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Abstract

In Part | of this series of papers, we developed a language catiedt Programdor defining
the operational behavior of software agents and defined a set of successively more satisfying
(epistemically) semantics for such agent programs. In Part Il of this series of papers, we study the
computation price to be paid (in terms of complexity) for these epistemic desiderata. In particular, we
develop algorithms for the above semantics, and describe results on their computational complexity.
We show that (surprisingly) the reasonable status set semantics is the easiest to compute of the
semantics proposed. 1999 Published by Elsevier B.V. All rights reserved.
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1. Introduction

In Part | of this series of papers [10], we have defined an architecture for the creation
and deployment of software agents—our platform supports building such agents both from
scratch, and extending existing legacy applications to handle such agent capabilities. Our
architecture of an agent consists of five basic parts.

— A description of the set of data types the agent manages, together with the function

calls it uses to manipulate these types. The state of the agent at a given point in time is
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the set of objects belonging to these data types that is currently resident in the agent’s
working memory.

— A set called theaction baseof the agent consisting ddictionsthat the agent is
physically capable of taking—these actions alter the state of the agent and may be
viewed adransactiongin the sense of databases and operating systems) [26].

— A notion of concurrencywhich specifies what it means to execute certain actions
concurrently.

— A language calle@gent programshrough which, the agent’s designer specifies the
operating principles (what actions the agent must do, what actions the agent may do,
what actions the agent may not do, etc.) of the agent.

— A set ofintegrity constraintghat the agent’s state must always satisfy. In particular,
when a set of actions is executed by the agent in a state that satisfies the
integrity constraints, then the new state that results must also satisfy the integrity
constraints.

— A set ofaction constraintghat specifies the circumstances under which certain ac-
tions may be concurrently executed.

In Part | of this series of papers [10], we characterized the semantics of an agent program

through the notion of atatus setintuitively, astatus sets a set ofstatus atomsvhich

are formulas of the forn@Opx wherea is the name of an action, ar@p is a modality

P, O, F, Do, W. Intuitively, Pe meansx is permitted Fo meansy is forbiddenOa means

a is obligatory Do meansy is done, andDa means that the obligation to dois waived.

The main idea in Part | of this series of papers was that at#jiie agent’s previous state

0,_1 changes through the receipt of one or more messages. The agent must compute an
“appropriate” status sef, and concurrently perform all actions of the foDow in S; so

as to transit to a new staté),. Part | of this series of papers describes several ways of
capturing the word “appropriate” used in the previous sentence. Each of these ways yields
a different semantics for agent programs. Part | of this series of papers shows that these
different semantics appeal to different epistemic intuitions that an agent developer must
have—some are epistemically more desirable than others.

The main aim of this paper is to analyze the computational complexity of the above
semantics so that we have a clear idea of the computation price beingipaialy) for
an epistemically desirable semantics. A further consequence of these complexity results is
that we are able to pinpoint correct algorithms to compute these different semantics.

The organization of this paper is as follows. Section 2 specifies the assumptions
underlying our complexity analysis. It also provides a brief tutorial of different complexity
classes, and then provides a succinct summary of all the complexity results derived in this
paper.

The main complexity results and accompanying algorithms are contained in Sections 3
and 4—the former contains results when no integrity constraints are present, and the latter
contains results when integrity constraints may be present. Each of these sections is further
broken down in two parts—when no negation may appear in the body of an agent program
rule, and when such negations can appear. Finally, Section 5 concludes theAsaper.
handy reference for the reader, some notation and definitions from Part | are provided in
Appendix B.
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2. Algorithms and complexity issues

We assume that the reader is familiar with the basic concepts of complexity theory,
in particular with NP-completeness and the polynomial hierarchy, and refer to [13,19,21]
for background material on this subject and for concepts and notation that we use in the
remainder of this paper.

In the rest of this section, we first present the assumptions we make for our analysis.
We then present a very brief tutorial on different complexity classes. Finally, we present
an overview and a discussion of the results that we derive. The reader who is interested in
algorithms derived from these results, and/or the formal proofs of the results will find them
in Sections 3 and 4.

2.1. Underlying assumptions

In our work, we consider the evaluation of a fixed agent progfain the context of
software codes, an action basel3, action constraintsiC, and integrity constraintgC,
each of which is fixed, over varying staték;. This corresponds to what researchers in
databases and logic programming commonly calldhta complexityf a program [27].
If we consider varying programs where the agent state is fixed (respectively, varying),
we would haveexpressior(or program) complexity and combined complexityhich are
typically one exponential higher than data complexity. This also applies in many cases
to the results that we derive below; such results can be established using the complexity
upgrading techniques for expression complexity described in [15].

Of course, if we use software packages= (Zs, Fs) with high intrinsic complexity,
then the evaluation of agent programs will also be time consuming, and leaves us no chance
to build efficient algorithms. We therefore have to make some general assumptions about
the software package used such that polynomial time algorithms are not a priori excluded.

Domain closure assumptionWe adopt ageneralized active domaiassumption on
objects, in the spirit of domain closure; all objects considered for grounding the program
rules, evaluation of the action preconditions, the conditions of the actions constraints and
the integrity constraints must be frofs, or they must be constructible from objects
therein by operations from a fixed (finite) set in a number of steps which is bounded by
some constant, and such that each operation is efficiently executable (i.e., in polynomial
time) and involves only a number of objects bounded by some other constant. Notice that
the active domain assumption is often applied in the domain of relational databases, and
a similar domain closure assumption [23] is frequently made in the context of knowledge
bases. In our framework, creation and use of tuples of bounded arity from values existing
in a database would be a feasible object construction process, while creation of an arbitrary
relation (as an object that amounts to a set of tuples) would be not.

Under this assumption, the number of objects which may be relevant to a fixed agent
program’® on a given stat@gs is bounded by a polynomial in the number of objects in
Ogs, and each such object can be generated in polynomial time. In particular, this also
means that the number of ground rulesfofvhich are relevant is polynomial in the size of
Os, measured by the number of objects that it contains.



260 T. Eiter, V.S. Subrahmanian / Atrtificial Intelligence 108 (1999) 257-307

Polynomial code calls. As our framework builds on top of an existing body of software
code, we will state all our results under the assumption that the evaluation time of code
condition callsy over a stat&® s, for any particular legal assignment of objects, is bounded
by a polynomial in the size dDs. Moreover, we assume that given an agent staeand

a set of ground actiond, the state0’s which results under concurrent execution4dbn

Qg is constructible in polynomial time (Part | of this series of papers provides a definition
of concurrency that preserve this property).

As a consequence of these assumptions, the action and integrity constraints are evaluable
on an agent stat®s under the generalized active domain semantics in polynomial time,
and the integrity constraints on the agent st@feresulting from the execution of a set of
actioznsA grounded in the active domain, are checkable in polynomial time in the size of
Os.

Notice that these assumptions will be met in many software packages which support the
use of integrity constraints (e.g., a relational database). If evaluation of the code condition
calls or constraints were not polynomial, then the evaluation of the agent program would
not be either.

2.2. Brief overview of complexity classes

In this subsection, we present a brief tutorial on complexity theory and also briefly
describe the various complexity classes that we will encounter in this paper. The classes
that we use in our characterizations are summarized in Fig. 1. An edge directed from class
C1 to classCy indicates that all problems i@y can be efficiently transformed into some
problem inC2, and that it is strongly believed that a reduction in the other direction is not
possible; i.e., the hardest problemdig are more difficult than the problems .

2.2.1. Decision problems and search problems

All computation problems involved with computing different kinds of status sets
associated with agent programs are eittiecision problem®r search problemsThese
two types of problems are briefly described below.

Decision problems. Fig. 1(a) shows the complexity hierarchy fdecision problems-
these are problems where a question is posed, and a “yes/no” answer is expected. Thus,
problems like SAT are decision problems—SAT, for instance, asks if there is a valuation
that satisfies a set of propositional clauses. Similarly, the question “Does agent p®gram
have a feasible status set with respect to some fixed agent state, integrity constraints, and
action constraints?” is a decision problem.

We will assume that all readers know what the clagdasd NP are. The other classes
shown in Fig. 1(a) are built on top of the classes P and NP (which is also referreﬂfo,as
by allowing the use of an oracle (i.e., a subprogram) for deciding problems instantaneously.
The classC to which this oracle must belong is denoted in a superscript; eN§., P
(respectively, NBP) is the class of problems solvable in polynomial time on a deterministic

2 This would remain true if the integrity constraints where arbitrary fixed first-order formulas (evaluated under
active domain semantics).



T. Eiter, V.S. Subrahmanian / Artificial Intelligence 108 (1999) 257-307 261

PSPACE FPY2 oP
RP - FP 2
‘ ‘ .
SP— NP5 P —co-57 FP
3 : 3 -
AP —p¥y
/ \ FPNP
== NpPNP nf=co-xf T
AP _ pNP FNP//OptP[O(log n)] (=FNP//log)
2 \
sP=NpP co-NP=co-=F FP¥
\ / FNP /
P = Af \
FP
(@) (b)

Fig. 1. (a) Decision complexity classes; (b) Search complexity classes.

(respectively, nondeterministic) Turing machine, if an oracle for a problem in NP may be

used. Similarly, the class™ is the class of problems solvable in polynomial time on a
deterministic Turing machine if an oracle for a problemﬁﬁ may be used. In general,

Clc2 refers to the set of all problems that are in complexity ctésd we assume that there
is an oracle for all problems in clag% that is capable of responding instantaneously.
The classexl, M7, and AP, wherei > 1, constitute the so-callgablynomial hierarchy
which contains problems of increasing complexity, but they are supposed to be easier than
PSPACE-complete problems.

For the decision classes, the arcs in Fig. 1 actually denote inclusions, i.e., the
transformation of problems i@y to problems inC» is by means of the identity.

Search problems. The classes for search problems, which are often also called function
classes, can be found in [4,21] (see also [18,24]). A search problem is a generalization
of a decision problem, in which for every instantef the problem a (possibly empty)
finite setS(I) of solutions exists. To solve such a problem, a (possibly nondeterministic)
algorithm must compute the solutions of this set in its computation branches, if it is not
empty. Thus, while the decision problem SAT asks whether a set of propositional clauses is
satisfiable, the corresponding search problem FSAT attempts to find a satisfying valuation
if one exists. Analogously, the question “Find a feasible status sBtibbne exists” is a
search problem. Decision problems can be viewed as particular search problems, in which
the solution set is either empty or the singleton set {yes}. Hence, decision problems are
somewhat simpler than search problems.

More formally, search problems in the classes from Fig. 1 are solved by transducers,
i.e., Turing machines equipped with an output tape. If the machine halts in an accepting
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state, then the contents of the output tape is the result of the computation. Observe that
a nondeterministic machine computes a (partial) multi-valued function. Thus, not all
arcs in Fig. 1 mean inclusion, i.e., trivial reducibility by the identity. However, if we
are only interested isome arbitrarysolution from a set of possible solutions, as, e.g.,

in some arbitrary satisfying assignment in case of problem FSAT, then we may give
up the implicit uniformity condition of havingachsolution as a possible outcomes of

a (nondeterministic) computation, and simple require thdeast oneof the possible
solutions is returned over all branches—this is the (natural) view that we will adopt when
classifying problems on agent programs. Observe that this view, adopted also, e.g. [4],
for solving optimization problems, is coherent with the notion of reduction introduced in
Section 2.2.3, and turns the arcs in Fig. 1 into inclusions. For example, FSAT and finding
some arbitrary feasible status set are problems MERder this view.

2.2.2. Selected complexity classes

In this section, we present a few selected search complexity classes that will crop up in
our complexity analysis of agent programs.

First, we note that the search problem counterparts of the clasgeshe polynomial
hierarchy are often denoted by a prefixed “F”; some of them appear in Fig. 1.

The classe§P, FPNP, and FP™. These are the classes of functions computable by a
deterministic Turing machine in polynomial time with no oracle, NP-oracle, Eﬁd
oracle, respectively. Notice that each such machine computes a single-valued function. The

P
classes Ff¥” and FI%2 are refinements of the classes¥frRaind F=¥, respectively, and are

P
the search problem counterparts of the clas%%Dsa?nd FHFZ, respectively, which are not
shown in the figure. These classes contain functions which are computable in polynomial
time on a deterministic Turing machine which has access to an oracle in NP (respectively,
EZP), but where all queries to the oracle must be prepared before issuing the first oracle
call. Thus, the oracle calls are nonadaptive and must essentially take place in parallel; it is
commonly believed that this restricts computational power.

The classe§NPand FEE . FNP (respectively, EE) contains the multi-valued functions
whose solutions can be computed by a nondeterministic transducer in polynomial
time (respectively, in polynomial time with an NP-oracle), such that a given solution
candidate can be checked in polynomial time (respectively, the check is in co-NP).
The class is contained in the class NPMV (respectively, NPR)Ywhich contains all
multi-valued functions computable in nondeterministic polynomial time (respectively, in
nondeterministic polynomial time with a NP oracle) [12].

The classFNP//log. FNP//log is short for the class FNPOptHO(logn)] [4].
Intuitively, it is the class of problems such that a solution for an instahcean

be nondeterministically computed by a transducer in polynomial time, if the optimal
valueopt(/) of an NP optimization problem o (an integer) is known, wherept(])
(represented in binary) must havel@y|/|) bits. NP optimization problemmeans here
that the maximal (respectively, minimal) value of a solution for a probfiis computed
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such that, giverd and an integek, deciding whetheopt(7) > k (respectivelyppt(/) < k)
is in NP and recognizing solutions is polynomial.

For example, computing the largest Sedf pairwise connected nodes in a given graph
G (i.e., a maximum clique) is a problem in FNHog (observe that different maximum
cligues may exist). Indeed, computing iezeof a maximum clique is an NP-optimization
problem with Qlog|7]) output bits, since testing whether a $eis a clique is easy (just
check whethelG has an edge between each pair of nodeS)inand deciding whether
opt(G) > kisin NP (guess a clique of sizek). Furthermore, if = opt(G) is known, then
the transducer can nondeterministically generate and verify a clique afisiplynomial
time.

The class FNP/ log reduces to Fi¥” and roughly amounts to a randomized version of
FPh\‘P. Due to its nondeterministic nature, it contains problems which are not known to be

solvable in FI*T"’P. The most prominent of these problems is the computation of an arbitrary
model of a propositional formula [18], which is the prototypical problem complete for the
class FNP. Few natural FNPlog-complete problems are known to date and almost none
arise in practical applications; our analysis shows that certain problems arising naturally in
agent systems (e.g., computing a weak rational status set) are ify FigPand that some

of them are even complete for this class.

In the context of agent programs, computing a weak rational status set for a positive
program is in FNP/log, since if we know the maximum sizenaxof a setA of ground
actions such that aA-rational (i.e., obeying obligations accordingAd status sef exists,
then we can nondeterministically generate sucl§ anpolynomial time. The computation
of smaxamounts to an NP optimization problem as described above, and thus the overall
algorithm places the problem in FINPlog.

P P
The classkP- FP‘)FZ. The class RP FPﬁ2 [4] contains informally those problems for
which a solution on inpuf can be found by a random polynomial time algorithm with

P
very high probability, by using a problem in FP as single-call subroutine. This class

P
is above FI%Z. Chen and Toda [4] have shown that many optimization problems belong
to this class whose solutions are the maximal (respectively, minimal) solutions of an
associated decision problem for which recognizing a solution is in co-NP. We shall use this

P
relationship for classifying some problem into RPPHZZ, and refer the interested reader
to [4] for the technical details about this class. As we shall see, computidg@eferred
rational status set or a weak rational status set amount to such optimization problems, and

P
thus the problems belong to RPsz.

2.2.3. Hardness and completeness

The reader would have frequently heard terms such as NP-hard, NP-conEij’ete,
complete and so on. Here, NP amg are classes of problems. In this section, we will
briefly explain what it means for a problem to bard/completavith respect to a class of
problems. The first concept we need here is that of a reduction between two problems.
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Reductions. Consider two search problenig, IT,. (For example,/]1 may be SAT,
while IT, may be 3SAT.) In general, when we say thdj is reducible torly, it
informally means that there is a function which transforms all instances of profdiem
to “equivalent” instances ofT,. Furthermore, this function is polynomially computable.
Intuitively, reductions satisfy the following condition. if; is reducible talT,, then given
any instancel of I11, we can transform this instance to an equivalent instancHf
execute a known algorithm fdi,, and then transform any solution fok, into a solution
for 4.

Formally, IT; is polynomial time reducibléo I, if (i) from every instancd of I11, an
instancef (1) of IT, is constructible in polynomial time, such thAt/) has some solution
precisely if I has; and (ii) from every solutio§ of f(I), a solutiong(/, S) of I can
be constructed in time polynomial in the size fand 7. The pair of functiong f, g)
constitutes a polynomial time reduction &f to I1».

Itis easy to see that the concept of polynomial time reduction among decision problems
I1; andI1 is a special case of this definition, because decision problems are special cases
of search problems. Other types of reductions among decision problems that change the
polynomial time requirement, e.g., reduction in logarithmic space, can be generalized to
search problems in the same way.

We are now ready to explain the concepts of hardness and completeness.

Hardness and completenesd-or both decision and search problem clagSgea problem
IT is complete foiC, if (1) IT belongs toC, and (2)I7 is hard forC, i.e., every problem in
C polynomially reduces to it.

Intuitively, when we say that problerT; is NP-hard (or clas€-hard) we mean that
every problem in the class NP (respectively, cl@3san be reduced tfr; in polynomial
time. Likewise, when we saif; is NP-complete (or clags-complete) we mean not only
that I71 is NP-hard (or clas€'-hard), but also belongs to that class, i.e., it is not strictly
harder. Examples of complete problems for the complexity classes that we encounter are
given in Appendix A.

2.3. Brief overview of complexity results

The complexity results we derive may be broken up into two parts. In the first part
(Section 3) we assume that no integrity constraints are present—then in Section 4, we
allow integrity constraints to be present.

In this paper, we study four types of complexity problems. For each semantics
introduced in the paper, we study the complexity of these four problems. This leads to
Tables 1 and 3 which summarize the results, under different assumptions on the syntax of
the agent programs considered. Table 2 specifies where the proofs of the results listed in
Table 1 and Table 4 does the same for the results listed in Table 3.

The computational problems that we study are listed belowSdet be any kind of
status sets.

e consistency deciding the consistency of the program on a given agent state, i.e.,

existence of &em-status set;

e recognition: the recognition of &em-status set;
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e computation: the computation of an arbitragem-status set; and

e action reasoning reasoning about whether the agent takes an aationderSem-

status sets, both under the

— possibility variant (decide whether is executed according to sonsem-status
set), and the

— certainty variant (decide whethelis executed according to evebgm-status set).

It is easy to see that “computation” is a search problem, while the other three are
decision problems (all instances of these problems can be answered with a “yes” or a
“no”). Thus, the only column in Tables 1 and 3 which use the search problem hierarchy is
the “computation” column.

The consistency problem is important since in general, it is not a priori guaranteed that
the agent can figure out what to do by selecting s@aa-status set. It might be the case
that no such status set exists. Intuitively, this means that the behavior as specified by the
agent program is incompatible with the agent’s state. This event causes an exception, which
must be appropriately handled—this, however, is beyond the scope of this paper.

Computing som&em-status set is closely related to the consistency problem. Of course,
the computation problem is at least as difficult as the consistency problem—haséng a
status set at hand, it is trivial to answer whether s@me-status set exists. On the other
hand, like with many other problems, computing sabeen-status set is not much harder
than the decision problem, in the sense that it is possible in polynomial time with an
oracle for the consistency problem. However, this does not tell us much about how an
optimal (possibly nondeterministic) algorithm can proceed. For this purpose, a complexity
characterization referring to search problem classes is useful. We will come back to this
issue in the conclusions (Section 5).

The recognition problem corresponds to the task of model checking in the area of
knowledge representation and reasoning, which has been addressed, e.g., in [2,16,20].
Observe that often, recognizing a solution is easier than computing a solution, and occurs as
a test in an interactive algorithm. However, in general, it may be the case that recognizing
a particular solution is much harder than computing some arbitrary solution. Thus, the
complexities of “computation” and “recognition” are incomparable in general.

Action reasoning is a problem of interest, since in general muléipte-status sets may
exist, and thus it is important to know whether some action status atdmlongs to
all (respectively, some$em-status set. This corresponds to what is known as certainty
(respectively, possibility) reasoning in databases [26], and to cautious (respectively, brave)
reasoning in the area of knowledge representation [14]. In particular, this question is
important for status atomBo(«), since it tells us whethes is possibly executed by
the agent (if she picks nondeterministically sosem-status set), or executed for sure
(regardless of which action set is chosen).

Table 1 specifies the complexity of the four problems that we study when positive agent
programs are considered, while Table 3 specifies their complexity when arbitrary agent
programs are considered.

Note on tables. The entries for decision problems in Tables 1 and 3 stand for
completeness for the respective complexity classes. In case of P, hardness may implicitly
be present with costly object construction operations. However, we remark that for all
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Table 1
Complexity of fixed positive agent programs
IC=¢|ZC arbitrary Consistency Computation Recognition Action reasoning
Possible Certain
Feasible R NP FP| FNP P NP co-NP
Rational P FP P P P
= reasonable

= F-preferred rational
= F-preferred reasonable

Weak rational R NP FP| FNP//log? P| co-NP NP co-NR 1‘[2P
= weak reasonable

&, hard for both FNP and Fﬁﬁ?

Iitgleiign of proofs for Table {C = Corollary, T= Theorem, P= Proposition)
IC=¢|ZC arbitrary  Consistency =~ Computation Recognition Action reasoning
Possible Certain
Feasible T31T41 T31|T4.1 P 3.7 T3.9 T3.9
Rational T31 T31 Cc3.2 C33 C33
Weak rational T35 T47 T35/ T48 T34|T46 T36,T49 T3.6T49
Table 3
Complexity of fixed agent programs with negation
IC=W|ZC arbitrary Consistency Computation Recognition Action reasoning
Possible Certain
Feasible NP FNP P NP co-NP
Rational NP 55 FNP//log?| F£5 co-NP 25 coNPITI
Reasonable NP FNP P NP co-NP
Weak rational NRZE  FNP//log]| P coNPily 2P |xf  nfinf
n P
RP. pr2 b
Weak reasonable NP F)MPlog co-NP Dl nj
F-preferred rational NP=E  FNP//log| FPos co-NPiTIy =P (=F  nfin§
n P
RP. FPHZZ b
F-preferred reasonable NP FNMog co-NP =5 ny

a_ .. hard for both FNP and Fﬁ‘lﬁ

p
b... hard for both &5 and FFﬁ:Z.
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-Il_-zgﬁiﬁn of proofs for Table 8C = Corollary, T= Theorem, P= Proposition)

IC=¢|ZC arbitrary Consistency Computation Recognition Action reasoning
Possible Certain

Feasible T4.1 T38,4.1 P 3.7 T39 T39

Rational T310 T44 T313/T44 C312,T42 T314,T45 T3.14T45

Reasonable T3.16 T3.16 T3.15 T3.17 T3.17

Weak rational T319T4.11 T3.20] T4.12 T3.21| T4.13 T3.23| T4.14 T73.23] T4.14

Weak reasonable T3.19,T4.10 T3.20,T4.10 T3.22 T3.24 T3.24

F-preferred rational extended report [11]

F-preferred reasonable extended report [11]

problems except recognition of a feasible status set, hardness holds even if no new objects
are introduced and the agent state consists merely of a relational database. Proofs of these
results are not difficult, using the well-known result that inference from a datalog program
(Horn logic program) is P-complete, cf. [6].

For space reasons, we do not prove all results here. In particular, we omit the
consideration ofF-preference on status sets for programs with negation. In this case,
rational (respectively, reasonable) status sets show the same complexity as under their weak
variants. Proofs for all results in Table 3 are given in [11].

2.3.1. Bottom line for the computation problem

Of all the four problems described above, from the point of view of the IMPACT
system (and in general, for any system that attempts to determine which actions an agent
must take), the most important problem, by far, is the problepafputatior—given an
agent program, a current agent state, a set of integrity constraints and action constraints,
determine a set of actions that the agent must take. This task forms the single most
important task that an agent must take, over and over again.

When considering the different semantics for agent programs, we easily notice (by
examining the column “computation” in both Tables 1 and 3), that the easiest semantics to
compute are given as follows:

— When positive agent programs with no integrity constrairgtge considered, the

rational, weak rational, reasonable, weak reasonadpteferential, andP-prefer-

ential semantics are the easiest to compute, all falling into the same complexity class.
The other semantics are harder to compute. Thus, in this case, we have some flexibility
in choosing that out of the rational, weak rational, reasonable, weak reasofable,
preferential, andP-preferential, that best meets the agent’s epistemic needs. Note that
different agents in IMPACT can use different semantics.

— When positive agent programs with integrity constrairdase considered, the best

semantics, from the point of view of computational complexity, are the rational,
reasonable,F-preferential, andP-preferential semantics. Note that unlike the
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previous case, the weak rational and weak reasonable semantics are harder to compute
when integrity constraints are present.

— When arbitrary agent programs with no integrity constraiate considered, then the
easiest semantics to compute are the feasible set semantics and the reasonable status
set semantics. All other semantics are harder to compute.

— When arbitrary agent programs with integrity constraist® considered, the same
continues to be true.

In general, when considering how to compute a kind of status set, the reasonable status set
semantics is generally the easiest to compute, irrespective of whether agent programs are
positive or not, and irrespective of whether integrity constraints are present or not. As we
have argued earlier on in the paper, reasonable status sets have many nice properties which
might make them epistemologically preferable to feasible status sets and rational status
sets.

2.3.2. Sources of complexity

The results show that the complexity of agent programs varies from polynomial up to the
third level of the polynomial hierarchy. Observe that in some cases, there are considerable
complexity gaps between positive agent programs and agent programs which use negation
(e.g., for F-preferred rational status sets).

The reason for this gap are three sources of complexity, which lift the complexity of
positive agent programs from P upﬂg’ andI1k, respectively (in the cases stpreferred
and weak rational status sets):

(1) an (in general) exponential number of candidates for a feasible (respectively, weak

feasible) status set;

(2) adifficult recognition test, which involves groundedness; and

(3) an exponential number of preferable candidates, in termg -pfeference or

maximal obedience to obligations.

These three sources of complexity act in a way orthogonally to each other; all of them
have to be eliminated to gain tractability.

For the canonical semantics of positive agent programs, the rational status set semantics,
all computational problems are polynomial. This contrasts with feasible status sets, for
which except recognition, all problems are intractable. On the other hand, under the weak
status set semantics, the problems (except for action reasoning) are polynomial if no
integrity constraints are present; intractability, however, is incurred in all problems as soon
as integrity constraints may be used.

It is interesting to observe that for programs with negation, rational status sets are
more expensive to compute than reasonable status sets in general, and this is true if
no integrity constraints are present, except for consistency checking and cautious action
reasoning. A similar observation applies to thepreferred and weak variants of rational
and reasonable status sets in the general case; here, the rational variants are always
more complex than the reasonable ones. However, somewhat surprisingly, if no integrity
constraints are present, then the complexities of the rational and reasonable variants
coincide! This is intuitively explained by the fact that in absence of integrity constraints,
the expensive groundedness check for rational status sets can be surpassed in many places,
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by exploiting the property that in this case, every feasible status set must contain some
rational status set.

Another interesting observation is that for programs with negationFtipeeferential
and weak variants of rational status sets have the same complexity characteristics, and
similar for reasonable status sets. This is explained by the similar optimization components
which are presentin the semantics, namely minimization oftpart versus maximization
of the set of obligations which are obeyed. These are dual optimization problems, but the
underlying optimization principle is the same. A similar complexity behavior is thus not
much surprising. However, we note thatpreference and weak rationality are applied to
different candidate spaces, namely to all rational status sets vergusalbnal status sets,
respectively. This explains that in the case of positive programs, where these candidate
spaces have in general different sizes (a singleton set versus an exponential set), the
complexity profiles ofF -preference and weak rationality are different.

Presence of integrity constraints, even of the simplest form common in practice (e.g.,
functional dependencies [26] in a database), can have a detrimental effect on (variants of)
rational status sets and raises the complexity by one level in the polynomial hierarchy.
However, the complexity of reasonable status sets and their variants is immune to integrity
constraints except for the weak reasonable status sets on positive programs. Intuitively, this
is explained by the fact that the refutation of a candidate for a reasonable status set basically
reduces to the computation of the rational status set of a positive agent program, and there
integrity constraints do not increase the complexity. In the case of weak reasonable status
sets for positive programs, we have an increase since the weakness condition may create
an exponential number of candidates if the program is inconsistent.

3. Complexity results for the case without integrity constraints

This section contains the first part of the derivation of the complexity results which have
been presented in Section 2. The focus in this section is on the base case, in which we have
programs without integrity constraints (though cases where results on integrity constraints
follow as immediate extensions of the no-integrity-constraint case are also included). As
the Table 1 and 3 show, in general the presence of integrity constraints has an effect on
the complexity of some problems, while it has not for others. For the latter problems, we
discuss this effect in detail in the next section. In this section, as complexity results are
discussed, we also develop algorithms for various status set computations.

Before we start with our analysis, we briefly recall the syntax of agent programs. An
agent programis a finite set of rules

A< 1Ly, ....L, 1)

whereA is an action status atom and eachlaf ..., L, is either an action status atom,
or a code call atom, each of which may be preceded by a negation-sjgA program
is positive if it contains no negated action status atomstion status atomare of the
form Op(a(z1, ..., %)) whereOpe {P, F, O, W, Do} is a status modalityy is the name of
an action, and, ..., #; are terms (objects or variables) for the action parametecnde
call atomrepresents a call to the software packageand on instantiating all variables,
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evaluates to either false or true. Throughout this paper, we shall in programs only encounter
code call atoms querying whether a particular tupgecontained in a tabl® of a relational
database managed By i.e., whether the logical fa@ (¢) is true. Thus, for simplicity, we

write R(¢) for these code call atoms.

3.1. Positive programs

The most natural question is whether a feasible status set exists for pr@gram
a given stateOg. As we have seen, this is not always the case. However, for fixed
positive programs, we can always efficiently find a feasible status set (so one exists),
and moreover, even a rational status set, measured in the size of th&gpitis is
possible using the algorithmddPUTE-P-RSS below, where the programand possibly
integrity and action constraints are in the background. The algoritomr@TE-P-RSS
uses the operatdfp o, defined in Part | of this series of papers. We briefly recapitulate
its definition:

— Thedeontic closuref a statusS, denotedCI(S), is the closure of under the rule

If Ox € S, thenPx € S

wherea is any ground action.
— Theaction closureof a status sef, denotedACI(S), is the closure ofS under the
rules

If Ox € S, thenDoux € §
If Dox € S, thenPa € S

wherea is any ground action.

— Appp 0, (5) is defined to be the set of all ground action status atarssch that there
exists a rule inP having a ground instance of the form A <— L1, ..., L, such that
(1) Each positive action status liters} is in § and for each negative action status

literal L; = —=Op(a), @ is not in S; and
(2) each positive code call; succeeds i®gs, and
(3) for each negated code cally, x does not succeed fis, and
(4) for each positive action status liter@p(«) from {A, L1,...,L,} such that
Ope {P, O, Do}, the actiorx is executable in stat®s.
— For any status se,

Tp,0s(S) =Appp 0s (S) UDCI(S) UACI(S).

Intuitively, Tp 04 (S) finds all rules in the agent progra® that are “firable” with
respect to the current object stadg and with respect to the action status atoms$-rit
fires such rules to derive the status atoms in the rule heads. This set of status atoms is then
closed under the deontic and action closure rules listed above. The reader will easily see
thatTp o4 (S) can be computed in polynomial time.

Algorithm CompuTE-PIC-RSS’s efficiency can easily be enhanced by interleaving the
computation oflfp(7p o) with the checks in steps (2) and (3) so as to terminate with
failure if a violation of the conditions is detected.
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Algorithm ComPUTE-PIC-RSS
Input: agent stat&@gs (positive agent prograr®);
Output: the unique rational status set®f if it exists; “No”, otherwise.

Method

(1) ComputeS =Ifp(Tp,0,);
(2) Check whethesf satisfies condition&S2) and(54) of a feasible status set;
(3) If S satisfieq(S2) and(S4), then outputS; otherwise, output “No”. Halt.

The following theorem tells us that whefC = ¢, then the problems of checking
(decision problem) and finding (search problem) if a positive agent program has a feasible
status set is polynomially solvable. Furthermore, as far as the rational status set semantics is
concerned, independently of whetl&r is empty or not, it is the case that the consistency
and computation problems are polynomial. The reason is that when we consider positive
agent programs, the only candidate to be a rational status l§et#% » ) which can be
computed in polynomial time.

Theorem 3.1. Let P be a fixed positive agent prograwhereZC is arbitrary). Then,
given an agent stat®g, the unique rational status set8fon Og (if it existg is computed

by CoMmPUTE-PIC-RSSin polynomial time. Moreover, £C = @, then deciding whether

P has some feasible status set®@g as well as computing any such status set, is possible
in polynomial time usingoMPUTE-PIC-RSS

Proof. By [11, Theorem 5.3], a positiv®® has over anyOs a unigue rational status
set (if a rational status set exists), which is giveny Ifp(Tp o) if S is a feasible
status set. Sinckp(7p o) satisfies(S1) and(53) of the definition of feasible status set
(Definition B.2), algorithm ©@MPUTE-PIC-RSS correctly computes the unique rational
status set o on Og.

By the assumptions that we made in Section 2.1, step (1) can be done in polynomial
time, since a fixed® amounts to a ground instance which is polynomial in the siz8 ©f
and we can compuig= Ifp(7p o) bottom up by evaluating the sequerié;gos, i >0,
until the fixpoint is reached.

Observe that, of course, checki($R) (action and deontic consistency)—or part of this
criterion—in algorithm @MPUTE-PIC-RSS can be done at any time while computing
the sequenc@;)yos, and the computation can be stopped as soon as an inconsistency is
detected.

Step (2), i.e., checking whether satisfies the condition&S2) and (S4) is, by our
assumptions, possible in polynomial time. Therefore, for fifedand tacitly assumed
fixed action and integrity constraints in the background), algorittomeuTE-PIC-RSS
runs in polynomial time.

If ZC =, then by [11, Proposition 5.5P has a feasible status set @Iy iff it has
a rational status set o®s. Therefore, deciding the existence of a feasible status set
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(and computing one) is possible usin@@PUTE-PIC-RSS (as any rational status set
is feasible) in polynomial time. O

The following result is immediately derivable from the preceding one: Give®gs,
and a status sef, for checking whethesS is rational, we merely need to test whether
(i) S =Ifp(Tp,os) and (ii) S satisfies conditiongS2) and (S4) of a feasible status set.
The proof of Theorem 3.1 above immediately tells us that these steps are executable in
polynomial time.

Corollary 3.2. Let P be a fixed positive agent program. Then, given an agent sigte
and a status sef, deciding whethes is the rational status set ® on Og is polynomial.

As any fixed positive agent program has at most one rational status set, it follows
immediately that possible and certain reasoning can be performed in the same time (i.e.,
polynomial) as it takes to construct such a status set.

Corollary 3.3. Let P be a fixed positive agent program. Then, given an agent sigte
and a ground actiony, deciding whethet is true in somédrespectively, evejyrational
status set o on Og is polynomial.

Since for every positive agent progra®) the rational status set, the reasonable status
set, and their preferred variants coincide, the results for rational status sets in Theorem 3.1
and Corollaries 3.2 and 3.3 extend to these kinds of status sets as well.

3.1.1. Weak rational status sets

In this subsection, we address the problem of computing a weak rational status set for
a positive program. As we have mentioned in [11, Section 5.4], for a fixed positive agent
programP, computing a weak rational status set on a given agent &atis possible in
polynomial time, provided that no integrity constraints are present. In fact, this is possible
by using algorithm ©MPUTE-P-WEAK-RSS shown below.

Before we address the formal correctness of this algorithm, it is useful to consider
the associated problem of recognizing a weak rational status set. In general, efficient
computability of a solution to a problem does not imply that recognizing a valid solution
is also efficiently possible. However, as in the case of rational status set, for a positive
program without integrity constraints also recognition of a weak rational status set is
polynomial.

Theorem 3.4. Let P be a fixed positive agent program, and suppbSe= ¢J. Then, given
an agent stat®s and a status sef, deciding whethes is a weak rational status set &f
is polynomial.

Proof. By [11, Proposition 5.10], ever-feasible status set is(S)-feasible, and thus

must beA (S)-feasible if it is a weak rational status set. Since for any set of ground actions
A, testingA-feasibility is not harder than testing feasibility, by Proposition 3.7 we obtain
that this condition can be tested in polynomial time.
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Algorithm CoMPUTE-P-WEAK-RSS
Input: agent stat&gs (positive agent prograrR; ZC = )
Output: a weak rational status set Bfon Og, if one exists; “No”, otherwise.

Method

(1) SetA :=¢, GA:= set of all ground actions, and compute= Ifp(Tp 05 4);

(2) If S is not A-feasible, then output “No” and halt; otherwise, get= A(S) and
GA:=GA\ A(S);2

(3) If GA= (¢, then outputS and halt;

(4) Choose some ground actiare GA, and setA’ := A U {a};

(5) If §":=fp(Tp o4 a) is A'-feasible, then set := A(S"), GA:= GA\ A(S"), and
S :=8’; continue at step (3).

8Recall from Part | of this series of papers [10] thatS) = Do(S) U {a | a ¢ O(S)} (see
Appendix B).

If Sis A(S)-feasible, then, sinc® is positive andZC = @, by [11, Theorem 5.13F
is a weak rational status set, if and onlySit= Ifp(Tp o4, 4) and for every ground action
a ¢ A(S), the status sef’ = Ifp(Tp o /) is notA’-feasible, wherel’ = AU{«}. For each
suche, this condition can be checked in polynomial time, and there are only polynomially
many suchw. Since computindfp(Tp o4, 4) is polynomial, the overall recognition test is
polynomial. O

We remark that algorithm @PUTE-P-WEAK-RSS can be modified to implement the
recognition test; we omit the details, however.

The next result states that algorithno@PUTE-P-WEAK-RSS is correct and polyno-
mial.

Theorem 3.5. For a positive progran? and an agent stat®gs, algorithmComMpPUTE-P-

WEAK-RSScorrectly outputs a weak rationdtespectively, weak reasonabktatus set
of P on Og (so one exislsif ZC = @. Moreover, for fixed?, COMPUTE-P-WEAK-RSS

runs in polynomial time.

Proof. The correctness of the algorithm follows from the arguments used in the proof of
Theorem 3.4. Starting from = ¢, we can subsequently increageby a ground action

a ¢ A(S), until A-feasibility of S = Ifp(Tp 0, 4) is no longer possible. The output status
setS is then a weak rational status seto

We remark that this simple algorithm can be speeded up by exploiting some further
properties. In step (5) of the algorithm, the computatio§’afan be done by least fixpoint
iteration starting fron® rather than from the empty set (cf. [11, Proposition 5.12]).

As for action reasoning from weak rational status sets, we face for the first time
intractable problems in our analysis. The intuitive reason for intractability is that an
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exponential number of weak rational status sets might exist, all of which must be examined
for answering the problem, and there seems no way of efficiently pruning this search
space.

Theorem 3.6. Let P be a fixed positive agent program, and suppdSe= . Let Og be
a given agent state and letbe a given ground action. Then, deciding whetlaer Do(S)
holds for(i) every(respectively(i) som¢ weak rational status set @ on Og is co-NP
completerespectivelyNP-completé.

Proof. Observe that algorithm @PUTE-P-WEAK-RSS is nondeterministically com-
plete, i.e., every weak rational status Seis produced upon proper choices in step (4).
Therefore, by checkinBo(«) ¢ S (respectivelyDo(«) € S) before termination, we obtain
membership in co-NP (respectively, NP).

For the hardness part of (i), we provide a reduction from the complement of problem
M3SAT (see Appendix A).

In our reduction, we store the CNF formupa= /\; C; in a relational database. For
this purposeP is supposed to have two relations ROE V-, V3) and NEG V1, Vo, V3),
in which the positive and negative clausés of ¢ are stored, and a relation VAR)
which contains all variables. For each positive clagsethere exists a tuple with the
variables ofC; in POS, e.g., for1 Vv x4 Vv x2 the tuple(x1, x4, x2), and likewise for the
negative clauses a tuple with the variables in NEG, e.g.;-feyVv —x1 v —x2 the tuple
(x3, x1, x2).

The action baseglB contains three actionset o(X), set 1(X), andx. Here, we assume
that every action has empty precondition and empty Add- and Del-set. Define now the
programpP as follows.

O(set 9(X1)) <« VAR(X1)
O(set 1(X1)) < VAR(X1)
Doa < Do(set o(X1)), Do(set o(X2)), Do(set o(X3)),
POS X1, X2, X3)
Doa < Do(set 1(X1)), Do(set 1(X2)), Do(set 1(X3)),
NEG(X1, X2, X3)
On this program, we impose the following action constraint:
AC: {set o(X1),set 1(X1)} < VAR(X1).

We setAC = {AC} andZC = @. Intuitively, the weak rational status sets correspond to
the truth assignment for the variablesXn the maximality of weak rationality and the
constraintAC effect that each variablg € X is assigned exactly one of the values 0 or 1.

For a given database instanfedescribing a formulap, it is easily seen that every
weak rational status set &f on D containsDoe, if and only if the corresponding M3SAT
instancep is a No-instance. SincB is easily constructed from, part (i) is proved.

For the hardness part of (i), a similar reduction from M3SAT can be given. We add to
the progranf the following clauses:
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Fo <
Do(val (X1)) < Do(set og(X1)), NEXT(X1, X1)
Do(val (X1)) < Do(set 1(X1)), NEXT(X1, X1)
Do(val (X1)) < Do(set o(X1)), Do(val (X2)), NEXT(X1, X»)
Do(val (X1)) < Do(set 1(X1)), Do(val (X2)), NEXT(X1, X2)

The actionval (X) has empty precondition and empty Add- and Del-sets. The database
relation NEXT(X1, X2) provides the enumeration of the variablese X, such that
databaseD contains the tuplegxy, x2), (x2, x3), ..., (xy—1, x,) and(x,, x,) for the last
variable (which has no successor).

Intuitively, the first clause prohibits the selection of a truth assignment to all variables
x;, if it falsifies the formulap. The other clauses check recursively, starting from the last
variablex, (i.e.,i = n), whether all variables; such thatj > i have assigned a value. If
thisis true fori =1, i.e.,Do(val (x1)) is derived, then all variables have assigned a value.

It holds thatDo(val (x1)) belongs to some weak rational status set of the augmented
programP’ on D if and only if formula¢ is satisfiable. From this, NP-hardness of (i)
follows. O

Before closing this subsection, we remark that tractability of both problems can be
asserted, if a total prioritization on the weak rational status sets is used, which technically
is derived from a total orderingy < a2 < - - - < «,, 0n the seGA of all ground actions. In
this case, a positive agent progr@has a unique weak rational status $€if one exists).

This status sef can be constructed by modifying step (4) of algorithen@ uTE-WEAK -
RSS as follows:

(4) Leta be the<-least action fronGA, and setd’ := A U {«a]}.

Thus, in the absence of integrity constraints, the unique weak rational status set can be
computed in polynomial time in this case.

3.2. Programs with negation

If we allow unrestricted occurrence of negated status atoms in the rule bodies, then the
complexity of evaluating agents programs increases. This is not very surprising, since this
way, we can express logical disjunction of positive facts. For example, the rule

Pa < —Fa

leads to two rational status set§i = {Pa} and S> = {Fa}. Informally, this clause
expresses under rational status set semantics the disjuRatioR«. Notice that under the
reasonable status semantics, the above rule has only a single reasonable status set, namely
S1. However, if we add its contrapositive

Fo < —Pa,

then the resulting program has the two reasonable statu$;satslS>. Thus, in the general

case, both rational and reasonable status set semantics allow for expressing disjunction, and
are for this reason inherently complex. We now analyze the precise complexity of these
semantics.
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3.2.1. Feasible status sets

We note here that for feasible status sets, the recognition problem is tractable under
the assumptions that we made in Section 2.1; this can be easily seen as each of the four
conditions(S1)—(S4) defining feasibility can be polynomially checked.

Proposition 3.7. Let P be a fixed agent prograifwhereZ( is arbitrary). Then, given an
agent stateDs and a status sef, deciding whethes is a feasible status set &f on Og
is possible in polynomial time.

However, as the following result shows, the search for feasible status sets is intractable
in the general case.

Theorem 3.8. Let P be a fixed agent program, and suppdsé = ¢. Then, given an
agent stateDg, deciding whethe has a feasible status set @ps is NP-complete, and
computing some feasible status set is complet&Rd.

Proof. By Proposition 3.7, we can guess and check a feasible status gebnfOg in
polynomial time. Hence, the existence problem is in NP, and the computation problem is
in FNP.

To show that the existence problem is NP-hard, we describe a reduction from M3SAT.
The reduction is similar to the one in the proof of Theorem 3.6. As there, we suppose that
an M3SAT instance on variables;; € X is stored in relations POS (positive clauses) and
NEG (negative clauses), and we assume that all variapleie stored in VAR. Moreover,
we assume thab has a relation AUXVar, Val), which contains in the initial databage
all tuples(x;, 0), for all variablesx;.

Now consider the following agent progré&f

PB «

FB < Fa(X1), Fa(X2), Fa(X3), POSX1, X2, X3)

FB < Pa(X1), Pa(X2), Pa(X3), NEG(X1, X2, X3)
Pa(X1) <« —Fa(X1), VAR(X1)

The action baselB contains two actiona and 8, which have both empty preconditions
and empty add and delete sets. Thus, these actions do not have any effect on the state of
the database. The set€ andZC of action and integrity constraints, respectively, are both
assumed to be empty.

Then, it is easy to see th@& possesses a feasible status set @gr if and only if
the formula¢ is satisfiable; the satisfying truth assignmentspoforrespond naturally
(but not 1-1) to the feasible status setg0bn Og. (Observe that every feasible status set
must either contaiPa (x;) or containFa(x;), for everyx;, but not both; intuitivelyPa (x;)
represents thag; is true, whileFa (x;) represents thay; is false.) Since for a given formula
¢ the database instanéeof D is clearly constructible in polynomial time, it follows that
the decision problem is NP-hard. Moreover, by the correspondence between feasible sets
status ofP and the satisfying assignmentsg@fit follows immediately that the feasible
status set computation problem is hard for FNP.
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Observe that we can replace in the construction the positive akaniX;) in the
rule with Fg in the head by-Pa(X;), and we would get the same feasible status sets;
moreover, the last rule could then also be removed, and still a feasible status exisss iff
satisfiable. O

This negative result raises the issue of how we can achieve tractability of programs.
There are different possibilities.

One possibility is that we identify syntactic constraints under which programs are
guaranteed to be tractable. However, as the form of the program in the proof of the previous
theorem indicates, rather strict conditions on negation must be imposed, in order to exclude
possible inconsistencies. Still, a number of different feasible and rational status sets may
exist, due to the inherent logical disjunction. In particular, the reduction in the proof of
Theorem 3.8 works for rational status sets as well. In a concurrent piece of work, we have
identified a polynomial fragment of agent programs catégglilar agent programf]; the
implementation of these programs is ongoing.

For action reasoning, we obtain similar intractability results as in the case of weak
rational status. This is not surprising, since also here, an exponential number of status
sets has to be examined to answer the query.

Theorem 3.9. Let P be a fixed agent program. Then, given an agent st3teand a
ground actiornx, deciding whethes € Do(S) for (i) every(respectively(ii) somé feasible
status sefs of P on Og, is co-NP-completgrespectivelyNP-completg.

Proof. A guess for a feasible status sesuch thatx ¢ Do(S) (respectivelyx € Do(S))
can be verified in polynomial time (Proposition 3.7).

For the hardness part of (i), observe that the amiB) belongs to every feasible status
set of the prograr® in the proof of Theorem 3.8, ifP has no feasible status set. Koy,
we add the rulddog <. Then,Do(B) occurs in some feasible status set of the resulting
program iff P has some feasible status set. This proves the resault.

3.2.2. Rational status sets

For the consistency problem, we obtain from [11, Proposition 5.5], which states that a
rational status set exists just if a feasible status set exists irZ¢asg, and Theorem 3.8
immediately the following result.

Theorem 3.10. Let P be a fixed agent program, and suppd&e = . Then, given an
agent state)gs, deciding whetheP has a rational status set aflg is NP-complete.

The condition that a feasible status set is grounded requires a minimality check. It turns
out that this minimality check is, in general, an expensive operation. In fact, the following
holds.

Theorem 3.11.Let P be a fixed agent program, and suppd&e = . Then, given an
agent state)s and a feasible status sétfor P on Og, deciding whethe§ is grounded is
co-NRcomplete.
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Proof. In order to refute thaf is grounded, we can guess a status$et S such that
S’ C S and verify in polynomial time tha§’ satisfies the conditions'1)—(S53) of a feasible
status set.

To show that the problem is co-NP-hard, we use a variant of the construction in the proof
of Theorem 3.8. For the CNF formudathere, we set up the following prograp

Pg <

FB <« =Py, =Pa(X1), ~Pa(X2), ~Pa(X3), POS X1, X2, X3)

FB < =Py, Pa(X1), Pa(X2), Pa(X3), NEG(X1, X2, X3)
Pa(X1) < Py,VAR(X1)

Here,y is a new action of the same type @sand g, i.e., it has empty precondition and
empty Add- and Del-sets.
Itis easily seen thaf = {PB8, Py} U {Pa(a;) |i =1,...,n}is afeasible status set &f.
Observe that any feasible status §e# S such thatS” C § must satisfyPy ¢ §'. It holds
thatS is grounded if and only if formula is not satisfiable. This proves co-NP-hardness.
The reduction even allows to derive another result. In fact, observe that any rational
status set of” is contained inS: if Py € S’ for a status se$’ which satisfieq51)—(S3),
then clearlyS’ © S holds; otherwise, iPy ¢ ', thenS’ c S must hold. Assume without
loss of generality that eithef is unsatisfiable, or all its satisfying assignments viewed as
Boolean vectors are incomparable. Th&ns the unique rational status set®f iff ¢ is
unsatisfiable. This shows that deciding whether an agent program has a unique rational
status set is co-NP-hard as wellx

The complexity of the recognition problem is an immediate consequence of the previous
theorem and Proposition 3.7.

Corollary 3.12. Let P be a fixed agent program, and suppd&e = @. Then, given an
agent stateé)s and a status sef, deciding whethes is a rational status set foP on Og
is co-NP-complete.

In the absence of integrity constraints, the rational status sets coincide with the minimal
feasible status sets. Using an NP oracle, we therefore can compute a rational status set using
algorithm GOMPUTE-RATIONAL -SS. This algorithm correctly outputs a rational status set
(so one exists) in polynomial time modulo calls to the oracle. Hence, the problem is in
FP\P. This upper bound can be improved to Fi\ilfbg, since we can nondeterministically
compute a rational status set as follows.

(1) Compute the smallest sizeof a feasible status sét

(2) Nondeterministically generate, i.e., guess and check a feasible stafususdt that

|S| = s, and output it.

Step 1 amounts to an NP optimization problem whose output Iy (@|) bits: an
instance is given by (fixed)? andOg, and the solutions are the feasible status sets (which
are recognizable in polynomial time). The cost of any solufias its cardinality| S|, and
deciding whethes = opt(7) > k is in NP. Furthermore;, has in binary notation Qog|/|)
many bits. Step 2 is polynomial by Proposition 3.7. Hence, the overall algorithm proves
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Algorithm COMPUTE-RATIONAL-SS
Input: agent stat&@gs (agent progran®, ZC = 0);
Output: arational status set @, if one exists; “No”, otherwise.

Method

(1) SetS:=¢ andGA :=set of all ground action status atoms.

(2) Checkifs is a feasible status set; if true, then outSwnd halt.

(3) If GA=¢, then output and halt.

(4) Choose some atomh € GA and query the oracle whether a feasible status’set
exists such that € §’ C SU(GA\ {A4}); If the answer is “no”, ther$ := SU{A}.

(5) SetGA:=GA\ {A} and continue at step (2).

that computing a rational status set is in FMBg, if ZC = @. We obtain the following
result.

Theorem 3.13. LetP be afixed agent program, and supp@sk= . Given an agent state
Og, computing any rational status setBfon Og is in FNP//log and hard for bothHFNP
andFPYP.

I

Proof. The preceding discussion showed that the problem is in/iZMig. Hardness for
FNP follows from the proof of Theorem 3.8 (any rational status set is a feasible status set).

Thus, it remains to show hardness for"\ifPWe establish this by a reduction of
computing a minimal model of a propositional CNF formulai.e., find a modelM
(satisfying truth assignment to the variables), such that no mdekists withM’ c M,
where a model is identified with the set of variables which are true in ‘ PHRardness
of this problem, even if all clauses i#fhave at most three literals, follows easily from the
results in [4] (Lemma 4.7).

The reduction is an extension of the one in the proof of Theorem 3.11 (note the
observations on rational status sets of the progfathere, and that a rational status set
always exists).

We use six further 3-ary relatior@y, . . ., Cs for storing the clauses which are neither
positive nor negative, and add respective rules deriigg More precisely, if we set
Co = NEG andC7 = POS, then the relatiof; stores the clauses= L, v L» v L3 such
that the stringp(L1) p(L2) p(L3) of the polarities of the literals yieldsin binary, where
p(L) =1if L is positive, antp(L) =0, if L is negative; thus, e.g. the clausgev x5 Vv —x3
is stored as tupléxy, xs, x3) in the relationCg, sincep(x1) p(xs) p(—x3) = 110.

Then, the rational status set of the resulting progmon the databas® for ¢
correspond 1-1 to the minimal models @f if ¢ is satisfiable, and the sétfrom the
proof of Theorem 3.11 is the unique rational status sgtisf unsatisfiable. Moreover, from
any rational status set, the corresponding minimal madlet {x; | Pa(x;) € S} is easily
computed.
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Hence, the computation of a minimal modelofeduces to the computation of a rational
status set. This implies I*ﬁ'IB—hardness, and the theorem is provedi

An improvement of these bounds, in particular completeness for FIdg, seems to be
difficult to achieve. In fact, it can be shown that in cd€k= () computing a rational status
set is equivalent to computing a minimal model of a CNF formula under polynomial time
reductions, which is not known to be complete for Fi}Xfg, cf. [4].

Action reasoning becomes harder in the brave variant if we use rational status sets
instead of feasible status sets. The reason is that we have to check groundedness of a status
set, which is a source of complexity and adds another level in the polynomial hierarchy.
However, for the cautious variant, there is no complexity increase.

Theorem 3.14.Let P be a fixed agent program and suppdsé = @. Then, given an
agent stateDg and a ground actionw, deciding whethew € Do(S) holds for (i) every
(respectively(ii) som@ rational status sef of P on Og is co-NP-completgrespectively,
xP-complety.

Proof. For (i), observe that to disprovec Do(S) for every rational status sét we can
guess a feasible status sesuch thatx ¢ S and verify the guess in polynomial time by
Proposition 3.7. Hence, the problem is in co-NP. Hardness follows from the reduction
in the proof of Theorem 3.8; ther®o(B8) belongs to every rational status set of the
constructed prograrR, if and only if P has no feasible status set.

The membership part of (i) is easy: A guess for a rational statuss saich that
a € Do(S) can be verified by Proposition 3.7 and Theorem 3.11 in polynomial time with
the help of an NP oracle.

The hardness part is shown by a reduction from evaluating a quantified Boolean formula
(QBF) of the formVvX3Y.¢p, where¢ is in M3SAT form (see Appendix A). Telling
whether such a formulais false is a weII-knowﬁ—compIete problem [13]. The reduction
combines the reductions in the proofs of Theorems 3.8 and 3.11 in a suitable way.

We extend the databage from the proofs of Theorems 3.8 and 3.11, by adding two
further relations XVAR and YVAR for storing the variables &f and Y, respectively.
Construct a prograr®, using the actiona, g8, andy from the proof of Theorem 3.11 as
follows.

P8 «
FB <« =Py, —Pa(X1), ~Pa(X2), ~Pa(X3), POS X1, X2, X3)
FB < =Py, Pa(X1), Pa(X2), Pa(X3), NEG(X1, X2, X3)
Pa(X1) <« —Fa(X1), XVAR (X1)
Pa(Y1) <— Py, YVAR (Y1)
Doy <Py

Clearly, every feasible status setmust contain eithelPa (x) or Fa(x) (but not both), for
everyx € X. Moreover, ifPy € S, thenDoy € S and for ally € Y, we havePa(y) € S.
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Let x be a choice among the atoRa(x) andFa(x), for all x € X. Then,x naturally
represents a truth assignment Xoin which x is true if Pa(x) € x andx is false if
Fa(x) € x. Define

Sy =x U{PB,Py,Doy} U {Pa(y)|yeY].

It is easy to see thaf, is a feasible status set, for every chojceWe claim that every
rational status sef of P must be contained in some of tiig.

To see this, notice that no atoms with statdsor O can be inS, since there is no
possibility to derive such an atom. For the same reason, no d&dam&), Dog, Fy and
Fa(y) can be inS, for everyv € X UY andy € Y. Hence, by the observation & (x;)
andFu/(x;) from above,S must be a subset of sonsg.

It holds that thatS, is not grounded, if and only ®y can be removed from it, such that
Sy \ {Py, Doy} contains a feasible status set. This happens to be the case if the formula
3Y.¢[X = x] is true. Thus, it follows that some rational status sePofontainsDoy, if
and only if S, is a rational status set &f for somey, if and only if for somey the formula
¢[X = x]is unsatisfiable, if and only ¥X3Y.¢ is false. Since the datababefor VX3Y.¢
is constructible in polynomial time, this proves (ii) and the theorem.

Of course, for positive agent programs, action reasoning is easier. In fact, in this case
it is polynomial for both (i) and (ii) since a rational status set, if it exists, is unique and
computable in polynomial time.

3.2.3. Reasonable status sets
Ouir first result on reasonable status sets is positive: the recognition problem, even in the
general setting where we have negation and integrity constraints, is tractable.

Theorem 3.15.Let P be a fixed agent prograrfwhereZC is arbitrary). Then, given an
agent stateDs and a status sef, deciding whethes is a reasonable status set Bfon
Qg is possible in polynomial time.

Proof. Indeed, by our assumptions, the ground instancé® ofver the agent state is
constructible in polynomial time, and, moreover, the rededf (P, Os) is computable

in polynomial time. By Theorem 3.1, the unique rational statusssef red® (P, Os) (if

S’ exists) is computable in polynomial time, and it remains by [11, Theorem 5.3] and the
definition of a reasonable status set to check wheghers’. Overall, this is a polynomial
time algorithm. O

Computing a reasonable status set, however, is intractable in the general case, even in
the absence of integrity constraints. The precise complexity of this and the consistency
problem is given in the next result.

Theorem 3.16. Let P be a fixed agent prograifwhereZ(C is arbitrary). Then, given an
agent stateDs, deciding whethef has a reasonable status set 6l is NP-complete,
and computing some reasonable statusSsef P on Og is complete folFNP. Hardness
holds even iffC = #.
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Proof. The membership part follows from Theorem 3.15, since a guess foan be
verified in polynomial time.

The hardness part is shown by a slight modification of the reduction in the proof of
Theorem 3.8. We add the rule

Fa(X1) < —Pa(X1), VAR(X1)

to the programpP there. Then, the reasonable status sets of the resulting progftam
coincide with the rational status setsffThis proves the result. (Observe tifahas either
no reasonable status set, or a unique such status set; nokexthal is not contained in
any reasonable status setf since there is no possibility for derivirfgx (x;) by means
of the head of a program rule or by deontic closurer)

In the light of this result, it is clear that for nonpositive programs without integrity
constraints, action reasoning on the reasonable status sets is intractable. However,
compared to the rational status sets, the complexity of the brave variant is lower; this is
explained by the fact that an expensive groundedness test is dispensable for reasonable
status sets, which allows for an efficient recognition.

Theorem 3.17.Let P be a fixed agent prograrfwhere ZC is arbitrary). Then, given
an agent stateDs and a ground actionr, deciding whether € Do(S) holds for (i)
every (respectively(ii) som@ reasonable status se& of P on Og is co-NP-complete
(respectivelyNP-completg. Hardness holds evenidiC = @.

Proof. We can guess a reasonable statusSset P such thatx in Do(S) (respectively,
a ¢ —Do(«)) and verify the guess in polynomial time (Theorem 3.15). This proves the
membership part.

Hardness for (i) and (ii) can be easily shown by modifying the reduction in the proof of
Theorem 3.8. Add the rulBa(X1) <« —Pa(X1), VAR(X1) (cf. proof of Theorem 3.16)
and query for (i) abous; for (ii), add a further rulddo(8) < and query aboyt. 0O

3.2.4. Weak status sets

In Section 3.1.1, we have already considered the computation of weak rational
(respectively, weak reasonable) status sets for positive programs. In the presence of
negation, the concepts of weak rational status sets and weak reasonable status set do no
longer coincide. Also, their complexities are different in general. However, as we shall see,
they are the same if no integrity constraints are present.

Recall that compared to rational (respectively, reasonable) status sets, we have here to
deal with relativized action closu&Cl4, which results inA-feasibility, A-rationality etc.
The relativization tod does not affect the complexity.

Proposition 3.18. Let P be an agent progranfwhereZC is arbitrary). Then, given an
agent state0g, a status sefS, and a set of ground actions, testing A-feasibility of S
(respectivelyA-rationality, A-reasonability, has the same complexity as testing feasibility
(respectively, rationality, reasonability
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Algorithm CoMPUTE-WEAK-RSS
Input: agent stat&@gs (agent progran®, ZC = ¥)
Output: a weak rational status set Bfon Og, if one exists.

Method

(1) Compute the maximum sizeof a setA such thatP has anA-feasible status set
onQOg;

(2) Compute a set such thatA| = s and somed-feasible status set exists;

(3) Compute the smallest sizeof any A-feasible status se;

(4) Compute am -feasible status setsuch thatS| = s’, and outputS.

Since under our assumptions, a weak rational (respectively, weak reasonable) status set
exists if and only if anA-rational (respectivelyA-reasonable) status set exists for some
A, we easily obtain from Proposition 3.18 and the proofs of Theorems 3.8 and 3.16 the
following result.

Theorem 3.19.Let P be a fixed agent program, and suppd&e = @. Then, given an
agent stateg, deciding whethe® has a weak rationafrespectively, reasonablstatus
set onOg is NP-complete.

The computation of any weak rational status set can be accomplished using the algorithm
CoMPUTE-WEAK-RSS. The steps (1)—(4) can be done in polynomial time with the help of
an NP oracle. Therefore, in the absence of integrity constraints computing a weak rational
status set is in F¥. Notice that by [11, Proposition 5.10], which tells that atwfeasible
status set iA(S)-feasible, the steps (1) and (2) can be combined into computing a status
setS which is A(S)-feasible and such that (S)| is maximal.

For weak reasonable status sets, we can apply an adapted versiomptCe-WEAK -

RSS, in which A-feasible” is replaced by A-reasonable”. Notice that the consistency
problems for thed-feasible and thel-reasonable status sets have the same complexities.

Thus, for both kinds of status sets, the computation problem is polynomial if an
NP oracle may be consulted. We can improve on this upper bound and give an exact
characterization of the problem in terms of the complexity class/f7IMfg, which consists
of computation problems with an associated NP optimization problem (see Section 2.2 and
[4]).

In our case, this NP optimization problem consists of the computation of the numbers
ands’, respectively. It is possible to combine these two steps into a single NP optimization
problemIl, such that we can nondeterministically generate, given the optimal value for an
instance, a weak rational (respectively, reasonable) status set in polynomial time.

Theorem 3.20. Let? be a fixed agent program and suppose that= ¢. Then, computing
any weak rationalrespectively, weak reasonabktatus set of° on a given agent state
Og is complete foFNP// log.
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Proof. Let GAbe the set of all ground actions. Associate with every statu$ get tuple
ts = {|A(S)|, |IGA —|S|), if Sis A(S)-feasible, and, = (—1, 0) otherwise, and impose on
the tuplests the usual lexicographic order. Then, the following holdsS s a status set
such thatg is maximal, thers is a weak rational status set if and onlygf£ (—1, 0).

Given a maximal tuples # (—1, 0), it is clearly possible to generate a weak rational
status sef nondeterministically in polynomial time. Moreover, the tuplesan be easily
encoded by polynomial size numbelss), such that(ts) > z(zs) iff ts > tg; €.9., define
z({i, j)) = (|IGA + 1)i + j. Computing the maximum(zs) is an NP optimization problem
with O(log|I|) bits: Indeed, the cosi(zs) of a status sef is computable in polynomial
time, and deciding whethept(/) = maxg z(¢;) > k is in NP. Furthermore, from any(zs)
the tuplers is easily computed. Hence, it follows that computing a weak rational status set
is in FNF// log.

It remains to show hardness for this class. For this purpose, we reduce the computation
of a X-maximal model of a SAT instaneg[3,4] to this problem (see Appendix A).

The reduction is as follows. Without loss of generality, we assumegiliman M3SAT
instance. Indeed, we may split larger clauses by introducing new variables, and exchange
positive (respectively, negative) literals in clauses by using for each variablenew
variablex which is made equivalent tex. (All new variables do not belong to the s&t)

The reduction is similar to the one in the proof of Theorem 3.6. We use the action base
and database from there, and introduce a further relation XVAR for storing the variables in
X. Consider the following prograri:

O(set 1(X1)) <« XVAR(X1)
Do(set ¢(X1)) < —Do(set 1(X1)), VAR(X1)
Po <
Fa < Do(set o(X1)), Do(set ¢(X2)), Do(set o(X3)),
POS X1, X2, X3)
Fa < Do(set 1(X1)), Do(set 1(X2)), Do(set 1(X3)),
NEG(X1, X2, X3)

and impose on it the action constrai:
AC: {set 9(X1),set 1(X1)} < VAR(X1).

The first rule states that every variableXnshould be set to true. The second rule together
with the minimality of aA-rational status effects that every varial)as set either to true
or false, but not both. If the resulting truth assignment to the variables satisfiesp,
then no deontic inconsistency arises from the last three clauses, and we havataonal
status set.

Itis thus easily seen that the weak rational status$efsP on the input database for
an M3SAT instance correspond 1-1 to th®-maximal models of. Furthermore, from
every suchs, the X-part of the corresponding-maximal model is easily obtained. Since
D is efficiently constructed fronp in polynomial time, it follows that computing a weak
rational status set is hard for FINAog.
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Algorithm REC-WEAK-RATIONAL
Input: status sef on agent stat®gs (agent prograr®, ZC = )
Output: “Yes”, if S is a weak rational status setBfon Og, “No” otherwise.

Method

(1) Check whethes is A(S)-feasible;
(2) Check whether there is ne(S)-feasible status set such thats’ c S;
(3) Check whether there is iy such thatS” is A(S’)-feasible andA(S) C A(S").

The proof of hardness for computing a weak reasonable status set is similar; we
use an additional claudeo(set 1(X1)) < —Do(set ¢(X1)), VAR(X1). This proves the
result. o

As in the case of positive programs, recognition of a weak rational statusisatot
harder than computation, even if programs are nonpositive. The recognition problem is
solved by algorithm Rc-WEAK-RATIONAL . The correctness of this algorithm follows
from the definition of weak rational status set and [11, Proposition 5.10]. However, it is
not clear how to implement it in polynomial time. The next theorem establishes that such
an implementation is unlikely to exist, nor that any polynomial time algorithm for this
problem is known.

Theorem 3.21. Let P be a fixed agent program and suppose thét= @. Then, given an
agent state)s and a status sef, deciding whethes is a weak rational status set & on
Og is co-NP-complete.

Proof. Algorithm REC-WEAK-RATIONAL can be easily rewritten as a nondeterministic
polynomial time algorithm for refuting thaf is a weak rational status set. Hardness is
immediate from the proof of Theorem 3.110

A weak reasonable status set can be recognized similar as a weak rational status set.
This is accomplished by algorithmeR-WEAK-REASONABLE, whose correctness follows
from [11, Proposition 5.10] and the fact thatreasonable status sets atdeasible. We
obtain the following result.

Theorem 3.22. Let P be a fixed agent prograifwhereZ(C is arbitrary). Then, given an
agent stateDs and a status sef, deciding whethes is a weak reasonable status set is
co-NP-complete. Hardness holds evedd = .

Proof. Clearly, algorithm Rc-WEAK-REASONABLE can be turned into a NP-algorithm
for showing thatS is not a weak rational status set. Hence, the problem is in co-NP.
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Algorithm REC-WEAK-REASONABLE
Input: agent stat&®g, status sef (agent progran®)
Output: “Yes”, if S is a weak reasonable status sef9f'No” otherwise.

Method

(1) Check whethef is A(S)-reasonable, and output “No” if not;
(2) Check whether there is ) such thatS’ is A(S")-reasonable and (S§) C A(S").

The hardness part follows by an easy modification to the proof of Theorem 3.8. Add as
in the proof of Theorem 3.16 the rule

Foa(X1) < —Pa(X1), VAR(X1),

and addOg <. Furthermore, add the atobBog in the bodies of all rules with hedgs.
Assume without loss of generality that the truth assignmeRtitowhich every variable

x; is falsedoes not satisfy. Then,S = {F(x;) | x; € X} U {PB, OB} is A(S)-reasonable.

It is easily seen thaf is a weak reasonable status set, if and only i not satisfied

by any assignment in which some variableis true. (If such an assignment exists, then

the obligationOg8, which is violated inS, can be obeyed, and thus a reasonable status set

exists.) O

As for action reasoning, the complexity of action reasoning is partially affected when
we switch from rational (respectively, reasonable) status sets to weak versions.

The complexity of brave action reasoning for the weak and the ordinary version of
rational status sets is the same if integrity constraints are absent. In both cases, the
straightforward Guess-and-Check algorithm yields the same upper bmg’l)da(nd the
hardness result for brave rational action reasoning has been derived without involving
obligations (proof of Theorem 3.14).

For the cautious variant, we find a complexity increase, even if the complexity of
the recognition problem has not changed. The reason is that the beneficial monotonicity
property of finding just some feasible status set not contaibio@x), as a proof that
Do(«) does not occur in all rational status sets, can (in any suitable adaptation) no longer
be exploited.

Theorem 3.23.Let P be a fixed agent program, and suppds€ = ¢. Then, given
an agent stateDs and a ground actiorw, deciding whetherx € Do(S) holds for (i)
every (respectively,(ii) som@ weak rational status sef of P on Og is Hg’-complete
(respectivelyzzp-complete.

Proof. The proof of (ii) is in the discussion above.

For the membership part of (i), observe that a weak rational statu§ sath that
a ¢ Do(S) can be guessed and checked by Theorem 3.22 with an NP oracle in polynomial
time.
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For the hardness part of (i), we adapt the construction in the proof of Theorem 3.20 for
a reduction from QBF formulagX3Y.¢, whereg is in M3SAT form.

We use the action baséB from there and extend it with another actigrof the same
type asa. Moreover, we use the relations POS and NEG for storing the claugggobf
proof of Theorem 3.6), and replace VAR by the relations XVAR and YVAR for storing the
variables inX andY, respectively.

Then, we set up the following program:

O(set ¢(X1)) < XVAR (X1)
O(set 1(X1)) < XVAR(X1)
Do(set ¢(Y1)) < —Do(set 1(Y1)), YVAR (Y1)
FB < Do(set o(X1)), Do(set o(X2)), Do(set o(X3)),
POS X1, X2, X3)
FB < Do(set 1(X1)), Do(set 1(X2)), Do(set 1(X3)),
NEG(X1, X2, X3)
O(a) «
P(B) < Do(x)
Furthermore, we introduce an action constraint:
AC: {set o(X1),set 1(X1)} <= XVAR (X1).

In the above program, the agent is informally obliged by the first two clauses to set every
variablex € X to both true and false, which is prohibited ByC. By the maximality of
weak rational status set, the agent can safely follow one of the two obligations and assign
each variable; in X a truth value, which creates an exponential number of possibilities.
The subsequent clause, together with the minimality property of-aational set, forces
she to assign each variable ¥ha truth value. The next two clauses check whether the
formula¢ is violated. If so, ther-8 is derived. In this case, the agent cannot take action
a as obliged from the rul®(«) «; hence, she must violate this obligation in that case.
Thus, if for a choicer fromO(set o(x;)), O(set 1(x;)) forall x; € X (representing a truth
assignment t), the formulag[ X = x] is unsatisfiable (i.e¥X3Y.¢ is false), then there
exists a weak rational status sesuch thatx ¢ Do(S). Conversely, ifx ¢ Do(S) for such
a status sef, then a truth assignmentto X (given byS) exists such thatY.—¢[X = x]
is true, i.e.yX3Y.¢ is false.

Consequentlyy € Do(S) holds for every weak rational status set®bn the database
D for vX3Y.¢ if and only if VX3Y.¢ is true. This provesl‘lg’-hardness ofi) and the
result. o

For action reasoning with weak reasonable status sets, we obtain similar complexity
results.

Theorem 3.24.Let P be a fixed agent prograrfwhere ZC is arbitrary). Then, given
an agent stateDs and a ground actionr, deciding whether € Do(S) holds for (i)
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every(respectively(ii) som¢ weak reasonable status sgtof P on Og is Hg’-complete
(respectivelyzzP -completg. Hardness holds evendiC = @.

Proof. A weak reasonable status sesuch thatr ¢ Do(S) (respectivelyx € Do(S)) can
be guessed and checked in polynomial time with an NP oracle by Theorem 3.22. This
proves membership.

Hardness follows for both problems by a slight extension of the construction in the proof
of Theorem 3.23. Add to the prografthere the clause

Do(set 1(Y1)) < —Do(set o(Y1)), YVAR (Y1)

Then, the weak reasonable status sets of the resulting prd@rawincide with the weak
rational status sets @®’, which coincide with the weak rational status setsPofThis
proves the result for (i). For (ii), add the ruloy < —Dox and query about. 0O

4. Complexity results for the case with integrity constraints

So far, we have focused in our complexity analysis mainly on agent programs where
no integrity constraints on the agent state were present in the background. We say mainly,
since for positive programs and reasonable status sets, most results that have been derived
in Section 3 do allow for integrity constraints, and fortunately establish tractability for a
number of important computation problems.

However, in the presence of negation, we have mostly excluded integrity constraints.
The reason is that in some cases, the presence or absence of integrity constraints makes
a difference to the intrinsic complexity of a problem, while in other cases, there is no
difference. A systematic treatment of this issue is suggestive; therefore, we analyze in
this section the effects of integrity constraints on the complexity of agent programs. An
overview of the effects and a discussion is given in Section 2.3.

It appears that all problems whose complexities increase in the presence of integrity
constraints do so in a very plain setting. Already for a software pacage7s, Fs)
which is a simple relational databa®ein which tuples may be inserted or deleted from
tables, we face these complexity increases if the integrity constraints inftlndgonal
dependencie@-Ds for short) on the tables. Notice that FDs are one of the most basic and
important type of dependencies in databases f28]l hardness results involving integrity
constraints that we derive in this section hold in this setting.

Throughout this section, we adopt in the proofs of hardness rega#gly-concurrent
executiorfrom Part | of this series of papers as the polynomial concurrent execution policy.
That is, first all objects which have to be deleted according to the deletBskts of the
taken actions are removed from the current state, and then the objects which have to be
added according to the add séidd(«) are included in the state.

3 A functional dependency is a constraift: X — A on a relationr, where A is a column ofr and
X ={X1,..., X} is a subset of columns of; it holds, if any two tuples in- which agree on the columns
in X agree also oM. In our framework,C can be expressed as an integrity constraint, e.g., as follows:
in (T1,db :select (r)&in (T2,db:select (r))&T1.X1 =T2.X1)& - &(T1.Xn =T2.Xpn) = T1LA=
T2.A
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4.1. Feasible status sets

As shown in the previous section, finding a rational or feasible status set of a positive
agent program is polynomial, if no integrity constraints are present. While adding integrity
constraints preserves polynomial time computability of rational status sets, it leads to
intractability for feasible status sets.

Theorem 4.1. Let P be a fixed agent prograrfwhereZC is arbitrary). Then, deciding
whetherP has a feasible status set on a given agent state is NP-complete, and
computing an arbitrary feasible status setRdIP-complete. Hardness holds evenAf
is positive.

Proof. The problem is in NP, since a feasible statusS$ean be guessed and checked in
polynomial time, according to our assumptions (cf. Proposition 3.7).

We show the hardness part for the particular restriction by a reduction from the set
splitting problem [13]. Given a collectio§ = {1, ..., Sy} of nonempty subsets; of a
finite setU, decide whether there exists a partitioninggoloring) (C1, C2) of U such that
everyS; €S, i =1,...,m, meets each af; andC> in at least one element, i.eS; N C1|,
|S; N C2| > 1 holds.

We construct fromS an instance of the feasible status set test as follows. The
databaseD has four relations: COL{Set El), SPLIT(EI, Color), A1(SetEl, Tag and
A2(Set El, Tag). Intuitively, the collectionS is stored in COLL by tuplesi, ¢) for every
e € S; andS; € S; the table SPLIT is used for placing each elemeatl in C1 or C> (i.e.,
coloring it), which is indicated by tuple&, 1) and(ez, 2); the tables A1 and A2 hold the
occurrences of elements in sets, where each set has some tag.

The action basedB contains actionsassign (S, X,Y) and trigger (X,Y) as
follows:

assign :  Pre(assign (S, X,Y))=COLL(S, X),
Add(assign (S, X,Y)) ={SPLIT(X,Y)},
Del(assign (S, X,Y)) ={Al(S,Z,Y), A2(S,Z,Y)};
trigger : Pre(trigger (X,Y))=true,
Addtrigger (X,Y)) ={Al(X,Y,0), A2(X,Y,0)},
Del(trigger (X,Y))=4.
The progranP has the single rule
Do(trigger (X,Y)) < COLL(X,Y)

Let D be the database instance such that COLL contains the coll&&ti®RLIT is empty,
and Al (respectively, A2) holds for each tuglee) in COLL a tuple(s, e, 1) (respectively,
(s, e, 2)). Moreover, suppose that the integrity constraifitson D consist of the following
FDs: the FDEI — Color on SPLIT, and the Fi3et— Tagon Al and A2.
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Intuitively, the program forces the agent to add for every occurrence of an element in a
setS; € S, represented by a tupl@ ¢) in COLL, a tuple(, ¢, 0) to both A1 and A2. This
triggers a violation of the FI3et— Tagon Al and A2. This violation must be cured by
executingassign (i, e1, 1) andassign (i, ez, 2) actions for some, e2 which occur in
the setS;; by the FDEI — Color on SPLIT,e; must be different frone,. (Notice that,
under weakly-current execution, actioassign (i, e, 0) are useless, since deletions are
performed before additions, and this would not cure any violation.)

Hence, it is easy to see th@ has a feasible status set @n if and only if S is
colorable by some colorin@C1, C2). Since a coloringCi, C2) is easily constructed from
any feasible status sét the result follows. O

This result is quite negative, since it tells that already for very simple programs and
elementary integrity constraints, computing a feasible set is a hard problem. The reason is
that the agent prograf we have constructed in the reduction does not say anything about
how and when to use thessign action, which does not show up in the program. If we
had rules which tell the agent under which conditions a parti@gaign action should
be taken or must not be taken, such a situation would not arise. However, since the program
is under-constrained in that respect, an exponentiality of possibilities exists which must be
explored by the agent.

The previous theorem shows that we benefit from using rational status sets instead of
feasible status sets on positive programs in different respects. First, on the semantical side,
we have a unique rational status set (if one exists) compared to a possible exponential
number of feasible status sets, and second, on the computational side, we can compute
the unigue rational status set on an agent state in polynomial time, compared to the
intractability of computing any feasible status set. Unfortunately, in the presence of
negation, like on the semantical side, also on the computational side the appealing
properties of rational status sets vanish.

4.2. Rational status sets

The complexity of recognizing a rational status set is not affected by the presence
of integrity constraints, since they can be evaluated in polynomial time. The result of
Corollary 3.12 thus easily generalizes to this case.

Theorem 4.2. Let P be a fixed agent prograrfwhereZ(C is arbitrary). Then, given an
agent stateé)s and a status sef, deciding whethes is a rational status set g onOg,
is co-NR-complete. Hardness holds eved @ = @.

On the other hand, computing a rational status set becomes harder if integrity constraints
are present, and resides at the second level of the polynomial hierarchy. The reason is that
due to the integrity constrainf&C, an arbitrary feasible se&& may no longer necessarily
containa rational status set, and thus picking a feasible status set having smallest size does
not necessarily give us a rational status set. In fact, our next result shows that deciding
containment of a rational status set is intractable.
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Theorem 4.3. Let P be a fixed agent prograrfwhereZ(C is arbitrary). Then, given an
agent state)g and a feasible status sétfor P on Og, deciding whethef contains some
rational status sefrespectivelyS is grounded and thus rationgis co-NP-hard, even if
ZC contains a single FD.

Proof. We prove this by a reduction from the M3DNF problem (see Appendix B).

The databasé contains three relations: PO&, Vo, V3) and NEQVy, V>, V3) for
storing the positive and the negative disjunéts of an M3DNF instancep = \/; D;,
respectively, and a relation VANar, Valug Tag), which contains for each pair of a
variablex € X and a value € {0, 1} precisely one tuple. Thatis, the Rr, Value— Tag
is a constraint on VAR.

The initial databasé contains the following tuples. For each positive disjubgt=
Xiy AXip AXig from ¢, the tuple(x;,, x;,, xi3) is in POS, and for each negative disjuligt=
—xi; A —xg, A T, the tuple(x;,, x;,, xi3) is in NEG. Moreover, for each propositional
variablesy; € X, the tupleqx;, 0, 0) and(x;, 1, 0) are in VAR.

The action base contains the three actialhs, set (X, Y) andaddto _var (X,Y, Z),
which have empty preconditions and the following Add- and Del-sets:

all Add@all ) =Del@ll )=4¢;
set (X,7Y): Add(set (X,Y)) =0,
Del(set (X,Y)) ={VAR(X,7Y,0)};
addto var (X,Y,Z): Add@addto var (X,Y,Z)) ={VAR(X,Y, Z)},
Del(X,Y, Z)=0.
The progranf is as follows:

Do(set (X1, Y1)) < Do(all ),VAR(Xy, Y1, Z1)
Do(all ) < Do(set (X1,0)), Do(set (X1, 1)), VAR(X1, Y1, Z1)
Do(all ) <« —Do(set (X1, 0)), —Do(set (X1, 1)), VAR(X1, Y1, Z1)
Do(all ) < Do(set (X, 0)), Do(set (Y, 0)), Do(set (Z,0)), POSX,Y, Z)
Do(all ) < Do(set (X, 1)), Do(set (Y, 1)), Do(set (Z,1)),NEG(X,Y, Z)
Do(addto _var (X1, Y1,1)) < VAR(X1, Y1, Z1)

Let S be the smallest status setvhich is deontically and action closed such that
Do(S) ={all }uU{set (x;,v),addto var (x;,v,1)|x; € X,v € {0, 1}}

As can be easily checkefl,is a feasible status set f on the initial databasp.

We note that any status s€tsuch thatS’ C S and the condition&S1)—(S53) of a feasible
status set hold must not contddo(all ), while it must contain exactly one of the atoms
Do(set (x;,0)), Do(set (x;, 1)), for everyx; € X. However, any sucl§’ cannot satisfy
the FDVar, Value— Tagon VAR, since either the tuplgs;, 1, 0), (x;, 1, 1) are in VAR,
or the tuplegx;, 0, 0), (x;, 0, 1) are in VAR, which means that the Par, Value— Tagis
violated on VAR.
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It holds thatS contains some rational status set (respectively,fhatgrounded), if and
only if formula¢ is a tautology. The result follows.O

A straightforward algorithm for computing a rational status set is constructing a feasible
status set and checking whether it is grounded. In the light of the previous result, it
is unclear how this is possible in polynomial time even if we have an NP oracle. The
complexity of computing a rational status set, stated in the next result, is at the second
level of the polynomial hierarchy.

Theorem 4.4, Let P be a fixed agent prograrfwhereZ(C is arbitrary). Then, given an
agent stateDg, deciding whethe® has a rational status set 08 is Zg-complete, and
computing any rational status setﬁig’ -complete.

Proof. The problems are iEZP and I'—EZP , respectively, since a rational status Setan be
guessed and verified in polynomial time with a call to a NP oracle (cf. Theorem 4.2).

To show that the problems are hard fﬁé’ and I'—EE, respectively, we extend the
construction in the proof of Theorem 4.3, such that we encode the problem of computing,
given a QBFIYVX.¢ whereg is in M3DNF (see Appendix A), an assignmentto the
Y-variables such thatX.¢[Y = x] is true. This problem is EZP-compIete.

We use an additional relation YVAR for storing tliievariables, and add the rule

Do(set (Y1,1)) < —Do(set (Y1, 0)), YVAR (Y1)

This rule enforces a choice froBo(set (y;, 0)) andDo(set (y;, 1)), forall y; € Y; each
such choicey (representing a truth assignmentithy extended by the s&tfrom the proof
of Theorem 4.3, generates a candidgidor a rational status set.

It holds that every rational status set@fn D must be of the forn§, , for some choice
x; moreover, the rational status sets®fon D correspond to the set$, such that the
formulavX.¢[Y = x] is true. Therefore, deciding whethBrhas some rational status set
onDis Eg—hard, and computing any rational status set is hard E;f.FI’his proves the
result. O

For action reasoning, we obtain from the preceding theorem easily the following result.

Theorem 4.5. Let P be a fixed agent prograrfwhereZ(C is arbitrary). Then, given an
agent stateDs and a ground actiony, deciding whethew € Do(S) holds for (i) every
(respectively(ii) som@ rational status sef of P on Og is (i) Hg’-complete(respectively,
(i) =5-complety.

Proof. Membership is immediate from Theorem 4.2: A guess for a rational status set
S such thate ¢ Do(S) (respectively,a € Do(S)) can be verified with a NP oracle in
polynomial time.

For the hardness parts, observe @t € Do(S) holds for every rational status set of
the progranf in the proof of Theorem 4.4; thus, by querying aballit , hardness for (i)
holds. The hardness part of (ii) follows from Theorem 3.14
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4.3. Reasonable status sets

For reasonable status sets, we find in all cases better computational properties than for
rational status sets. This is explained by the fact that the criterion for a reasonable status
setis much stronger than the one for a rational status set. Indeed, this criterion is so strong,
such that the presence of integrity constraints has no effect on tractability vs intractability
issue of recognizing a reasonable status set. In both cases, a reasonable status set can be
recognized in polynomial time (Theorem 3.15). Therefore, the same complexity results
hold for programs with and without integrity constraints (see Section 3.2.3).

4.4. Weak status sets

The presence of integrity constraints has major effects on the complexity of weak
status sets for both positive and arbitrary programs. We thus analyze these two classes
of programs in separate sections.

4.4.1. Positive programs

If we impose integrity constraints on the agent state, then recognizing a weak rational
status set is no longer polynomial (unless-RIP). The intuitive reason is that due to the
integrity constraints, the maximality of afrrational status set (and thus weak rationality)
is not guaranteed if no further single obligation can be obeyeft” K ¢, then all sets of
obligations which have not been respected are relevant, and we end up with an exponential
search space in general.

Theorem 4.6. Let P be a fixed positive agent prografwhereZC is arbitrary). Then,
given an agent stat®gs and a status sef, deciding whethes is a weak rational status
set of P on Og is co-NP-complete.

Proof. To show thatS is not a weak rational status set, we can proceed by [11,
Theorem 5.9, Proposition 5.10] as follows. First check whethé& not A(S)-rational;

if false, i.e., S is A(S)-rational, then guess some status Setsuch thatS’ is A(S’)-
rational andA(S’) D A(S). Since checkingA-rationality is polynomial ifP is positive
(we need to check whethér= Ifp(Tp o4 4) andS is A-feasible, which is polynomial by
Propositions 3.18 and 3.7), membership in co-NP follows.

The hardness part is shown by a reduction from problem M3SAT, for which we adapt
the one in the proof of Theorem 3.6. As there, the database has relations POS (positive
clauses), NEG (negative clauses), and VAR (variables) for storing an M3SAT ingtance
on variablesX. We introduce a further relation AUXar, Val), on which we impose the
FD Var — Val.

The initial databas® storesp in POS NEG, and VAR as usual, and AUX contains all
tuples(x;, 0) for x; € X. Clearly, D satisfies the FD/ar — Val on AUX.

The action baselB is modified by setting

Add(set ,(X)) = {AUX (7, 1)} andDel(set ,(X)) = {AUX(X,0)}, v e {0,1}.

The modified prograrf® is as follows.
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O(set 9(X1)) <« VAR(X1)
O(set 1(X1)) < VAR(X1)
Fa < Do(set ¢(X1)), Do(set o(X2)), Do(set o(X3)),
POS X1, X2, X3)
Fa < Do(set 1(X1)), Do(set 1(X2)), Do(set 1(X3)),
NEG(X1, X2, X3)

Po «
The action constraintdC contain again the following constraint:
AC: {set o(X1),set 1(X1)} < VAR(X1)
Itis not hard to see that
§={O(set o(x;)), O(set 1(x;)), P(set o(xi)), P(set 1(x;)) | xi € X} U {Pa}

is an{a}-rational status set @ on D, and hence by [11, Proposition 5.18(5)-rational.
Moreover, it holds thaF is a weak rational status set, if and only if there exists no status
setS’ such thatS’ is A(S)-rational andA(S’) D A(S). Observe that any suc§i must
contain eithemDo(set o(x;)) or Do(set 1(x;)), for everyx; € X, and thus represents a
truth assignment t&. Indeed, takingset o(x;) or set 1(x;) for any x; adds the tuples
(xj,1) to AUX, for all variablesx; € X; for preservation of the FVar — Val on AUX,
the tuple(x;, 0) must then be removed from AUX, which requests taking eitfeero(x ;)
orset 1(x;). Onthe other hand, for any truth assignmgrib X which satisfies, a status
S’ can be obtained such thsitis A(S")-rational andA(S") D A(S).

Thus, it holds thaF is a weak rational status set if and onlypiis satisfiable, i.e., a No-
instance. Since the datababBeis easily constructed from, this proves co-NP-hardness
and the result. O

As we have seen in Section 3.1.1, a weak rational (respectively, reasonable) status set
of a fixed positive agent program can be computed in polynomial time using the algorithm
ComMPUTE-WEAK-RSS. Unfortunately, in the presence of integrity constraints a similar
polynomial algorithm is unlikely to exist. This is a consequence of the next result.

Theorem 4.7. Let P be a fixed positive agent prografwhereZC is arbitrary). Given an
agent state)g, deciding whetheP has a weak rational status set ¥ is NP-complete.

Proof. Under our assumptions, a weak rational status set exists if and only if 4deme
rational status set exists. By [11, Theorem 5.8], for deciding existence dfi@tional
status set we can guess a dedf ground actions, compute = Ifp(Tp o4 4) and check
whetherS is A-feasible in polynomial time. Consequently, by Propositions 3.18 and 3.7
the problem s in NP.

NP-hardness is shown by a slight extension to the reduction in the proof of Theorem 4.6.
Without loss of generality, the M3SAT formulithere is only satisfiable if a designated
variablex is set to true. Thus, if we add the rulio(set 1(x1)) « to the prograniP,
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Algorithm ComPUTE-PIC-WEAK-RSS
Input: agent stat&s (fixed positive agent prografR; ZC is arbitrary)
Output: a weak rational status set Bfon Og, if one exists; “No”, otherwise.

Method

(1) SetApew:=¥, GA:=set of all ground actions.

(2) Query the oracle whether someD Anpew exists such thas’ = Ifp(Tp o 4) is
A(S)-feasible.

(3) If the answer is “yes”, then lef := Ifp(Tp, 05 ane,) @Nd S€tAgid := A(S),
GA:=GA\ Ag|g; otherwise, ifAnew= ¥, then output “No” and halt.

(4) If GA= (@, then outputS and halt.

(5) Choose soma € GA, and setApew:= Aoig U {a}, GA:= GA\ {a}; continue at
step (2).

then the resulting program has some weak rational status set if and ¢hiy ifot weak
rational, if and only if¢ is satisfiable. O

Computing a weak rational status is possible using the algorittomr@TE-PIC-
WEAK-RSS, which makes use of an oracle. This algorithm computes the last element
Ay in a maximal chaindg =@ C A1 C --- C A, of A;-rational status set, which is a
weak rational status set. Its correctness follows from the characterization of weak rational
status sets from Part | of this series of papers [11, Section 5.4.1]. The algorithm runs
in polynomial time modulo calls to the oracle. The oracle queries are solvable in NP;
therefore, computing a weak rational status set is iNFEF®bserve that in casgC = ¢,
the NP-oracle can be replaced by a polynomial time algorithm, such that we obtain an
overall polynomial algorithm similar to @UPUTE-WEAK-RSS.

Like in other cases, the BB upper bound for the computation problem can be lowered
to FNP//log by exploiting nondeterminism.

Theorem 4.8. Let P be a fixed positive agent prografwhereZC is arbitrary). Then,
given an agent stat® s, computing a weak rational status set®bn Og is in FNP//log
and hard for bottFNP and FP)".

Proof. Aweak rational status set can be computed as follows. First, compute the maximum
size s = |A(S)| over all status sets such thatS is A(S)-rational; then, generate
nondeterministically a status s&twhich is A(S)-rational and such thdt(S)| = s, and
output this set (so one exists).

The correctness of this algorithm follows from [11, Proposition 5.10]. Since checking
whether § is A(S)-rational is polynomial if P is positive (Proposition 3.18 and
Corollary 3.2), step 1 of the algorithm amounts to an NP-optimization problem whose
output has @og|/|) bits. As a consequence, for positif&computing a weak rational
status set is in FNF log.
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Hardness for FNP follows from the proof of Theorem 4.7: The weak rational status sets
of the program from the proof of this theorem correspond to the satisfying assignments of
an M3SAT instance, whose computation is easily seen to be FNP-complete.

For the proof of Fﬁ’P-hardness, we use the fact that given instarfges ., I, of any
arbitrary fixed co-NP-complete problei, computing the binary strin® = by ---b,
whereb; = 1if I; is a Yes-instance dfl andb; = 0 otherwise, is FFP-hard (this is easily
seen; cf. also [4, Lemma 4.7]).

We choose for this probleii the recognition of a weak rational status Setf a fixed
positive agent prograr®, which is co-NP-complete by Theorem 4.6. We assumefhiat
the program from the proof of this result, and tsais the status set constructed over the
databaseD constructed for a formula. We observe thaP has weak rational status set
on P, and thatS is the unique weak rational status set, iff the formgiles unsatisfiable.
Thus, from any arbitrary weak rational status $eof P over D, it is immediate whether
S is weak rational or not. Consequently, computing weak rational statusssets, S, of
P over given databasd3,, ..., D, is FF’H\‘P—hard.

It remains to show that the computation%if . . ., S, can be reduced to the computation
of a single weak rational status sebf a fixed progran?’ over a databas®’. For thus
purpose, we merge the databaBe#nto a single database. This is accomplished by tagging
each tuple inD; with i, i.e., we add a new attributé in each relation, and each tuple
from D; is assigned valugé on A. FurthermoreA is added on the left hand side of each
functional dependency, an additional argumErfor the tag is introduced in each action,
and all literals in a rule have the same fresh varidbie the tag position.

The resulting progran®’ has some weak rational status sebn the unionD’ of
the taggedD;’s. Moreover, from any sucl§ we can easily extract weak rational status
setsS1,...,S, of P on Dy,..., D, in polynomial time. SinceD’ is polynomial time
constructible fromDy, ..., D, this proves FFP—hardness. 0

For action reasoning, we obtain that integrity constraints cause a complexity increase for
the cautious variant. The reason is that, as opposed to the caseAgheng, it is no longer
possible to generate each weak rational status set in nondeterministic polynomial time. For
the brave variant, due to monotonicity of positive programs we actually need to consider
only A-rational status set for answering the question, which means that maximality of a
weak rational status set does not play a role.

Theorem 4.9. Let P be a fixed positive agent prografwhereZC is arbitrary). Then,
given an agent stat®g and a ground actiorr, deciding whethew € Do(S) holds for
(i) every(respectively(ii) somé weak rational status sef of P on Og is Hg-complete
(respectivelyNP-completg.

Proof. For the membership part of (i), observe that siftds positive, ifS is anA-rational
status set, then any’-rational status sef’ such thatA’ O A satisfiesS’ O §. Therefore,
for answering the query it suffices to guess a statusSs&tich thatS is A(S)-rational
and A € Do(S). By Proposition 3.18 and Corollary 3.2, the guessSaran be verified in
polynomial time.
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The membership part of (i) is immediate from Theorem 4.6: A guess for a weak rational
status sef such thatA ¢ Do(S) can be verified with an NP oracle in polynomial time.

Hardness for (i) follows from Theorem 3.6. The hardness part for (ii) can be shown by
a suitable extension of the construction in the proof of Theorem 4.6, such that validity of a
QBFVY3X. ¢ is decided, where is in M3SAT form.

We may assume that no clausegohas all its variables fronY (otherwise VY3X.¢
is trivially false), and thatp can only be satisfied if a particular variablee X is set to
true. We introduce besides POSEG, VAR (which storesXx U Y), and AUX (which must
satisfy the FDVar — Val) new relations XVAR and YVAR for storing the variables i
andY, respectively.

The actionsset ¢(X), set 1(X), and « are modified such that they have empty
preconditions and empty Add- and Del-sets. Furthermore, we introduce two new actions
upd (X, X") andadd () as follows:

upd: Pre(upd (X, X')) = true,
Add(upd (X, X)) = {AUX (X', 1)},
Del(upd (X, X)) = {AUX (X, 0)}:

add: Pre(add (Y)) = true,
Addadd (Y)) = {AUX (Y, 1)},
Del(add (Y)) = 4.

Finally, we add to the prograr® in the proof of Theorem 4.6 the following rules (let
v e{0,1}):

Do(add (Y1)) < YVAR (Y1)
Do(upd (Y1, Y1)) < Do(set ,(Y1)), YVAR (Y1)
Do(upd (X1, X2)) < Do(set ,(X1)), XVAR (X1), XVAR (X2)

These modifications have the following effect. The first rule adds for eaely the tuple
(yi, 1) to AUX and thus causes a violation of the RMar — Val. This must be cured by
executingupd (y;, y;), which requests tha; is assigned a value (i.e., eithset o(y;)
or set 1(y;) is taken). Assigning a truth value to some variables X (i.e., executing
set o(x;) or set 1(x;)) adds a tuple(x;, 1) to AUX for eachx; € X, which causes a
violation of the FDVar — Tagfor x; # x; (observe thatx;, 0) is removed). Each such
violation must be cured by assigning a truth value.

Thus, every weak rational status set of the constructed prografm contains either
Do(set o(y;)) orDo(set 1(y;)), for eachy; € Y (but not both), i.e., embodies a choige

On the other hand, for each such chajcéepresenting a truth assignmenttpa weak
rational status set exists: If all obligatio@gset o(x;)), O(set 1(x;)) wherex; € X are
violated, then by the assumption that no claus¢ hras all its variables froni, no clause
with Fy in the head fires. Hence, we obtain a respectivetional status sef, on D.
Since the program is positive, it follows that a weak rational status’sets, exists. It
holds thatS, is weak rational if and only i$[Y = x] is unsatisfiable. Observe that, by our
assumption on1, every weak rationa$” such thats’ O S, containsDo(set 1(x1)).
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It follows that set 1(x1) € Do(S) holds for every weak rational status setof the
program onD, if and only if the formulav¥Y3X.¢ is true. This proves the hardness part for

(). O

4.4.2. Programs with negation

Let us now consider programs with negation. In this case, weak rational and weak
reasonable status sets are no longer identical in all cases.

As for weak reasonable status sets, we find that integrity constraints do not add on
the complexity. This has already been established for the recognition problem and action
reasoning in Theorems 3.22 and 3.24, respectively. It remains to consider the problems of
consistency and computation.

Theorem 4.10. Let P be a fixed agent prografhereZ( is arbitrary). Then, given agent
stateOgs, deciding whetheP has a weak reasonable status set®gis NP-complete, and
computing any weak reasonable status sé? @i Og is complete foFNP// log.

Proof. By Theorems 3.19 and 3.20, it remains to prove the membership part. Under the
assumptions, a weak reasonable status exists if and only if someasonable status
set S exists. Propositions 3.18 and 3.7 imply that decidig)-reasonability ofS is
polynomial. Therefore, a guess for can be verified in polynomial time. Hence, the
consistency problem is in NP.

We can obtain a weak reasonable status set by first computing the maximmowen all
|A(S)| such thatS is A(S)-reasonable, and then generating nondeterministically/(&h-
reasonable status s&isuch that A(S)| = s. Computings amounts to an NP optimization
problem with Qlog|7]) bits; hence, the problemis in FMPlog. O

The existence problem of aA-rational status set has the same complexity as the
existence problem of a rational status set (Proposition 3.18). Since a weak rational status
set exists if and only if ar -rational status set exists for soraewe obtain from the proof
of Theorem 4.4 (which does not involve obligations) the following result.

Theorem 4.11. Let P be a fixed agent prograrfwhereZC is arbitrary). Then, given an
agent state)g, deciding whetheP has a weak rational status set d¥s is EZP—compIete.

For the computation of a weak rational status set, we can use a modified version of the
algorithm @MPUTE-WEAK-RSS in Section 3.2.4: Replace in id*feasible” globally
through “A-rational”. This increases the complexity, as we have to replace the NP oracle by
a 25’ oracle. Overall, we now have a polynomial time computation which u§é§sc&acle;

consequently, the problem belongs to®EPThis can be complemented by a probabilistic
upper bound.

Theorem 4.12. Let P be a fixed agent progravhereZ(C is arbitrary). Then, computmg
any weak rational status set &f on a given agent stat®g is in FP™ NRP- FP and

hard for bothF=f andFP, =
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Proof. Membership in FB> was discussed above. Membership in -FFFPfE can be
established using results from [4]. In fact, the computation of a weak rational status set
in the general case can be easily expressed as a maximization problem (MAXP) as defined
in [4], sgch that the instance-solution relation is co-NP-decidable; for such problems,

RP. FPf2 is an upper bound [4].
Hardness for E:S’ is immediate from the proof of Theorem 4.4, since the operator

P
O does not occur in the program constructed. Hardness fg?rz feAn be established

as follows. LetIl be anyEZP—compIete problem. Then, given instandes. .., I, of I,
computing the binary strin@ = b1 - - - b, whereb; = 1 if I; is a Yest-instance anigd =0

P
otherwise, is easily seen to be hard for EP
From the proof of Theorem 4.4, we V<now that deciding whether a fixed agent program
P in which the operatoD does not occur, has a rational status set on a given databiase

P
22'3 complete. Thus, for given databades ..., D,, computing the string is FPT‘:Z-hard.

The different instances can be combined into a single instance of a new fixed program
as follows. Take a fresh actian which does not occur if® and has empty precondition
and Add- and Del-sets. Add the atddow in the body of each rule if?, and add the rule
O« <. Then the resulting prografy has some weak rational status Sebn eachD;,
and for any sucls it holds thate € Do(S) iff P has a rational status set @R.

The databaseB; can be merged into a single databd@seor a new fixed prograr®’,
in the same way as described in the proof of Theorem 4.8, by tagging the dat@hases
with i and taking their union. This progra has some weak rational status Sein D’;
moreover, for every suchi, it holds thatx (i) € Do(S) iff P has a rational status set @R;
thus, from any weak rational status Sethe binary stringB is easily computed.

Since the databad®’ is polynomial time constructible froms, ..., D,, it follows that

P
computing a weak rational status set is hard fof‘F.P O

We next consider the recognition problem. Here, the complexity increases if integrity
constraints are allowed; the benign property thatafeasible status set i4-rational, if
no smallerA-feasible status set exists is no longer valid.

Theorem 4.13. Let P be a fixed agent prograifwhereZ(C is arbitrary). Then, given an
agent state)s and a status sef, deciding whethes is a weak rational status set & on
Os is [15-complete.

Proof. For the membership part, consider the following algorithm for disprovingshsit
a weak rational status set. First, check whethés not anA(S)-rational status set. If
is found A(S)-rational, then guesa’ > A(S) andS’ and check whethe$’ is A’-rational.
Since checkingi-rationality of S is by Proposition 3.18 and Theorem 4.2 in co-NP, this is
a nondeterministic polynomial algorithm using an NP-oracle. Hence, the problerﬂ% in
For the hardness part, we adapt the construction in the proof of Theorem 4.3 for QBF
formulas3YVX.¢, by adding thélY quantifier block.
We use the databage, the actions basé 3, and the integrity constraints as there, but
add toD another relation YVAR for storing th&-variables (theX-variables are in VAR)
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and introduce another actien which has empty precondition and empty Add- and Del-
sets.
We add the following clauses in the program:

O(a) <~
O(set (Y1,0)) < YVAR(Y1)
O(set (Y1, 1)) < YVAR (Y1)
Do(set (Y1,0)) < Do(a), mDo(set (Y1,1)), YVAR (Y1)
Do(x) < Do(set (Y1, 0)), YVAR (Y1)
Do(a) < Do(set (Y1,1)), YVAR (Y1)
Let the resulting program BB’, and set up the action constraint:
AC: {set (Y1,0),set (Y1,1)} < YVAR(Y1).

The additional rules state that the agent is obliged to execated to set every variable
y; € Y to false (0) and true (1), which is, however, prohibitedA¢. Moreover, eacly;
must have assigned a valuexifis executed, and if some variable receives a value, ¢hen
is executed. Consequently,afis executed, then eveny gets precisely one value, and if
«a is not executed, then ng gets a value.

Let Sp be the status sets defined by

So =S U{O«, Pa} U {O(set (y;,v)),P(set (y;,v))|yi €Y,ve{0,1}},

where S is the status set from the proof of Theorem 4.3. Thegnis an A(Sp)-rational
status set, in which all the obligations from the newly added rules are violated.

It holds thatSy is the (unique) weak rational status sef®fiff VY3 X. —¢ is true.

(=) SupposeSp is weak rational. Then, for any choice from Do(set (y;, 0)),
Do(set (y;, 1)), for all y; € Y (representing a truth assignmentHd, it is impossible to
find anA-rational status set such that the obligations followed includey . In particular,
the status set

S, =SoU x U {Doa}

is not weak rational. As easily checkesl, is A(S,)-feasible; hence, som§ c §
must exist which satisfies the conditioi$1)—(S3) of A(S,)-feasibility. Consequently,
VX.¢[Y = x]is false. It follows thavY3X. —¢ is true.

(<) Suppose&r’Y3X. —¢ is true. Consider any weak rational status $eif P’. Then,
either (i) A(S) defines a choice from Do(set (y;, 0)), Do(set (y;, 1)), for all y; € Y,
anda € Do(S), or (i) A(S) = A(Sp).

Assume that (i) is true and consider the following two cases:

(1) Do(all ) ¢ S. Then, exactly one of the actiosst (x;, 0), set (x;, 1) must be in

Do(S), for everyx; € X. But then, executin@o(S) violates the integrity constraint
Var, Value— Tagon VAR. This means tha& is not aA (S)-rational status set, which
contradicts thaf is weak rational.

(2) Do(all ) e S. Since by assumptioiX. ¢[Y = x] is false, there exists son$& C §

which satisfies the condition$1)—(S3) of A(S)-feasibility. Again, this means that
S is notA(S)-rational and thus contradicts weak rationalitySof
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Hence, case (i) is impossible, and thus case (ii) must appb onsequentlysSy is
a weak rational status set. It can be easily seenfhatSpo must hold. This proves the
result. O

The last result that we turn to in this subsection is action reasoning under weak rational
status sets. Here we face the full complexity of all conditions that we have imposed on
acceptable status sets.

Theorem 4.14. Let P be a fixed agent prografwhereZ( is arbitrary). LetOg be a given
agent state and let be a given ground action. Then, deciding whether Do(S) holds
for (i) every(respectively(ii) som@ weak rational status setof P onOg is Hg—complete
(respectivelyxf-completg.

Proof. The membership part is routine: A guess for a weak rational statusseth that
a ¢ Do(S) (respectivelyx € Do(S)) can be verified with ig’ oracle in polynomial time
(Theorem 4.13).

For the hardness part, we extend the construction in the proof of Theorem 4.13 to QBF
formulasvZ3YVvX.¢, by adding another quantifier block.

For that, we introduce a new relation ZVAR for storing the variableg jtand add the
following clauses to the progra® from the proof of Theorem 4.13:

O(set (Z1,0)) < ZVAR(Z1)
O(set (Z1,1)) < ZVAR(Z1)
Do(set (Z1,0)), < —Do(set (Z1,1)),ZVAR(Z1)
Denote the resulting program /. Moreover, we add another action constraint
AC’: {set (Z1,0),set (Z1,1)} <> ZVAR(Z1).

Similar as the rules for the variables Iy the new rules andiC’ force the agent to
make a choice from Do(set (z;, 0), Do(set (z;, 1)), for all z; € Z (representing a truth
assignment t@?) in every weak rational status set. Upon such a choice, the prof§fam
behaves like the program’. Thus, for any such choicg, a weak rational status sét
including x containsDov if and only if 3YVX@¢[Z = x] is true.

It follows that Doa belongs to every weak rational status setRf if and only if
VZ3YVX.¢ is true. This provesI5-hardness of (i).

For (ii), we add the rule Do(B8) < —Do(«x) in the program, wherg is a fresh action
of the type ofw. Let P* be the resulting program.

It holds thatP* has some weak rational status set contaifog if and only if P” has
some weak rational status set not contairidog. This impIiesEQf’—hardness of (i). O

5. Conclusion

In Part Il of this series of papers, we have investigated the computational complexity
of agent programs in our framework. We have focused on programs which apply to agent
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states under a generalized domain closure assumption, and where the calls to software
code accessing the agent state can be evaluated in polynomial time. The computational
problems that we have considered range from deciding the consistency of an agent program
on a given state to action reasoning under a particular semantics, and include besides
recognition of an acceptable status set (i.e., model checking) also the task of actually

computing an acceptable status set. While the former are decision problems, the latter
is a search problem; precise computational characterizations of such problems in terms
of search problem complexity classes has obtained increasing interest more recently, cf.

[4,18].

As we have shown, for positive agent programs various important computational
problems on status sets, and in particular all problems considered on rational status sets, can
be solved in polynomial time y the algorithms that we have described. On the other hand,
for programs with negation, the different semantics also have a different complexity profile,
ranging from the first level of the polynomial hierarchy (feasible status sets) up to the
third level (weak rational and'-preferred status sets). Loosely speaking, they confirm the
intuition that we have to pay a computational price for selecting a refined and epistemically
more appealing semantics.

The use of the results that we have established in our analysis is manifold. Firstly, the
results of the complexity analysis of the different kinds of status sets proposed in Part | of
this series of papers [10] complement the results on the semantical properties obtained in
Part I, and help to better assess the pros and cons of the Siglstatus sets. The results
may help an agent application designer in her choice of the appropriate semantics for a
particular application of our agent framework. The overview tables in Section 2.3 and the
discussion there provides a compact reference for this task.

Secondly, the analysis of the sources of complexity which crop up with the different
variants of status sets, and how they effect the complexity of computation (Section 2.3.2),
provide insight into how particular principles may effect the complexity of decision making
in general. Namely, applying a minimization policy such as preferences to solutions, or a
similar maximization policy (as present with weak variants of status sets). These insights
may be profitable for other researchers developing frameworks in agent decision making.

Thirdly, our results provide evidence for how optimal algorithms for decision making
which handle all possible scenarios (i.e., are complete in that respect), may behave in the
worst case, and thus give a clue for the design of such algorithms. As discussed elsewhere
[7], the level of the polynomial hierarchy at which a problem resides gives us information
about which kind of backtracking algorithm is suitable for solving a problem. For example,
for NP-problems a solution can be found by a simple backtracking algorithm, while for
E,f’ -complete problems in generalestedbacktracking of depttk is necessary (unless
the polynomial hierarchy collapses, which is not expected). The completeness results for
the class FNP/log that we have established indicate that the computation of particular
kinds of status sets can be optimally implemented as a two phase process, in which first an
optimization problem is solved and then a status set is computed as usual. Moreover, they
provide some evidence that it is not feasible to parallelize these problems to NP-problems
(e.g., calls of SAT routines) in polynomial time.

Several issues remain for further work. One such issue is a comparative study of the
computational complexity of different agent frameworks. Since the layout and formal
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underpinnings of various agent frameworks such as those in [1,5,17,22,25] are quite
different, it is not a priori clear how the complexities of these systems should be compared.
Another issue, refining the complexity view, is the expressive power in terms of capability
to represent decision processes of inherent complexity. The capability of agent programs in
that respect may be formally assessed in the spirit of similar concepts for advanced logical
database queries languages [8].

A further important issue are tractable fragments of the agent language that we have
presented. The characterization of the sources of complexities provides us with detailed
information of which effects have to be eliminated in order to arrive at a polynomial time
language. In this direction, we are currently investigatiegular agent programg9], in
which decision making is layered into levels of polynomial complexity. In this context,
approximation techniques and heuristics may be useful. This remains for future research.
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Appendix A. SAT problems and quantified Boolean formulas

The classical satisfiability problem (SAT) is, given a conjuncijos A/, C; (i.e., a
set) of propositional clauses such that each clayses a disjunctionC; = L; 1V ---V
L;,, of literals L; ; over propositional variable¥ = {x1, ..., x,}, decide whethep is
satisfiable. SAT is a well-known NP-complete problem. This remains true if we assume
that each claus€; contains three literals, and either all literéls; are positive, or alL; ;
are negative; this restriction is knownm®notone8SAT (M3SAT) [13].

The dual problem, M3DNF, is complete for co-NP. An instance of M3DNF is a formula
¢ = \/i—,1 D; in disjunctive normal form (DNF) which is the negation of an M3SAT
instanceg’ = /\/L; C; in CNF (obtained by applying De Morgan’s rule). The problem
is deciding whetheg is a tautology.

We use the following notation. Let be a propositional formula, and lgt be a truth
assignment to the variables in a set of propositional variablés many places, in abuse
of notationy is a choice representing a truth assignment.) Thé¢k,= x] denotes the
formula obtained by substituting i@ for everyy; € Y its truth value according tg.
Furthermoreg[Y = @] stands for[Y = x] wherey assigndalseto everyy € Y.
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For example, considep = x1 A (—y1 V y2 V x2) A y1. Then, for the assignment
x to Y = {y1, y2} such thaty(y1) = true, x(y2) = false the formulag[Y = x] is
x1 A (—true v falsev xp) A true.

A guantified Boolean formuléQBF) is a generalized propositional formula, in which
each propositional variable; ranges overtrue, falsg and is governed either by an
existential(3) or a universalV) quantifier. The truth value of such a formula is obtained
by eliminating all quantifiers in the obvious way and evaluating the resulting variable-free
formula.

For exampleYy1, y23x1, x2. x1 A (—y1 V y2 vV x2) A y1 is a QBF. This formula evaluates
to false since on assigning, e.dfalse to both y; and y», the remaining formula is
unsatisfiable.

Evaluating a given QBF® is a classical PSPACE-complete problem. Syntactic
restrictions ond provide problems complete for ttﬁf andl‘l,f classes of the polynomial
hierarchy. In particular, deciding whether a QBF of the fa&HVY?2... 0, Y*.¢, where
the Y’ are sets of variables and the quantifi@sin front of them alternate, evaluates
totrueis a Well-knownz,':-complete problem. Dually, deciding whether a QBF of form
vy1ay2... g, v*.¢ evaluates to true igl5-complete. The problem remairs!-hard
(respectively,l‘l,f—hard), even if the quantifier-free paftis, depending on the innermost
quantifierQy, in M3SAT form if Q; =3, and in M3DNF form ifQ; = V.

Thus, e.g., evaluating a given QB®'3X.¢, where ¢ is in M3SAT form, is 1‘[5’—
complete. Notice that M3SAT and M3DNF are special cases of QBF (whert).

The above problems on QBFs also provide complete problems for the search class
counterparts oE,f’. Computing a truth assignmegptsuch thatvy23y3... 0, Yk [y =
x1 is true (i.e., computing an assignment 6t witnessing thaBY1vY2... 0, Y*.¢ is
true) is complete for E,f’, for k > 1. Again, hardness holds fgrin M3SAT (respectively,
M3DNF) form.

For the class FNP log, few natural complete problems are known. An important now
is the problemX-maximal model: Given a SAT instangeand a subseX of its variables,
compute theX-part of a modeM of ¢ such thatM N X is maximal, i.e., no modeW’ of
¢ exists such that’ N X > M N X, where a modeM is identified with the set of atoms
true in it. Completeness of this problem for FlyRog is shown in [3,4]* Observe that
computing a maximum clique in a graph (considered in Section 2.2.2) is not known to be
FNP//log-complete.

Appendix B. Notation and different kinds of status set from Part |

This appendix provides some notation and, for the reader’s convenience, the definitions
of the various kinds of status sets from Part | which we analyze here.

41n [4] a form of reduction among maximization problems is used slightly different from the one in [3]. It
requires that the transformed instant@ ) must always have solutions, but for any maximal soluffaof f (1),
the functiong (1, S) is only defined iff has solutions; our proofs of FMPlog hardness can be easily adapted for
this setting.
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Definition B.1 (Status st A status sets any setS of ground action status atoms over
S. For any operatoOp € {P, Do, F, O, W}, we denote byOp(S) the setOp(S) = {« |
Op(a) € S}.

Definition B.2 (Feasible status sgt Let P be an agent program and I&s be an agent
state. Then, a status sgis afeasible status séor P on Og, if the following conditions
hold:
(81) (closure under the program ruleSppp . (S) C S;
(S2) (deontic and action consistency)Os = AC, and any ground action satisfies
the following:
— If Ox € §,thenWu ¢ S,
— If Pa € S, thenFa ¢ S,
— If Pa € S, thenOg = Pre(e) (i.e.,« is executable in the stat8y);
(§3) (deontic and action closuré)= DCL(S) andS = ACL(S);
(S4) (state consistency))s = ZC, whereO = applyDo(S), Os) is the state which
results after taking all actions iDo(S) on the state)g.

Definition B.3 (Groundedness; rational status yef status sef is groundedif no status
setS’ # S exists such that’ C § and$’ satisfies condition&S1)—(S3) of a feasible status
set.

A status sef is arational status setif S is a feasible status set aids grounded.

Definition B.4 (Reasonable status 3etLet P be an agent program, 1€1s be an agent
state, and lef be a status set.
(1) If P is a positive agent program, théhis areasonable status sér P on Og, if
and only if S is a rational status set f@ onOg.
(2) The reduct of? with respect taS and©g, denoted byed® (P, Os), is the program
which is obtained from the ground instances of the ruleB iover Og as follows.
(a) First, remove every rulesuch thatB_,(r) N S # ;
(b) Remove all atoms iB_; (r) from the remaining rules.
ThensS is areasonable status sé&ir P with respect tdg, if it is a reasonable status
set of the programed® (P, O) with respect ta).

Definition B.5 (A(S)). For any status set, denoteA (S) = Do(S) U {« | o ¢ O(S)}.

Definition B.6 (A-relativized action closufe Let S be a status set, and latbe a set of
ground actions. Then, the action closuresafnder regimentation relativized t, denoted
ACl4(S), is the closure of under the rules

O« € § = Dox € S, for any ground actiow € A
Dop € § = PB € S, for any ground actiors.
A setS is action closed under regimentation relativizeditaf S = ACl4 (S) holds.

Definition B.7 (A-relativized status sefs Let P be a program, le©s be an agent state,
and let A be a set of ground actions. Then, a status$ét A-feasible (respectively,
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A-rational, A-reasonable), ifS satisfies the condition of feasible (respectively, rational,
reasonable) status set, where the action clo8@ieis replaced by the relativized action
closureACL4 (S) (but DCI remains unchanged).

Notice thatACl = AClga, whereGA s the set of all ground action atoms.

Definition B.8 (Weak rational, reasonable status get#\ status setS is weak rational
(respectively, weak reasonable), if there existgiasuch thatS is A-rational (respectively,
A-reasonable) and there are A0~ A and S’ such thatd € A’ and S’ is an A’-rational

(respectivelyA’-reasonable) status set.

Definition B.9 (F-preferencg LetSem be a kind of status sets. Then, a statusSsstan
F-preferredSem-status set, if it is &em-status set and there exists no otBem-status
setS’ which has a smaller forbidden part th&ni.e., F(S") C F(S) holds.
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