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Abstract

In Part I of this series of papers, we developed a language calledAgent Programsfor defining
the operational behavior of software agents and defined a set of successively more satisfying
(epistemically) semantics for such agent programs. In Part II of this series of papers, we study the
computation price to be paid (in terms of complexity) for these epistemic desiderata. In particular, we
develop algorithms for the above semantics, and describe results on their computational complexity.
We show that (surprisingly) the reasonable status set semantics is the easiest to compute of the
semantics proposed. 1999 Published by Elsevier B.V. All rights reserved.
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1. Introduction

In Part I of this series of papers [10], we have defined an architecture for the creation
and deployment of software agents—our platform supports building such agents both from
scratch, and extending existing legacy applications to handle such agent capabilities. Our
architecture of an agent consists of five basic parts.

– A description of the set of data types the agent manages, together with the function
calls it uses to manipulate these types. The state of the agent at a given point in time is
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the set of objects belonging to these data types that is currently resident in the agent’s
working memory.

– A set called theaction baseof the agent consisting ofactions that the agent is
physically capable of taking—these actions alter the state of the agent and may be
viewed astransactions(in the sense of databases and operating systems) [26].

– A notion of concurrencywhich specifies what it means to execute certain actions
concurrently.

– A language calledagent programsthrough which, the agent’s designer specifies the
operating principles (what actions the agent must do, what actions the agent may do,
what actions the agent may not do, etc.) of the agent.

– A set ofintegrity constraintsthat the agent’s state must always satisfy. In particular,
when a set of actions is executed by the agent in a state that satisfies the
integrity constraints, then the new state that results must also satisfy the integrity
constraints.

– A set ofaction constraintsthat specifies the circumstances under which certain ac-
tions may be concurrently executed.

In Part I of this series of papers [10], we characterized the semantics of an agent program
through the notion of astatus set. Intuitively, a status setis a set ofstatus atomswhich
are formulas of the formOpα whereα is the name of an action, andOp is a modality
P,O,F,Do,W. Intuitively,Pα meansα is permitted,Fα meansα is forbidden,Oα means
α is obligatory,Doα meansα is done, andOα means that the obligation to doα is waived.
The main idea in Part I of this series of papers was that at timet , the agent’s previous state
Ot−1 changes through the receipt of one or more messages. The agent must compute an
“appropriate” status setSt and concurrently perform all actions of the formDoα in St so
as to transit to a new state,Ot . Part I of this series of papers describes several ways of
capturing the word “appropriate” used in the previous sentence. Each of these ways yields
a different semantics for agent programs. Part I of this series of papers shows that these
different semantics appeal to different epistemic intuitions that an agent developer must
have—some are epistemically more desirable than others.

The main aim of this paper is to analyze the computational complexity of the above
semantics so that we have a clear idea of the computation price being paid(if any) for
an epistemically desirable semantics. A further consequence of these complexity results is
that we are able to pinpoint correct algorithms to compute these different semantics.

The organization of this paper is as follows. Section 2 specifies the assumptions
underlying our complexity analysis. It also provides a brief tutorial of different complexity
classes, and then provides a succinct summary of all the complexity results derived in this
paper.

The main complexity results and accompanying algorithms are contained in Sections 3
and 4—the former contains results when no integrity constraints are present, and the latter
contains results when integrity constraints may be present. Each of these sections is further
broken down in two parts—when no negation may appear in the body of an agent program
rule, and when such negations can appear. Finally, Section 5 concludes the paper.As a
handy reference for the reader, some notation and definitions from Part I are provided in
Appendix B.
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2. Algorithms and complexity issues

We assume that the reader is familiar with the basic concepts of complexity theory,
in particular with NP-completeness and the polynomial hierarchy, and refer to [13,19,21]
for background material on this subject and for concepts and notation that we use in the
remainder of this paper.

In the rest of this section, we first present the assumptions we make for our analysis.
We then present a very brief tutorial on different complexity classes. Finally, we present
an overview and a discussion of the results that we derive. The reader who is interested in
algorithms derived from these results, and/or the formal proofs of the results will find them
in Sections 3 and 4.

2.1. Underlying assumptions

In our work, we consider the evaluation of a fixed agent programP in the context of
software codeS, an action baseAB, action constraintsAC, and integrity constraintsIC,
each of which is fixed, over varying statesOS . This corresponds to what researchers in
databases and logic programming commonly call thedata complexityof a program [27].
If we consider varying programs where the agent state is fixed (respectively, varying),
we would haveexpression(or program) complexity and combined complexity, which are
typically one exponential higher than data complexity. This also applies in many cases
to the results that we derive below; such results can be established using the complexity
upgrading techniques for expression complexity described in [15].

Of course, if we use software packagesS = (TS ,FS) with high intrinsic complexity,
then the evaluation of agent programs will also be time consuming, and leaves us no chance
to build efficient algorithms. We therefore have to make some general assumptions about
the software package used such that polynomial time algorithms are not a priori excluded.

Domain closure assumption.We adopt ageneralized active domainassumption on
objects, in the spirit of domain closure; all objects considered for grounding the program
rules, evaluation of the action preconditions, the conditions of the actions constraints and
the integrity constraints must be fromOS , or they must be constructible from objects
therein by operations from a fixed (finite) set in a number of steps which is bounded by
some constant, and such that each operation is efficiently executable (i.e., in polynomial
time) and involves only a number of objects bounded by some other constant. Notice that
the active domain assumption is often applied in the domain of relational databases, and
a similar domain closure assumption [23] is frequently made in the context of knowledge
bases. In our framework, creation and use of tuples of bounded arity from values existing
in a database would be a feasible object construction process, while creation of an arbitrary
relation (as an object that amounts to a set of tuples) would be not.

Under this assumption, the number of objects which may be relevant to a fixed agent
programP on a given stateOS is bounded by a polynomial in the number of objects in
OS , and each such object can be generated in polynomial time. In particular, this also
means that the number of ground rules ofP which are relevant is polynomial in the size of
OS , measured by the number of objects that it contains.
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Polynomial code calls. As our framework builds on top of an existing body of software
code, we will state all our results under the assumption that the evaluation time of code
condition callsχ over a stateOS , for any particular legal assignment of objects, is bounded
by a polynomial in the size ofOS . Moreover, we assume that given an agent stateOS and
a set of ground actionsA, the stateO′S which results under concurrent execution ofA on
OS is constructible in polynomial time (Part I of this series of papers provides a definition
of concurrency that preserve this property).

As a consequence of these assumptions, the action and integrity constraints are evaluable
on an agent stateOS under the generalized active domain semantics in polynomial time,
and the integrity constraints on the agent stateO′S resulting from the execution of a set of
actionsA grounded in the active domain, are checkable in polynomial time in the size of
OS . 2

Notice that these assumptions will be met in many software packages which support the
use of integrity constraints (e.g., a relational database). If evaluation of the code condition
calls or constraints were not polynomial, then the evaluation of the agent program would
not be either.

2.2. Brief overview of complexity classes

In this subsection, we present a brief tutorial on complexity theory and also briefly
describe the various complexity classes that we will encounter in this paper. The classes
that we use in our characterizations are summarized in Fig. 1. An edge directed from class
C1 to classC2 indicates that all problems inC1 can be efficiently transformed into some
problem inC2, and that it is strongly believed that a reduction in the other direction is not
possible; i.e., the hardest problems inC2 are more difficult than the problems inC1.

2.2.1. Decision problems and search problems
All computation problems involved with computing different kinds of status sets

associated with agent programs are eitherdecision problemsor search problems. These
two types of problems are briefly described below.

Decision problems. Fig. 1(a) shows the complexity hierarchy fordecision problems—
these are problems where a question is posed, and a “yes/no” answer is expected. Thus,
problems like SAT are decision problems—SAT, for instance, asks if there is a valuation
that satisfies a set of propositional clauses. Similarly, the question “Does agent programP

have a feasible status set with respect to some fixed agent state, integrity constraints, and
action constraints?” is a decision problem.

We will assume that all readers know what the classesP andNP are.The other classes
shown in Fig. 1(a) are built on top of the classes P and NP (which is also referred to as6P

1),
by allowing the use of an oracle (i.e., a subprogram) for deciding problems instantaneously.
The classC to which this oracle must belong is denoted in a superscript; e.g., PNP

(respectively, NPNP) is the class of problems solvable in polynomial time on a deterministic

2 This would remain true if the integrity constraints where arbitrary fixed first-order formulas (evaluated under
active domain semantics).
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(a) (b)

Fig. 1. (a) Decision complexity classes; (b) Search complexity classes.

(respectively, nondeterministic) Turing machine, if an oracle for a problem in NP may be
used. Similarly, the class P6

P
2 is the class of problems solvable in polynomial time on a

deterministic Turing machine if an oracle for a problem in6P
2 may be used. In general,

C
C2
1 refers to the set of all problems that are in complexity classC1 if we assume that there

is an oracle for all problems in classC2 that is capable of responding instantaneously.
The classes6P

i , 5P
i , and1P

1, wherei > 1, constitute the so-calledpolynomial hierarchy,
which contains problems of increasing complexity, but they are supposed to be easier than
PSPACE-complete problems.

For the decision classes, the arcs in Fig. 1 actually denote inclusions, i.e., the
transformation of problems inC1 to problems inC2 is by means of the identity.

Search problems. The classes for search problems, which are often also called function
classes, can be found in [4,21] (see also [18,24]). A search problem is a generalization
of a decision problem, in which for every instanceI of the problem a (possibly empty)
finite setS(I) of solutions exists. To solve such a problem, a (possibly nondeterministic)
algorithm must compute the solutions of this set in its computation branches, if it is not
empty. Thus, while the decision problem SAT asks whether a set of propositional clauses is
satisfiable, the corresponding search problem FSAT attempts to find a satisfying valuation
if one exists. Analogously, the question “Find a feasible status set ofP if one exists” is a
search problem. Decision problems can be viewed as particular search problems, in which
the solution set is either empty or the singleton set {yes}. Hence, decision problems are
somewhat simpler than search problems.

More formally, search problems in the classes from Fig. 1 are solved by transducers,
i.e., Turing machines equipped with an output tape. If the machine halts in an accepting
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state, then the contents of the output tape is the result of the computation. Observe that
a nondeterministic machine computes a (partial) multi-valued function. Thus, not all
arcs in Fig. 1 mean inclusion, i.e., trivial reducibility by the identity. However, if we
are only interested insome arbitrarysolution from a set of possible solutions, as, e.g.,
in some arbitrary satisfying assignment in case of problem FSAT, then we may give
up the implicit uniformity condition of havingeachsolution as a possible outcomes of
a (nondeterministic) computation, and simple require that atleast oneof the possible
solutions is returned over all branches—this is the (natural) view that we will adopt when
classifying problems on agent programs. Observe that this view, adopted also, e.g. [4],
for solving optimization problems, is coherent with the notion of reduction introduced in
Section 2.2.3, and turns the arcs in Fig. 1 into inclusions. For example, FSAT and finding
some arbitrary feasible status set are problems in FPNP under this view.

2.2.2. Selected complexity classes
In this section, we present a few selected search complexity classes that will crop up in

our complexity analysis of agent programs.
First, we note that the search problem counterparts of the classesC in the polynomial

hierarchy are often denoted by a prefixed “F”; some of them appear in Fig. 1.

The classesFP, FPNP, and FP6
P
2 . These are the classes of functions computable by a

deterministic Turing machine in polynomial time with no oracle, NP-oracle, and6P
2-

oracle, respectively. Notice that each such machine computes a single-valued function. The

classes FPNP‖ and FP
6P

2‖ are refinements of the classes FPNP and F6P
2, respectively, and are

the search problem counterparts of the classes PNP‖ and P
6P

2‖ , respectively, which are not
shown in the figure. These classes contain functions which are computable in polynomial
time on a deterministic Turing machine which has access to an oracle in NP (respectively,
6P

2), but where all queries to the oracle must be prepared before issuing the first oracle
call. Thus, the oracle calls are nonadaptive and must essentially take place in parallel; it is
commonly believed that this restricts computational power.

The classesFNPandF6P
2 . FNP (respectively, F6P

2) contains the multi-valued functions
whose solutions can be computed by a nondeterministic transducer in polynomial
time (respectively, in polynomial time with an NP-oracle), such that a given solution
candidate can be checked in polynomial time (respectively, the check is in co-NP).
The class is contained in the class NPMV (respectively, NPMVNP), which contains all
multi-valued functions computable in nondeterministic polynomial time (respectively, in
nondeterministic polynomial time with a NP oracle) [12].

The classFNP// log. FNP// log is short for the class FNP//OptP[O(logn)] [4].
Intuitively, it is the class of problems such that a solution for an instanceI can
be nondeterministically computed by a transducer in polynomial time, if the optimal
valueopt(I) of an NP optimization problem onI (an integer) is known, whereopt(I)
(represented in binary) must have O(log|I |) bits. NPoptimization problemmeans here
that the maximal (respectively, minimal) value of a solution for a problemΠ is computed
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such that, givenI and an integerk, deciding whetheropt(I)> k (respectively,opt(I)6 k)
is in NP and recognizing solutions is polynomial.

For example, computing the largest setS of pairwise connected nodes in a given graph
G (i.e., a maximum clique) is a problem in FNP// log (observe that different maximum
cliques may exist). Indeed, computing thesizeof a maximum clique is an NP-optimization
problem with O(log|I |) output bits, since testing whether a setS is a clique is easy (just
check whetherG has an edge between each pair of nodes inS), and deciding whether
opt(G)> k is in NP (guess a clique of size> k). Furthermore, ifs = opt(G) is known, then
the transducer can nondeterministically generate and verify a clique of sizes in polynomial
time.

The class FNP// log reduces to FPNP and roughly amounts to a randomized version of
FPNP‖ . Due to its nondeterministic nature, it contains problems which are not known to be

solvable in FPNP‖ . The most prominent of these problems is the computation of an arbitrary
model of a propositional formula [18], which is the prototypical problem complete for the
class FNP. Few natural FNP// log-complete problems are known to date and almost none
arise in practical applications; our analysis shows that certain problems arising naturally in
agent systems (e.g., computing a weak rational status set) are in FNP// log, and that some
of them are even complete for this class.

In the context of agent programs, computing a weak rational status set for a positive
program is in FNP// log, since if we know the maximum sizesmaxof a setA of ground
actions such that anA-rational (i.e., obeying obligations according toA) status setS exists,
then we can nondeterministically generate such anS in polynomial time. The computation
of smaxamounts to an NP optimization problem as described above, and thus the overall
algorithm places the problem in FNP// log.

The classRP · FP
6P

2‖ . The class RP· FP
6P

2‖ [4] contains informally those problems for
which a solution on inputI can be found by a random polynomial time algorithm with

very high probability, by using a problem in FP
6P

2‖ as single-call subroutine. This class

is above FP
6P

2‖ . Chen and Toda [4] have shown that many optimization problems belong
to this class whose solutions are the maximal (respectively, minimal) solutions of an
associated decision problem for which recognizing a solution is in co-NP. We shall use this

relationship for classifying some problem into RP· FP
6P

2‖ , and refer the interested reader
to [4] for the technical details about this class. As we shall see, computing anF -preferred
rational status set or a weak rational status set amount to such optimization problems, and

thus the problems belong to RP· FP
6P

2‖ .

2.2.3. Hardness and completeness
The reader would have frequently heard terms such as NP-hard, NP-complete,6P

2-
complete and so on. Here, NP and6P

2 are classes of problems. In this section, we will
briefly explain what it means for a problem to behard/completewith respect to a class of
problems. The first concept we need here is that of a reduction between two problems.
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Reductions. Consider two search problemsΠ1,Π2. (For example,Π1 may be SAT,
while Π2 may be 3SAT.) In general, when we say thatΠ1 is reducible toΠ2, it
informally means that there is a function which transforms all instances of problemΠ1
to “equivalent” instances ofΠ2. Furthermore, this function is polynomially computable.
Intuitively, reductions satisfy the following condition. IfΠ1 is reducible toΠ2, then given
any instanceI of Π1, we can transform this instance to an equivalent instance ofΠ2,
execute a known algorithm forΠ2, and then transform any solution forΠ2 into a solution
forΠ1.

Formally,Π1 is polynomial time reducibletoΠ2, if (i) from every instanceI of Π1, an
instancef (I) ofΠ2 is constructible in polynomial time, such thatf (I) has some solution
precisely if I has; and (ii) from every solutionS of f (I), a solutiong(I,S) of I can
be constructed in time polynomial in the size ofS and I . The pair of functions(f, g)
constitutes a polynomial time reduction ofΠ1 toΠ2.

It is easy to see that the concept of polynomial time reduction among decision problems
Π1 andΠ2 is a special case of this definition, because decision problems are special cases
of search problems. Other types of reductions among decision problems that change the
polynomial time requirement, e.g., reduction in logarithmic space, can be generalized to
search problems in the same way.

We are now ready to explain the concepts of hardness and completeness.

Hardness and completeness.For both decision and search problem classesC, a problem
Π is complete forC, if (1) Π belongs toC, and (2)Π is hard forC, i.e., every problem in
C polynomially reduces to it.

Intuitively, when we say that problemΠ1 is NP-hard (or classC-hard) we mean that
every problem in the class NP (respectively, classC) can be reduced toΠ1 in polynomial
time. Likewise, when we sayΠ1 is NP-complete (or classC-complete) we mean not only
thatΠ1 is NP-hard (or classC-hard), but also belongs to that class, i.e., it is not strictly
harder. Examples of complete problems for the complexity classes that we encounter are
given in Appendix A.

2.3. Brief overview of complexity results

The complexity results we derive may be broken up into two parts. In the first part
(Section 3) we assume that no integrity constraints are present—then in Section 4, we
allow integrity constraints to be present.

In this paper, we study four types of complexity problems. For each semantics
introduced in the paper, we study the complexity of these four problems. This leads to
Tables 1 and 3 which summarize the results, under different assumptions on the syntax of
the agent programs considered. Table 2 specifies where the proofs of the results listed in
Table 1 and Table 4 does the same for the results listed in Table 3.

The computational problems that we study are listed below; letSem be any kind of
status sets.
• consistency: deciding the consistency of the program on a given agent state, i.e.,

existence of aSem-status set;
• recognition: the recognition of aSem-status set;
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• computation: the computation of an arbitrarySem-status set; and
• action reasoning: reasoning about whether the agent takes an actionα underSem-

status sets, both under the
– possibility variant (decide whetherα is executed according to someSem-status

set), and the
– certainty variant (decide whetherα is executed according to everySem-status set).

It is easy to see that “computation” is a search problem, while the other three are
decision problems (all instances of these problems can be answered with a “yes” or a
“no”). Thus, the only column in Tables 1 and 3 which use the search problem hierarchy is
the “computation” column.

The consistency problem is important since in general, it is not a priori guaranteed that
the agent can figure out what to do by selecting someSem-status set. It might be the case
that no such status set exists. Intuitively, this means that the behavior as specified by the
agent program is incompatible with the agent’s state. This event causes an exception, which
must be appropriately handled—this, however, is beyond the scope of this paper.

Computing someSem-status set is closely related to the consistency problem. Of course,
the computation problem is at least as difficult as the consistency problem—having aSem-
status set at hand, it is trivial to answer whether someSem-status set exists. On the other
hand, like with many other problems, computing someSem-status set is not much harder
than the decision problem, in the sense that it is possible in polynomial time with an
oracle for the consistency problem. However, this does not tell us much about how an
optimal (possibly nondeterministic) algorithm can proceed. For this purpose, a complexity
characterization referring to search problem classes is useful. We will come back to this
issue in the conclusions (Section 5).

The recognition problem corresponds to the task of model checking in the area of
knowledge representation and reasoning, which has been addressed, e.g., in [2,16,20].
Observe that often, recognizing a solution is easier than computing a solution, and occurs as
a test in an interactive algorithm. However, in general, it may be the case that recognizing
a particular solution is much harder than computing some arbitrary solution. Thus, the
complexities of “computation” and “recognition” are incomparable in general.

Action reasoning is a problem of interest, since in general multipleSem-status sets may
exist, and thus it is important to know whether some action status atomA belongs to
all (respectively, some)Sem-status set. This corresponds to what is known as certainty
(respectively, possibility) reasoning in databases [26], and to cautious (respectively, brave)
reasoning in the area of knowledge representation [14]. In particular, this question is
important for status atomsDo(α), since it tells us whetherα is possibly executed by
the agent (if she picks nondeterministically someSem-status set), or executed for sure
(regardless of which action set is chosen).

Table 1 specifies the complexity of the four problems that we study when positive agent
programs are considered, while Table 3 specifies their complexity when arbitrary agent
programs are considered.

Note on tables. The entries for decision problems in Tables 1 and 3 stand for
completeness for the respective complexity classes. In case of P, hardness may implicitly
be present with costly object construction operations. However, we remark that for all
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Table 1
Complexity of fixed positive agent programs

IC = ∅ | IC arbitrary Consistency Computation Recognition Action reasoning

Possible Certain

Feasible P|NP FP| FNP P NP co-NP

Rational P FP P P P

≡ reasonable

≡ F -preferred rational

≡ F -preferred reasonable

Weak rational P|NP FP| FNP// loga P | co-NP NP co-NP|5P
2

≡ weak reasonable

a. . . hard for both FNP and FPNP‖ .

Table 2
Location of proofs for Table 1(C=Corollary, T= Theorem, P= Proposition)

IC = ∅ | IC arbitrary Consistency Computation Recognition Action reasoning

Possible Certain

Feasible T 3.1| T 4.1 T 3.1 | T 4.1 P 3.7 T 3.9 T 3.9

Rational T 3.1 T 3.1 C 3.2 C 3.3 C 3.3

Weak rational T 3.5| T 4.7 T 3.5 | T 4.8 T 3.4 | T 4.6 T 3.6, T 4.9 T 3.6| T 4.9

Table 3
Complexity of fixed agent programs with negation

IC = ∅ | IC arbitrary Consistency Computation Recognition Action reasoning

Possible Certain

Feasible NP FNP P NP co-NP

Rational NP|6P
2 FNP// loga | F6P

2 co-NP 6P
2 co-NP|5P

2

Reasonable NP FNP P NP co-NP

Weak rational NP|6P
2 FNP// log | FP6

P
2 co-NP|5P

2 6P
2 |6P

3 5P
2 |5P

3
∩
RP· FP

6P
2‖ b

Weak reasonable NP FNP// log co-NP 6P
2 5P

2

F -preferred rational NP|6P
2 FNP// log | FP6

P
2 co-NP|5P

2 6P
2 |6P

3 5P
2 |5P

3
∩
RP· FP

6P
2‖ b

F -preferred reasonable NP FNP// log co-NP 6P
2 5P

2
a. . . hard for both FNP and FPNP‖ .

b. . . hard for both F6P
2 and FP

6P
2‖ .
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Table 4
Location of proofs for Table 3(C=Corollary, T= Theorem, P= Proposition)

IC = ∅ | IC arbitrary Consistency Computation Recognition Action reasoning

Possible Certain

Feasible T 4.1 T 3.8, 4.1 P 3.7 T 3.9 T 3.9

Rational T 3.10| T 4.4 T 3.13| T 4.4 C 3.12, T 4.2 T 3.14, T 4.5 T 3.14| T 4.5

Reasonable T 3.16 T 3.16 T 3.15 T 3.17 T 3.17

Weak rational T 3.19| T 4.11 T 3.20| T 4.12 T 3.21| T 4.13 T 3.23| T 4.14 T 3.23| T 4.14

Weak reasonable T 3.19, T 4.10 T 3.20, T 4.10 T 3.22 T 3.24 T 3.24

F -preferred rational extended report [11]

F -preferred reasonable extended report [11]

problems except recognition of a feasible status set, hardness holds even if no new objects
are introduced and the agent state consists merely of a relational database. Proofs of these
results are not difficult, using the well-known result that inference from a datalog program
(Horn logic program) is P-complete, cf. [6].

For space reasons, we do not prove all results here. In particular, we omit the
consideration ofF -preference on status sets for programs with negation. In this case,
rational (respectively, reasonable) status sets show the same complexity as under their weak
variants. Proofs for all results in Table 3 are given in [11].

2.3.1. Bottom line for the computation problem
Of all the four problems described above, from the point of view of the IMPACT

system (and in general, for any system that attempts to determine which actions an agent
must take), the most important problem, by far, is the problem ofcomputation—given an
agent program, a current agent state, a set of integrity constraints and action constraints,
determine a set of actions that the agent must take. This task forms the single most
important task that an agent must take, over and over again.

When considering the different semantics for agent programs, we easily notice (by
examining the column “computation” in both Tables 1 and 3), that the easiest semantics to
compute are given as follows:

– When positive agent programs with no integrity constraintsare considered, the
rational, weak rational, reasonable, weak reasonable,F -preferential, andP -prefer-
ential semantics are the easiest to compute, all falling into the same complexity class.
The other semantics are harder to compute. Thus, in this case, we have some flexibility
in choosing that out of the rational, weak rational, reasonable, weak reasonable,F -
preferential, andP -preferential, that best meets the agent’s epistemic needs. Note that
different agents in IMPACT can use different semantics.

– When positive agent programs with integrity constraintsare considered, the best
semantics, from the point of view of computational complexity, are the rational,
reasonable,F -preferential, andP -preferential semantics. Note that unlike the
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previous case, the weak rational and weak reasonable semantics are harder to compute
when integrity constraints are present.

– When arbitrary agent programs with no integrity constraintsare considered, then the
easiest semantics to compute are the feasible set semantics and the reasonable status
set semantics. All other semantics are harder to compute.

– When arbitrary agent programs with integrity constraintsare considered, the same
continues to be true.

In general, when considering how to compute a kind of status set, the reasonable status set
semantics is generally the easiest to compute, irrespective of whether agent programs are
positive or not, and irrespective of whether integrity constraints are present or not. As we
have argued earlier on in the paper, reasonable status sets have many nice properties which
might make them epistemologically preferable to feasible status sets and rational status
sets.

2.3.2. Sources of complexity
The results show that the complexity of agent programs varies from polynomial up to the

third level of the polynomial hierarchy. Observe that in some cases, there are considerable
complexity gaps between positive agent programs and agent programs which use negation
(e.g., forF -preferred rational status sets).

The reason for this gap are three sources of complexity, which lift the complexity of
positive agent programs from P up to6P

3 and5P
3, respectively (in the cases ofF -preferred

and weak rational status sets):
(1) an (in general) exponential number of candidates for a feasible (respectively, weak

feasible) status set;
(2) a difficult recognition test, which involves groundedness; and
(3) an exponential number of preferable candidates, in terms ofF -preference or

maximal obedience to obligations.
These three sources of complexity act in a way orthogonally to each other; all of them

have to be eliminated to gain tractability.
For the canonical semantics of positive agent programs, the rational status set semantics,

all computational problems are polynomial. This contrasts with feasible status sets, for
which except recognition, all problems are intractable. On the other hand, under the weak
status set semantics, the problems (except for action reasoning) are polynomial if no
integrity constraints are present; intractability, however, is incurred in all problems as soon
as integrity constraints may be used.

It is interesting to observe that for programs with negation, rational status sets are
more expensive to compute than reasonable status sets in general, and this is true if
no integrity constraints are present, except for consistency checking and cautious action
reasoning. A similar observation applies to theF -preferred and weak variants of rational
and reasonable status sets in the general case; here, the rational variants are always
more complex than the reasonable ones. However, somewhat surprisingly, if no integrity
constraints are present, then the complexities of the rational and reasonable variants
coincide! This is intuitively explained by the fact that in absence of integrity constraints,
the expensive groundedness check for rational status sets can be surpassed in many places,



T. Eiter, V.S. Subrahmanian / Artificial Intelligence 108 (1999) 257–307 269

by exploiting the property that in this case, every feasible status set must contain some
rational status set.

Another interesting observation is that for programs with negation, theF -preferential
and weak variants of rational status sets have the same complexity characteristics, and
similar for reasonable status sets. This is explained by the similar optimization components
which are present in the semantics, namely minimization of theF-part versus maximization
of the set of obligations which are obeyed. These are dual optimization problems, but the
underlying optimization principle is the same. A similar complexity behavior is thus not
much surprising. However, we note thatF -preference and weak rationality are applied to
different candidate spaces, namely to all rational status sets versus allA-rational status sets,
respectively. This explains that in the case of positive programs, where these candidate
spaces have in general different sizes (a singleton set versus an exponential set), the
complexity profiles ofF -preference and weak rationality are different.

Presence of integrity constraints, even of the simplest form common in practice (e.g.,
functional dependencies [26] in a database), can have a detrimental effect on (variants of)
rational status sets and raises the complexity by one level in the polynomial hierarchy.
However, the complexity of reasonable status sets and their variants is immune to integrity
constraints except for the weak reasonable status sets on positive programs. Intuitively, this
is explained by the fact that the refutation of a candidate for a reasonable status set basically
reduces to the computation of the rational status set of a positive agent program, and there
integrity constraints do not increase the complexity. In the case of weak reasonable status
sets for positive programs, we have an increase since the weakness condition may create
an exponential number of candidates if the program is inconsistent.

3. Complexity results for the case without integrity constraints

This section contains the first part of the derivation of the complexity results which have
been presented in Section 2. The focus in this section is on the base case, in which we have
programs without integrity constraints (though cases where results on integrity constraints
follow as immediate extensions of the no-integrity-constraint case are also included). As
the Table 1 and 3 show, in general the presence of integrity constraints has an effect on
the complexity of some problems, while it has not for others. For the latter problems, we
discuss this effect in detail in the next section. In this section, as complexity results are
discussed, we also develop algorithms for various status set computations.

Before we start with our analysis, we briefly recall the syntax of agent programs. An
agent programis a finite set of rules

A←L1, . . . ,Ln (1)

whereA is an action status atom and each ofL1, . . . , Ln is either an action status atom,
or a code call atom, each of which may be preceded by a negation sign (¬). A program
is positive, if it contains no negated action status atoms.Action status atomsare of the
form Op(α(t1, . . . , tk)) whereOp∈ {P,F,O,W,Do} is a status modality,α is the name of
an action, andt1, . . . , tk are terms (objects or variables) for the action parameters. Acode
call atomrepresents a call to the software packageS, and on instantiating all variables,
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evaluates to either false or true. Throughout this paper, we shall in programs only encounter
code call atoms querying whether a particular tuplet is contained in a tableR of a relational
database managed byS, i.e., whether the logical factR(t) is true. Thus, for simplicity, we
writeR(t) for these code call atoms.

3.1. Positive programs

The most natural question is whether a feasible status set exists for programP on
a given stateOS . As we have seen, this is not always the case. However, for fixed
positive programs, we can always efficiently find a feasible status set (so one exists),
and moreover, even a rational status set, measured in the size of the inputOS . This is
possible using the algorithm COMPUTE-P-RSS below, where the programP and possibly
integrity and action constraints are in the background. The algorithm COMPUTE-P-RSS
uses the operatorTP,OS defined in Part I of this series of papers. We briefly recapitulate
its definition:

– Thedeontic closureof a statusS, denotedDCl(S), is the closure ofS under the rule

If Oα ∈ S, thenPα ∈ S
whereα is any ground action.

– Theaction closureof a status setS, denotedACl(S), is the closure ofS under the
rules

If Oα ∈ S, thenDoα ∈ S
If Doα ∈ S, thenPα ∈ S

whereα is any ground action.
– AppP,OS (S) is defined to be the set of all ground action status atomsA such that there

exists a rule inP having a ground instance of the formr : A← L1, . . . ,Ln such that
(1) Each positive action status literalLi is in S and for each negative action status

literalLi =¬Op(α), α is not inS; and
(2) each positive code callLi succeeds inOS , and
(3) for each negated code call¬χ , χ does not succeed inOS , and
(4) for each positive action status literalOp(α) from {A,L1, . . . ,Ln} such that

Op∈ {P,O,Do}, the actionα is executable in stateOS .
– For any status setS,

TP,OS (S)= AppP,OS (S) ∪DCl(S)∪ACl(S).

Intuitively, TP,OS (S) finds all rules in the agent programP that are “firable” with
respect to the current object stateOS and with respect to the action status atoms inS—it
fires such rules to derive the status atoms in the rule heads. This set of status atoms is then
closed under the deontic and action closure rules listed above. The reader will easily see
thatTP,OS (S) can be computed in polynomial time.

Algorithm COMPUTE-PIC-RSS’s efficiency can easily be enhanced by interleaving the
computation oflfp(TP,OS ) with the checks in steps (2) and (3) so as to terminate with
failure if a violation of the conditions is detected.
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Algorithm COMPUTE-PIC-RSS

Input: agent stateOS (positive agent programP);

Output: the unique rational status set ofP , if it exists; “No”, otherwise.

Method

(1) ComputeS = lfp(TP,OS );
(2) Check whetherS satisfies conditions(S2) and(S4) of a feasible status set;
(3) If S satisfies(S2) and(S4), then outputS; otherwise, output “No”. Halt.

The following theorem tells us that whenIC = ∅, then the problems of checking
(decision problem) and finding (search problem) if a positive agent program has a feasible
status set is polynomially solvable. Furthermore, as far as the rational status set semantics is
concerned, independently of whetherIC is empty or not, it is the case that the consistency
and computation problems are polynomial. The reason is that when we consider positive
agent programs, the only candidate to be a rational status set islfp(TP,OS ) which can be
computed in polynomial time.

Theorem 3.1. Let P be a fixed positive agent program(whereIC is arbitrary). Then,
given an agent stateOS , the unique rational status set ofP onOS (if it exists) is computed
by COMPUTE-PIC-RSSin polynomial time. Moreover, ifIC = ∅, then deciding whether
P has some feasible status set onOS as well as computing any such status set, is possible
in polynomial time usingCOMPUTE-PIC-RSS.

Proof. By [11, Theorem 5.3], a positiveP has over anyOS a unique rational status
set (if a rational status set exists), which is given byS = lfp(TP,OS ) if S is a feasible
status set. Sincelfp(TP,OS ) satisfies(S1) and(S3) of the definition of feasible status set
(Definition B.2), algorithm COMPUTE-PIC-RSS correctly computes the unique rational
status set ofP onOS .

By the assumptions that we made in Section 2.1, step (1) can be done in polynomial
time, since a fixedP amounts to a ground instance which is polynomial in the size ofOS ,
and we can computeS = lfp(TP,OS ) bottom up by evaluating the sequenceT iP,OS , i > 0,
until the fixpoint is reached.

Observe that, of course, checking(S2) (action and deontic consistency)—or part of this
criterion—in algorithm COMPUTE-PIC-RSS can be done at any time while computing
the sequenceT iP,OS , and the computation can be stopped as soon as an inconsistency is
detected.

Step (2), i.e., checking whetherS satisfies the conditions(S2) and (S4) is, by our
assumptions, possible in polynomial time. Therefore, for fixedP (and tacitly assumed
fixed action and integrity constraints in the background), algorithm COMPUTE-PIC-RSS
runs in polynomial time.

If IC = ∅, then by [11, Proposition 5.5]P has a feasible status set onOS iff it has
a rational status set onOS . Therefore, deciding the existence of a feasible status set
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(and computing one) is possible using COMPUTE-PIC-RSS (as any rational status set
is feasible) in polynomial time. 2

The following result is immediately derivable from the preceding one: GivenP,OS ,
and a status setS, for checking whetherS is rational, we merely need to test whether
(i) S = lfp(TP,OS ) and (ii) S satisfies conditions(S2) and (S4) of a feasible status set.
The proof of Theorem 3.1 above immediately tells us that these steps are executable in
polynomial time.

Corollary 3.2. Let P be a fixed positive agent program. Then, given an agent stateOS
and a status setS, deciding whetherS is the rational status set ofP onOS is polynomial.

As any fixed positive agent program has at most one rational status set, it follows
immediately that possible and certain reasoning can be performed in the same time (i.e.,
polynomial) as it takes to construct such a status set.

Corollary 3.3. Let P be a fixed positive agent program. Then, given an agent stateOS
and a ground actionα, deciding whetherα is true in some(respectively, every) rational
status set ofP onOS is polynomial.

Since for every positive agent programP , the rational status set, the reasonable status
set, and their preferred variants coincide, the results for rational status sets in Theorem 3.1
and Corollaries 3.2 and 3.3 extend to these kinds of status sets as well.

3.1.1. Weak rational status sets
In this subsection, we address the problem of computing a weak rational status set for

a positive program. As we have mentioned in [11, Section 5.4], for a fixed positive agent
programP , computing a weak rational status set on a given agent stateOS is possible in
polynomial time, provided that no integrity constraints are present. In fact, this is possible
by using algorithm COMPUTE-P-WEAK-RSS shown below.

Before we address the formal correctness of this algorithm, it is useful to consider
the associated problem of recognizing a weak rational status set. In general, efficient
computability of a solution to a problem does not imply that recognizing a valid solution
is also efficiently possible. However, as in the case of rational status set, for a positive
program without integrity constraints also recognition of a weak rational status set is
polynomial.

Theorem 3.4. LetP be a fixed positive agent program, and supposeIC = ∅. Then, given
an agent stateOS and a status setS, deciding whetherS is a weak rational status set ofP
is polynomial.

Proof. By [11, Proposition 5.10], everyA-feasible status set isA(S)-feasible, and thusS
must beA(S)-feasible if it is a weak rational status set. Since for any set of ground actions
A, testingA-feasibility is not harder than testing feasibility, by Proposition 3.7 we obtain
that this condition can be tested in polynomial time.
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Algorithm COMPUTE-P-WEAK-RSS

Input: agent stateOS (positive agent programP ; IC = ∅)
Output: a weak rational status set ofP onOS , if one exists; “No”, otherwise.

Method

(1) SetA := ∅, GA := set of all ground actions, and computeS := lfp(TP,OS ,A);
(2) If S is notA-feasible, then output “No” and halt; otherwise, setA := A(S) and

GA :=GA\A(S);a
(3) If GA= ∅, then outputS and halt;
(4) Choose some ground actionα ∈GA, and setA′ :=A∪ {α};
(5) If S′ := lfp(TP,OS ,A′) isA′-feasible, then setA :=A(S′), GA :=GA\A(S′), and

S := S′; continue at step (3).

aRecall from Part I of this series of papers [10] thatA(S)= Do(S) ∪ {α | α /∈O(S)} (see
Appendix B).

If S is A(S)-feasible, then, sinceP is positive andIC = ∅, by [11, Theorem 5.13]S
is a weak rational status set, if and only ifS = lfp(TP,OS ,A) and for every ground action
α /∈A(S), the status setS′ = lfp(TP,OS ,A′) is notA′-feasible, whereA′ =A∪{α}. For each
suchα, this condition can be checked in polynomial time, and there are only polynomially
many suchα. Since computinglfp(TP,OS ,A) is polynomial, the overall recognition test is
polynomial. 2

We remark that algorithm COMPUTE-P-WEAK-RSS can be modified to implement the
recognition test; we omit the details, however.

The next result states that algorithm COMPUTE-P-WEAK-RSS is correct and polyno-
mial.

Theorem 3.5. For a positive programP and an agent stateOS , algorithmCOMPUTE-P-
WEAK-RSScorrectly outputs a weak rational(respectively, weak reasonable) status set
of P onOS (so one exists) if IC = ∅. Moreover, for fixedP , COMPUTE-P-WEAK-RSS
runs in polynomial time.

Proof. The correctness of the algorithm follows from the arguments used in the proof of
Theorem 3.4. Starting fromA = ∅, we can subsequently increaseA by a ground action
α /∈ A(S), until A-feasibility ofS = lfp(TP,OS ,A) is no longer possible. The output status
setS is then a weak rational status set.2

We remark that this simple algorithm can be speeded up by exploiting some further
properties. In step (5) of the algorithm, the computation ofS′ can be done by least fixpoint
iteration starting fromS rather than from the empty set (cf. [11, Proposition 5.12]).

As for action reasoning from weak rational status sets, we face for the first time
intractable problems in our analysis. The intuitive reason for intractability is that an
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exponential number of weak rational status sets might exist, all of which must be examined
for answering the problem, and there seems no way of efficiently pruning this search
space.

Theorem 3.6. LetP be a fixed positive agent program, and supposeIC = ∅. LetOS be
a given agent state and letα be a given ground action. Then, deciding whetherα ∈Do(S)
holds for(i) every(respectively,(i) some) weak rational status set ofP onOS is co-NP-
complete(respectively,NP-complete).

Proof. Observe that algorithm COMPUTE-P-WEAK-RSS is nondeterministically com-
plete, i.e., every weak rational status setS is produced upon proper choices in step (4).
Therefore, by checkingDo(α) /∈ S (respectively,Do(α) ∈ S) before termination, we obtain
membership in co-NP (respectively, NP).

For the hardness part of (i), we provide a reduction from the complement of problem
M3SAT (see Appendix A).

In our reduction, we store the CNF formulaφ =∧i Ci in a relational databaseD. For
this purpose,D is supposed to have two relations POS(V1,V2,V3) and NEG(V1,V2,V3),
in which the positive and negative clausesCi of φ are stored, and a relation VAR(V )
which contains all variables. For each positive clauseCi , there exists a tuple with the
variables ofCi in POS, e.g., forx1 ∨ x4 ∨ x2 the tuple(x1, x4, x2), and likewise for the
negative clauses a tuple with the variables in NEG, e.g., for¬x3 ∨ ¬x1 ∨ ¬x2 the tuple
(x3, x1, x2).

The action baseAB contains three actions:set 0(X), set 1(X), andα. Here, we assume
that every action has empty precondition and empty Add- and Del-set. Define now the
programP as follows.

O(set 0(X1))←VAR(X1)

O(set 1(X1))←VAR(X1)

Doα←Do(set 0(X1)),Do(set 0(X2)),Do(set 0(X3)),

POS(X1,X2,X3)

Doα←Do(set 1(X1)),Do(set 1(X2)),Do(set 1(X3)),

NEG(X1,X2,X3)

On this program, we impose the following action constraint:

AC: {set 0(X1),set 1(X1)}←↩ VAR(X1).

We setAC = {AC} andIC = ∅. Intuitively, the weak rational status sets correspond to
the truth assignment for the variables inX; the maximality of weak rationality and the
constraintAC effect that each variablexi ∈X is assigned exactly one of the values 0 or 1.

For a given database instanceD describing a formulaφ, it is easily seen that every
weak rational status set ofP onD containsDoα, if and only if the corresponding M3SAT
instanceφ is a No-instance. SinceD is easily constructed fromφ, part (i) is proved.

For the hardness part of (ii), a similar reduction from M3SAT can be given. We add to
the programP the following clauses:
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Fα←
Do(val (X1))←Do(set 0(X1)),NEXT(X1,X1)

Do(val (X1))←Do(set 1(X1)),NEXT(X1,X1)

Do(val (X1))←Do(set 0(X1)),Do(val (X2)),NEXT(X1,X2)

Do(val (X1))←Do(set 1(X1)),Do(val (X2)),NEXT(X1,X2)

The actionval (X) has empty precondition and empty Add- and Del-sets. The database
relation NEXT(X1,X2) provides the enumeration of the variablesxi ∈ X, such that
databaseD contains the tuples(x1, x2), (x2, x3), . . . ,(xn−1, xn) and (xn, xn) for the last
variable (which has no successor).

Intuitively, the first clause prohibits the selection of a truth assignment to all variables
xi , if it falsifies the formulaφ. The other clauses check recursively, starting from the last
variablexn (i.e., i = n), whether all variablesxj such thatj > i have assigned a value. If
this is true fori = 1, i.e.,Do(val (x1)) is derived, then all variables have assigned a value.

It holds thatDo(val (x1)) belongs to some weak rational status set of the augmented
programP ′ onD if and only if formulaφ is satisfiable. From this, NP-hardness of (ii)
follows. 2

Before closing this subsection, we remark that tractability of both problems can be
asserted, if a total prioritization on the weak rational status sets is used, which technically
is derived from a total orderingα1< α2< · · ·< αn on the setGA of all ground actions. In
this case, a positive agent programP has a unique weak rational status setS (if one exists).
This status setS can be constructed by modifying step (4) of algorithm COMPUTE-WEAK-
RSS as follows:

(4′) Let α be the<-least action fromGA, and setA′ :=A∪ {α}.
Thus, in the absence of integrity constraints, the unique weak rational status set can be
computed in polynomial time in this case.

3.2. Programs with negation

If we allow unrestricted occurrence of negated status atoms in the rule bodies, then the
complexity of evaluating agents programs increases. This is not very surprising, since this
way, we can express logical disjunction of positive facts. For example, the rule

Pα←¬Fα

leads to two rational status sets:S1 = {Pα} and S2 = {Fα}. Informally, this clause
expresses under rational status set semantics the disjunctionFα∨Pα. Notice that under the
reasonable status semantics, the above rule has only a single reasonable status set, namely
S1. However, if we add its contrapositive

Fα←¬Pα,

then the resulting program has the two reasonable status setsS1 andS2. Thus, in the general
case, both rational and reasonable status set semantics allow for expressing disjunction, and
are for this reason inherently complex. We now analyze the precise complexity of these
semantics.
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3.2.1. Feasible status sets
We note here that for feasible status sets, the recognition problem is tractable under

the assumptions that we made in Section 2.1; this can be easily seen as each of the four
conditions(S1)–(S4) defining feasibility can be polynomially checked.

Proposition 3.7. LetP be a fixed agent program(whereIC is arbitrary). Then, given an
agent stateOS and a status setS, deciding whetherS is a feasible status set ofP onOS
is possible in polynomial time.

However, as the following result shows, the search for feasible status sets is intractable
in the general case.

Theorem 3.8. Let P be a fixed agent program, and supposeIC = ∅. Then, given an
agent stateOS , deciding whetherP has a feasible status set onOS is NP-complete, and
computing some feasible status set is complete forFNP.

Proof. By Proposition 3.7, we can guess and check a feasible status set ofP onOS in
polynomial time. Hence, the existence problem is in NP, and the computation problem is
in FNP.

To show that the existence problem is NP-hard, we describe a reduction from M3SAT.
The reduction is similar to the one in the proof of Theorem 3.6. As there, we suppose that
an M3SAT instanceφ on variablesxi ∈X is stored in relations POS (positive clauses) and
NEG (negative clauses), and we assume that all variablesxi are stored in VAR. Moreover,
we assume thatD has a relation AUX(Var,Val), which contains in the initial databaseD
all tuples(xi,0), for all variablesxi .

Now consider the following agent programP :

Pβ←
Fβ← Fα(X1),Fα(X2),Fα(X3),POS(X1,X2,X3)

Fβ←Pα(X1),Pα(X2),Pα(X3),NEG(X1,X2,X3)

Pα(X1)←¬Fα(X1),VAR(X1)

The action baseAB contains two actionsα andβ , which have both empty preconditions
and empty add and delete sets. Thus, these actions do not have any effect on the state of
the database. The setsAC andIC of action and integrity constraints, respectively, are both
assumed to be empty.

Then, it is easy to see thatP possesses a feasible status set overOS , if and only if
the formulaφ is satisfiable; the satisfying truth assignments ofφ correspond naturally
(but not 1–1) to the feasible status sets ofP onOS . (Observe that every feasible status set
must either containPα(xi) or containFα(xi), for everyxi , but not both; intuitively,Pα(xi)
represents thatxi is true, whileFα(xi) represents thatxi is false.) Since for a given formula
φ the database instanceD of D is clearly constructible in polynomial time, it follows that
the decision problem is NP-hard. Moreover, by the correspondence between feasible sets
status ofP and the satisfying assignments ofφ, it follows immediately that the feasible
status set computation problem is hard for FNP.
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Observe that we can replace in the construction the positive atomsFα(Xi) in the
rule with Fβ in the head by¬Pα(Xi), and we would get the same feasible status sets;
moreover, the last rule could then also be removed, and still a feasible status exists iffφ is
satisfiable. 2

This negative result raises the issue of how we can achieve tractability of programs.
There are different possibilities.

One possibility is that we identify syntactic constraints under which programs are
guaranteed to be tractable. However, as the form of the program in the proof of the previous
theorem indicates, rather strict conditions on negation must be imposed, in order to exclude
possible inconsistencies. Still, a number of different feasible and rational status sets may
exist, due to the inherent logical disjunction. In particular, the reduction in the proof of
Theorem 3.8 works for rational status sets as well. In a concurrent piece of work, we have
identified a polynomial fragment of agent programs calledregular agent programs[9]; the
implementation of these programs is ongoing.

For action reasoning, we obtain similar intractability results as in the case of weak
rational status. This is not surprising, since also here, an exponential number of status
sets has to be examined to answer the query.

Theorem 3.9. Let P be a fixed agent program. Then, given an agent stateOS and a
ground actionα, deciding whetherα ∈Do(S) for (i) every(respectively,(ii) some) feasible
status setS ofP onOS , is co-NP-complete(respectively,NP-complete).

Proof. A guess for a feasible status setS such thatα /∈ Do(S) (respectively,α ∈ Do(S))
can be verified in polynomial time (Proposition 3.7).

For the hardness part of (i), observe that the atomDo(β) belongs to every feasible status
set of the programP in the proof of Theorem 3.8, iffP has no feasible status set. For(ii),
we add the ruleDoβ←. Then,Do(β) occurs in some feasible status set of the resulting
program iffP has some feasible status set. This proves the result.2
3.2.2. Rational status sets

For the consistency problem, we obtain from [11, Proposition 5.5], which states that a
rational status set exists just if a feasible status set exists in caseIC = ∅, and Theorem 3.8
immediately the following result.

Theorem 3.10.Let P be a fixed agent program, and supposeIC = ∅. Then, given an
agent stateOS , deciding whetherP has a rational status set onOS is NP-complete.

The condition that a feasible status set is grounded requires a minimality check. It turns
out that this minimality check is, in general, an expensive operation. In fact, the following
holds.

Theorem 3.11.Let P be a fixed agent program, and supposeIC = ∅. Then, given an
agent stateOS and a feasible status setS for P onOS , deciding whetherS is grounded is
co-NP-complete.
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Proof. In order to refute thatS is grounded, we can guess a status setS′ 6= S such that
S′ ⊆ S and verify in polynomial time thatS′ satisfies the conditions(S1)–(S3) of a feasible
status set.

To show that the problem is co-NP-hard, we use a variant of the construction in the proof
of Theorem 3.8. For the CNF formulaφ there, we set up the following programP :

Pβ←
Fβ←¬Pγ,¬Pα(X1),¬Pα(X2),¬Pα(X3),POS(X1,X2,X3)

Fβ←¬Pγ,Pα(X1),Pα(X2),Pα(X3),NEG(X1,X2,X3)

Pα(X1)←Pγ,VAR(X1)

Here,γ is a new action of the same type asα andβ , i.e., it has empty precondition and
empty Add- and Del-sets.

It is easily seen thatS = {Pβ,Pγ } ∪ {Pα(ai) | i = 1, . . . , n} is a feasible status set ofP .
Observe that any feasible status setS′ 6= S such thatS′ ⊆ S must satisfyPγ /∈ S′. It holds
thatS is grounded if and only if formulaφ is not satisfiable. This proves co-NP-hardness.

The reduction even allows to derive another result. In fact, observe that any rational
status set ofP is contained inS: if Pγ ∈ S′ for a status setS′ which satisfies(S1)–(S3),
then clearlyS′ ⊇ S holds; otherwise, ifPγ /∈ S′, thenS′ ⊂ S must hold. Assume without
loss of generality that eitherφ is unsatisfiable, or all its satisfying assignments viewed as
Boolean vectors are incomparable. Then,S is the unique rational status set ofP , iff φ is
unsatisfiable. This shows that deciding whether an agent program has a unique rational
status set is co-NP-hard as well.2

The complexity of the recognition problem is an immediate consequence of the previous
theorem and Proposition 3.7.

Corollary 3.12. Let P be a fixed agent program, and supposeIC = ∅. Then, given an
agent stateOS and a status setS, deciding whetherS is a rational status set forP onOS
is co-NP-complete.

In the absence of integrity constraints, the rational status sets coincide with the minimal
feasible status sets. Using an NP oracle, we therefore can compute a rational status set using
algorithm COMPUTE-RATIONAL -SS. This algorithm correctly outputs a rational status set
(so one exists) in polynomial time modulo calls to the oracle. Hence, the problem is in
FPNP. This upper bound can be improved to FNP// log, since we can nondeterministically
compute a rational status set as follows.

(1) Compute the smallest sizes of a feasible status setS.
(2) Nondeterministically generate, i.e., guess and check a feasible status setS such that
|S| = s, and output it.

Step 1 amounts to an NP optimization problem whose output has O(log|I |) bits: an
instanceI is given by (fixed)P andOS , and the solutions are the feasible status sets (which
are recognizable in polynomial time). The cost of any solutionS is its cardinality|S|, and
deciding whethers = opt(I)> k is in NP. Furthermore,s has in binary notation O(log|I |)
many bits. Step 2 is polynomial by Proposition 3.7. Hence, the overall algorithm proves
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Algorithm COMPUTE-RATIONAL -SS

Input: agent stateOS (agent programP , IC = ∅);
Output: a rational status set ofP , if one exists; “No”, otherwise.

Method

(1) SetS := ∅ andGA := set of all ground action status atoms.
(2) Check ifS is a feasible status set; if true, then outputS and halt.
(3) If GA= ∅, then output and halt.
(4) Choose some atomA ∈GA and query the oracle whether a feasible status setS′

exists such thatS ⊆ S′ ⊆ S∪ (GA\{A}); If the answer is “no”, thenS := S∪{A}.
(5) SetGA :=GA\ {A} and continue at step (2).

that computing a rational status set is in FNP// log, if IC = ∅. We obtain the following
result.

Theorem 3.13.LetP be a fixed agent program, and supposeIC = ∅. Given an agent state
OS , computing any rational status set ofP onOS is in FNP// log and hard for bothFNP
andFPNP‖ .

Proof. The preceding discussion showed that the problem is in FNP// log. Hardness for
FNP follows from the proof of Theorem 3.8 (any rational status set is a feasible status set).

Thus, it remains to show hardness for FPNP‖ . We establish this by a reduction of
computing a minimal model of a propositional CNF formulaφ, i.e., find a modelM
(satisfying truth assignment to the variables), such that no modelM ′ exists withM ′ ⊂M,
where a model is identified with the set of variables which are true in it. FPNP

‖ -hardness
of this problem, even if all clauses inφ have at most three literals, follows easily from the
results in [4] (Lemma 4.7).

The reduction is an extension of the one in the proof of Theorem 3.11 (note the
observations on rational status sets of the programP there, and that a rational status set
always exists).

We use six further 3-ary relationsC1, . . . ,C6 for storing the clauses which are neither
positive nor negative, and add respective rules derivingFβ . More precisely, if we set
C0=NEG andC7= POS, then the relationCi stores the clausesC = L1 ∨L2 ∨L3 such
that the stringp(L1)p(L2)p(L3) of the polarities of the literals yieldsi in binary, where
p(L)= 1 if L is positive, andp(L)= 0, if L is negative; thus, e.g. the clausex1∨x5∨¬x3
is stored as tuple(x1, x5, x3) in the relationC6, sincep(x1)p(x5)p(¬x3)= 110.

Then, the rational status set of the resulting programP ′ on the databaseD for φ
correspond 1–1 to the minimal models ofφ, if φ is satisfiable, and the setS from the
proof of Theorem 3.11 is the unique rational status set ifφ is unsatisfiable. Moreover, from
any rational status set, the corresponding minimal modelM = {xi | Pα(xi) ∈ S} is easily
computed.
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Hence, the computation of a minimal model ofφ reduces to the computation of a rational
status set. This implies FPNP

‖ -hardness, and the theorem is proved.2
An improvement of these bounds, in particular completeness for FNP// log, seems to be

difficult to achieve. In fact, it can be shown that in caseIC = ∅ computing a rational status
set is equivalent to computing a minimal model of a CNF formula under polynomial time
reductions, which is not known to be complete for FNP// log, cf. [4].

Action reasoning becomes harder in the brave variant if we use rational status sets
instead of feasible status sets. The reason is that we have to check groundedness of a status
set, which is a source of complexity and adds another level in the polynomial hierarchy.
However, for the cautious variant, there is no complexity increase.

Theorem 3.14.Let P be a fixed agent program and supposeIC = ∅. Then, given an
agent stateOS and a ground actionα, deciding whetherα ∈ Do(S) holds for (i) every
(respectively,(ii) some) rational status setS ofP onOS is co-NP-complete(respectively,
6P

2 -complete).

Proof. For (i), observe that to disproveα ∈ Do(S) for every rational status setS, we can
guess a feasible status setS such thatα /∈ S and verify the guess in polynomial time by
Proposition 3.7. Hence, the problem is in co-NP. Hardness follows from the reduction
in the proof of Theorem 3.8; there,Do(β) belongs to every rational status set of the
constructed programP , if and only ifP has no feasible status set.

The membership part of (ii) is easy: A guess for a rational status setS such that
α ∈ Do(S) can be verified by Proposition 3.7 and Theorem 3.11 in polynomial time with
the help of an NP oracle.

The hardness part is shown by a reduction from evaluating a quantified Boolean formula
(QBF) of the form∀X∃Y.φ, whereφ is in M3SAT form (see Appendix A). Telling
whether such a formula is false is a well-known5P

2-complete problem [13]. The reduction
combines the reductions in the proofs of Theorems 3.8 and 3.11 in a suitable way.

We extend the databaseD from the proofs of Theorems 3.8 and 3.11, by adding two
further relations XVAR and YVAR for storing the variables ofX and Y , respectively.
Construct a programP , using the actionsα,β , andγ from the proof of Theorem 3.11 as
follows.

Pβ←
Fβ←¬Pγ,¬Pα(X1),¬Pα(X2),¬Pα(X3),POS(X1,X2,X3)

Fβ←¬Pγ,Pα(X1),Pα(X2),Pα(X3),NEG(X1,X2,X3)

Pα(X1)←¬Fα(X1),XVAR(X1)

Pα(Y1)←Pγ,YVAR(Y1)

Doγ ←Pγ

Clearly, every feasible status setS must contain eitherPα(x) or Fα(x) (but not both), for
everyx ∈X. Moreover, ifPγ ∈ S, thenDoγ ∈ S and for ally ∈ Y , we havePα(y) ∈ S.
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Let χ be a choice among the atomsPα(x) andFα(x), for all x ∈X. Then,χ naturally
represents a truth assignment toX in which x is true if Pα(x) ∈ χ and x is false if
Fα(x) ∈ χ . Define

Sχ = χ ∪ {Pβ,Pγ,Doγ } ∪ {Pα(y) | y ∈ Y }.
It is easy to see thatSχ is a feasible status set, for every choiceχ . We claim that every
rational status setS of P must be contained in some of theSχ .

To see this, notice that no atoms with statusW or O can be inS, since there is no
possibility to derive such an atom. For the same reason, no atomsDoα(v), Doβ , Fγ and
Fα(y) can be inS, for everyv ∈ X ∪ Y andy ∈ Y . Hence, by the observation onPα(xi)
andFα(xi) from above,S must be a subset of someSχ .

It holds that thatSχ is not grounded, if and only ifPγ can be removed from it, such that
Sχ \ {Pγ,Doγ } contains a feasible status set. This happens to be the case if the formula
∃Y.φ[X = χ] is true. Thus, it follows that some rational status set ofP containsDoγ , if
and only ifSχ is a rational status set ofP for someχ , if and only if for someχ the formula
φ[X= χ] is unsatisfiable, if and only if∀X∃Y.φ is false. Since the databaseD for ∀X∃Y.φ
is constructible in polynomial time, this proves (ii) and the theorem.2

Of course, for positive agent programs, action reasoning is easier. In fact, in this case
it is polynomial for both (i) and (ii) since a rational status set, if it exists, is unique and
computable in polynomial time.

3.2.3. Reasonable status sets
Our first result on reasonable status sets is positive: the recognition problem, even in the

general setting where we have negation and integrity constraints, is tractable.

Theorem 3.15.Let P be a fixed agent program(whereIC is arbitrary). Then, given an
agent stateOS and a status setS, deciding whetherS is a reasonable status set ofP on
OS is possible in polynomial time.

Proof. Indeed, by our assumptions, the ground instance ofP over the agent state is
constructible in polynomial time, and, moreover, the reductredS(P,OS) is computable
in polynomial time. By Theorem 3.1, the unique rational status setS′ of redS(P,OS) (if
S′ exists) is computable in polynomial time, and it remains by [11, Theorem 5.3] and the
definition of a reasonable status set to check whetherS = S′. Overall, this is a polynomial
time algorithm. 2

Computing a reasonable status set, however, is intractable in the general case, even in
the absence of integrity constraints. The precise complexity of this and the consistency
problem is given in the next result.

Theorem 3.16.Let P be a fixed agent program(whereIC is arbitrary). Then, given an
agent stateOS , deciding whetherP has a reasonable status set onOS is NP-complete,
and computing some reasonable status setS of P onOS is complete forFNP. Hardness
holds even ifIC = ∅.
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Proof. The membership part follows from Theorem 3.15, since a guess forS can be
verified in polynomial time.

The hardness part is shown by a slight modification of the reduction in the proof of
Theorem 3.8. We add the rule

Fα(X1)←¬Pα(X1),VAR(X1)

to the programP there. Then, the reasonable status sets of the resulting programP ′
coincide with the rational status sets ofP . This proves the result. (Observe thatP has either
no reasonable status set, or a unique such status set; note thatFα(xi) is not contained in
any reasonable status set ofP , since there is no possibility for derivingFα(xi) by means
of the head of a program rule or by deontic closure.)2

In the light of this result, it is clear that for nonpositive programs without integrity
constraints, action reasoning on the reasonable status sets is intractable. However,
compared to the rational status sets, the complexity of the brave variant is lower; this is
explained by the fact that an expensive groundedness test is dispensable for reasonable
status sets, which allows for an efficient recognition.

Theorem 3.17.Let P be a fixed agent program(whereIC is arbitrary). Then, given
an agent stateOS and a ground actionα, deciding whetherα ∈ Do(S) holds for (i)
every (respectively,(ii) some) reasonable status setS of P on OS is co-NP-complete
(respectively,NP-complete). Hardness holds even ifIC = ∅.

Proof. We can guess a reasonable status setS of P such thatα in Do(S) (respectively,
α /∈ ¬Do(α)) and verify the guess in polynomial time (Theorem 3.15). This proves the
membership part.

Hardness for (i) and (ii) can be easily shown by modifying the reduction in the proof of
Theorem 3.8. Add the ruleFα(X1)←¬Pα(X1),VAR(X1) (cf. proof of Theorem 3.16)
and query for (i) aboutβ ; for (ii), add a further ruleDo(β)← and query aboutβ . 2
3.2.4. Weak status sets

In Section 3.1.1, we have already considered the computation of weak rational
(respectively, weak reasonable) status sets for positive programs. In the presence of
negation, the concepts of weak rational status sets and weak reasonable status set do no
longer coincide. Also, their complexities are different in general. However, as we shall see,
they are the same if no integrity constraints are present.

Recall that compared to rational (respectively, reasonable) status sets, we have here to
deal with relativized action closureAClA, which results inA-feasibility,A-rationality etc.
The relativization toA does not affect the complexity.

Proposition 3.18. Let P be an agent program(whereIC is arbitrary). Then, given an
agent stateOS , a status setS, and a set of ground actionsA, testingA-feasibility ofS
(respectively,A-rationality,A-reasonability), has the same complexity as testing feasibility
(respectively, rationality, reasonability).
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Algorithm COMPUTE-WEAK-RSS

Input: agent stateOS (agent programP , IC = ∅)
Output: a weak rational status set ofP onOS , if one exists.

Method

(1) Compute the maximum sizes of a setA such thatP has anA-feasible status set
onOS ;

(2) Compute a setA such that|A| = s and someA-feasible status set exists;
(3) Compute the smallest sizes′ of anyA-feasible status setS;
(4) Compute anA-feasible status setS such that|S| = s′, and outputS.

Since under our assumptions, a weak rational (respectively, weak reasonable) status set
exists if and only if anA-rational (respectively,A-reasonable) status set exists for some
A, we easily obtain from Proposition 3.18 and the proofs of Theorems 3.8 and 3.16 the
following result.

Theorem 3.19.Let P be a fixed agent program, and supposeIC = ∅. Then, given an
agent stateOS , deciding whetherP has a weak rational(respectively, reasonable) status
set onOS is NP-complete.

The computation of any weak rational status set can be accomplished using the algorithm
COMPUTE-WEAK-RSS. The steps (1)–(4) can be done in polynomial time with the help of
an NP oracle. Therefore, in the absence of integrity constraints computing a weak rational
status set is in FPNP. Notice that by [11, Proposition 5.10], which tells that anyA-feasible
status set isA(S)-feasible, the steps (1) and (2) can be combined into computing a status
setS which isA(S)-feasible and such that|A(S)| is maximal.

For weak reasonable status sets, we can apply an adapted version of COMPUTE-WEAK-
RSS, in which “A-feasible” is replaced by “A-reasonable”. Notice that the consistency
problems for theA-feasible and theA-reasonable status sets have the same complexities.

Thus, for both kinds of status sets, the computation problem is polynomial if an
NP oracle may be consulted. We can improve on this upper bound and give an exact
characterization of the problem in terms of the complexity class FNP// log, which consists
of computation problems with an associated NP optimization problem (see Section 2.2 and
[4]).

In our case, this NP optimization problem consists of the computation of the numberss

ands′, respectively. It is possible to combine these two steps into a single NP optimization
problem5, such that we can nondeterministically generate, given the optimal value for an
instance, a weak rational (respectively, reasonable) status set in polynomial time.

Theorem 3.20.LetP be a fixed agent program and suppose thatIC = ∅. Then, computing
any weak rational(respectively, weak reasonable) status set ofP on a given agent state
OS is complete forFNP// log.
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Proof. Let GA be the set of all ground actions. Associate with every status setS the tuple
tS = 〈|A(S)|, |GA|− |S|〉, if S isA(S)-feasible, andts = 〈−1,0〉 otherwise, and impose on
the tuplestS the usual lexicographic order. Then, the following holds: IfS is a status set
such thattS is maximal, thenS is a weak rational status set if and only iftS 6= 〈−1,0〉.

Given a maximal tupletS 6= 〈−1,0〉, it is clearly possible to generate a weak rational
status setS nondeterministically in polynomial time. Moreover, the tuplestS can be easily
encoded by polynomial size numbersz(tS), such thatz(tS) > z(tS ′) iff tS > tS ′ ; e.g., define
z(〈i, j〉)= (|GA|+1)i+ j . Computing the maximumz(tS) is an NP optimization problem
with O(log|I |) bits: Indeed, the costz(tS) of a status setS is computable in polynomial
time, and deciding whetheropt(I)=maxS z(ts)> k is in NP. Furthermore, from anyz(tS)
the tupletS is easily computed. Hence, it follows that computing a weak rational status set
is in FNP// log.

It remains to show hardness for this class. For this purpose, we reduce the computation
of aX-maximal model of a SAT instanceφ [3,4] to this problem (see Appendix A).

The reduction is as follows. Without loss of generality, we assume thatφ is an M3SAT
instance. Indeed, we may split larger clauses by introducing new variables, and exchange
positive (respectively, negative) literals in clauses by using for each variablex a new
variablex̂ which is made equivalent to¬x. (All new variables do not belong to the setX.)

The reduction is similar to the one in the proof of Theorem 3.6. We use the action base
and database from there, and introduce a further relation XVAR for storing the variables in
X. Consider the following programP :

O(set 1(X1))←XVAR(X1)

Do(set 0(X1))←¬Do(set 1(X1)),VAR(X1)

Pα←
Fα←Do(set 0(X1)),Do(set 0(X2)),Do(set 0(X3)),

POS(X1,X2,X3)

Fα←Do(set 1(X1)),Do(set 1(X2)),Do(set 1(X3)),

NEG(X1,X2,X3)

and impose on it the action constraintAC:

AC: {set 0(X1),set 1(X1)}←↩ VAR(X1).

The first rule states that every variable inX should be set to true. The second rule together
with the minimality of aA-rational status effects that every variablexi is set either to true
or false, but not both. If the resulting truth assignment to the variables inX satisfiesφ,
then no deontic inconsistency arises from the last three clauses, and we have anA-rational
status set.

It is thus easily seen that the weak rational status setsS of P on the input databaseD for
an M3SAT instanceφ correspond 1–1 to theX-maximal models ofφ. Furthermore, from
every suchS, theX-part of the correspondingX-maximal model is easily obtained. Since
D is efficiently constructed fromφ in polynomial time, it follows that computing a weak
rational status set is hard for FNP// log.
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Algorithm REC-WEAK-RATIONAL

Input: status setS on agent stateOS (agent programP,IC = ∅)
Output: “Yes”, if S is a weak rational status set ofP onOS , “No” otherwise.

Method

(1) Check whetherS isA(S)-feasible;
(2) Check whether there is noA(S)-feasible status setS′ such thatS′ ⊂ S;
(3) Check whether there is noS′ such thatS′ isA(S′)-feasible andA(S)⊂A(S′).

The proof of hardness for computing a weak reasonable status set is similar; we
use an additional clauseDo(set 1(X1))←¬Do(set 0(X1)),VAR(X1). This proves the
result. 2

As in the case of positive programs, recognition of a weak rational status setS is not
harder than computation, even if programs are nonpositive. The recognition problem is
solved by algorithm REC-WEAK-RATIONAL . The correctness of this algorithm follows
from the definition of weak rational status set and [11, Proposition 5.10]. However, it is
not clear how to implement it in polynomial time. The next theorem establishes that such
an implementation is unlikely to exist, nor that any polynomial time algorithm for this
problem is known.

Theorem 3.21.LetP be a fixed agent program and suppose thatIC = ∅. Then, given an
agent stateOS and a status setS, deciding whetherS is a weak rational status set ofP on
OS is co-NP-complete.

Proof. Algorithm REC-WEAK-RATIONAL can be easily rewritten as a nondeterministic
polynomial time algorithm for refuting thatS is a weak rational status set. Hardness is
immediate from the proof of Theorem 3.11.2

A weak reasonable status set can be recognized similar as a weak rational status set.
This is accomplished by algorithm REC-WEAK-REASONABLE, whose correctness follows
from [11, Proposition 5.10] and the fact thatA-reasonable status sets areA-feasible. We
obtain the following result.

Theorem 3.22.Let P be a fixed agent program(whereIC is arbitrary). Then, given an
agent stateOS and a status setS, deciding whetherS is a weak reasonable status set is
co-NP-complete. Hardness holds even ifIC = ∅.

Proof. Clearly, algorithm REC-WEAK-REASONABLE can be turned into a NP-algorithm
for showing thatS is not a weak rational status set. Hence, the problem is in co-NP.
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Algorithm REC-WEAK-REASONABLE

Input: agent stateOS , status setS (agent programP)

Output: “Yes”, if S is a weak reasonable status set ofP , “No” otherwise.

Method

(1) Check whetherS isA(S)-reasonable, and output “No” if not;
(2) Check whether there is noS′ such thatS′ isA(S′)-reasonable andA(S)⊂A(S′).

The hardness part follows by an easy modification to the proof of Theorem 3.8. Add as
in the proof of Theorem 3.16 the rule

Fα(X1)←¬Pα(X1),VAR(X1),

and addOβ←. Furthermore, add the atomDoβ in the bodies of all rules with headFβ .
Assume without loss of generality that the truth assignment toX in which every variable

xi is falsedoes not satisfyφ. Then,S = {F(xi) | xi ∈X} ∪ {Pβ,Oβ} is A(S)-reasonable.
It is easily seen thatS is a weak reasonable status set, if and only ifφ is not satisfied
by any assignment in which some variablexi is true. (If such an assignment exists, then
the obligationOβ , which is violated inS, can be obeyed, and thus a reasonable status set
exists.) 2

As for action reasoning, the complexity of action reasoning is partially affected when
we switch from rational (respectively, reasonable) status sets to weak versions.

The complexity of brave action reasoning for the weak and the ordinary version of
rational status sets is the same if integrity constraints are absent. In both cases, the
straightforward Guess-and-Check algorithm yields the same upper bound (6P

2), and the
hardness result for brave rational action reasoning has been derived without involving
obligations (proof of Theorem 3.14).

For the cautious variant, we find a complexity increase, even if the complexity of
the recognition problem has not changed. The reason is that the beneficial monotonicity
property of finding just some feasible status set not containingDo(α), as a proof that
Do(α) does not occur in all rational status sets, can (in any suitable adaptation) no longer
be exploited.

Theorem 3.23.Let P be a fixed agent program, and supposeIC = ∅. Then, given
an agent stateOS and a ground actionα, deciding whetherα ∈ Do(S) holds for (i)
every (respectively,(ii) some) weak rational status setS of P on OS is 5P

2-complete
(respectively,6P

2 -complete).

Proof. The proof of (ii) is in the discussion above.
For the membership part of (i), observe that a weak rational status setS such that

α /∈Do(S) can be guessed and checked by Theorem 3.22 with an NP oracle in polynomial
time.
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For the hardness part of (i), we adapt the construction in the proof of Theorem 3.20 for
a reduction from QBF formulas∀X∃Y.φ, whereφ is in M3SAT form.

We use the action baseAB from there and extend it with another actionβ of the same
type asα. Moreover, we use the relations POS and NEG for storing the clauses ofφ (cf.
proof of Theorem 3.6), and replace VAR by the relations XVAR and YVAR for storing the
variables inX andY , respectively.

Then, we set up the following program:

O(set 0(X1))←XVAR(X1)

O(set 1(X1))←XVAR(X1)

Do(set 0(Y1))←¬Do(set 1(Y1)),YVAR(Y1)

Fβ←Do(set 0(X1)),Do(set 0(X2)),Do(set 0(X3)),

POS(X1,X2,X3)

Fβ←Do(set 1(X1)),Do(set 1(X2)),Do(set 1(X3)),

NEG(X1,X2,X3)

O(α)←
P(β)←Do(α)

Furthermore, we introduce an action constraint:

AC: {set 0(X1),set 1(X1)}←↩ XVAR(X1).

In the above program, the agent is informally obliged by the first two clauses to set every
variablex ∈ X to both true and false, which is prohibited byAC. By the maximality of
weak rational status set, the agent can safely follow one of the two obligations and assign
each variablexi in X a truth value, which creates an exponential number of possibilities.
The subsequent clause, together with the minimality property of anA-rational set, forces
she to assign each variable inY a truth value. The next two clauses check whether the
formulaφ is violated. If so, thenFβ is derived. In this case, the agent cannot take action
α as obliged from the ruleO(α)←; hence, she must violate this obligation in that case.
Thus, if for a choiceχ fromO(set 0(xi)), O(set 1(xi)) for all xi ∈X (representing a truth
assignment toX), the formulaφ[X= χ] is unsatisfiable (i.e.,∀X∃Y.φ is false), then there
exists a weak rational status setS such thatα /∈Do(S). Conversely, ifα /∈Do(S) for such
a status setS, then a truth assignmentχ toX (given byS) exists such that∀Y.¬φ[X = χ]
is true, i.e.,∀X∃Y.φ is false.

Consequently,α ∈ Do(S) holds for every weak rational status set ofP on the database
D for ∀X∃Y.φ if and only if ∀X∃Y.φ is true. This proves5P

2-hardness of(i) and the
result. 2

For action reasoning with weak reasonable status sets, we obtain similar complexity
results.

Theorem 3.24.Let P be a fixed agent program(whereIC is arbitrary). Then, given
an agent stateOS and a ground actionα, deciding whetherα ∈ Do(S) holds for (i)
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every(respectively,(ii) some) weak reasonable status setS of P onOS is 5P
2-complete

(respectively,6P
2 -complete). Hardness holds even ifIC = ∅.

Proof. A weak reasonable status setS such thatα /∈ Do(S) (respectively,α ∈Do(S)) can
be guessed and checked in polynomial time with an NP oracle by Theorem 3.22. This
proves membership.

Hardness follows for both problems by a slight extension of the construction in the proof
of Theorem 3.23. Add to the programP there the clause

Do(set 1(Y1))←¬Do(set 0(Y1)),YVAR(Y1)

Then, the weak reasonable status sets of the resulting programP ′ coincide with the weak
rational status sets ofP ′, which coincide with the weak rational status sets ofP . This
proves the result for (i). For (ii), add the ruleDoγ ←¬Doα and query aboutγ . 2

4. Complexity results for the case with integrity constraints

So far, we have focused in our complexity analysis mainly on agent programs where
no integrity constraints on the agent state were present in the background. We say mainly,
since for positive programs and reasonable status sets, most results that have been derived
in Section 3 do allow for integrity constraints, and fortunately establish tractability for a
number of important computation problems.

However, in the presence of negation, we have mostly excluded integrity constraints.
The reason is that in some cases, the presence or absence of integrity constraints makes
a difference to the intrinsic complexity of a problem, while in other cases, there is no
difference. A systematic treatment of this issue is suggestive; therefore, we analyze in
this section the effects of integrity constraints on the complexity of agent programs. An
overview of the effects and a discussion is given in Section 2.3.

It appears that all problems whose complexities increase in the presence of integrity
constraints do so in a very plain setting. Already for a software packageS = (TS ,FS)
which is a simple relational databaseD in which tuples may be inserted or deleted from
tables, we face these complexity increases if the integrity constraints includefunctional
dependencies(FDs for short) on the tables. Notice that FDs are one of the most basic and
important type of dependencies in databases [26].3 All hardness results involving integrity
constraints that we derive in this section hold in this setting.

Throughout this section, we adopt in the proofs of hardness resultsweakly-concurrent
executionfrom Part I of this series of papers as the polynomial concurrent execution policy.
That is, first all objects which have to be deleted according to the delete setsDel(α) of the
taken actionsα are removed from the current state, and then the objects which have to be
added according to the add setsAdd(α) are included in the state.

3 A functional dependency is a constraintC :X → A on a relationr , whereA is a column of r and
X = {X1, . . . ,Xn} is a subset of columns ofr ; it holds, if any two tuples inr which agree on the columns
in X agree also onA. In our framework,C can be expressed as an integrity constraint, e.g., as follows:
in (T1,db : select (r )&in (T2,db : select (r ))&(T1 .X1 = T2 .X1)&· · ·&(T1 .Xn = T2 .Xn)⇒ T1.A=
T2.A.
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4.1. Feasible status sets

As shown in the previous section, finding a rational or feasible status set of a positive
agent program is polynomial, if no integrity constraints are present. While adding integrity
constraints preserves polynomial time computability of rational status sets, it leads to
intractability for feasible status sets.

Theorem 4.1. Let P be a fixed agent program(whereIC is arbitrary). Then, deciding
whetherP has a feasible status set on a given agent stateOS is NP-complete, and
computing an arbitrary feasible status set isFNP-complete. Hardness holds even ifP
is positive.

Proof. The problem is in NP, since a feasible status setS can be guessed and checked in
polynomial time, according to our assumptions (cf. Proposition 3.7).

We show the hardness part for the particular restriction by a reduction from the set
splitting problem [13]. Given a collectionS = {S1, . . . , Sm} of nonempty subsetsSi of a
finite setU , decide whether there exists a partitioning (orcoloring) (C1,C2) of U such that
everySi ∈ S, i = 1, . . . ,m, meets each ofC1 andC2 in at least one element, i.e.,|Si ∩C1|,
|Si ∩C2|> 1 holds.

We construct fromS an instance of the feasible status set test as follows. The
databaseD has four relations: COLL(Set,El), SPLIT(El,Color), A1(Set,El,Tag) and
A2(Set,El,Tag). Intuitively, the collectionS is stored in COLL by tuples(i, e) for every
e ∈ Si andSi ∈ S; the table SPLIT is used for placing each elemente ∈U in C1 orC2 (i.e.,
coloring it), which is indicated by tuples(e,1) and(e2,2); the tables A1 and A2 hold the
occurrences of elements in sets, where each set has some tag.

The action baseAB contains actionsassign (S,X,Y ) and trigger (X,Y ) as
follows:

assign : Pre(assign (S,X,Y ))=COLL(S,X),

Add(assign (S,X,Y ))= {SPLIT(X,Y )},
Del(assign (S,X,Y ))= {A1(S,Z,Y ), A2(S,Z,Y )};

trigger : Pre(trigger (X,Y ))= true,

Add(trigger (X,Y ))= {A1(X,Y,0), A2(X,Y,0)},
Del(trigger (X,Y ))= ∅.

The programP has the single rule

Do(trigger (X,Y ))←COLL(X,Y )

LetD be the database instance such that COLL contains the collectionS, SPLIT is empty,
and A1 (respectively, A2) holds for each tuple(s, e) in COLL a tuple(s, e,1) (respectively,
(s, e,2)). Moreover, suppose that the integrity constraintsIC onD consist of the following
FDs: the FDEl→Color on SPLIT, and the FDSet→ Tagon A1 and A2.
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Intuitively, the program forces the agent to add for every occurrence of an element in a
setSi ∈ S, represented by a tuple(i, e) in COLL, a tuple(i, e,0) to both A1 and A2. This
triggers a violation of the FDSet→ Tagon A1 and A2. This violation must be cured by
executingassign (i, e1,1) andassign (i, e2,2) actions for somee1, e2 which occur in
the setSi ; by the FDEl→ Color on SPLIT,e1 must be different frome2. (Notice that,
under weakly-current execution, actionsassign (i, e,0) are useless, since deletions are
performed before additions, and this would not cure any violation.)

Hence, it is easy to see thatP has a feasible status set onD, if and only if S is
colorable by some coloring(C1,C2). Since a coloring(C1,C2) is easily constructed from
any feasible status setS, the result follows. 2

This result is quite negative, since it tells that already for very simple programs and
elementary integrity constraints, computing a feasible set is a hard problem. The reason is
that the agent programP we have constructed in the reduction does not say anything about
how and when to use theassign action, which does not show up in the program. If we
had rules which tell the agent under which conditions a particularassign action should
be taken or must not be taken, such a situation would not arise. However, since the program
is under-constrained in that respect, an exponentiality of possibilities exists which must be
explored by the agent.

The previous theorem shows that we benefit from using rational status sets instead of
feasible status sets on positive programs in different respects. First, on the semantical side,
we have a unique rational status set (if one exists) compared to a possible exponential
number of feasible status sets, and second, on the computational side, we can compute
the unique rational status set on an agent state in polynomial time, compared to the
intractability of computing any feasible status set. Unfortunately, in the presence of
negation, like on the semantical side, also on the computational side the appealing
properties of rational status sets vanish.

4.2. Rational status sets

The complexity of recognizing a rational status set is not affected by the presence
of integrity constraints, since they can be evaluated in polynomial time. The result of
Corollary 3.12 thus easily generalizes to this case.

Theorem 4.2. Let P be a fixed agent program(whereIC is arbitrary). Then, given an
agent stateOS and a status setS, deciding whetherS is a rational status set ofP onOS ,
is co-NP-complete. Hardness holds even ifIC = ∅.

On the other hand, computing a rational status set becomes harder if integrity constraints
are present, and resides at the second level of the polynomial hierarchy. The reason is that
due to the integrity constraintsIC, an arbitrary feasible setS mayno longer necessarily
containa rational status set, and thus picking a feasible status set having smallest size does
not necessarily give us a rational status set. In fact, our next result shows that deciding
containment of a rational status set is intractable.
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Theorem 4.3. Let P be a fixed agent program(whereIC is arbitrary). Then, given an
agent stateOS and a feasible status setS for P onOS , deciding whetherS contains some
rational status set(respectively,S is grounded and thus rational) is co-NP-hard, even if
IC contains a single FD.

Proof. We prove this by a reduction from the M3DNF problem (see Appendix B).
The databaseD contains three relations: POS(V1,V2,V3) and NEG(V1,V2,V3) for

storing the positive and the negative disjunctsDi of an M3DNF instanceφ = ∨i Di ,
respectively, and a relation VAR(Var,Value,Tag), which contains for each pair of a
variablex ∈X and a valuev ∈ {0,1} precisely one tuple. That is, the FDVar,Value→ Tag
is a constraint on VAR.

The initial databaseD contains the following tuples. For each positive disjunctDi =
xi1∧xi2∧xi3 fromφ, the tuple(xi1, xi2, xi3) is in POS, and for each negative disjunctDi =
¬xi1 ∧ ¬xi2 ∧ ¬xi3 the tuple(xi1, xi2, xi3) is in NEG. Moreover, for each propositional
variablesxi ∈X, the tuples(xi,0,0) and(xi,1,0) are in VAR.

The action base contains the three actionsall , set (X,Y ) andaddto _var (X,Y,Z),
which have empty preconditions and the following Add- and Del-sets:

all : Add(all )=Del(all )= ∅;
set (X,Y ): Add(set (X,Y ))= ∅,

Del(set (X,Y ))= {VAR(X,Y,0)};
addto _var (X,Y,Z): Add(addto _var (X,Y,Z))= {VAR(X,Y,Z)},

Del(X,Y,Z)= ∅.
The programP is as follows:

Do(set (X1, Y1))←Do(all ),VAR(X1, Y1,Z1)

Do(all )←Do(set (X1,0)),Do(set (X1,1)),VAR(X1, Y1,Z1)

Do(all )←¬Do(set (X1,0)),¬Do(set (X1,1)),VAR(X1, Y1,Z1)

Do(all )←Do(set (X,0)),Do(set (Y,0)),Do(set (Z,0)),POS(X,Y,Z)

Do(all )←Do(set (X,1)),Do(set (Y,1)),Do(set (Z,1)),NEG(X,Y,Z)

Do(addto _var (X1, Y1,1))←VAR(X1, Y1,Z1)

Let S be the smallest status setS which is deontically and action closed such that

Do(S)= {all } ∪ {set (xi, v),addto _var (xi, v,1) | xi ∈X,v ∈ {0,1}}
As can be easily checked,S is a feasible status set ofP on the initial databaseD.

We note that any status setS′ such thatS′ ⊂ S and the conditions(S1)–(S3) of a feasible
status set hold must not containDo(all ), while it must contain exactly one of the atoms
Do(set (xi,0)), Do(set (xi,1)), for everyxi ∈ X. However, any suchS′ cannot satisfy
the FDVar,Value→ Tagon VAR, since either the tuples(xi,1,0), (xi,1,1) are in VAR,
or the tuples(xi,0,0), (xi,0,1) are in VAR, which means that the FDVar,Value→ Tag is
violated on VAR.
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It holds thatS contains some rational status set (respectively, thatS is grounded), if and
only if formulaφ is a tautology. The result follows.2

A straightforward algorithm for computing a rational status set is constructing a feasible
status set and checking whether it is grounded. In the light of the previous result, it
is unclear how this is possible in polynomial time even if we have an NP oracle. The
complexity of computing a rational status set, stated in the next result, is at the second
level of the polynomial hierarchy.

Theorem 4.4. Let P be a fixed agent program(whereIC is arbitrary). Then, given an
agent stateOS , deciding whetherP has a rational status set onOS is6P

2 -complete, and
computing any rational status set isF6P

2 -complete.

Proof. The problems are in6P
2 and F6P

2, respectively, since a rational status setS can be
guessed and verified in polynomial time with a call to a NP oracle (cf. Theorem 4.2).

To show that the problems are hard for6P
2 and F6P

2, respectively, we extend the
construction in the proof of Theorem 4.3, such that we encode the problem of computing,
given a QBF∃Y∀X.φ whereφ is in M3DNF (see Appendix A), an assignmentχ to the
Y -variables such that∀X.φ[Y = χ] is true. This problem is F6P

2-complete.
We use an additional relation YVAR for storing theY -variables, and add the rule

Do(set (Y1,1))←¬Do(set (Y1,0)),YVAR(Y1)

This rule enforces a choice fromDo(set (yj ,0)) andDo(set (yj ,1)), for all yj ∈ Y ; each
such choiceχ (representing a truth assignment toY ), extended by the setS from the proof
of Theorem 4.3, generates a candidateSχ for a rational status set.

It holds that every rational status set ofP onD must be of the formSχ , for some choice
χ ; moreover, the rational status sets ofP onD correspond to the setsSχ such that the
formula∀X.φ[Y = χ] is true. Therefore, deciding whetherP has some rational status set
onD is 6P

2-hard, and computing any rational status set is hard for F6P
2 . This proves the

result. 2
For action reasoning, we obtain from the preceding theorem easily the following result.

Theorem 4.5. Let P be a fixed agent program(whereIC is arbitrary). Then, given an
agent stateOS and a ground actionα, deciding whetherα ∈ Do(S) holds for (i) every
(respectively,(ii) some) rational status setS ofP onOS is (i) 5P

2-complete(respectively,
(ii) 6P

2 -complete).

Proof. Membership is immediate from Theorem 4.2: A guess for a rational status set
S such thatα /∈ Do(S) (respectively,α ∈ Do(S)) can be verified with a NP oracle in
polynomial time.

For the hardness parts, observe thatall ∈ Do(S) holds for every rational status set of
the programP in the proof of Theorem 4.4; thus, by querying aboutall , hardness for (i)
holds. The hardness part of (ii) follows from Theorem 3.14.2
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4.3. Reasonable status sets

For reasonable status sets, we find in all cases better computational properties than for
rational status sets. This is explained by the fact that the criterion for a reasonable status
set is much stronger than the one for a rational status set. Indeed, this criterion is so strong,
such that the presence of integrity constraints has no effect on tractability vs intractability
issue of recognizing a reasonable status set. In both cases, a reasonable status set can be
recognized in polynomial time (Theorem 3.15). Therefore, the same complexity results
hold for programs with and without integrity constraints (see Section 3.2.3).

4.4. Weak status sets

The presence of integrity constraints has major effects on the complexity of weak
status sets for both positive and arbitrary programs. We thus analyze these two classes
of programs in separate sections.

4.4.1. Positive programs
If we impose integrity constraints on the agent state, then recognizing a weak rational

status set is no longer polynomial (unless P=NP). The intuitive reason is that due to the
integrity constraints, the maximality of anA-rational status set (and thus weak rationality)
is not guaranteed if no further single obligation can be obeyed. IfIC 6= ∅, then all sets of
obligations which have not been respected are relevant, and we end up with an exponential
search space in general.

Theorem 4.6. Let P be a fixed positive agent program(whereIC is arbitrary). Then,
given an agent stateOS and a status setS, deciding whetherS is a weak rational status
set ofP onOS is co-NP-complete.

Proof. To show thatS is not a weak rational status set, we can proceed by [11,
Theorem 5.9, Proposition 5.10] as follows. First check whetherS is notA(S)-rational;
if false, i.e.,S is A(S)-rational, then guess some status setS′ such thatS′ is A(S′)-
rational andA(S′) ⊃ A(S). Since checkingA-rationality is polynomial ifP is positive
(we need to check whetherS = lfp(TP,OS ,A) andS isA-feasible, which is polynomial by
Propositions 3.18 and 3.7), membership in co-NP follows.

The hardness part is shown by a reduction from problem M3SAT, for which we adapt
the one in the proof of Theorem 3.6. As there, the database has relations POS (positive
clauses), NEG (negative clauses), and VAR (variables) for storing an M3SAT instanceφ

on variablesX. We introduce a further relation AUX(Var,Val), on which we impose the
FD Var→Val.

The initial databaseD storesφ in POS, NEG, and VAR as usual, and AUX contains all
tuples(xi,0) for xi ∈X. Clearly,D satisfies the FDVar→ Val on AUX.

The action baseAB is modified by setting

Add(set v(X))= {AUX(Y,1)} andDel(set v(X))= {AUX(X,0)}, v ∈ {0,1}.
The modified programP is as follows.
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O(set 0(X1))←VAR(X1)

O(set 1(X1))←VAR(X1)

Fα←Do(set 0(X1)),Do(set 0(X2)),Do(set 0(X3)),

POS(X1,X2,X3)

Fα←Do(set 1(X1)),Do(set 1(X2)),Do(set 1(X3)),

NEG(X1,X2,X3)

Pα←
The action constraintsAC contain again the following constraint:

AC: {set 0(X1),set 1(X1)}←↩ VAR(X1)

It is not hard to see that

S = {O(set 0(xi)), O(set 1(xi)), P(set 0(xi)), P(set 1(xi)) | xi ∈X} ∪ {Pα}
is an{α}-rational status set ofP onD, and hence by [11, Proposition 5.10]A(S)-rational.
Moreover, it holds thatS is a weak rational status set, if and only if there exists no status
setS′ such thatS′ is A(S′)-rational andA(S′) ⊃ A(S). Observe that any suchS′ must
contain eitherDo(set 0(xi)) or Do(set 1(xi)), for everyxi ∈ X, and thus represents a
truth assignment toX. Indeed, takingset 0(xi) or set 1(xi) for any xi adds the tuples
(xj ,1) to AUX, for all variablesxj ∈ X; for preservation of the FDVar→ Val on AUX,
the tuple(xj ,0) must then be removed from AUX, which requests taking eitherset 0(xj )

or set 1(xj ). On the other hand, for any truth assignmentχ toX which satisfiesφ, a status
S′ can be obtained such thatS′ isA(S′)-rational andA(S′)⊃A(S).

Thus, it holds thatS is a weak rational status set if and only ifφ is satisfiable, i.e., a No-
instance. Since the databaseD is easily constructed fromφ, this proves co-NP-hardness
and the result. 2

As we have seen in Section 3.1.1, a weak rational (respectively, reasonable) status set
of a fixed positive agent program can be computed in polynomial time using the algorithm
COMPUTE-WEAK-RSS. Unfortunately, in the presence of integrity constraints a similar
polynomial algorithm is unlikely to exist. This is a consequence of the next result.

Theorem 4.7. LetP be a fixed positive agent program(whereIC is arbitrary). Given an
agent stateOS , deciding whetherP has a weak rational status set onOS is NP-complete.

Proof. Under our assumptions, a weak rational status set exists if and only if someA-
rational status set exists. By [11, Theorem 5.8], for deciding existence of anA-rational
status set we can guess a setA of ground actions, computeS = lfp(TP,OS ,A) and check
whetherS is A-feasible in polynomial time. Consequently, by Propositions 3.18 and 3.7
the problem is in NP.

NP-hardness is shown by a slight extension to the reduction in the proof of Theorem 4.6.
Without loss of generality, the M3SAT formulaφ there is only satisfiable if a designated
variablex1 is set to true. Thus, if we add the ruleDo(set 1(x1))← to the programP ,
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Algorithm COMPUTE-PIC-WEAK-RSS

Input: agent stateOS (fixed positive agent programP ; IC is arbitrary)

Output: a weak rational status set ofP onOS , if one exists; “No”, otherwise.

Method

(1) SetAnew:= ∅, GA := set of all ground actions.
(2) Query the oracle whether someA ⊇ Anew exists such thatS′ = lfp(TP,OS ,A) is

A(S′)-feasible.
(3) If the answer is “yes”, then letS := lfp(TP,OS ,Anew) and setAold := A(S),

GA :=GA\Aold; otherwise, ifAnew= ∅, then output “No” and halt.
(4) If GA= ∅, then outputS and halt.
(5) Choose someα ∈ GA, and setAnew := Aold ∪ {α}, GA :=GA\ {α}; continue at

step (2).

then the resulting program has some weak rational status set if and only ifS is not weak
rational, if and only ifφ is satisfiable. 2

Computing a weak rational status is possible using the algorithm COMPUTE-PIC-
WEAK-RSS, which makes use of an oracle. This algorithm computes the last element
Ak in a maximal chainA0 = ∅ ⊂ A1 ⊂ · · · ⊂ Ak of Ai-rational status set, which is a
weak rational status set. Its correctness follows from the characterization of weak rational
status sets from Part I of this series of papers [11, Section 5.4.1]. The algorithm runs
in polynomial time modulo calls to the oracle. The oracle queries are solvable in NP;
therefore, computing a weak rational status set is in FPNP. Observe that in caseIC = ∅,
the NP-oracle can be replaced by a polynomial time algorithm, such that we obtain an
overall polynomial algorithm similar to COMPUTE-WEAK-RSS.

Like in other cases, the FPNP upper bound for the computation problem can be lowered
to FNP// log by exploiting nondeterminism.

Theorem 4.8. Let P be a fixed positive agent program(whereIC is arbitrary). Then,
given an agent stateOS , computing a weak rational status set ofP onOS is in FNP// log
and hard for bothFNPandFPNP

‖ .

Proof. A weak rational status set can be computed as follows. First, compute the maximum
size s = |A(S)| over all status setsS such thatS is A(S)-rational; then, generate
nondeterministically a status setS which isA(S)-rational and such that|A(S)| = s, and
output this set (so one exists).

The correctness of this algorithm follows from [11, Proposition 5.10]. Since checking
whether S is A(S)-rational is polynomial if P is positive (Proposition 3.18 and
Corollary 3.2), step 1 of the algorithm amounts to an NP-optimization problem whose
output has O(log|I |) bits. As a consequence, for positiveP computing a weak rational
status set is in FNP// log.
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Hardness for FNP follows from the proof of Theorem 4.7: The weak rational status sets
of the program from the proof of this theorem correspond to the satisfying assignments of
an M3SAT instance, whose computation is easily seen to be FNP-complete.

For the proof of FPNP‖ -hardness, we use the fact that given instancesI1, . . . , In of any
arbitrary fixed co-NP-complete problem5, computing the binary stringB = b1 · · ·bn
wherebi = 1 if Ii is a Yes-instance of5 andbi = 0 otherwise, is FPNP‖ -hard (this is easily
seen; cf. also [4, Lemma 4.7]).

We choose for this problem5 the recognition of a weak rational status setS of a fixed
positive agent programP , which is co-NP-complete by Theorem 4.6. We assume thatP is
the program from the proof of this result, and thatS is the status set constructed over the
databaseD constructed for a formulaφ. We observe thatP has weak rational status set
onP , and thatS is the unique weak rational status set, iff the formulaφ is unsatisfiable.
Thus, from any arbitrary weak rational status setS′ of P overD, it is immediate whether
S is weak rational or not. Consequently, computing weak rational status setsS1, . . . , Sn of
P over given databasesD1, . . . , Dn is FPNP‖ -hard.

It remains to show that the computation ofS1, . . . , Sn can be reduced to the computation
of a single weak rational status setS of a fixed programP ′ over a databaseD′. For thus
purpose, we merge the databasesDi into a single database. This is accomplished by tagging
each tuple inDi with i, i.e., we add a new attributeA in each relation, and each tuple
fromDi is assigned valuei onA. Furthermore,A is added on the left hand side of each
functional dependency, an additional argumentT for the tag is introduced in each action,
and all literals in a rule have the same fresh variableT in the tag position.

The resulting programP ′ has some weak rational status setS on the unionD′ of
the taggedDi ’s. Moreover, from any suchS we can easily extract weak rational status
setsS1, . . . , Sn of P on D1, . . . ,Dn in polynomial time. SinceD′ is polynomial time
constructible fromD1, . . . ,Dn, this proves FPNP‖ -hardness. 2

For action reasoning, we obtain that integrity constraints cause a complexity increase for
the cautious variant. The reason is that, as opposed to the case whereIC = ∅, it is no longer
possible to generate each weak rational status set in nondeterministic polynomial time. For
the brave variant, due to monotonicity of positive programs we actually need to consider
only A-rational status set for answering the question, which means that maximality of a
weak rational status set does not play a role.

Theorem 4.9. Let P be a fixed positive agent program(whereIC is arbitrary). Then,
given an agent stateOS and a ground actionα, deciding whetherα ∈ Do(S) holds for
(i) every(respectively,(ii) some) weak rational status setS of P onOS is 5P

2-complete
(respectively,NP-complete).

Proof. For the membership part of (i), observe that sinceP is positive, ifS is anA-rational
status set, then anyA′-rational status setS′ such thatA′ ⊇ A satisfiesS′ ⊇ S. Therefore,
for answering the query it suffices to guess a status setS such thatS is A(S)-rational
andA ∈ Do(S). By Proposition 3.18 and Corollary 3.2, the guess forS can be verified in
polynomial time.
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The membership part of (ii) is immediate from Theorem 4.6: A guess for a weak rational
status setS such thatA /∈Do(S) can be verified with an NP oracle in polynomial time.

Hardness for (i) follows from Theorem 3.6. The hardness part for (ii) can be shown by
a suitable extension of the construction in the proof of Theorem 4.6, such that validity of a
QBF∀Y∃X.φ is decided, whereφ is in M3SAT form.

We may assume that no clause ofφ has all its variables fromY (otherwise,∀Y∃X.φ
is trivially false), and thatφ can only be satisfied if a particular variablex1 ∈ X is set to
true. We introduce besides POS, NEG, VAR (which storesX∪Y ), and AUX (which must
satisfy the FDVar→ Val) new relations XVAR and YVAR for storing the variables inX
andY , respectively.

The actionsset 0(X), set 1(X), and α are modified such that they have empty
preconditions and empty Add- and Del-sets. Furthermore, we introduce two new actions
upd (X,X′) andadd (Y ) as follows:

upd : Pre(upd (X,X′))= true,

Add(upd (X,X′))= {AUX(X′,1)},
Del(upd (X,X′))= {AUX(X,0)};

add : Pre(add (Y ))= true,

Add(add (Y ))= {AUX(Y,1)},
Del(add (Y ))= ∅.

Finally, we add to the programP in the proof of Theorem 4.6 the following rules (let
v ∈ {0,1}):

Do(add (Y1))←YVAR(Y1)

Do(upd (Y1, Y1))←Do(set v(Y1)),YVAR(Y1)

Do(upd (X1,X2))←Do(set v(X1)),XVAR(X1),XVAR(X2)

These modifications have the following effect. The first rule adds for eachyi ∈ Y the tuple
(yi,1) to AUX and thus causes a violation of the FDVar→ Val. This must be cured by
executingupd (yi, yi), which requests thatyi is assigned a value (i.e., eitherset 0(yi)

or set 1(yi) is taken). Assigning a truth value to some variablexi ∈ X (i.e., executing
set 0(xi) or set 1(xi)) adds a tuple(xj ,1) to AUX for eachxj ∈ X, which causes a
violation of the FDVar→ Tag for xj 6= xi (observe that(xi,0) is removed). Each such
violation must be cured by assigningxj a truth value.

Thus, every weak rational status set of the constructed program onD contains either
Do(set 0(yi)) or Do(set 1(yi)), for eachyi ∈ Y (but not both), i.e., embodies a choiceχ .

On the other hand, for each such choiceχ (representing a truth assignment toY ) a weak
rational status set exists: If all obligationsO(set 0(xi)), O(set 1(xi)) wherexi ∈ X are
violated, then by the assumption that no clause inφ has all its variables fromY , no clause
with Fγ in the head fires. Hence, we obtain a respectiveA-rational status setSχ onD.
Since the program is positive, it follows that a weak rational status setS′ ⊇ Sχ exists. It
holds thatSχ is weak rational if and only ifφ[Y = χ] is unsatisfiable. Observe that, by our
assumption onx1, every weak rationalS′ such thatS′ ⊃ Sχ containsDo(set 1(x1)).
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It follows that set 1(x1) ∈ Do(S) holds for every weak rational status setS of the
program onD, if and only if the formula∀Y∃X.φ is true. This proves the hardness part for
(ii). 2
4.4.2. Programs with negation

Let us now consider programs with negation. In this case, weak rational and weak
reasonable status sets are no longer identical in all cases.

As for weak reasonable status sets, we find that integrity constraints do not add on
the complexity. This has already been established for the recognition problem and action
reasoning in Theorems 3.22 and 3.24, respectively. It remains to consider the problems of
consistency and computation.

Theorem 4.10.LetP be a fixed agent program(whereIC is arbitrary). Then, given agent
stateOS , deciding whetherP has a weak reasonable status set onOS is NP-complete, and
computing any weak reasonable status set ofP onOS is complete forFNP// log.

Proof. By Theorems 3.19 and 3.20, it remains to prove the membership part. Under the
assumptions, a weak reasonable status exists if and only if someA-reasonable status
set S exists. Propositions 3.18 and 3.7 imply that decidingA(S)-reasonability ofS is
polynomial. Therefore, a guess forS can be verified in polynomial time. Hence, the
consistency problem is in NP.

We can obtain a weak reasonable status set by first computing the maximums over all
|A(S)| such thatS isA(S)-reasonable, and then generating nondeterministically anA(S)-
reasonable status setS such that|A(S)| = s. Computings amounts to an NP optimization
problem with O(log|I |) bits; hence, the problem is in FNP// log. 2

The existence problem of anA-rational status set has the same complexity as the
existence problem of a rational status set (Proposition 3.18). Since a weak rational status
set exists if and only if anA-rational status set exists for someA, we obtain from the proof
of Theorem 4.4 (which does not involve obligations) the following result.

Theorem 4.11.Let P be a fixed agent program(whereIC is arbitrary). Then, given an
agent stateOS , deciding whetherP has a weak rational status set onOS is6P

2 -complete.

For the computation of a weak rational status set, we can use a modified version of the
algorithm COMPUTE-WEAK-RSS in Section 3.2.4: Replace in it “A-feasible” globally
through “A-rational”. This increases the complexity, as we have to replace the NP oracle by
a6P

2 oracle. Overall, we now have a polynomial time computation which uses a6P
2 oracle;

consequently, the problem belongs to FP6P
2 . This can be complemented by a probabilistic

upper bound.

Theorem 4.12.LetP be a fixed agent program(whereIC is arbitrary). Then, computing

any weak rational status set ofP on a given agent stateOS is in FP6
P
2 ∩ RP· FP

6P
2‖ and

hard for bothF6P
2 andFP

6P
2‖ .
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Proof. Membership in FP6
P
2 was discussed above. Membership in RP· FP

6P
2‖ can be

established using results from [4]. In fact, the computation of a weak rational status set
in the general case can be easily expressed as a maximization problem (MAXP) as defined
in [4], such that the instance-solution relation is co-NP-decidable; for such problems,

RP· FP
6P

2‖ is an upper bound [4].

Hardness for F6P
2 is immediate from the proof of Theorem 4.4, since the operator

O does not occur in the program constructed. Hardness for FP
6P

2‖ can be established

as follows. Let5 be any6P
2-complete problem. Then, given instancesI1, . . . , In of 5,

computing the binary stringB = b1 · · ·bn wherebi = 1 if Ii is a Yest-instance andbi = 0

otherwise, is easily seen to be hard for FP
6P

2‖ .
From the proof of Theorem 4.4, we know that deciding whether a fixed agent program
P in which the operatorO does not occur, has a rational status set on a given databaseD is

6P
2 complete. Thus, for given databasesD1, . . . ,Dn, computing the stringB is FP

6P
2‖ -hard.

The different instances can be combined into a single instance of a new fixed program
as follows. Take a fresh actionα, which does not occur inP and has empty precondition
and Add- and Del-sets. Add the atomDoα in the body of each rule inP , and add the rule
Oα←. Then the resulting programP0 has some weak rational status setS on eachDi ,
and for any suchS it holds thatα ∈Do(S) iff P0 has a rational status set onDi .

The databasesDi can be merged into a single databaseD′ for a new fixed programP ′,
in the same way as described in the proof of Theorem 4.8, by tagging the databasesDi
with i and taking their union. This programP ′ has some weak rational status setS onD′;
moreover, for every suchS, it holds thatα(i) ∈Do(S) iff P has a rational status set onDi ;
thus, from any weak rational status setS the binary stringB is easily computed.

Since the databaseD′ is polynomial time constructible fromD1, . . . ,Dn, it follows that

computing a weak rational status set is hard for FP
6P

2‖ . 2
We next consider the recognition problem. Here, the complexity increases if integrity

constraints are allowed; the benign property that anA-feasible status set isA-rational, if
no smallerA-feasible status set exists is no longer valid.

Theorem 4.13.Let P be a fixed agent program(whereIC is arbitrary). Then, given an
agent stateOS and a status setS, deciding whetherS is a weak rational status set ofP on
OS is5P

2-complete.

Proof. For the membership part, consider the following algorithm for disproving thatS is
a weak rational status set. First, check whetherS is not anA(S)-rational status set. IfS
is foundA(S)-rational, then guessA′ ⊃A(S) andS′ and check whetherS′ is A′-rational.
Since checkingA-rationality ofS is by Proposition 3.18 and Theorem 4.2 in co-NP, this is
a nondeterministic polynomial algorithm using an NP-oracle. Hence, the problem is in5P

2.
For the hardness part, we adapt the construction in the proof of Theorem 4.3 for QBF

formulas∃Y∀X.φ, by adding the∃Y quantifier block.
We use the databaseD, the actions baseAB, and the integrity constraints as there, but

add toD another relation YVAR for storing theY -variables (theX-variables are in VAR)
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and introduce another actionα, which has empty precondition and empty Add- and Del-
sets.

We add the following clauses in the program:

O(α)←
O(set (Y1,0))←YVAR(Y1)

O(set (Y1,1))←YVAR(Y1)

Do(set (Y1,0))←Do(α),¬Do(set (Y1,1)),YVAR(Y1)

Do(α)←Do(set (Y1,0)),YVAR(Y1)

Do(α)←Do(set (Y1,1)),YVAR(Y1)

Let the resulting program beP ′, and set up the action constraint:

AC: {set (Y1,0),set (Y1,1)}←↩ YVAR(Y1).

The additional rules state that the agent is obliged to executeα and to set every variable
yi ∈ Y to false (0) and true (1), which is, however, prohibited byAC. Moreover, eachyi
must have assigned a value ifα is executed, and if some variable receives a value, thenα

is executed. Consequently, ifα is executed, then everyyi gets precisely one value, and if
α is not executed, then noyi gets a value.

Let S0 be the status sets defined by

S0= S ∪ {Oα,Pα} ∪ {O(set (yi, v)),P(set (yi, v)) | yi ∈ Y,v ∈ {0,1}},
whereS is the status set from the proof of Theorem 4.3. Then,S0 is anA(S0)-rational
status set, in which all the obligations from the newly added rules are violated.

It holds thatS0 is the (unique) weak rational status set ofP ′ iff ∀Y∃X.¬φ is true.
(⇒) SupposeS0 is weak rational. Then, for any choiceχ from Do(set (yi,0)),

Do(set (yi,1)), for all yi ∈ Y (representing a truth assignment toY ), it is impossible to
find anA-rational status set such that the obligations followed inA includeχ . In particular,
the status set

Sχ = S0 ∪ χ ∪ {Doα}
is not weak rational. As easily checked,Sχ is A(Sχ)-feasible; hence, someS′ ⊂ S

must exist which satisfies the conditions(S1)–(S3) of A(Sχ)-feasibility. Consequently,
∀X.φ[Y = χ] is false. It follows that∀Y∃X.¬φ is true.
(⇐) Suppose∀Y∃X.¬φ is true. Consider any weak rational status setS of P ′. Then,

either (i)A(S) defines a choiceχ from Do(set (yi,0)), Do(set (yi,1)), for all yi ∈ Y ,
andα ∈Do(S), or (ii) A(S)=A(S0).

Assume that (i) is true and consider the following two cases:
(1) Do(all ) /∈ S. Then, exactly one of the actionsset (xi,0), set (xi,1) must be in

Do(S), for everyxi ∈X. But then, executingDo(S) violates the integrity constraint
Var,Value→ Tagon VAR. This means thatS is not aA(S)-rational status set, which
contradicts thatS is weak rational.

(2) Do(all ) ∈ S. Since by assumption∀X.φ[Y = χ] is false, there exists someS′ ⊂ S
which satisfies the conditions(S1)–(S3) of A(S)-feasibility. Again, this means that
S is notA(S)-rational and thus contradicts weak rationality ofS.



T. Eiter, V.S. Subrahmanian / Artificial Intelligence 108 (1999) 257–307 301

Hence, case (i) is impossible, and thus case (ii) must apply toS. Consequently,S0 is
a weak rational status set. It can be easily seen thatS = S0 must hold. This proves the
result. 2

The last result that we turn to in this subsection is action reasoning under weak rational
status sets. Here we face the full complexity of all conditions that we have imposed on
acceptable status sets.

Theorem 4.14.LetP be a fixed agent program(whereIC is arbitrary). LetOS be a given
agent state and letα be a given ground action. Then, deciding whetherα ∈ Do(S) holds
for (i) every(respectively,(ii) some) weak rational status setS ofP onOS is5P

3-complete
(respectively,6P

3 -complete).

Proof. The membership part is routine: A guess for a weak rational status setS such that
α /∈ Do(S) (respectively,α ∈ Do(S)) can be verified with a6P

2 oracle in polynomial time
(Theorem 4.13).

For the hardness part, we extend the construction in the proof of Theorem 4.13 to QBF
formulas∀Z∃Y∀X.φ, by adding another quantifier block.

For that, we introduce a new relation ZVAR for storing the variables inZ, and add the
following clauses to the programP ′ from the proof of Theorem 4.13:

O(set (Z1,0))← ZVAR(Z1)

O(set (Z1,1))← ZVAR(Z1)

Do(set (Z1,0)),←¬Do(set (Z1,1)),ZVAR(Z1)

Denote the resulting program byP ′′. Moreover, we add another action constraint

AC′: {set (Z1,0),set (Z1,1)}←↩ ZVAR(Z1).

Similar as the rules for the variables inY , the new rules andAC′ force the agent to
make a choiceχ from Do(set (zi,0), Do(set (zi ,1)), for all zi ∈ Z (representing a truth
assignment toZ) in every weak rational status set. Upon such a choice, the programP ′′
behaves like the programP ′. Thus, for any such choiceχ , a weak rational status setS
includingχ containsDoα if and only if ∃Y∀Xφ[Z = χ] is true.

It follows that Doα belongs to every weak rational status set ofP ′′ if and only if
∀Z∃Y∀X.φ is true. This proves5P

3-hardness of (i).
For (ii), we add the rule Do(β)←¬Do(α) in the program, whereβ is a fresh action

of the type ofα. LetP∗ be the resulting program.
It holds thatP∗ has some weak rational status set containingDoβ if and only ifP ′′ has

some weak rational status set not containingDoα. This implies6P
3-hardness of (ii). 2

5. Conclusion

In Part II of this series of papers, we have investigated the computational complexity
of agent programs in our framework. We have focused on programs which apply to agent
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states under a generalized domain closure assumption, and where the calls to software
code accessing the agent state can be evaluated in polynomial time. The computational
problems that we have considered range from deciding the consistency of an agent program
on a given state to action reasoning under a particular semantics, and include besides
recognition of an acceptable status set (i.e., model checking) also the task of actually
computing an acceptable status set. While the former are decision problems, the latter
is a search problem; precise computational characterizations of such problems in terms
of search problem complexity classes has obtained increasing interest more recently, cf.
[4,18].

As we have shown, for positive agent programs various important computational
problems on status sets, and in particular all problems considered on rational status sets, can
be solved in polynomial time y the algorithms that we have described. On the other hand,
for programs with negation, the different semantics also have a different complexity profile,
ranging from the first level of the polynomial hierarchy (feasible status sets) up to the
third level (weak rational andF -preferred status sets). Loosely speaking, they confirm the
intuition that we have to pay a computational price for selecting a refined and epistemically
more appealing semantics.

The use of the results that we have established in our analysis is manifold. Firstly, the
results of the complexity analysis of the different kinds of status sets proposed in Part I of
this series of papers [10] complement the results on the semantical properties obtained in
Part I, and help to better assess the pros and cons of the singleSem-status sets. The results
may help an agent application designer in her choice of the appropriate semantics for a
particular application of our agent framework. The overview tables in Section 2.3 and the
discussion there provides a compact reference for this task.

Secondly, the analysis of the sources of complexity which crop up with the different
variants of status sets, and how they effect the complexity of computation (Section 2.3.2),
provide insight into how particular principles may effect the complexity of decision making
in general. Namely, applying a minimization policy such as preferences to solutions, or a
similar maximization policy (as present with weak variants of status sets). These insights
may be profitable for other researchers developing frameworks in agent decision making.

Thirdly, our results provide evidence for how optimal algorithms for decision making
which handle all possible scenarios (i.e., are complete in that respect), may behave in the
worst case, and thus give a clue for the design of such algorithms. As discussed elsewhere
[7], the level of the polynomial hierarchy at which a problem resides gives us information
about which kind of backtracking algorithm is suitable for solving a problem. For example,
for NP-problems a solution can be found by a simple backtracking algorithm, while for
6P
k -complete problems in general,nestedbacktracking of depthk is necessary (unless

the polynomial hierarchy collapses, which is not expected). The completeness results for
the class FNP// log that we have established indicate that the computation of particular
kinds of status sets can be optimally implemented as a two phase process, in which first an
optimization problem is solved and then a status set is computed as usual. Moreover, they
provide some evidence that it is not feasible to parallelize these problems to NP-problems
(e.g., calls of SAT routines) in polynomial time.

Several issues remain for further work. One such issue is a comparative study of the
computational complexity of different agent frameworks. Since the layout and formal
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underpinnings of various agent frameworks such as those in [1,5,17,22,25] are quite
different, it is not a priori clear how the complexities of these systems should be compared.
Another issue, refining the complexity view, is the expressive power in terms of capability
to represent decision processes of inherent complexity. The capability of agent programs in
that respect may be formally assessed in the spirit of similar concepts for advanced logical
database queries languages [8].

A further important issue are tractable fragments of the agent language that we have
presented. The characterization of the sources of complexities provides us with detailed
information of which effects have to be eliminated in order to arrive at a polynomial time
language. In this direction, we are currently investigatingregular agent programs[9], in
which decision making is layered into levels of polynomial complexity. In this context,
approximation techniques and heuristics may be useful. This remains for future research.
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Appendix A. SAT problems and quantified Boolean formulas

The classical satisfiability problem (SAT) is, given a conjunctionφ =∧m
i=1Ci (i.e., a

set) of propositional clauses such that each clauseCi is a disjunctionCi = Li,1 ∨ · · · ∨
Li,ni of literalsLi,j over propositional variablesX = {x1, . . . , xn}, decide whetherφ is
satisfiable. SAT is a well-known NP-complete problem. This remains true if we assume
that each clauseCi contains three literals, and either all literalsLi,j are positive, or allLi,j
are negative; this restriction is known asmonotone3SAT (M3SAT) [13].

The dual problem, M3DNF, is complete for co-NP. An instance of M3DNF is a formula
φ = ∨m

i=1Di in disjunctive normal form (DNF) which is the negation of an M3SAT
instanceφ′ =∧m

i=1Ci in CNF (obtained by applying De Morgan’s rule). The problem
is deciding whetherφ is a tautology.

We use the following notation. Letφ be a propositional formula, and letχ be a truth
assignment to the variables in a set of propositional variablesY . (In many places, in abuse
of notationχ is a choice representing a truth assignment.) Then,φ[Y = χ] denotes the
formula obtained by substituting inφ for every yi ∈ Y its truth value according toχ .
Furthermore,φ[Y = ∅] stands forφ[Y = χ] whereχ assignsfalseto everyy ∈ Y .
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For example, considerφ = x1 ∧ (¬y1 ∨ y2 ∨ x2) ∧ y1. Then, for the assignment
χ to Y = {y1, y2} such thatχ(y1) = true, χ(y2) = false, the formulaφ[Y = χ] is
x1∧ (¬true∨ false∨ x2)∧ true.

A quantified Boolean formula(QBF) is a generalized propositional formula, in which
each propositional variablexi ranges over{true, false} and is governed either by an
existential(∃) or a universal(∀) quantifier. The truth value of such a formula is obtained
by eliminating all quantifiers in the obvious way and evaluating the resulting variable-free
formula.

For example,∀y1, y2∃x1, x2. x1∧ (¬y1∨ y2∨ x2)∧ y1 is a QBF. This formula evaluates
to false, since on assigning, e.g.,false to both y1 and y2, the remaining formula is
unsatisfiable.

Evaluating a given QBFΦ is a classical PSPACE-complete problem. Syntactic
restrictions onΦ provide problems complete for the6P

k and5P
k classes of the polynomial

hierarchy. In particular, deciding whether a QBF of the form∃Y 1∀Y 2 · · ·QkYk.φ, where
the Y i are sets of variables and the quantifiersQi in front of them alternate, evaluates
to true is a well-known6P

k -complete problem. Dually, deciding whether a QBF of form
∀Y 1∃Y 2 · · ·QkYk.φ evaluates to true is5P

2-complete. The problem remains6P
k -hard

(respectively,5P
k -hard), even if the quantifier-free partφ is, depending on the innermost

quantifierQk , in M3SAT form ifQk = ∃, and in M3DNF form ifQk = ∀.
Thus, e.g., evaluating a given QBF∀Y∃X.φ, whereφ is in M3SAT form, is5P

2-
complete. Notice that M3SAT and M3DNF are special cases of QBF (wherek = 1).

The above problems on QBFs also provide complete problems for the search class
counterparts of6P

k . Computing a truth assignmentχ such that∀Y 2∃Y 3 · · ·QkYk.φ[Y 1=
χ] is true (i.e., computing an assignment forY 1 witnessing that∃Y 1∀Y 2 · · ·QkYk.φ is
true) is complete for F6P

k , for k > 1. Again, hardness holds forφ in M3SAT (respectively,
M3DNF) form.

For the class FNP// log, few natural complete problems are known. An important now
is the problemX-maximal model: Given a SAT instanceφ and a subsetX of its variables,
compute theX-part of a modelM of φ such thatM ∩X is maximal, i.e., no modelM ′ of
φ exists such thatM ′ ∩X ⊃M ∩X, where a modelM is identified with the set of atoms
true in it. Completeness of this problem for FNP// log is shown in [3,4].4 Observe that
computing a maximum clique in a graph (considered in Section 2.2.2) is not known to be
FNP// log-complete.

Appendix B. Notation and different kinds of status set from Part I

This appendix provides some notation and, for the reader’s convenience, the definitions
of the various kinds of status sets from Part I which we analyze here.

4 In [4] a form of reduction among maximization problems is used slightly different from the one in [3]. It
requires that the transformed instancef (I ) must always have solutions, but for any maximal solutionS of f (I ),
the functiong(I,S) is only defined ifI has solutions; our proofs of FNP// log hardness can be easily adapted for
this setting.



T. Eiter, V.S. Subrahmanian / Artificial Intelligence 108 (1999) 257–307 305

Definition B.1 (Status set). A status setis any setS of ground action status atoms over
S. For any operatorOp∈ {P,Do,F,O,W}, we denote byOp(S) the setOp(S) = {α |
Op(α) ∈ S}.

Definition B.2 (Feasible status set). Let P be an agent program and letOS be an agent
state. Then, a status setS is a feasible status setfor P onOS , if the following conditions
hold:
(S1) (closure under the program rules)AppP,OS (S)⊆ S;
(S2) (deontic and action consistency)S,OS |= AC, and any ground actionα satisfies

the following:
– If Oα ∈ S, thenWα /∈ S,
– If Pα ∈ S, thenFα /∈ S,
– If Pα ∈ S, thenOS |= Pre(α) (i.e.,α is executable in the stateOS );

(S3) (deontic and action closure)S =DCL(S) andS = ACL(S);
(S4) (state consistency)O′S |= IC, whereO′S = apply(Do(S),OS) is the state which

results after taking all actions inDo(S) on the stateOS .

Definition B.3 (Groundedness; rational status set). A status setS is grounded, if no status
setS′ 6= S exists such thatS′ ⊆ S andS′ satisfies conditions(S1)–(S3) of a feasible status
set.

A status setS is arational status set, if S is a feasible status set andS is grounded.

Definition B.4 (Reasonable status set). Let P be an agent program, letOS be an agent
state, and letS be a status set.

(1) If P is a positive agent program, thenS is a reasonable status setfor P onOS , if
and only ifS is a rational status set forP onOS .

(2) The reduct ofP with respect toS andOS , denoted byredS(P,OS), is the program
which is obtained from the ground instances of the rules inP overOS as follows.
(a) First, remove every ruler such thatB−as(r)∩ S 6= ∅;
(b) Remove all atoms inB−as(r) from the remaining rules.

ThenS is areasonable status setfor P with respect toOS , if it is a reasonable status
set of the programredS(P,OS) with respect toOS .

Definition B.5 (A(S)). For any status setS, denoteA(S)=Do(S)∪ {α | α /∈O(S)}.

Definition B.6 (A-relativized action closure). Let S be a status set, and letA be a set of
ground actions. Then, the action closure ofS under regimentation relativized toA, denoted
AClA(S), is the closure ofS under the rules

Oα ∈ S⇒Doα ∈ S, for any ground actionα ∈A
Doβ ∈ S⇒Pβ ∈ S, for any ground actionβ.

A setS is action closed under regimentation relativized toA, if S = AClA(S) holds.

Definition B.7 (A-relativized status sets). LetP be a program, letOS be an agent state,
and letA be a set of ground actions. Then, a status setS is A-feasible (respectively,
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A-rational,A-reasonable), ifS satisfies the condition of feasible (respectively, rational,
reasonable) status set, where the action closureACl is replaced by the relativized action
closureACLA(S) (butDCl remains unchanged).

Notice thatACl= AClGA, whereGA is the set of all ground action atoms.

Definition B.8 (Weak rational, reasonable status sets). A status setS is weak rational
(respectively, weak reasonable), if there exists anA such thatS isA-rational (respectively,
A-reasonable) and there are noA′ 6= A andS′ such thatA ⊆ A′ andS′ is anA′-rational
(respectively,A′-reasonable) status set.

Definition B.9 (F -preference). Let Sem be a kind of status sets. Then, a status setS is an
F -preferredSem-status set, if it is aSem-status set and there exists no otherSem-status
setS′ which has a smaller forbidden part thanS, i.e.,F(S′)⊂ F(S) holds.
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