’El)tk
Q\r =01=
oo s Tli

B N R L B
_ZZHI(Z(M )t —Zl_z(ni_])t'

k=0i=1 i=1

Hence
tn —2t —1 5 n; 1
(—=1D)"P, (7) =t ————— +1]p; (—)
¢ t ;l—Z(ni—l)t e\t
Let A = W Thent = n—%i—x and then (2) follows immediately. [

Lemma 2.5 [8]. Let.#, = {M| M is an x nsquare matrix}. Suppose A, B € .#, (n > 2), Ais nonnegative
irreducible and |B| < A (namely |B; j| < A, j for each pair of i, j). Denote by p (A) the largest eigenvalue of
A. For any eigenvalue ) of B, we have |A| < p(A), and equality holds if and only if B = €’ DAD™! where
P (A)e!? = ) and D is a diagonal U-matrix.

Definition 2.6. The Turan graph T, ;) is an n-vertex graph formed by partitioning the set of vertices
into r parts of equal or nearly-equal size, and connecting two vertices by an edge whenever they belong
to two different parts. In fact, T, ;) is an n-vertex complete r-partite graph with each part of equal or
nearly-equal size.

Theorem 2.7. Suppose complete s-partite graph G = Kp, n,,....n, With >°3_; nj = n. Then q(G) < q(Tys)
with equality if and only if G = Ty .
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Proof. Denote by 1+(G) the Laplacian spectral radius for a graph G. From spectral graph theory, we
know that 1£(G) = nif G is not connected. By Lemma 2.5, we get q(G) > ©«(G) > n. By Corollary 2.4,
we know that q(G) is the largest zero of >}, n—znﬁ +1=0.

Supposeny = ny > --- = ng. lfny —ng > 2, let

n—34 s—1 n; ng+ 8
1
(n1—8)—A+§n—2ni—k+n—2(ns+8)—)»+

J6.0) = —

where 0 < § < M5, S0 f(0, q(G)) = 0. Taking the derivative with respect to 8, for A > q(G), we
have

af (s, 2) A—n A—n <0
s  Q2m =8 +Ar—n? Qo+ +Ar—n?
Hence f (8, A) is decreasing with respect to § for A > q(G), and f(§, A) is strictly decreasing with
respect to 8 if 0 < § < ™5™, Thus, for A > q(G), f(6,1) < 0if§ < ™5™ and f(8,1) < 0if

0<d < % This means that if we increase ns; by § and decrease ny by § in G, then q(G) will
increase. O

Corollary 2.8. Let G be a simple connected graph with n vertices and chromatic number x. Then q(G) <
q(Ty, ) with equality ifand only if G = T;, .

Proof. It is well known that q(G + e) > q(G) ife ¢ E(G). Hence the Q-spectral radius of G is less
than or equal to the Q-spectral radius of a complete x -partite graph. Then the Corollary follows from
Theorem 2.7. O

3. Minimal Q-spectral radius

An internal path in some graph is a path vgvy - - - vi41 for which d(vg), d(vk4+1) = 3 and d(v;) = 2
fori=1,...,k(herek > 0,or k > 2 whenever vog = vi41).

Lemma 3.1 [2]. Let G,y be the graph obtained from a connected graph G by subdividing its edge uv. Then
the following holds:

(i) if uv belongs to an internal path then q(G,y) < q(G);
(ii) if G # Cy, forsomen = 3, and if uv is not on any internal path of G, then q(G,y) > q(G). Otherwise,
ifG = G, then q(Gyy) = q(G) = 4.

Lemma 3.2 [2]. Let G(k,I) (k,l > 0) be the graph obtained from a non-trivial connected
graph G by attaching pendant paths of lengths k and | at some vertex v. If k > | > 1 then q(G(k, 1)) >
q(G(k+1,1—1)).

Lemma 3.3 [7]. Let A be an n x n real symmetric irreducible nonnegative matrix and X € R" be an unit
vector. If p(A) = XTAX, then AX = p(A)X.

Definition 3.4. We say that a graph G is (color) k-critical if x (G) = k and x (H) < x(G) for every
proper subgraph H of G.

Lemma 3.5 [5]. Suppose the chromatic number x (G) = k > 4. Let G be a k-critical graph on more than
k vertices (so G # Ky). Then

k—1 k—3
O Gl

20k — 2k — 1)
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Vi V) Vk—1 Vi

G1 Vo

Fig. 3.1. G1voV1 Pit1.

Lemma 3.6 [9]. Let P(n, L) denote the (adjacency) characteristic polynomial of path P, andr > 2 be a
fixed real number. If A > r, then foranyn > 0,P(n+1, 1) > ==vr-=4 V2r2_4P(n, A) > 0, where P(0, A) = 1.

Let G, H be two disjoint connected graphs, and GuvH denotes the graph obtained from the union
of graphs G and H by adding edge uv (u € V(G)),v € V(H). Let G 4 v be obtained from G by adding a
pendant edge uv and let H 4 u be obtained from H by adding a pendant edge vu.

Lemma 3.7 [2]. Let G, H be two connected graphs. Then
1
Poceuvn () = 5 (Po(G+v) M)Po(y (M) + Po(+uy (M Pg(c) (A) — (A — 2)Pg(c) (M Po ) (X)) -

Let G = Gyvov1 Py denote the graph obtained from graph Gy and path Py by adding an edge vovq
between the vertex vg of G; and a pedant vertex v of P (in G, vov1Py is also called the pedant path
of Gy, see Fig. 3.1). If G; is a complete graph Ks, G1vov1 Py can be denoted by Ks(k) (Ks(k) is also known as

path complete graph which is denoted by PC; 1 , see [1]).

Lemma 3.8. Suppose dg, (vo) = 2, Px = vivy - - - V. Let connected graph G = Gyvov1Py (see Fig. 3.1)
with order n, q; (1 < i < n) be the eigenvalues of Q(G). Suppose X; = (Xi,0, Xi. 1, Xi.2, - - - » Xi.ks Xi k-+15
RN xi,nq)T is an eigenvector corresponding to eigenvalue q; and x; s (0 < s < n — 1) corresponds to
vertex vs. Letfy = q; — landfiy1 = q; — 2 — f% Then X; —j = fiXi k—j+1 for 1 < j < k, and we have

() 952 <f<qi—2ifq >4, j>2
(i) fi <fim1ifai 24 2<j<k

Proof. Note thatx; x—1 = (q; — DXk = fixix and x; k—2 + Xi k = (qi — 2)X; k—1, We get

1 1
Xik—2 = (Qi —-2- )Xi,kl = (Qi —2- )Xi,kl = foXik—1.
qi — 1 h

So,wecangetfii1 =¢qi —2— % and x; x—j = fjXi k—j+1 for 1 < j < k by induction.

(i) Itis easy to check that % <fr < qi—2ifg; > 4.Suppose 42 < f; < g —2for2 <j <N,

2
then
2 1 1 12— 2 Cp<qg—2—
- - - 9 q‘_ - N q‘_ -
-2 fuo1 o oq—2" G—-2 qi — 2
becausefN=qi—2—fN%1.Notethatq,'—2—qi%22q"z_zifqi24,soqi2_2 <in<qg—2.

By induction, then (i) follows.
(ii) By (i), f2 < fi clearly. Suppose f; < fj—1 for 2 < j < N, then

namely fy < fy—1. By induction, then (ii) follows. O
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1 4

2 3

Fig. 3.2. K(l.0,2.1.3,2.4,3)

Corollary 3.9. Suppose dg, (vo) = 2, Py = v1Vy - - - Vi. Let connected graph G = Gyvov1Py (see Fig. 3.1)
with order n. Suppose X = (X0, X1, X2, -+« » Xk Xkt1s - - - » xn—1)T is Perron vector of Q(G) in which x,
(0 < s < n— 1) corresponds to vertex vs. If |[E(G)| = n, then

Xo Z X1 2 X2 2 0 2 X

Proof. If |[E(G)| > n, then G contains cycle. Hence q(G) > 4. Thus the corollary follows from
Lemma 3.8. O

Corollary 3.10. Suppose Py = vqv; - - - Vi. Let connected graph G = GivoviPy = K, (k )k (see Fig. 3.1).

Suppose X = (X, X1, X2, - .« , Xs Xk 15 + - - » Xa—1) | is Perron vector of Q (G) inwhichx; (0 < s < n—1)
corresponds to vertex vs. If n — k > 3, then

Xkt1 = X2 = - = Xn—1 2 Xj
forj=1,2,...,k
Proof. By symmetry, we have Xy 11 = Xk4+2 = - - - = X,—1. Note that

q(G)Xpr1 = (2n — 2k — 3)xpr1 +x0,  q(G)x1 = 2X1 + X0 + X2,
then

X0 = (q(G) — 2n — 2k = 3))xk41, X0 = (q(G) — 2)x1 — X3 = (q(C) — 3)x1,
and xx+1 = x1. Then the corollary follows from Corollary 3.9. O

Let V(K;) = {v1,va, ..., V). K(] $132:823-:36:5¢) (t >3,s; >0,i=1, 2, ..., t)is obtained by

adding an edge between v; (1 < i < t) and a pendant vertex of path P, (see Fig. 3.2, for example). In
particular, s; = 0 means that no path joining to v;. Then we have the following lemma.

Lemma 3.11. Ifthere are at least two in {s;]1 < i < t} which are all at least 1 in K125 +650) (¢ > 3,

t + > si =n), then q(K(] S1:2,523- t’s‘)) > q(Kt h.

Proof. In Kf_t, let V(K;) = {v1, V2, ..., v}, and let the pedant path be P = v{ViyiViro ... vp. Let
X = (x1,X2, ..., %,)T be the Perron vector of K"_t in which x; corresponds v; (1 < i < n). From
Corollary 3.10, we know thatx; = x3 = =x 2 X (t+1 < j < n).Amongsi, S, ..., St, SUppose
sy =15, 21,000,851, 21(1<0< t).Let

* __ pn—t
=Kk - (V”*&'z*lv”*siz T Visiy —siy +1Vn—siy—si; + -+ Vo =0 sy +1 Vn—3i= zsu)

+ V2Vn—s;, +1 + VaVn—s;, —si3 +1 +ooet "9vn—252§ si+1°
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Then

XT(Q(G™) — QUKI™)X = 2(x + 2Xn—s;, +1 + Xns;,) (X2 — Xn—g;,)

+ (x3 + an—s,-2 —si3+1 + Xn—si, —si ) (x3 — Xn—si, —siy )

4.4 (X@ + zxanEg 5+ + Xy 1= Si’) (Xg — Xp_yl=t Sil)
2 0.

This means that ¢(G*) > q(K/'~"). Suppose that (G*) = q(K/" ). Then X" (Q(G*) — QK "NX =0
and XTQ(G*)X = q(Kt"_t). By Lemma 3.3, we know that X is also the Perron vector of G*. But in G*,

Q(CHX = 2t = 3)x2 +x1 + Xp—sy +1 > 4K )xz,

where Q,(G*) denotes the row corresponding to vertex v,. So, q(G*) > q(Kt"_t). Note that G* =
Kt(]’s“z’sz;“‘;t’st),hence q(Kt(LsuZ,Sz:.--:t,st)) - q(Kp—t). 0

Lemma 3.12. Let G be a connected graph with chromatic number x > 4 and order y + 1. Then G contains
Ky as subgraph, and q(G) > q(K}) with equality if and only if G = K.

Proof. Suppose V(G) = {v{, vz, ..., vy41}.Ina x-coloring of G, there must be two vertices colored
the same color. For convenience, suppose the two vertices are vy, vo. Then vertices v3, v4, ..., Vy 41
induce a complete graphin G. Let S = {v3, vg4, ..., vy 41}. There must be (S\Ng(v1)) N (S\Ng(v2)) =
¢, and no case |[S\Ng(vq)| = 1, |S\Ng(v2)| = 1. Otherwise, G is x — 1 colorable, contradicting that G
is x colorable. Hence there must be at least one of vq, v, whose degree is x — 1, and then G contains K
as subgraph. Note that for a connected graph H, ife ¢ E(H), then q(H + e) > q(H), so q(G) > q(K}(),

and equality holds if and only if G = K)](. d

Lemma 3.13. Ifk > 8,1 > 2, then

Ky <20k — 1) + 2k = 3)
< — —_— .
45k K2 — 2k — 1
Proof. Note that
A—(k—1) -1 -1 -1 0
—1 A—(k—1) -~ -1 -1 0
Py () = : : : :
QK
¢ -1 -1 coA—=(k=-1 -1 0
-1 -1 -1 A—k —1
0 0 0 -1 A-1 (k1) x (k+1)
A—(k—1) —1 —1 —1 0
-1 A—(k—1) - —1 —1 0
-1 -1 ce A= (k—=1) -1 0
-1 —1 —1 A—(k—1) —1
0 0 0 -2 A-1

(k+1)x (k+1)
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A—(Gk—=1) -1 - -1
1 A—=(k=1) .- -1
= —A )
—1 LR S (R DI R,
A—(k—=1 -1 .- —1 —1
-1 A—(k—1)--- —1 -1
+@* =1 : : : : :
—1 -1 eA—(k=-1 -1
—1 -1 .. -1 A=Gk=D]_,

=2t —2k=3))A— k=22 +h—-1DA—-2k—2)0 — (k—2)!

== (k=223 — Bk —2)A% + K> —k —3)A —2(k — 1)(k — 2)).

By Lemma 3.7, we have

1
Poay ) = {PQ(K;)(MPQ(P,)(U + Pa(ko (M) (Pa(py(A) — (A — Z)PQ(m(X))}

= %(x —k+ 2203 = Bk =222 + 2k* —k —3)Ar
—2(k — 1)(k = 2)Po) () + (4 = 2(k = D) (. — k +2)
X (Pg(pry)(A) — (A — 2)Pop) (M)}
= %(x — k42721 = k)& + 2(k — 1)(k — 2))Pg(py (1)
+(W2 — Bk — 4)x + 2(k — 1) (k — 2))Po(p, ) (M)}
Notice that for a graph G with incidence matrix M, we have
MMT =D+A, M'M=2I+A,
where A is the adjacency matrix of the line graph of G. So
Popy(A) = AP(I— 1,1 —2), Po(py,)(A) = AP(I, A —2).
By Lemma 3.6, when A > 4, then

3)> h—k+22P1— 1,1 —2){(1 — kA + 2k — 1) (k—2)

- A —2)2 —
N 2+m()\2 — Bk =4+ 2k — 1)k —2))}.

2

Let

gA) =00 —=Kkr+2(k—1)k—2)

_ / —_7)2 _
+A G A 4(/\2—(3k—4)x+2(k—1)(k—2))(x24).

2
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Notice that, when A > 4

@=0Q—-kr+2(k—-1)(k-2)

—2+VM’\ D 02— Gk — i+ 20— 1)k — 2))
(1~ A 20— D=2+ 0 07— G 4t 2k D=2
Let
£ = (1 =02 +2(k = Dlk = 2) + (4 = DG = Gk = D +2(k = Dk = 2)),
Then
(, 3) 2(k —3)\ 2(k—3) (2(k - 3)
FQk=1)+ 7 )—(2k—5+ kz_zk) K2 — 2k (k2—2k +k)
2(k —3) 2k* — 20k + 36
_(2_|_k2_2k)(k—1) > T k—2
>0 (k=8). ©)

For g(A), taking the derivative with respect to A, we get

A—2

/ 1
g =1—k+ |-+ ——=—
(2 2/ (A —2)2—4
+)L—2+,/(A—2)2—4

2
1—k+A%— Bk —4r+2(k—1)(k—2) + (A —3)(21 — 3k + 4).

Hence, whenk > 4, X > 2k — 1, then

) (A% — Bk — 4)r + 2(k — 1) (k — 2))

(21 — 3k + 4)

g >gCk—1)>2k*—6>0,
and then g() is increasing with respect to A. From (5) we know that, when A > 2(k — 1) + Zk(zk 23,3
then g(A) > 0. So

2(k —3) 2(k —3)
I
K)<2k—1)4+—F—7<2k—1) 4+ ———.
W) <2k =D+ o <2k D+ e oy
Corollary 3.14. Let G be a connected graph with chromatic number y > 8, and with order n. If G does
not contain K, as subgraph, then q(G) > q(K;_X) with equality if and only if G = K;_X.
Proof. By Lemma 3.12, we know thatn > x + 2. We assume that G contains a x -critical subgraph H.
Then q(G) > q(H). By Lemma 3.5, we have
©) > qH) > 4|E(H)| S 20k —1) + 2(k —-3)

q 24 = |V(H)| = 2’(—1

Then the Corollary follows from Lemma 3.13. O

Theorem 3.15. Let G be a connected graph with chromatic number x (x # 4,5, 6, 7) and n vertices.
Then
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(1) If x = 2, then q(G) > q(P,) with equality if and only if G = Py;
(2.1) If x = 3 and nis odd, then q(G) > q(C,) with equality if and only if G = Cp;
(2.2) If x = 3 and nis even, then q(G) > q(C;_l) with equality if and only if G = C,}_l, where C,l_l is
obtained from the cycle C,—1 by adding one pendent edge;
(3) If x = 8, thenq(G) > q(K)((’)) with equality if and only if G = K)((l).

Proof. Fact 1. For a connected graph H, q(H + e) > q(H) ife ¢ E(H).

Fact 2. For a connected graph H, q(H — v) < q(H) ifv € V(H).

Using Lemma 3.2 and Fact 1 repeatedly, (1) follows.

Using Facts 1, 2 and Lemma 3.1 repeatedly, (2.1), (2.2) follows.

We prove (3) next.

Case 1. G does not contain K, as subgraph. By Lemma 3.12, thenn > x + 2, and then (3) follows
from Lemma 3.13 and Corollary 3.14.

Case 2. G contains K, as subgraph.

Ifn = x + 1, then (3) follows from Lemma 3.12.

Ifn > x + 2, using Fact 1, Lemma 3.2 repeatedly, then (3) follows from Lemma 3.11. O
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