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A common strategy to understand a biological system is to selectively perturb it and observe its response.
Although technologies now exist to manipulate cellular systems at the genetic and transcript level, the direct
manipulation of functions at the protein level can offer significant advantages in precision, speed, and revers-
ibility. Combining the specificity of genetic manipulation and the spatiotemporal resolution of light- and
small molecule-based approaches now allows exquisite control over biological systems to subtly perturb
a system of interest in vitro and in vivo. Conditional perturbation mechanisms may be broadly characterized
by change in intracellular localization, intramolecular activation, or degradation of a protein-of-interest. Here
we review recent advances in technologies for conditional regulation of protein function and suggest further
areas of potential development.
Mechanistic understanding of cell biology and physiology is

driven in part by the tools available to manipulate the system

and to assay the phenotypic response. The study of a particular

process requires specialized approaches to enable dissection of

components, connectivity, and, ultimately, causation. A wide

variety of molecular techniques are now available to examine

processes at different length scales and levels of biological

complexity. Understanding the mechanistic underpinnings

requires the ability to selectively alter specific structural or

functional elements in order to gauge their phenotypic conse-

quences. Successive technological advances allow interroga-

tion of the system under study with greater precision while

minimizing off-target perturbation. Wide adoption of a technique

also requires it to be robust, low cost, and relatively easy to use.

Although there have been many advances in the ability to

observe cells and especially intact organisms (Dean and Palmer,

2014; Sinha et al., 2013), here we focus on the control of

individual genes in order to understand their function in specific

contexts.

One of the fundamental ways to deduce the role of a gene is to

increase or decrease its function andobserve the response of the

system. Current strategies can target each step in the conversion

of a gene into its functional product, mimicking natural control

processes of the central dogma (Figure 1). Generally speaking,

genetic techniques targeting DNA are robust and specific but

have been difficult to implement, slow, and poorly reversible.

Site-specific genomic editing by homologous recombination is

robust in certain model organisms but until recently has been

hampered by very low efficiency in mammalian systems. Homol-

ogous recombination or loss-of-function mutations can be

stimulated using site-specific double-strand breaks using zinc-

finger nucleases, transcription activator-like effector nucleases

(TALENs), or clustered regulatory interspaced short palindromic

repeat (CRISPR)-Cas9 (Cheng and Alper, 2014). Control over

RNA stability through RNAi is faster and easier to implement

than traditional DNAmanipulation techniques, though it is limited

by the efficiency of knockdown and the possibility of off-target

effects (Milstein et al., 2013). Each of these also acts indirectly
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on the functional molecule. Directly targeting proteins via small-

molecule inhibitors or activators is fast, conditional, and simple

if a perturbant is available but may be limited by specificity and

exhibit off-target effects (Fabian et al., 2005; Lounkine et al.,

2012). Each of these technologies is generalizable to the study

of many or all genes but may work better or worse for particular

genes, in different organisms or cell types. For example, studying

essential genes requires conditional techniques in order to prop-

agate cells and allow organismal development.

Experimental Considerations for Choice in Perturbation
Technique
Thechoice of experimental strategy (or combination of strategies)

is typically a trade-off between precision requirements and ease

of use (summarized in Tables S1 and S2). A perturbation strategy

has a number of desirable attributes. Ideally, the technique

should be: (1) specific, (2) robust, (3) conditional, (4) efficient, (5)

reversible, (6) tunable, (7) rapid, (8) orthogonal, (9) spatially local-

ized, (10) simple, and (11) low cost. From a pragmatic standpoint,

technologies requiring several geneticmanipulations, specialized

microscopes, or custom synthesized small-molecule reagents

increase the barrier to entry and limit both the adoption of new

technologies and their use to low-throughput modes.

From a scientific standpoint, the perturbation should be spe-

cific; that is, the intervention should minimize unwanted side

effects, especially unforeseen ones that are difficult to control

for. This is especially a concern for RNAi, in which validation

using independent small interfering RNAs (siRNAs) targeting

the same gene is required, or for poorly characterized small mol-

ecules, especially those that must be used at high concentra-

tions, which may bind to proteins other than the desired target.

The perturbation strategy should also be robust; that is, it should

be readily usable without requiring extensive validation and opti-

mization and additionally should yield consistent and reproduc-

ible results. Conditional strategies allow a trigger to enact the

modification of interest, which can be required when studying

essential genes or when themodification is desired in only a sub-

set of an organism’s cells.
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Figure 1. Comparison of Naturally Occurring and Synthetic Engineered Control Processes
(A) The central dogma of molecular biology governs the transcription of DNA (genome) into mRNA (transcriptome), which is then translated into proteins. Every
step is regulated by processes, some of which are listed here above the relevant step in the flow of information from DNA into proteins. Engineered experimental
perturbation strategies mimic various natural regulatory steps, some of which are shown here.
(B) Protein activity is regulated intracellularly by a variety of processes, including its availability in a particular subcompartment, whether it is part of a complex, its
tertiary structure and dynamics, and its abundance. Each of these strategies is exploited experimentally for conditional posttranslational control of protein
function.
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Efficient control over gene expression should minimize effects

from residual amounts of remaining active protein from ineffi-

cient knockdown in RNAi, leaky expression from transcriptional

control strategies, or incorrectly localized or undegraded pro-

tein. Alternately, being able to reversibly and tunably regulate a

protein-of-interest allows facile study of whether the observed

phenotype is specific to the gene being studied and opens up

quantitative studies. Rapidity must be measured relative to the

speed of the process being studied but at minimum should avoid
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conflating adaptive responses to a protein being depleted, over-

expressed, or activated. In particular, different technologies for

posttranslational control may act by turning on (e.g., inteins)

or turning off (destabilization domains) protein activity and rely

on natural, slow mechanisms in the other direction; care should

be taken to choose a technique when observing a biological

phenomenon requiring a gain of function, for which rapidly

increasing protein activity is desirable, or a loss-of-function, for

which rapidly decreasing a protein’s activity may be required.
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It may at times also be desirable to manipulate several genes

simultaneously; these should be orthogonal to one another in

addition to the biological system. Ideally, the technology would

allow temporal and spatial precision within the physiological

context.

Awell-characterized small molecule hasmany of the attributes

listed above. Small molecules act rapidly in comparison with ge-

netic perturbation tools, can tunably modulate protein activity,

and can reversibly bind a protein target. However, their speci-

ficity is not guaranteed: many small molecules are known to

interact with more than one protein target (Gaulton et al.,

2012). Additionally, the vast majority of genes and proteins do

not have high-affinity small-molecule binding partners.

Combining genetic and chemical perturbation (often called

‘‘chemical genetics’’) allows researchers to potentially take

advantage of the specificity of genetic techniques with the speed

and reversibility of small-molecule-based approaches (Banas-

zynski and Wandless, 2006). Typically, a genetic fusion is

made between an effector molecule and a small-molecule-

dependent control module and expressed exogenously on either

a wild-type or mutant loss-of-function background. These con-

trol elements may act directly on the protein-of-interest, indi-

rectly to control gene expression, and so on. Recent advances

in genomic targeting through TALENs or CRISPR-Cas9 have

made tagging of endogenous alleles possible, though it still re-

quires weeks to months of effort (Dean and Palmer, 2014; Gaj

et al., 2013). This allows the control of a protein-of-interest

without competition from endogenous proteins. Chemical ge-

netic strategies using bio-orthogonal ligands, small molecules

that are minimally perturbing to the biological system being

studied, should be used whenever possible in order to minimize

off-target effects; however, expediency, availability, and famil-

iarity often compel researchers to use rapamycin-based dimer-

izer systems or other small-molecule ligands that are known to

not be biologically silent (Edwards and Wandless, 2007).

Several situations would also demand spatial regulation of

protein function; localization of a ubiquitously expressed protein

could affect its function, the protein-of-interest may be active

only in a certain subcellular compartment or, on a longer length

scale, genes in subcompartments of tissues could be controlled.

Within metazoans, cell-specific activation can be accomplished

through tissue-specific promoters or activators, but specificity is

dictated by the underlying biological specificity of the chosen

promoter or enhancer (Kistner et al., 1996). An alternative would

be to control spatial activity with light. Use of light rather than a

small molecule as the control element offers a number of advan-

tages. Although perfusion setups can limit the diffusion of small

molecules, light-mediated activity is not limited as such (Taylor

et al., 2010). Activation and inactivation kinetics of light-medi-

ated approaches can be fast and do not require media changes.

On the other hand, spatially targeting a light beam often requires

specialized microscopes and software (Wu et al., 2009). Unless

spatial regulation is strictly required, small-molecule approaches

still offer advantages in not requiring continuous application of

the light, which may cause phototoxicity and local heating and

limit throughput.

Chemical genetic approaches, including those regulated by

light, can act directly on gene expression by targeting the pro-

tein-of-interest or indirectly by altering the gene or transcript.
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Small-molecule-dependent transcription, through either fusion

of the tetracycline or estrogen receptor ligand binding domain

to sequence specific transactivator domains, has been widely

adopted for conditional regulation (Banaszynski and Wandless,

2006; Kistner et al., 1996). Although significant improvements

to lowering transcription in the absence of activating drug have

been made, transcriptional approaches still face the funda-

mental limitations in waiting for the natural clearance of the

protein-of-interest from the cell and, practically, in the lack of

predictably tunable gene expression. Here, we focus on post-

translational control of protein function to overcome these limita-

tions, because the protein-of-interest is targeted directly. The

historical and foundational groundwork for these technologies

is covered in earlier reviews (Banaszynski and Wandless,

2006); recent advances and applications are emphasized here.

Strategies for posttranslational control of protein function can

be classified by their modes of action (Figure 1B). First, because

the biological activity of a protein-of-interest is often limited to a

specific subcompartment of the cell, altering its localization can

control its activity. Small molecules or light can be used to

change the location of the protein within the cell, in order to either

activate it or inactivate it. This is usually accomplished by dimer-

ization of the protein-of-interest with other proteins known to be

localized to the desired cellular compartment. Conditional (mis)

localization is often very fast, but its use is limited to those pro-

teins that have compartment-specific activity. Second, a pro-

tein-of-interest can be activated or inhibited directly without

changing its physical abundance in the cell. This can be accom-

plished through a variety of both intermolecular and intramolec-

ular mechanisms, discussed below. Last, because a protein

cannot exert its activity if it does not exist, several approaches

to reduce a protein’s function by altering its intracellular stability

are discussed.

Conditional Dimerization: (Mis)localization
One of themost commonly used strategies to conditionally regu-

late protein activity involves promoting the association of any

two proteins-of-interest. Over the past two decades, small mol-

ecules have emerged as effective means by which to engineer

such protein-protein interactions. These compounds, commonly

referred to as chemical inducers of dimerization (CIDs), have the

ability to simultaneously bind two protein domains, thereby

inducing their proximity. As illustrated in the following discus-

sion, CIDs have been used to mediate protein activity in one of

three ways: by promoting transcriptional activity, by recruiting

target proteins to specific cellular compartments, or by facili-

tating protein aggregation and disaggregation (Figure 2).

The first example of a naturally occurring CID was described in

1991, when the immunosuppressant drug FK506 was reported

to inhibit T cell receptor-mediated signaling by simultaneously

binding FK506-binding protein (FKBP12) and calcineurin (Liu

et al., 1991). On the basis of these seminal findings, a synthetic

dimer of FK506 (named FK1012) was prepared, which was

able to dimerize FKBP12 (Spencer et al., 1993). Fusion of the

FKBP12 domain to the z chain of the T cell receptor resulted in

chimeras that exhibited FK1012-dependent signal transduction

in cultured cells. Notably, FK1012-induced signaling was found

to be rapid, dose dependent, and reversible. In addition, the syn-

thetic ligand lacked its parent monomer’s intrinsic biological
d All rights reserved



Figure 2. Subcellular Localization as a Strategy to Control Protein
Function
Upon translation in the cytoplasm, a protein’s activity can be controlled by the
availability of its substrates. CIDs have been used both to trigger protein ac-
tivity by recruitment to its site of action, such as at the plasma membrane or in
the nucleus, and to be inactivated by its aggregation or sequestration in a
subcellular compartment where it cannot act.
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activity. This and other homodimerization systems have been

used to stimulate the activity of transcription factors (Ho et al.,

1996), induce Fas-mediated apoptosis (Belshaw et al., 1996a),

and activate the Raf1-kinase signaling cascade (Farrar et al.,

1996).

Although the FK1012 systemwas the first to chemically induce

the proximity of engineered proteins, its utility is most suitable for

proteins whose function is dependent on homodimerization. In

1996, several bivalent molecules capable of selectively dimeriz-

ing two different proteins were reported (Belshaw et al., 1996b;

Licitra and Liu, 1996; Rivera et al., 1996). Among these, rapamy-

cin represents the most thoroughly studied chemical dimerizer.

This macrolide natural product mediates the interaction between

FKBP12 and the FRB domain of FKBP-rapamycin associated

protein (mTOR) (Brown et al., 1994). Expression of two pro-

teins-of-interest as their FKBP and FRB fusions results in their

rapamycin-inducible association. Rapamycin facilitates FKBP-

FRB complexation on the order of minutes, has low nanomolar

affinity for both protein domains, and exhibits good pharmacoki-

netics (Banaszynski et al., 2005). However, FKBP and FRB fusion

proteins compete with endogenous FKBP and mTOR for rapa-

mycin binding, leading to nonproductive interactions. Moreover,

the binding and inhibition of mTOR leads to cell-cycle arrest,

further complicating in vivo studies, though rapamycin resistant

strains or cell lines may be used to mitigate these effects (Haruki

et al., 2008). In order to mitigate its off-target effects, rapamycin

was derivatized to display a ‘‘bump’’ at its FRB-binding interface

(Liberles et al., 1997). Site-directed mutagenesis of the FRB

domain delivered a triple mutant, FRB*, bearing a compensatory
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‘‘hole’’ that selectively binds the new rapamycin analog (MaRap).

Although this modified dimerization system does not possess

immunosuppressive activity, MaRap is unstable, is difficult to

prepare, and exhibits poor pharmacokinetic properties, preclud-

ing in vivo applications (Stankunas et al., 2003).

The ‘‘bump and hole’’ strategy has also been applied to

develop FKBP mutants that have high affinity for other biologi-

cally silent rapamycin mimics. Interestingly, introduction of a

single point mutation (F36M) in the FKBP active site affords a

variant (FKBP*) that spontaneously undergoes multimerization

in the absence of its cognate ligand, AP21998 (Rollins et al.,

2000). The FKBP* aggregate could be readily dissociated upon

addition of the small molecule, providing a peculiar example of

a reverse dimerization system. Fusion of tandem copies of

FKBP* to a protein-of-interest generates a protein target that

self-associates and displays AP21998-dependent disaggrega-

tion. This tool was first applied to conditionally control protein

secretion: when insulin is properly tagged with a signal peptide,

an FKBP* tetramer, and a furin protease cleavage site, the

chimeric protein undergoes aggregation in the endoplasmic re-

ticulum and becomes too large to be properly exported (Rivera

et al., 2000). Exposure to AP21998 releases monomeric insu-

lin-FKBP* fusions and allows for their export via the secretory

pathway, during which the furin protease cleaves the FKBP*

domain to release free insulin. More recently, Arnold and col-

leagues exploited the FKBP* conditional secretion system to

monitor the trafficking of cargo from the endoplasmic reticulum

to the Golgi and subsequently the plasma membrane in neurons

(Al-Bassam et al., 2012). This ‘‘pulse-chase’’ system allowed

them to differentiatemodes of axonal and dendritic vesicle trans-

port and discriminate between competing transport models.

The more recent characterization of new protein-ligand pairs

has led to the development of other CID systems. For example,

Cornish and coworkers used a dexamethasone-methotrexate

(Dex-Mtx) conjugate to induce the interaction between glucocor-

ticoid receptor (GR) and dihydrofolate reductase (DHFR) (Lin

et al., 2000). Coexpression of the yeast DNA-binding domain

of LexA and the transcriptional activation domain of B42 as their

DHFR and GR fusions, respectively, stimulated transcription of

the lacZ reporter gene in the presence of Dex-Mtx. Unfortu-

nately, Mtx is a promiscuous inhibitor of DHFR, which limits its

broader utility. An improved system that uses a trimethoprim-

SLF dimerizer was developed, a bivalent ligand that triggers

the interaction between E. coli DHFR-FKBP12 fusions (Czlapin-

ski et al., 2008). Importantly, this compound was not found to

bind endogenous protein targets and has been used to condi-

tionally activate a mammalian fucosyltransferase.

Despite its cytotoxic properties, rapamycin continues to be

the most widely implemented CID. To control the activity of

essential proteins in yeast, two studies used a strategy by which

nuclear proteins can be conditionally sequestered to the cyto-

plasm, where they can no longer perform their cellular functions

(Geda et al., 2008; Robinson et al., 2010). In practice, this tech-

nique achieves rapamycin-mediated mislocalization by geneti-

cally tagging a nuclear protein and a cytoplasmic anchor protein

with FRB and FKBP, respectively. To function properly, a suit-

able anchor was envisioned to be highly abundant protein

domain that traffics in and out of the nucleus, so that it transiently

encounters the target. The ribosomal subunit RPL13A ultimately
1, September 18, 2014 ª2014 Elsevier Ltd All rights reserved 1241
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served as the best anchor: FKBP-RPL13A fusions were found to

shuttle more than 40 essential nuclear proteins to the cytoplasm

in a rapamycin-dependent manner, leading to loss-of-function

mutant phenotypes. Although this method has proved useful

in rapidly generating conditional knockouts, it also presents

several limitations. First, these studies necessitated the use of

rapamycin-resistant strain of yeast to circumvent inhibition of

TOR. More important, it remains unclear how the current system

can be employed to mislocalize and regulate cytoplasmic pro-

teins; in principle, targeting a cytoplasmic protein to the nucleus

or plasma membrane may inactivate it, though this must be

tested on a case-by-case basis. Toward this goal, a recent study

demonstrated that an FKBP-tethered adaptor protein-1 complex

undergoes rapamycin-mediated localization to mitochondria

when coexpressed with FRB fused to a mitochondrial targeting

sequence. Robinson and colleagues were able to achieve fast

(approximately minutes) reduction in the activity of several

proteins in the endocytosis pathway. Importantly, the rapidity

of the ‘‘knock-sideways’’ system allowed the researchers to

observe a phenotype distinct from siRNA-mediated knockdown

of the same protein, an effect they attributed to compensatory

responses from slow knockdown (Robinson et al., 2010). Alter-

natively, sequestration does not necessarily require targeting

to a subcellular compartment at all. Heo and colleagues recently

showed that simply multimerizing and clustering a protein

through is sufficient to reduce its activity without limiting its sub-

cellular localization (Lee et al., 2014).

Despite their general utility, the CIDs discussed thus far are not

without limitations. Many of these small molecules are expensive

and require multistep syntheses, which can restrict their acces-

sibility. In addition, their application in live animals is often

impeded by their promiscuous binding profiles and/or affinity

for endogenous proteins, interactions that often lead to cytotoxic

effects. Moreover, given the nanomolar affinity between each of

these ligand-protein pairs, the reversibility of their association is

typically contingent upon the addition of a second, high-affinity

ligand to displace the bivalent molecule. For example, rapamy-

cin-mediated FKBP-FRB dimerization can often be reversed by

the addition of exogenous FK506, which competitively binds

the FKBP active site. In some instances, rapamycin-induced

proximity is irreversible (Haruki et al., 2008).

To address these challenges, researchers have exploited

small-molecule-mediated signaling pathways that have recently

been characterized in plants. One such pathway involves absci-

sic acid (ABA), a hormone that stimulates several components of

plant development. Mechanistically, ABA inhibits type 2Cprotein

phosphatases (PP2Cs) by mediating their association with the

pyrabactin resistance (PYR)/PYR1-like (PYL) family of protein re-

ceptors (Cutler et al., 2010). In 2011, Crabtree and coworkers

designed PYL and PP2C domains that, when individually fused

to proteins-of-interest, can reconstitute Gal4 transcriptional

activity, localize protein targets to the nucleus or cytoplasm,

and induce extracellular signal-regulated kinase phosphoryla-

tion in mammalian cells upon exposure to ABA (Liang et al.,

2011). This plant-specific hormone is inexpensive, does not

bind endogenous mammalian proteins, and was found to be

nontoxic to cultured cells and mice. However, high micromolar

concentrations of ABA are necessary to induce PYL/PP2C prox-

imity. Nevertheless, this interaction is more readily reversible
1242 Chemistry & Biology 21, September 18, 2014 ª2014 Elsevier Lt
than the corresponding ternary interaction mediated by rapamy-

cin: upon ABA washout, protein activity was reduced to basal

levels within 24 hr.

Notably, the addition of plant-based dimerizers to the standing

collection of CIDs presents an interesting opportunity to regulate

the activity of multiple protein signaling pathways. Specifically,

use of a plant dimerizer in concert with a rapamycin-inducible

system could allow for the simultaneous and orthogonal control

of two different proteins. The net result would be a synthetic logic

gate, wherein defined cellular output results from each of the

small-molecule inputs. Inoue and coworkers examined the feasi-

bility of such a dual-proximity system by first engineering a CID

on the basis of a different plant hormone, gibberellin (GA3)

(Miyamoto et al., 2012). To exert its effects, GA3 facilitates the

interaction between gibberellin-insensitive dwarf1 (GID1) and

gibberellin insensitive (GAI) (Hirano et al., 2008). After optimiza-

tion of gibberellin (GA3-AM) and the GID1-GAI domains, the

authors constructed intracellular AND and OR logic gates using

changes in cell morphology as the phenotypic output signal. For

the OR gate, FKBP, GID1, and YFP were fused to Tiam1, a gua-

nine nucleotide exchange factor that activates Rac1 and results

in membrane ruffling when it is recruited to the plasma mem-

brane. Coexpression of the Tiam1 fusion and the membrane-

targeted Lyn-CFP-FRB-GAI in mammalian cells led to significant

membrane ruffling only the presence of GA3-AM, rapamycin, or

both chemical inputs. Importantly, both small molecules can

facilitate Tiam1 membrane recruitment on the order of seconds

to minutes. Unfortunately, the dissociation kinetics for both sys-

tems remain relatively slow. Moving forward, orthogonal CIDs

that exhibit fast on and off kinetics will greatly improve the use

of logic gates in live cells.

Mislocalization by Light-Mediated Dimerization
The current palette of chemical dimerization systems has

allowed researchers to tunably and reversibly regulate a number

of protein-protein interactions on the order of minutes to hours.

In contrast, protein signaling pathways in living cells typically

occur on a second timescale, a time frame that is difficult to

recapitulate using small molecules. Additionally, specific subcel-

lular localization of a CID cannot always be achieved, a property

that further limits their potential applications. In order to signifi-

cantly improve the spatiotemporal precision of these tools,

recent efforts have turned to the use of light to control the asso-

ciation of two proteins-of-interest. In particular, several studies

have taken advantage of naturally occurring photosensitive pro-

tein domains that undergo a dimerization event when exposed

to a specific wavelength of light. An additional advantage with

light-controlled systems is that they do not typically require the

addition of an exogenous ligand, mitigating the potential for

off-target or toxic effects.

The most commonly used photoswitchable domains take

advantage of light-sensitive signaling proteins identified in the

flowering plant Arabidopsis thaliana. One such protein is exem-

plified by phytochrome B (PhyB): upon irradiation with red light

(650 nm), PhyB undergoes a conformation change and binds

phytochrome interaction factor 3 (PIF3), resulting in transcrip-

tional activation (Ni et al., 1999). Exposure of this complex to

750 nm light reverses this interaction, such that PhyB no longer

has significant binding affinity for PIF3. To determine the ability
d All rights reserved
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of this photoswitchable system to stimulate Rac activation,

mammalian cells were cotransfected with constructs encoding

a plasma membrane-anchored PhyB and a PIF3-tagged Tiam1

(Levskaya et al., 2009). Irradiation of these cells at 650 nm results

in membrane recruitment and activation of Tiam1 within sec-

onds, leading to lamellipodia formation. Interestingly, focusing

a red laser at precise cellular locations stimulated localized pro-

trusions that could be patterned at will, providing a handle by

which to precisely control cell morphology. The PhyB-PIF inter-

action was recently adapted to develop a photoswitchable

anchoring system in yeast (Yang et al., 2013). By fusing PhyB

to different organelle-targeting sequences, a PIF3-tagged

protein target could be conditionally recruited to eight distinct

subcellular locations, including endosomes, peroxisomes, the

nucleus, and the spindle pole body. This strategy is conceptually

similar to the rapamycin-based anchoring system discussed

above but offers faster association kinetics and is readily revers-

ible. Notably, the spatiotemporal precision imparted by this

approach allowed the authors to dissect the multifunctional

role of Clb2, amitotic cyclin found to be critical for proper nuclear

fission and spindle pole body disassembly. A caveat to this strat-

egy is that it requires the addition of phycocyanobilin, a ligand

that mediates the PhyB allosteric transition.

To eliminate the need for exogenous cofactors, a second pair

of photosensitive dimerizers was established. In this case, the

blue light-dependent interaction between the A. thaliana FKF1

protein and GIGANTEA (GI) (Sawa et al., 2007) was harnessed

to conditionally activate Rac signaling and activate the Gal4

transcription factor (Yazawa et al., 2009). In contrast to the

PhyB-PIF system, photoexcitation of FKF1 triggers a conforma-

tional change controlled by flavin mononucleotide, a cofactor

that is naturally produced by mammalian cells. Unfortunately,

FKF1 and GI fusion proteins exhibit blue light-induced associa-

tion on the timescale of minutes and required more than 1.5 hr

to dissociate once illumination is ceased. Tucker and coworkers

recently implemented a new pair of photosensitive domains with

improved on/off kinetics on the basis of cryptochrome 2 (CRY2)

and cryptochrome-interacting basic-helix-loop-helix 1 (CIB1)

(Kennedy et al., 2010). When optimized in mammalian cells,

photo-stimulated CRY2-CIB1 association was observed to

occur within 300 ms, but the reverse process took minutes to

complete. This represents the first system that achieves dimer-

ization on a subsecond timescale. Ideally, the association and

dissociation kinetics of the dimerization domains would occur

on similar timescales; however, no such systems have been re-

ported to date.

An indirect approach to light-induced proximity involves

genetically incorporating a photosensory domain into a peptide,

such that the peptide’s affinity for its cognate protein is rendered

dependent on light. Fusion of the modified peptide and its bind-

ing partner to proteins-of-interest affords targets that then

exhibit light-dependent association. Two studies independently

created photoswitchable peptides on the basis of the light, oxy-

gen, or voltage (LOV2) domain of Avena sativa phototropin1

(Strickland et al., 2012; Lungu et al., 2012). LOV2 comprises a

PAS domain that bears a C-terminal a helix (Ja), which remains

docked to the PAS fold in the dark state. Photoexcitation with

blue light facilitates Ja unfolding and dissociation from the LOV

core. Vinculin-binding (Lungu et al., 2012) and PDZ-binding
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(Strickland et al., 2012) peptides were engineered into the Ja

helix, such that the peptide was caged in the dark state and

accessible to its binding partner in the lit state. LOV2-based

technologies benefit from the fact that the LOV2-Ja interaction

is biophysically well characterized, allowing a more predictable

modulation of this dimerizer’s dynamic range.

Taken collectively, the intensive research behind conditional

dimerization has culminated in the development of tools that

operate at the second timescale, localize targets with high

spatial resolution, and are biologically orthogonal. Whether small

molecule or light based, many of these approaches are still

in their infancy, and each presents its own drawbacks. For

example, light-mediated dimerization systems often display

limited localization differences in the lit versus dark state; from

published data, the CRY2 system appears to have the best

signal-to-noise ratio (Kennedy et al., 2010), but smaller fold dif-

ferences may nonetheless be useful in interrogating biological

systems, as Yang et al. (2013) demonstrated in elucidating the

spatiotemporal role of Clb2 activity in the cell cycle. It will be

interesting to take note of their future applications in elucidating

the mechanisms of complex signaling pathways. Within this

context, the combination of small-molecule- and light-based

approaches to simultaneously mediate more than one protein-

protein interaction may facilitate the construction of artificial

signaling networks. Although rapamycin-based approaches

continue to serve as the dimerization modules of choice, in-

depth studies of more recently developed proximity tools—

such as improvements in their on/off kinetics and more thorough

biophysical characterization of the dimerization domains—

should facilitate their widespread use.

Activation of Preproteins
Rather than controlling protein activity by localization to a spe-

cific cellular compartment, an alternative approach relies on

splitting a protein-of-interest into two inactive fragments. When

properly engineered, these fragments can be induced to asso-

ciate, thereby restoring the target’s structure and cellular func-

tion. This process, also known as fragment complementation,

was first combined with chemical dimerization tools in 2002

(Mootz and Muir, 2002) (Figure 3). In this study, Muir and

coworkers developed a conditional protein splicing system

based on inteins, protein domains that catalytically excise them-

selves from a polypeptide chain and simultaneously ligate their

two flanking sequences. Specifically, the Saccharomyces cere-

visiae VMA intein was split into N- and C-terminal halves: the

former was fused between FKBP and maltose-binding protein

(MBP) and the latter between FRB and a His tag. Rapamycin-

induced dimerization of these fusions induced the proximity of

the intein domains, which restored intein splicing activity and

led to the formation of a His-tagged MBP.

This exploratory study illustrated that intein activity could be

manipulated to conditionally tag a protein with a small peptide.

In order to control the activity of a split protein, Liu and

coworkers took a directed evolution approach to design a

conceptually similar intein splicing system (Buskirk et al.,

2004). In this case, the estrogen receptor-binding domain (ER)

was initially inserted into an intein to give an inteinN-ER-inteinC
fusion that lacked splicing activity. A library of intein candidates

was prepared by error-prone PCR, then cloned between the
1, September 18, 2014 ª2014 Elsevier Ltd All rights reserved 1243



Figure 3. Conditional Dimerization Rescues
Protein Function
(A) Proteins that require dimerization to function
(e.g., transcription factors, some enzymes) can be
activated directly by hetero- or homodimerization.
(B) Regulated protein fragment complementation.
The protein’s primary sequence is split into two
pieces, each of which is fused to a dimerization
domain. Dimerization allows reconstitution of the
holoprotein.
(C) Split inteins. Self-excising intein protein do-
mains can be fusedwith the split protein fragments
to allow complementation of the protein-of-inter-
est. Upon intermolecular excision and ligation of
the intein, the extein fragments are fused to form a
single active polypeptide with no intervening
dimerization domains.
(D) Expressed protein ligation. Similar to split
inteins, except that one of the fragments is syn-
thetically derived. This can be especially useful to
produce functionalized proteins or proteins with
homogeneous stoichiometric posttranslational
modifications.
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N- and C-terminal portions of the KanR gene. Mutants that ex-

hibited ligand-dependent splicing were identified by their ability

to confer Geneticin resistance in the presence of 4-hydroxyta-

moxifen (4-HT), a high-affinity ER ligand. Additional rounds of

selection delivered an evolved intein that could restore the activ-

ity of four different proteins in a 4-HT-dependent fashion.

Although originally devised in yeast, improved mutants allowed

this 4-HT-dependent intein splicing to also be used in mamma-

lian cells (Peck et al., 2011). Alternatively, split inteins’ function

can be controlled via dimerization of the two halves using

small-molecule rapamycin-FKBP-FRB (Schwartz et al., 2007),

light-based PhyB dimerization (Tyszkiewicz and Muir, 2008), or

protein-based coiled-coil-based dimerization (Selgrade et al.,

2013) systems.

A major drawback of intein-based fragment complementation

systems is their lack of reversibility. Intein splicing is an inherently

irreversible process, and it is difficult to imagine how one might

alter this mode of reactivity to inactivate the extein product.

One solution to this problem involves fusing each of a protein’s

fragments directly to a pair of dimerization domains, such that

the activity of the engineered protein is dependent solely on

ligand-induced proximity. On a more general level, these

approaches require researchers to judiciously determine how

to best separate their protein target into two halves without

creating disordered polypeptides that are not metabolically sta-

ble. Consequently, such studies often require a systematic

screen of various N- and C-terminal fragment pairs, which can

become laborious and requires optimization on a case-by-

case basis. Depending on the protein-of-interest, it may prove

difficult or impossible to split the target in such a way that main-

tains its structural and functional integrity.

Intein mechanisms have also been exploited to produce

caged semisynthetic proteins by expressed protein ligation
1244 Chemistry & Biology 21, September 18, 2014 ª2014 Elsevier Ltd All rights reserved
(Muir et al., 1998). Again, a protein-of-

interest is judiciously split into an ex-

pressed fragment and a shorter peptide

containing important functional residues.

Conditional protein activity can be
achieved by functionalizing key residues in the synthetic peptide

with light-dissociable 2-nitrobenzyl leaving groups followed by

incorporation of this peptide into the full-length protein by ex-

pressed protein ligation. This strategy allowed, for example,

the Imperiali group to produce caged myosin protein with excel-

lent spatial and temporal control profiles (Goguen et al., 2011).

This approach, however, currently requires microinjection of

the semisynthetic protein that has been produced in vitro, and

the general availability of these reagents may be limited. In the

future, direct protein transfection with supercharged proteins

may be possible (McNaughton et al., 2009).

In attempting to develop a general fragment complementation

system, Ghosh and coworkers designed kinases that could

tolerate small loop insertions in their catalytic domain without

compromising their catalytic activity (Camacho-Soto et al.,

2014). Insertions were deliberately incorporated into regions of

the catalytic domain of several tyrosine kinases that shared little

sequence homology, suggesting that these regions were not

essential for activity. The insertion then served as a flexible handle

through which a kinase could be fragmented into two domains

and fused to FKBP and FRB. This strategy was used to develop

split versions of Lyn, Fak, and Src kinases, and the AGC kinase

PKA, all of which exhibit rapamycin-inducible activation.

Engineered Proteins for Orthogonal Small-Molecule
Control
As has been discussed, small-molecule inhibitors and activators

offer fast, tunable control over proteins-of-interest when avail-

able. An alternative to finding a specific small molecule for

each protein-of-interest is using a functionalized substrate

analog approach coupledwithmutation in the protein-of-interest

in order to accept the functionalized analog. This strategy has

been used in a variety of contexts, including for guanosine



Figure 4. The ‘‘Bump-Hole’’ Strategy
The protein-of-interest is mutated to create a
cavity so that it will accept both the natural sub-
strate and a larger substrate analog. The substrate
analog will bind only to the engineered mutant
protein. The substrate analog can either be an in-
hibitor, to selectively inhibit themutant protein, or it
can add a novel functionality, so the enzyme’s
target is unnaturally modified, which can then be
exploited for purification of its targets.
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triphosphate (GTP)-binding proteins, seven-pass transmem-

brane proteins, and perhaps most generally for protein kinases

(Bishop et al., 2000a, 2000b) (Figure 4). The so-called bump-

hole strategy, pioneered by the Shokat group, uses a ‘‘bumped’’

substrate analog possessing bulky side-chain substituents that

have greatly reduced binding to wild-type kinases but bind

with high affinity to kinaseswith amutation in the gatekeeper res-

idues to produce a complementary ‘‘hole.’’ When expressed in

cells, the mutant kinase can be specifically inhibited by the addi-

tion of the bumped inhibitor.

Importantly, the bump-hole strategy seems readily generaliz-

able to an arbitrary protein kinase of interest whereby the

compensatory mutation can be identified using homology

searching. In cases in which the hole-forming mutation is desta-

bilizing, additional compensatory stabilizing mutations can be

found (Zhang et al., 2005). In addition to its use as a control

element, mutated kinases can also accept derivatized sub-

strates to selectively tag their target proteins. Using this

approach, Shokat, Morgan, and coworkers were able to identify

targets of the S. cerevisiaeCdk1 homolog Cdc28 (Ubersax et al.,

2003). Because of the ease of homologous recombination and

haploid propagation in yeast, it has been possible to express

these mutated kinases without competition from its endogenous

wild-type counterpart. In mammalian cells, the use of the bump-

hole kinases as control elements has been limited largely to

those with dominant effects, such as in the oncogenes v-Src

and Fyn kinases (Bishop et al., 1999). The advent of facile

genome-editing techniques in metazoans should now allow

a fuller characterization of human kinases using the bump-hole

strategy.

The intuitively simple bump-hole strategy has also been

expanded to other classes of enzymes. Luo and colleagues

adapted the bump-hole strategy for protein (histone) methyl-

transferases (Luo, 2012). Protein methylation, like phosphoryla-

tion, can play an important part in a protein’s posttranslational

regulation. Epigenetic control through histone methylation in

particular is an important mode of gene expression regulation.

Luo and colleagues make use of S-adenosyl-L-methionine ana-

logs in conjunction with mutating conserved gatekeeper tyrosine

residues in the EuHMT1 and EuHMT2 methyltransferases to

identify their targets (Islam et al., 2013). This strategy should

be readily adaptable to control methyltransferase activity as

appropriate.
Chemistry & Biology 21, September 18, 2014 ª
Engineered Allosteric Control over
Protein Function
Naturally occurring allosteric control of

enzyme function drives functional regula-

tion of primary metabolism and many
other cellular processes (Gunasekaran et al., 2004). Small-mole-

cule or protein binding distal to the active site causes either a

conformational or dynamical change in the host protein, altering

its activity. In engineering allosteric regulation, researchers have

typically used one of two strategies (Figure 5). First, two protein

domains are fused together such that the folding of a control

domain affects the output of the second domain. Key factors

are the site of attachment and the length and flexibility linkers

used. Sites of attachment can be semiempirically determined

or computationally predicted. Second, an intramolecular binding

event can be switched to control the gross topology of the pro-

tein. The first approach requires sophisticated structural knowl-

edge and optimization but is in general more compact, whereas

the second strategy is often more modular in nature. Modular

assembly of several domains can even be used to control

input-output behavior of designed proteins.

An extreme case of designed allosteric regulation is the Loh

group’s mutually exclusive folding strategy (Radley et al.,

2003). From known structures, a protein domain is genetically in-

serted into a loop on the surface of the host protein. The relative

thermodynamic stability of the inserted domain determines

which of the two domains can fold: the loop can be pushed apart

if the inserted domain is more stable, disrupting the structure of

the host protein, or if the stability of the inserted domain is less

stable than the host protein, it will be unfolded. The relative

thermodynamic stability of the two domains can then be manip-

ulated by the addition of small- or large-molecule-binding part-

ners for each domain to create a bifunctional switchable protein

unit (Ha et al., 2006). Although mutually exclusive folding has

been used to engineer several switchable proteins, it has been

used only in vitro; its practical utility to control the function of

an arbitrary protein-of-interest remains to be established.

Engineered allosteric regulation can also affect a protein’s

activity without gross structural alteration. The focal adhesion

kinase G-loop governs the position of the incoming ATP; inser-

tion of an FKBP domain in a loop distal to the G-loop is thought

to increase the flexibility of the G-loop, interfering with the proper

catalytic activity of the kinase. Hahn and colleagues showed

that rapamycin mediated dimerization with an FRB domain

decreases the flexibility of this loop, restoring proper activity of

Fak (Karginov et al., 2010). Because of the high degree of con-

servation of kinases, this strategy may be generalizable without

extensive engineering.
2014 Elsevier Ltd All rights reserved 1245
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Figure 5. Allosteric Control of Protein Function
(A) Mutually exclusive folding. One protein domain is inserted into an exterior
loop of another protein, creating mechanical stress on its structure. The in-
serted domain can become unfolded, relieving this stress, allowing the host
protein to fold properly. Thermodynamically controlling the stability of each of
the domains by the addition of ligands for either the host or inserted domain
can control the relative stability of the two domains.
(B) ‘‘Classic’’ allostery. Binding at a site distal to the active site causes a
conformational or dynamical change affecting the enzyme’s active site.
(C) Light-driven reversible intramolecular binding. Protein activity is seques-
tered by the close association of a Lov2 domain with the protein-of-interest.
Flexibility introduced by unfolding of the J-a helix allows protein activity.
Reversion is not controlled but relies on dark-state relaxation.
(D) Similar to (C), except the photoconvertible protein Dronpa allows direct
reversibility sequential application by violet (400 nm) or cyan (500 nm) light.
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In addition to its use as conditional dimerizer, the LOV2

domain is often used as a modular control unit in allosteric con-

trol strategies because of its small size and well-characterized

conformational change upon illumination with blue light. Sos-

nick and coworkers fused the Lov2 domain to the Escherichia

coli trp repressor at 12 different insertion points (Strickland

et al., 2008). One of these exhibited light-dependent DNA bind-

ing, though no functional studies were performed. The Hahn

group also used a Lov2 domain to control the function of several

small Rho-family GTPases (Wu et al., 2009). They found a Lov2-

constitutively active Rac1 fusion (photoactive-Rac1 [PA-Rac1])

that exhibited light-dependent binding to effector PAK. Again,

optimizing attachment points was key to finding light-depen-

dent activity of the fusion protein. Structural analysis and com-

parison with Cdc42 allowed the construction of a Lov2-fusion

photoactivatable analog, PA-Cdc42. The fast kinetics and

robust reversibility of PA-Rac1 allowed the Hahn group to tease

apart the hierarchy of signaling events in actin-dependent

membrane remodeling.
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Optimization of insertion site and linker lengths have dramatic

effects on the success of allosteric regulation strategies but are

often empirically determined (Cutler et al., 2009). As an alterna-

tive to this, Ranganathan and coworkers used statistical

coupling analysis (SCA) to identify sectors connected to the sur-

face residues as targets for allosteric modulation (Lee et al.,

2008). SCA uses coevolution of amino acids within a protein to

identify functionally relevant ‘‘sectors’’ rather than structurally

defined protein ‘‘domains.’’ Fusing E. coli DHFR and Lov2

domain at these predicted sites produced a fusion protein whose

enzymatic activity could be modulated by 2-fold, leading to

measurable differences in growth rate of an auxotrophic E. coli

strain (Reynolds et al., 2011).

As an alternative to using Lov2 as the allosteric control

domain, the Lin lab recently showed that a Lys145Asn mutant

of the photoconvertible protein Dronpa undergoes reversible

oligomerization/dissociation upon illumination cyan or violet light

(Zhou et al., 2012). Inserting a tethered Dronpa 145N into the

Cdc42 GEF Dbl homology domain or HCV NS3-4A protease

rendered them light activatable. The kinetics of Dronpa 145N-

based control are somewhat slower than Lov2, but may be

easier to generalize and benefit from intrinsic fluorescence.

Protein Stability Control
Of the various methods for posttranslational control over protein

function, controlling its intracellular stability is most similar to

traditional genetic and transcription control methods. The pro-

tein-of-interest cannot be active if it is not there. Most conditional

protein degradation technologies take advantage of the ubiquitin

proteasome system (UPS) through intervention at several points

in the pathway (Figure 6). The UPS is a mechanism for the regu-

lated proteolysis of intracellular proteins. Proteins are targeted

for degradation if they are damaged or their activity interferes

with other cellular processes (Figure 6). Specific recognition

molecules tag the protein to be degraded by the conjugation to

ubiquitin. The addition of several ubiquitin molecules is typically

sufficient to target the protein to the proteasome, where it

is unfolded and processively degraded by the proteasome.

Proteins can be targeted for degradation using the cells’ natural

ubiquitylation machinery (N-end rule, destabilizing domains,

HaloTag-Hyt13) (Chu et al., 2008; Dohmen et al., 1994; Iwamoto

et al., 2010; Neklesa et al., 2011), via recruitment to specific ubiq-

uitin E3 ligases (PROTACs, LIDs, deGradFP, AID, ubiquibodies)

(Bonger et al., 2011, 2014; Caussinus et al., 2011; Nishimura

et al., 2009; Portnoff et al., 2014; Sakamoto et al., 2001), or

can bypass the ubiquitylation step altogether by small-mole-

cule-mediated direct recruitment to the proteasome (dimerizers,

degrons) (Janse et al., 2004; Renicke et al., 2013). Again, chem-

ical genetic protein stability control technologies are more easily

generalizable than those that rely solely on small-molecule-

mediated degradation but do not affect endogenous pools of

the protein-of-interest.

Historically, temperature-sensitive alleles of a particular gene

in yeast have been isolated that create conditional alleles of

gene of interest, but a new mutant needed to be found for

each gene being studied. In order to generalize this approach

to an arbitrary gene-of-interest, Dohmen and Varshavsky

created a tripartate fusion consisting of an N-end rule substrate,

a known temperature sensitive allele of (mouse) DHFR, and the
d All rights reserved
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Figure 6. Degradation Mediated Control of Protein Abundance
(A) Schematic of the UPS. Normal proteins can be targeted for degradation by
their regulated ubiquitylation or if they are damaged or misfolded. Addition of a
minimum of four ubiquitin moieties targets the protein to the proteasome for
degradation.
(B) Each step in the UPS can be manipulated for regulated degradation of a
protein-of-interest. (i) Directly targeting a protein to the proteasome obviates
the need for ubiquitylation for degradation. (ii) Recruitment of an ubiquitin E3
ligase by the addition of a dimerizer causes ubiquitylation of the protein-of-
interest substrate, followed by its subsequent targeting to the proteasome and
degradation. (iii) Relying on natural ubiquitylation processes. Conditional
regulation of natural ubiquitylation processes by triggering the N-end rule or
recognition of destabilizing domains by protein quality control ubiquitin E3
ligases.
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protein-of-interest (Dohmen et al., 1994). The N-end rule is an

evolutionarily conserved pathway that targets proteins with

certain N-terminal amino acids (Arg, Lys, etc.) for ubiquitylation

and degradation; to alter the N-terminal amino acid, they rely

on the rapid cleavage of linear ubiquitin fusion proteins by intra-

cellular deubiquitinating enzymes. Their temperature-sensitive

degron (td) technique used the conditional temperature accessi-

bility of the N-terminal arginine residue to control the intracellular

stability of Cdc28 and Ura3.

A significant advance to the robustness of this technique was

made by Labib and Diffley (Labib et al., 2000), who showed that

overexpression of the ubiquitin E3 ligase that facilitates the

N-end rule in yeast, Ubr1, can greatly increase the efficiency of

clearance of td-tagged substrates; inducible expression sys-

tems are used when possible to minimize potentially pleiotropic

effects of Ubr1. More than 100 genes have been tagged in this
Chemistry & Biology 2
manner. Because large changes in temperature can have pleio-

tropic effects, an isothermal method might be desirable. In order

to achieve this, Taxis and coworkers instead expressed a tripar-

tate fusion of a reporter-TEV target cut site-protein-of-interest

(Taxis et al., 2009). Coexpression of the TEV protease in these

cells causes cleavage and de novo exposure of the N-end rule

substrate and subsequent degradation of the fusion protein. It

should be noted that both these techniques also lowered the

expression of their target proteins prior to degradation by

altering the promoter used.

Because polyubiquitin chains target a protein to the protea-

some for degradation, directly controlling the recruitment of a

protein to the proteasome could also mediate its degradation.

Church and coworkers used a conditional dimerization system

to localize a Tor-His3 fusion to the proteasome by the addition

of rapamycin to cells expressing a Fpr1-Rpn10 fusion (Janse

et al., 2004). Localization of the proteasome caused fast degra-

dation of the His3 fusion protein. Degradation of His3 produced a

loss-of-function auxotrophic phenotype, though it was some-

what leaky. Another method to directly tether a protein-of-

interest to the proteasome is by fusing it to a fragment of

ornithine decarboxylase (ODC); GFP-ODC is constitutively

degraded in the absence of proteasome inhibition. Taxis and

coworkers fused ODC to the C-terminal J helix of Lov2 to pro-

duce a light-dependent conditional degradation signal (Renicke

et al., 2013). This modular degradation signal was able to confer

loss-of-function phenotypes to a variety of target proteins in

yeast but produced leaky phenotypes in some cases. In a similar

approach, our group concurrently showed that fusing a degron

to the C-terminal J helix of Lov2 could produce blue-light-depen-

dent conditional protein regulation in mammalian cells and in

zebrafish embryos (Bonger et al., 2014).

Instead of directly recruiting a protein-of-interest to the pro-

teasome, researchers have demonstrated that recruitment a

protein-of-interest to a ubiquitin E3 ligase is often sufficient to

drive its ubiquitylation and degradation. Crews and colleagues

first demonstrated in cell-free extracts that synthetic molecules,

called bifunctional proteolysis targeting chimeras (protacs), can

bind to both a target protein-of-interest, and a known E3 ligase is

sufficient to drive its degradation (Sakamoto et al., 2001). Several

other protac molecules have since been developed that allow

conditional degradation of particular target proteins in cells by

the addition of cell-penetrating peptides (Schneekloth et al.,

2004). Importantly, protacs allows the degradation of endoge-

nous proteins without the need for genetic manipulation, but its

use is limited to proteins with known small-molecule ligands

that can also be functionalized while retaining reasonable solubi-

lity and cell permeability. In another protac-like approach, Wang

and colleagues recently demonstrated that a bifunctional mole-

cule that binds to a protein-of-interest and acts as a signal for

chaperone mediated autophagy can also degrade proteins in a

proteasome independent manner (Fan et al., 2014). Although

there was still significant undegraded protein, this approach

could be very important in directing the degradation of proteins

under conditions of proteotoxic stress and insufficient protea-

some function.

If using a chemical genetic strategy, it should be possible to

simply fuse a known ligand-binding domain with a protein-of-

interest and use an established protac molecule. Analogously,
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Kanemaki and coworkers used small-molecule plant hormones

called auxins to bridge the protein-of-interest with its target E3

ligase (Nishimura et al., 2009). A fusion of a protein-of-interest

with an auxin inducible degron could be ubiquitylated by coex-

pressing an adaptor F-box protein that also binds to SCF family

ubiquiting ligases in the presence of either of two synthetic

auxins, IAA or NAA. This yielded fast, tunable control in a variety

of experimental model systems.

Two recent reports also demonstrated degradation of a target

endogenous protein. In each case, single-chain Fv domains

that specifically bind to GFP are fused to either an F-box E3

ligase adaptor protein (Caussinus et al., 2011) or directly to

the promiscuous E3 ligase CHIP (Portnoff et al., 2014). When

these molecules are coexpressed with GFP fusion proteins,

the single-chain Fv binds to the GFP, which is subsequently

ubiquitylated by the E3 ligase and degraded by the proteasome.

Although these have been demonstrated only as genetically en-

coded engineered E3 ligases, it should be possible to combine

these with other conditional techniques highlighted here in order

to produce reversible control of the endogenous protein-of-

interest.

Intracellular protein folding is subject to strict quality control,

where misfolded or damaged proteins are targeted for ubiqui-

tylation and degradation. When attempting to control the activ-

ity of GSK3b in mice using a conditional dimerization system,

Crabtree and colleagues noticed that the GSK3b-FRBmutant

protein they were using was being degraded, but that could

be rescued by the addition of the small-molecule dimerizer

MaRap, with the additional recruitment of FKBP (Stankunas

et al., 2003). Indeed, Varshavsky and colleagues had previously

shown that methotrexate binds to and suppresses the degra-

dation of td-degron-tagged proteins (Johnston et al., 1995).

Our group then demonstrated that a genetically compact

system requiring only the expression of a protein-of-interest

fused to an unstable mutant of FKBP could be rescued by

the addition of the specific ligand Shield-1(Banaszynski et al.,

2006). These ‘‘destabilizing domains’’ conferred instability to

a variety of proteins through the processive degradation

at the proteasome. Destabilizing domains also conferred

tunable protein regulation in a several organisms, including in

living mice (Banaszynski et al., 2008; Iwamoto et al., 2010).

Using different protein-ligand pairs now allows the orthogonal

control of several proteins simultaneously in the same cell

(Iwamoto et al., 2010). Perhaps because of its modular and

generalizable uses, destabilizing domains have been widely

adopted (Armstrong and Goldberg, 2007; Brooks et al., 2010;

Campeau et al., 2009; Dolan et al., 2012; Dvorin et al., 2010;

Gong and de Lange, 2010; Kwan et al., 2011; Madeira da Silva

et al., 2009; Muralidharan et al., 2012; Pruett-Miller et al., 2009;

Raj et al., 2014). Some limitations to the use of destabilizing

domains remain, including the necessity for genetic manipula-

tion and mixed utility in the yeast S. cerevisiae (Rakhit et al.,

2011).

Where fusion of the destabilizing domain to the protein-of-in-

terest may interfere with its function, the protein-of-interest

may be combined with an excisable degron to release a free

complemented or unmodified protein. Although an intein could

be used for this purpose, Pratt and Muir and colleagues

exploited the propensity of linear ubiquitin fusions to be rapidly
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hydrolyzed by intracellular deubiquitinating enzymes (Pratt

et al., 2007). The protein-of-interest if fused to a degron, a dimer-

izer, and a ubiquitin fragment and expressed concurrently with a

second protein fused to the dimerization domain and the other

ubiquitin fragment. Upon dimerization and ubiquitin fragment

complementation, deubiquitinating enzymes cleave the dimer-

ization domains and ubiquitin to release the free, unmodified

protein-of-interest. Although it is not reversible and requires

dimerization, this system allows tunable control over the abun-

dance of a resultant unmodified (other than its N-terminal amino

acids) protein-of-interest (Lin and Pratt, 2014).

In theory, the application of genome-editing technology allows

site-specific addition of protein tags that enable many of the

posttranslational strategies outlined here. For example, it has

now been demonstrated that destabilizing domains can be in-

serted upstream of exon 1 of Treacher Collins-Franceschetti

syndrome-1 (TCOF1) to conditionally regulate it by the addition

of Shield-1 (Park et al., 2014). Because of the high efficiency of

gene targeting, both alleles can be modified in a single cell

leading to conditional regulation without interference from

endogenous sources. As the efficacy of gene editing techniques

improve, the conditional systems described above will become

more valuable to investigators who design control over biological

perturbations.

Future Directions and Outlook
The direct control of protein activity through chemical genetics

encapsulates many of the desirable properties of an ideal pertur-

bation strategy, including specificity, speed, reversibility, and

tunability; however, they also present unique limitations. For

example, the direct regulation of an engineered protein has

been demonstrated in several cases but can require substantial

investment in optimization for the particular protein being

studied. Conditional dimerization techniques offer significant

advantages in speed compared with degradation tools but are

limited to those proteins with subcellular compartment-specific

activity. Degradation-based systems are more generally appli-

cable but are somewhat slower and limited to proteins with

access to the proteasome.

When choosing an experimental perturbation strategy, a

researcher must weigh the precision that an experiment requires

against the available tools. Chemical genetic approaches to

posttranslationally control protein activity combine the strengths

of biologically active small molecules and the specificity of

genetic manipulation without having to screen for a particular

small molecule. As alluded to earlier, a primary concern with

any manipulation, especially in the context of protein-level

control, is the robustness of the technology. Although genetic

deletion is slow, cumbersome, and spatiotemporally imprecise,

it remains the gold standard for many biologists in understanding

a gene’s function, because it yields unambiguous results. The

burden of proof falls on the chemical biology community to

improve the robustness of posttranslational, protein-level pertur-

bation technologies to move them from niche to more main-

stream biological applications, as seen with ligand-inducible

transcriptional systems.

Although the past few years have witnessed tremendous

advances in the breadth of protein control technologies, more

specific manipulations are desirable. An area that has seen
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limited development is the conditional regulation of posttransla-

tional modifications. Because kinases, phosphatases, and so

on, may have many downstream targets, regulating their activity

does not allow careful dissection of these networks. When

posttranslational modifications are present, it is not clear

which modification, and in which contexts, are biologically

relevant to the control of that protein’s activity. In order to study

this, biologists currently make phosphoanalog mutants by re-

placing a serine, threonine, or tyrosine residue with one of the

negatively charged amino acids, such as aspartic or glutamic

acid. Although combining a phospho mutant with an established

conditional protein regulation tool may provide more precise

control of this target, the perturbation is likely to be slow relative

to the timescale of the biological process under study, such as its

downstream signaling or its role in chromatin remodeling. Amore

elegant solution would enable the study of these biologically

important processes.

Another key area of potential improvement to these chemi-

cal genetic tools is in experimental systems in which fewer

tools are available. First, conditional tools to study mitochon-

drial or extracellular proteins remain relatively underexplored

(Sellmyer et al., 2012). Strategies that target these proteins

for degradation are also lacking, largely because they are

compartmentally sequestered from the proteasome. The study

of clinically relevant apicomplexan parasites, such as Toxo-

plasma gondii and the Plasmodium species, is limited by the

availability of conditional techniques to control essential pro-

tein function, because they are haploid. Destabilizing domains

have been used to conditionally degrade proteins in these

organisms, but have not been as effective as they are in

mammalian cells (Jimanez-Ruiz et al., 2014). The development

of improved conditional protein regulation systems would

allow more efficient characterization of protein signaling in

these organisms.

Moving beyond these specific applications, one aspect of

these conditional control systems remains to be exploited,

which is their ability to deepen our mechanistic understanding

of biological systems. In theory, the speed and specificity these

technologies offer should help control for any cellular compen-

satory mechanisms leading to an observable phenotype; how-

ever, the timescale at which most of these tools operate lags

behind the speed of signaling processes in vivo, which can still

complicate quantitative assessments. More generally, mecha-

nistic studies are further complicated by the fact that the

most well-characterized and commonly used tools are far

from ideal. A case in point here is the use of rapamycin-based

approaches, which continue to be implemented today. This ul-

timately highlights the need for significantly improved, general

small-molecule-based tools. Another factor that complicates

in-depth biological studies is that a given protein may have

more than one function or binding partner, which would be diffi-

cult to identify using current technologies. Although the parallel

application of these tools—to study multiple proteins in a single

system—can help elucidate such confounding factors, such

studies may be difficult to execute from a practical standpoint.

The development of efficient and practical ways to simulta-

neously study multiple proteins will ultimately give us a more

quantitative look at the interactions that orchestrate complex

biological behavior.
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diction and testing of drug activity on side-effect targets. Nature 486, 361–367.

Lungu, O.I., Hallett, R.A., Choi, E.J., Aiken, M.J., Hahn, K.M., and Kuhlman, B.
(2012). Designing photoswitchable peptides using the AsLOV2 domain. Chem.
Biol. 19, 507–517.

Luo, M. (2012). Current chemical biology approaches to interrogate protein
methyltransferases. ACS Chem. Biol. 7, 443–463.

Madeira da Silva, L., Owens, K.L., Murta, S.M.F., and Beverley, S.M. (2009).
Regulated expression of the Leishmania major surface virulence factor lipo-
phosphoglycan using conditionally destabilized fusion proteins. Proc. Natl.
Acad. Sci. USA 106, 7583–7588.

McNaughton, B.R., Cronican, J.J., Thompson, D.B., and Liu, D.R. (2009).
Mammalian cell penetration, siRNA transfection, and DNA transfection by
supercharged proteins. Proc. Natl. Acad. Sci. USA 106, 6111–6116.

Milstein, S., Nguyen, M., Meyers, R., and de Fougerolles, A. (2013). Measuring
RNAi knockdown using qPCR. Methods Enzymol. 533, 57–77.

Miyamoto, T., DeRose, R., Suarez, A., Ueno, T., Chen,M., Sun, T.P., Wolfgang,
M.J., Mukherjee, C., Meyers, D.J., and Inoue, T. (2012). Rapid and orthogonal
logic gating with a gibberellin-induced dimerization system. Nat. Chem. Biol. 8,
465–470.

Mootz, H.D., and Muir, T.W. (2002). Protein splicing triggered by a small mole-
cule. J. Am. Chem. Soc. 124, 9044–9045.

Muir, T.W., Sondhi, D., and Cole, P.A. (1998). Expressed protein ligation: a
general method for protein engineering. Proc. Natl. Acad. Sci. USA 95,
6705–6710.

Muralidharan, V., Oksman, A., Pal, P., Lindquist, S., and Goldberg, D.E. (2012).
Plasmodium falciparum heat shock protein 110 stabilizes the asparagine
repeat-rich parasite proteome during malarial fevers. Nat. Commun. 3, 1310.

Neklesa, T.K., Tae, H.S., Schneekloth, A.R., Stulberg, M.J., Corson, T.W.,
Sundberg, T.B., Raina, K., Holley, S.A., and Crews, C.M. (2011). Small-mole-
cule hydrophobic tagging-induced degradation of HaloTag fusion proteins.
Nat. Chem. Biol. 7, 538–543.

Ni, M., Tepperman, J.M., and Quail, P.H. (1999). Binding of phytochrome B to
its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400,
781–784.

Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T., and Kanemaki, M.
(2009). An auxin-based degron system for the rapid depletion of proteins in
nonplant cells. Nat. Methods 6, 917–922.

Park, A., Won, S.T., Pentecost, M., Bartkowski, W., and Lee, B. (2014).
CRISPR/Cas9 allows efficient and complete knock-in of a destabilization
domain-tagged essential protein in a human cell line, allowing rapid knock-
down of protein function. PLoS ONE 9, e95101.

Peck, S.H., Chen, I., and Liu, D.R. (2011). Directed evolution of a small-mole-
cule-triggered intein with improved splicing properties in mammalian cells.
Chem. Biol. 18, 619–630.

Portnoff, A.D., Stephens, E.A., Varner, J.D., and DeLisa, M.P. (2014). Ubiqui-
bodies, synthetic E3 ubiquitin ligases endowed with unnatural substrate spec-
ificity for targeted protein silencing. J. Biol. Chem. 289, 7844–7855.
Chemistry & Biology 2
Pratt, M.R., Schwartz, E.C., and Muir, T.W. (2007). Small-molecule-mediated
rescue of protein function by an inducible proteolytic shunt. Proc. Natl.
Acad. Sci. USA 104, 11209–11214.

Pruett-Miller, S.M., Reading, D.W., Porter, S.N., and Porteus, M.H. (2009).
Attenuation of zinc finger nuclease toxicity by small-molecule regulation of
protein levels. PLoS Genet. 5, e1000376.

Radley, T.L., Markowska, A.I., Bettinger, B.T., Ha, J.-H., and Loh, S.N. (2003).
Allosteric switching by mutually exclusive folding of protein domains. J. Mol.
Biol. 332, 529–536.

Raj, D.K., Nixon, C.P., Nixon, C.E., Dvorin, J.D., DiPetrillo, C.G., Pond-Tor, S.,
Wu, H.-W., Jolly, G., Pischel, L., Lu, A., et al. (2014). Antibodies to PfSEA-1
block parasite egress from RBCs and protect against malaria infection.
Science 344, 871–877.

Rakhit, R., Edwards, S.R., Iwamoto, M., and Wandless, T.J. (2011). Evaluation
of FKBP and DHFR based destabilizing domains in Saccharomyces cerevi-
siae. Bioorg. Med. Chem. Lett. 21, 4965–4968.

Renicke, C., Schuster, D., Usherenko, S., Essen, L.-O., and Taxis, C. (2013). A
LOV2 domain-based optogenetic tool to control protein degradation and
cellular function. Chem. Biol. 20, 619–626.

Reynolds, K.A., McLaughlin, R.N., and Ranganathan, R. (2011). Hot spots for
allosteric regulation on protein surfaces. Cell 147, 1564–1575.

Rivera, V.M., Clackson, T., Natesan, S., Pollock, R., Amara, J.F., Keenan, T.,
Magari, S.R., Phillips, T., Courage, N.L., Cerasoli, F., Jr., et al. (1996). A human-
ized system for pharmacologic control of gene expression. Nat. Med. 2, 1028–
1032.

Rivera, V.M., Wang, X., Wardwell, S., Courage, N.L., Volchuk, A., Keenan, T.,
Holt, D.A., Gilman, M., Orci, L., Cerasoli, F., Jr., et al. (2000). Regulation of pro-
tein secretion through controlled aggregation in the endoplasmic reticulum.
Science 287, 826–830.

Robinson, M.S., Sahlender, D.A., and Foster, S.D. (2010). Rapid inactivation of
proteins by rapamycin-induced rerouting to mitochondria. Dev. Cell 18,
324–331.

Rollins, C.T., Rivera, V.M., Woolfson, D.N., Keenan, T., Hatada, M., Adams,
S.E., Andrade, L.J., Yaeger, D., van Schravendijk, M.R., Holt, D.A., et al.
(2000). A ligand-reversible dimerization system for controlling protein-protein
interactions. Proc. Natl. Acad. Sci. USA 97, 7096–7101.

Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M., and
Deshaies, R.J. (2001). Protacs: chimeric molecules that target proteins to
the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc.
Natl. Acad. Sci. USA 98, 8554–8559.

Sawa, M., Nusinow, D.A., Kay, S.A., and Imaizumi, T. (2007). FKF1 and
GIGANTEA complex formation is required for day-length measurement in
Arabidopsis. Science 318, 261–265.

Schneekloth, J.S., Jr., Fonseca, F.N., Koldobskiy, M., Mandal, A., Deshaies,
R., Sakamoto, K., and Crews, C.M. (2004). Chemical genetic control of protein
levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 126, 3748–
3754.

Schwartz, E.C., Saez, L., Young, M.W., and Muir, T.W. (2007). Post-transla-
tional enzyme activation in an animal via optimized conditional protein splicing.
Nat. Chem. Biol. 3, 50–54.

Selgrade, D.F., Lohmueller, J.J., Lienert, F., and Silver, P.A. (2013). Protein
scaffold-activated protein trans-splicing in mammalian cells. J. Am. Chem.
Soc. 135, 7713–7719.

Sellmyer, M.A., Chen, L.C., Egeler, E.L., Rakhit, R., and Wandless, T.J. (2012).
Intracellular context affects levels of a chemically dependent destabilizing
domain. PLoS ONE 7, e43297.

Sinha, S., Liang, L., Ho, E.T.W., Urbanek, K.E., Luo, L., Baer, T.M., and
Schnitzer,M.J. (2013). High-speed laser microsurgery of alert fruit flies for fluo-
rescence imaging of neural activity. Proc. Natl. Acad. Sci. USA 110, 18374–
18379.

Spencer, D.M., Wandless, T.J., Schreiber, S.L., and Crabtree, G.R. (1993).
Controlling signal transduction with synthetic ligands. Science 262, 1019–
1024.
1, September 18, 2014 ª2014 Elsevier Ltd All rights reserved 1251



Chemistry & Biology

Review
Stankunas, K., Bayle, J.H., Gestwicki, J.E., Lin, Y.-M., Wandless, T.J., and
Crabtree, G.R. (2003). Conditional protein alleles using knockin mice and a
chemical inducer of dimerization. Mol. Cell 12, 1615–1624.

Strickland, D., Moffat, K., and Sosnick, T.R. (2008). Light-activated DNA bind-
ing in a designed allosteric protein. Proc. Natl. Acad. Sci. USA 105, 10709–
10714.

Strickland, D., Lin, Y., Wagner, E., Hope, C.M., Zayner, J., Antoniou, C., Sos-
nick, T.R.,Weiss, E.L., andGlotzer, M. (2012). TULIPs: tunable, light-controlled
interacting protein tags for cell biology. Nat. Methods 9, 379–384.

Taxis, C., Stier, G., Spadaccini, R., and Knop, M. (2009). Efficient protein
depletion by genetically controlled deprotection of a dormant N-degron.
Mol. Syst. Biol. 5, 267.

Taylor, A.M., Dieterich, D.C., Ito, H.T., Kim, S.A., and Schuman, E.M. (2010).
Microfluidic local perfusion chambers for the visualization and manipulation
of synapses. Neuron 66, 57–68.

Tyszkiewicz, A.B., and Muir, T.W. (2008). Activation of protein splicing with
light in yeast. Nat. Methods 5, 303–305.
1252 Chemistry & Biology 21, September 18, 2014 ª2014 Elsevier Lt
Ubersax, J.A., Woodbury, E.L., Quang, P.N., Paraz, M., Blethrow, J.D., Shah,
K., Shokat, K.M., and Morgan, D.O. (2003). Targets of the cyclin-dependent
kinase Cdk1. Nature 425, 859–864.

Wu, Y.I., Frey, D., Lungu, O.I., Jaehrig, A., Schlichting, I., Kuhlman, B., and
Hahn, K.M. (2009). A genetically encoded photoactivatable Rac controls the
motility of living cells. Nature 461, 104–108.

Yang, X., Jost, A.P.T., Weiner, O.D., and Tang, C. (2013). A light-inducible
organelle-targeting system for dynamically activating and inactivating sig-
naling in budding yeast. Mol. Biol. Cell 24, 2419–2430.

Yazawa, M., Sadaghiani, A.M., Hsueh, B., and Dolmetsch, R.E. (2009). Induc-
tion of protein-protein interactions in live cells using light. Nat. Biotechnol. 27,
941–945.

Zhang, C., Kenski, D.M., Paulson, J.L., Bonshtien, A., Sessa, G., Cross, J.V.,
Templeton, D.J., and Shokat, K.M. (2005). A second-site suppressor strategy
for chemical genetic analysis of diverse protein kinases. Nat. Methods 2,
435–441.

Zhou, X.X., Chung, H.K., Lam, A.J., and Lin, M.Z. (2012). Optical control of pro-
tein activity by fluorescent protein domains. Science 338, 810–814.
d All rights reserved


	Chemical Biology Strategies for Posttranslational Control of Protein Function
	Experimental Considerations for Choice in Perturbation Technique
	Conditional Dimerization: (Mis)localization
	Mislocalization by Light-Mediated Dimerization
	Activation of Preproteins
	Engineered Proteins for Orthogonal Small-Molecule Control
	Engineered Allosteric Control over Protein Function
	Protein Stability Control
	Future Directions and Outlook
	Supplemental Information
	Acknowledgments
	References


