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Abstract

Let ω be a domain inR2 and letθ :ω → R
3 be a smooth immersion. The main purpose of this paper is to establish a “non

Korn inequality on the surfaceθ(ω)”, asserting that, under ad hoc assumptions, theH1(ω)-distance between the surfaceθ(ω) and a
deformed surface is “controlled” by theL1(ω)-distance between their fundamental forms. Naturally, theH1(ω)-distance betwee
the two surfaces is only measured up to proper isometries ofR

3.
This inequality implies in particular the following interesting per se sequential continuity property for a sequence of s

Let θk :ω → R
3, k � 1, be mappings with the following properties: They belong to the spaceH1(ω); the vector fields normal to

the surfacesθk(ω), k � 1, are well defined a.e. inω and they also belong to the spaceH1(ω); the principal radii of curvature of th
surfacesθk(ω), k � 1, stay uniformly away from zero; and finally, the fundamental forms of the surfacesθk(ω) converge inL1(ω)

toward the fundamental forms of the surfaceθ(ω) ask → ∞. Then, up to proper isometries ofR
3, the surfacesθk(ω) converge in

H1(ω) toward the surfaceθ(ω) ask → ∞.
Such results have potential applications to nonlinear shell theory, the surfaceθ(ω) being then the middle surface of the referen

configuration of a nonlinearly elastic shell.
 2005 Elsevier SAS. All rights reserved.

Résumé

Soitω un domaine deR2 et soitθ :ω → R
3 une immersion régulière. L’objet principal de cet article est d’établir une “inég

de Korn non linéaire sur la surfaceθ(ω)”, affirmant que, moyennant des hypothèses convenables, la distance dansH1(ω) entre la
surfaceθ(ω) et une surface déformée est “controlée” par la distance dansL1(ω) entre leurs formes fondamentales. Naturellem
la distance dansH1(ω) entre les deux surfaces est mesurée seulement modulo les isométries propres deR

3.
Cette inégalité implique en particulier la propriété de continuité séquentielle suivante, intéressante par elle-mê

θk :ω → R3, k � 1, des applications ayant les propriétés suivantes : Elles appartiennent à l’espaceH1(ω) ; les champs de vecteu
normaux aux surfacesθk(ω), k � 1, sont définis presque partout dansω et appartiennent aussi à l’espaceH1(ω) ; les modules
des rayons de courbure principaux des surfacesθk(ω), k � 1, sont uniformément minorés par une constante strictement pos
finalement, les formes fondamentales des surfacesθk(ω) convergent dansL1(ω) vers les formes fondamentales de la surfaceθ(ω)

lorsquek → ∞. Alors, à des isométries propres deR
3 près, les surfacesθk(ω) convergent dansH1(ω) vers la surfaceθ(ω) lorsque

k → ∞.
Ce type de résultat a des applications potentielles à la théorie non linéaire des coques, la surfaceθ(ω) étant alors la surfac

moyenne de la configuration de référence d’une coque non linéairement élastique.
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0021-7824/$ – see front matter 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Let ω be a bounded and connected open subset ofR
2 with a Lipschitz-continuous boundary, letθ :ω → R

3 be a
smooth enough immersion, and letθ(ω) be the middle surface of the reference configuration of anonlinearly elastic
shell. Let S

2 denote the space of all symmetric matrices of order two.
Let (aαβ) and(bαβ) denote the first and second fundamental forms of the “undeformed” middle surfaceS = θ(ω)

and let (ãαβ) and (b̃αβ) denote the first and second fundamental forms of a “deformed” surfaceθ̃(ω) associated
with a smooth enough mapping̃θ , whose normal vector field is well defined a.e. inω (so as to insure that the seco
fundamental form(b̃αβ) is well defined). Then thechange of metric tensor field(ãαβ −aαβ) :ω → S

2 and thechange of
curvature tensor field(b̃αβ −bαβ) :ω → S

2 associated with such adeformationθ̃ play a major rôle intwo-dimensiona
nonlinear shell theories.

For instance, the well-known stored energy functionwK proposed by Koiter [22, Eqs. (4.2), (8.1), and (8.3)]
modeling shells made with a homogeneous and isotropic elastic material takes the form

wK = ε

2
aαβστ (ãστ − aστ )(ãαβ − aαβ) + ε3

6
aαβστ

(
b̃σ τ − bστ

)(
b̃αβ − bαβ

)
,

where 2ε is the (constant) thickness of the shell and

aαβστ = 4λµ

λ + 2µ
aαβaστ + 2µ

(
aασ aβτ + aατ aβσ

)
,

where(aαβ) = (aαβ)−1 andλ > 0 andµ > 0 denote the Lamé constants of the elastic material.
The stored energy functions of anonlinearly elastic membrane shelland of anonlinearly elastic flexural shellhave

been identified and fully justified by means ofΓ -convergence theory in two key contributions, respectively by
Dret and Raoult [25] and Friesecke, James, Mora and Müller [20] (a nonlinearly elastic shell is a “membrane
there are no nonzero admissible deformations of its middle surfaceS that preserve the metric ofS; otherwise, the she
is a “flexural shell”). It then turns out that the stored energy function of a membrane shell is anad hocquasiconvex
envelope that is only a function of the change of metric tensor field, and that the stored energy functionwF of a
flexural shell is of the form

wF = ε3

6
aαβστ

(
b̃σ τ − bστ

)(
b̃αβ − bαβ

)
,

i.e., it is only a function of the change of curvature tensor field (in this case, the minimizers of the total ene
sought in a set of admissible deformations that preserve the metric ofS; see again [20], or Ciarlet and Coutand [11

Conceivably, an alternative approach to existence theory in nonlinear shell theory could thus regard thechange of
metric and change of curvature tensors, or equivalently, thefirst and second fundamental forms(ãαβ) and (b̃αβ) of
the unknown deformed middle surface, as theprimary unknowns, instead as the deformationθ̃ itself as is customary.

This observation is one of the reasons underlying the present study, the other one beingdifferential geometryper
se. As such, it is a continuation of the works initiated by Ciarlet [8] and continued by Ciarlet and Mardare [
“smooth” topologies, respectively those of the spacesCm(ω) andCm(ω).

Let us henceforth restrict ourselves to deformationsθ̃ ∈ H 1(ω;R
3) whose normal vector field̃a3 = ã1∧ã2|ã1∧ã2| , where

ãα = ∂α θ̃ , is well defined a.e. inω and satisfies̃a3 ∈ H 1(ω;R3). The covariant components of the three fundame
forms of the deformed surfacẽθ(ω), viz.,

ãαβ = ãα · ãβ, b̃αβ = −∂α ã3 · ãβ, c̃αβ = ∂α ã3 · ∂β ã3,

are then well defined as functions inL1(ω) and clearly, the mapping

(θ̃ , ã3) ∈ [
H 1(ω;R

3)]2 → (
(ãαβ),

(
b̃αβ

)
, (c̃αβ)

) ∈ [
L1(ω;S

2)]3
,
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restricted to such deformationsθ̃ , is continuous.
One of the purposes of this paper is to show that,under appropriate assumptions, the converse also holds, i.e., the

surfaces̃θ(ω), together with their normal vector fields̃a3, depend continuously on their three fundamental forms
topologies being those of the same spaces, viz.,[H 1(ω;R

3)]2 and[L1(ω;S
2)]3.

This continuity result is itself a consequence of the following“nonlinear Korn inequality on a surface”, which
constitutes the main result of this paper (see Theorem 4.1): Assume thatθ ∈ C1(ω;R

3) is an immersion with a norma
vector fielda3 ∈ C1(ω;R

3). Then, for eachε > 0, there exists a constantc(θ , ε) with the following property: Given
any mappingθ̃ ∈ H 1(ω;R

3) such that the normal vector field̃a3 to the surfacẽθ(ω) is well defined and satisfie
ã3 ∈ H 1(ω;R

3), and such that the principal radii of curvaturẽRα of the surfacẽθ(ω) satisfy|R̃α| � ε a.e. inω, there
exists a vectorb := b(θ , θ̃ , ε) ∈ R

3 and a matrixR = R(θ , θ̃ , ε) ∈ O
3+ such that∥∥(

b + Rθ̃
) − θ

∥∥
H1(ω;R3)

+ ε‖Rã3 − a3‖H1(ω;R3)

� c(θ , ε)
{∥∥(ãαβ − aαβ)

∥∥1/2
L1(ω;S2)

+ ε1/2
∥∥(

b̃αβ − bαβ

)∥∥1/2
L1(ω;S2)

+ ε
∥∥(c̃αβ − cαβ)

∥∥1/2
L1(ω;S2)

}
,

whereO
3+ denotes the set of all proper orthogonal matrices of order three.

The proof of the above inequality relies in an essential way on anonlinear Korn inequality in an open set ofR
3

recently established by Ciarlet and Mardare [16] (see Theorem 3.1). This inequality in turn makes an essent
the fundamental “geometric rigidity lemma” of Friesecke, James, and Müller [21] and of the methodology devel
in Ciarlet and Laurent [14].

That a vectorb ∈ R3 and a matrixR ∈ O
3+ should appear in the left-hand side of this inequality is no surpris

light of the following extension, due to Ciarlet and Mardare [15], of the classicalrigidity theorem: Let θ ∈ C1(ω;R3)

be an immersion that satisfiesa3 ∈ C1(ω;R
3) and letθ̃ ∈ H 1(ω;R

3) be a mapping that satisfies

ãαβ = aαβ a.e. inω, ã3 ∈ H 1(ω;R
3), b̃αβ = bαβ a.e. inω

(as shown in ibid., the assumptionãαβ = aαβ a.e. inω insures that the normal vector fielda3 is well defined a.e. in
ω). Then the two surfacesθ(ω) andθ̃(ω) areproperly isometrically equivalent, i.e., there exist a vectorb ∈ R

3 and a
matrixR ∈ O

3+ such that

θ̃(y) = b + Rθ(y) for almost ally ∈ ω.

One application of the nonlinear Korn inequality on a surface is the followingsequential continuity propert
(cf. Corollaries 5.1 and 5.2; in the same spirit, the same inequality is also recast as one involving distances
lary 5.3). Letθk :ω → R

3, k � 1, be mappings with the following properties: They belong to the spaceH 1(ω); the
vector fields normal to the surfacesθk(ω), k � 1, are well defined a.e. inω and they also belong to the spaceH 1(ω);
the principal radii of curvature of the surfacesθk(ω), k � 1, stay uniformly away from zero; and finally, the thr
fundamental forms of the surfacesθk(ω) converge inL1(ω) toward the three fundamental forms of the surfaceθ(ω)

ask → ∞. Then, for eachk � 1, there exists a surfacêθ
k
(ω) that is properly isometrically equivalent to the surfa

θk(ω) such that the surfacesθ̂
k
(ω) and their normal vector fields converge inH 1(ω) to the surfaceθ(ω) and its norma

vector field.
Should the fundamental forms of the unknown deformed surface be viewed as the primary unknowns in

problem (as suggested earlier), this kind of sequential continuity result could thus prove to be useful when con
infimizing sequencesof the energy of a nonlinearly elastic shell (in particular for handling the part of the energ
takes into account the applied forces and the boundary conditions, which are both naturally expressed in ter
deformation itself).

In this respect, it is worth mentioning that a similar program has been successfully carried out in thelinear case.
More specifically, Ciarlet and Gratie [12] have recently revisited from a similar perspective the quadratic minim
problem proposed by Koiter [23] for modeling alinearly elastic shell. As expected, the stored energy function th
takes the form

wlin
K = ε

2
aαβστ γστ (η̃)γαβ(η̃) + ε3

6
aαβστ ρστ (η̃)ραβ(η̃),

where(γαβ(η̃)) :ω → S
2 and(ραβ(η̃)) :ω → S

2 are thelinearized change of metric, andlinearized change of curva
ture, tensor fieldsassociated with a displacement fieldη̃ = θ̃ − θ of the middle surface of the shell (“linearized” mea
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that only the linear parts with respect toη̃ are retained in the “complete” differences(ãαβ − aαβ) and(b̃αβ − bαβ)).
Then the novelty in [12] has consisted inconsidering these linearized tensors as the new unknowns, instead of the
displacement field̃η as is customary in linear shell theory. A new existence theory for the resulting minimiz
problem has been established in [12], which interestingly also provides a new proof of thelinear Korn inequality on a
surface(in so doing, an essential use is made of a similar approach, which has been successfully applied to l
three-dimensional elasticity by Ciarlet and Ciarlet, Jr [10]).

This linear inequality on a surface is also briefly reviewed here in Section 7, for the (different) purpose of s
that it is indeed a linearization of the nonlinear inequality established here, thus justifying the terminology “no
Korn inequality on a surface” proposed in the present paper.

The results of this paper have been announced in [13].

2. Notations and definitions

The symbolsMn, S
n, andO

n+ respectively designate the sets of all real matrices of ordern, of all real symmetric
matrices of ordern, and of all real orthogonal matricesR of ordern with detR = 1. The Euclidean norm of a vecto
b ∈ R

n is denoted|b| and|A| := sup|b|=1 |Ab| denotes the spectral norm of a matrixA ∈ M
n.

Let U be an open subset inRn. Given any smooth enough mappingχ :U → R
n, we let∇χ(x) ∈ M

n denote the
gradient matrix of the mappingχ at x ∈ U and we let∂iχ(x) denote theith column of the matrix∇χ(x). Given any
mappingF ∈ Lp(U ;M

n), p � 1, we let

‖F‖Lp(U ;Mn) :=
{∫

U

∣∣F (x)
∣∣p dx

}1/p

,

and we define‖F‖Lp(U ;Sn) in an analogous manner ifF ∈ Lp(U ;S
n). Given any mappingχ ∈ H 1(U ;R

n), we let

‖χ‖H1(U ;Rn) :=
{∫

U

(∣∣χ(x)
∣∣2 +

n∑
i=1

∣∣∂iχ(x)
∣∣2)dx

}1/2

.

A domainU in Rn is an open and bounded subset ofRn with a boundary that is Lipschitz-continuous in the se
of Adams [2] or Nĕcas [26], the setU being locally on the same side of its boundary. IfU is a domain inRn, the space
C1(U ;R

m) consists of all vector-valued mappingsχ ∈ C1(U ;R
m) that, together with all their partial derivatives

the first order, possess continuous extensions to the closureU of U . The spaceC1(U ;R
m) also consists of restriction

to U of all mappings in the spaceC1(Rn;R
m) (for a proof, see, e.g., [29] or [17]).

Latin indices and exponents henceforth range in the set{1,2,3} save when they are used for indexing sequen
Greek indices and exponents range in the set{1,2}, and the summation convention is used in conjunction with th
rules.

The notations(aαβ), (aαβ), (b
β
α), and (gij ) respectively designate matrices inM2 and M

3 with components

aαβ, aαβ, b
β
α , andgij , the index or exponent denoted hereα or i designating the row index.

3. Preliminaries

The proof of our main result (Theorem 3.1) relies on several preliminaries, which are gathered in this sect
key preliminary is the followingnonlinear Korn inequality on an open subset inR

n recently established by Ciarl
and Mardare [16], the proof of which is sketched below for the sake of completeness. See also Reshetnyak
related results.

Theorem 3.1.Let Ω be a domain inRn, n � 2. Given any mappingΘ ∈ C1(Ω;R
n) satisfyingdet∇Θ > 0 in Ω ,

there exists a constantC(Θ) with the following property: Given any mapping̃Θ ∈ H 1(Ω;R
n) satisfyingdet∇Θ̃ > 0

a.e. inΩ , there exist a vectorb = b(Θ̃,Θ) ∈ R
n and a matrixR = R(Θ̃,Θ) ∈ O

n+ such that∥∥(
b + RΘ̃

) − Θ
∥∥

H1(Ω;Rn)
� C(Θ)

∥∥∇Θ̃
T ∇Θ̃ − ∇ΘT ∇Θ

∥∥1/2
L1(Ω;Sn)

.
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Proof. We sketch the main parts of the proof under the additional assumption that the mappingΘ is injectivein Ω .
The proof in the general case is substantially more technical and relies on a methodology reminiscent to that
in Ciarlet and Laurent [14].

(i) Let a matrixF ∈ M
n be such thatdetF > 0. Then

dist
(
F ,O

n+
) := inf

Q∈O
n+
|F − Q| � ∣∣F T F − I

∣∣1/2
.

It is known that

dist
(
F ,O

n+
) = ∣∣(F T F

)1/2 − I
∣∣.

Let 0< v1 � v2 � · · · � vn denote the singular values of the matrixF . Then∣∣(F T F
)1/2 − I

∣∣ = max
{|v1 − 1|, |vn − 1|} � max

{∣∣v2
1 − 1

∣∣1/2
,
∣∣v2

n − 1
∣∣1/2}

= ∣∣F T F − I
∣∣1/2

.

(ii) Let Ω be a domain inRn. Then there exists a constantΛ(Ω) with the following property: Given any mapping
Θ̃ ∈ H 1(Ω;R

n) satisfyingdet∇Θ̃ > 0 a.e. inΩ , there exists a matrixR = R(Θ̃) ∈ O
n+ such that∥∥R∇Θ̃ − I

∥∥
L2(Ω;Mn)

� Λ(Ω)
∥∥∇Θ̃

T ∇Θ̃ − I
∥∥1/2

L1(Ω;Sn)
.

By the “geometric rigidity lemma” of Friesecke, James and Müller [21, Theorem 3.1], there exists a con
Λ(Ω) depending only on the setΩ with the following property: For each̃Θ ∈ H 1(Ω;R

n), there exists a rotatio
R = R(Θ̃) ∈ O

n+ such that ∥∥R∇Θ̃ − I
∥∥

L2(Ω;Mn)
� Λ(Ω)

∥∥dist
(∇Θ̃,O

n+
)∥∥

L2(Ω)
.

If in addition the mapping̃Θ ∈ H 1(Ω;R
n) satisfies det∇Θ̃ > 0 a.e. inΩ , then part (i) implies that

dist
(∇Θ̃(x),O

n+
)
�

∣∣∇Θ̃(x)T ∇Θ̃(x) − I
∣∣1/2

for almost allx ∈ Ω . Hence ∥∥dist
(∇Θ̃,O

n+
)∥∥

L2(Ω)
�

∥∥∇Θ̃
T ∇Θ̃ − I

∥∥1/2
L1(Ω;Sn)

.

(iii) Let Ω be a domain inRn. Given any injective mappingΘ ∈ C1(Ω;R
n) satisfyingdet∇Θ > 0 in Ω , there

exists a constantc(Θ) with the following property: Given any mapping̃Θ ∈ H 1(Ω;R
n) satisfyingdet∇Θ̃ > 0 a.e.

in Ω , there exists a rotationR = R(Θ̃,Θ) ∈ O
n+ such that∥∥R∇Θ̃ − ∇Θ

∥∥
L2(Ω;Mn)

� c(Θ)
∥∥∇Θ̃

T ∇Θ̃ − ∇ΘT ∇Θ
∥∥1/2

L1(Ω;Sn)
.

SinceΩ is a domain, any mappingΘ in the spaceC1(Ω;R
n) can be extended to a mappingΘ� in the space

C1(Rn;R
n). Moreover, since det∇Θ > 0 in Ω andΩ is bounded, there exists a connected open subsetΩ� containing

Ω such that the restrictionΘ� ∈ C1(Ω�;R
n) to Ω� of such an extensionΘ� satisfies det∇Θ� > 0 in Ω�. Conse-

quently, the set̂Ω := Θ(Ω) is also a domain inRn. Besides, the inverse mappinĝΘ : {Ω̂}− → Ω of Θ belongs to
the spaceC1({Ω̂}−;R

n).
Given any mapping̃Θ ∈ H 1(Ω;R

n), the composite mappinĝΦ := Θ̃ ◦ Θ̂ belongs to the spaceH 1(Ω̂;R
n) since

the bijectionΘ :Ω → {Ω̂}− is bi-Lipschitzian. Moreover,

∇̂Φ̂(x̂) = ∇Θ̃(x)∇̂Θ̃(x̂) = ∇Θ̃(x)∇Θ(x)−1 for almost allx̂ = Θ(x) ∈ Ω̂,

the notation̂∇ indicating that differentiation is performed with respect to the variablex̂. Hence det̂∇Φ̂ > 0 a.e. inΩ̂
if in addition det∇Θ̃ > 0 a.e. inΩ .

By part (ii), there exists a constantc0(Θ) := Λ(Ω̂) with the following property: Given any mappin

Θ̃ ∈ H 1(Ω;R
n) satisfying det∇Θ̃ > 0 a.e. inΩ , there exists a matrixR = R(Θ̃,Θ) ∈ O

n+ such that the mappin
Φ̂ = Θ̃ ◦ Θ̂ satisfies ∥∥R∇̂Φ̂ − I

∥∥
2 ̂ n � c0(Θ)

∥∥∇̂Φ̂
T ∇̂Φ̂ − I

∥∥1/2
1 n .
L (Ω;M ) L (Ω̂;S )
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It is then easily seen that the assumedinjectivity of the mappingΘ ∈ C1(Ω;R
n) and the relation det∇Θ > 0 in

Ω together imply that ∥∥R∇̂Φ̂ − I
∥∥2

L2(Ω̂;Mn)
� c1(Θ)

∥∥R∇Θ̃ − ∇Θ
∥∥2

L2(Ω;Mn)
,

wherec1(Θ) := infx∈Ω{|∇Θ(x)|−2 det∇Θ(x)} > 0. Likewise, it is easily seen that∥∥∇̂Φ̂
T ∇̂Φ̂ − I

∥∥
L1(Ω̂;Sn)

� c2(Θ)
∥∥∇Θ̃

T ∇Θ̃ − ∇ΘT ∇Θ
∥∥

L1(Ω;Sn)
,

where c2(Θ) := supx∈Ω{|∇Θ(x)−T ||∇Θ(x)−1|det∇Θ(x)} < ∞. The announced inequality thus holds w
c(Θ) := c0(Θ)c1(Θ)−1/2c2(Θ)1/2.

(iv) Let the assumptions on the setΩ and the mappingΘ be as in part(iii) . Then there exists a constantC(Θ)

with the following property: Given any mapping̃Θ ∈ H 1(Ω;R
n) satisfyingdet∇Θ̃ > 0 a.e. inΩ , there exist a vecto

b = b(Θ̂,Θ) ∈ Rn and a matrixR = R(Θ̂,Θ) ∈ O
n+ such that∥∥(

b + RΘ̃
) − Θ

∥∥
H1(Ω;Rn)

� C(Θ)
∥∥∇Θ̃

T ∇Θ̃ − ∇ΘT ∇Θ
∥∥1/2

L1(Ω;Sn)
.

Let there be given any mapping̃Θ ∈ H 1(Ω;R
n) satisfying det∇Θ̃ > 0 a.e. inΩ . By part (iii), there exists a

matrixR = R(Θ̃,Θ) ∈ O
n+ such that∥∥R∇Θ̃ − ∇Θ

∥∥
L2(Ω;Mn)

� c(Θ)
∥∥∇Θ̃

T ∇Θ̃ − ∇ΘT ∇Θ
∥∥1/2

L1(Ω;Sn)
.

Let the vectorb = b(Θ̃,Θ) ∈ R
n be defined by

b :=
(∫

Ω

dx

)−1 ∫
Ω

(
RΘ̃(x) − Θ(x)

)
dx.

By the generalized Poincaré inequality, there exists a constantd such that, for allΨ ∈ H 1(Ω;R
n),

‖Ψ ‖H1(Ω;Rn) � d

(
‖∇Ψ ‖L2(Ω;Mn) +

∣∣∣∣∣
∫
Ω

Ψ (x)dx

∣∣∣∣∣
)

.

Applying this inequality to the mappingΨ := (b+RΘ̃)−Θ yields the desired conclusion, withC(Θ) := dc(Θ). �
The next two lemmas show that some classical definitions and properties pertaining to surfaces inR

3 still hold
under less stringent regularity assumptions than the usual ones (these definitions and properties are tradition
and established under the assumptions that the immersions denotedθ in Lemma 3.2 and̃θ in Lemma 3.3 below belon
to the spaceC2(ω;R

3)). For this reason, we shall continue to use the classical terminology, e.g.,surface(for θ(ω)

or θ̃(ω)), normal vector field(for a3 or ã3), first, second, andthird, fundamental forms(for (aαβ) or (ãαβ), (bαβ) or
(b̃αβ), and(cαβ) or (c̃αβ)), etc. Ify = (yα) designates the generic point in a domainω in R

2, we let∂α := ∂/∂yα .

Lemma 3.2.Letω be a domain inR2 and letθ ∈ C1(ω;R
3) be an immersion such that

a3 := a1 ∧ a2

|a1 ∧ a2| ∈ C1(ω;R
3) whereaα := ∂αθ .

Then the functions

aαβ := aα · aβ, bαβ := −∂αa3 · aβ, bσ
α := aβσ bαβ, and cαβ := ∂αa3 · ∂βa3,

where(aαβ) := (aαβ)−1, belong to the spaceC0(ω). Besides,

bαβ = bβα.

Define the mappingΘ ∈ C1(ω × R;R
3) by

Θ(y, x3) := θ(y) + x3a3(y) for all (y, x3) ∈ ω × R.
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Then

det∇Θ(y, x3) = √
a(y)

{
1− 2H(y)x3 + K(y)x2

3

}
for all (y, x3) ∈ ω × R,

where the functions

a := det(aαβ) = |a1 ∧ a2|2, H := 1

2

(
b1

1 + b2
2

)
, K := b1

1b
2
2 − b2

1b
1
2

belong to the spaceC0(ω). Finally, let

(gij ) := ∇ΘT ∇Θ .

Then the functionsgij = gji belong to the spaceC0(ω × R) and they are given by

gαβ(y, x3) = aαβ(y) − 2x3bαβ(y) + x2
3cαβ(y) and gi3(y, x3) = δi3

for all (y, x3) ∈ ω × R.

Proof. Because the mappingθ ∈ C1(ω;R
3) is an immersion, the symmetric matrices(aαβ(y)) are positive-definite

at all pointsy ∈ ω, the inverse matrices(aαβ(y)) are well defined and also positive-definite at all pointsy ∈ ω, and
the functionsaαβ belong to the spaceC0(ω). Therefore the functionsbσ

α are well-defined and they also belong to
spaceC0(ω).

While the relationsbαβ = bβα clearly hold if θ ∈ C2(ω;R
3) (sincebαβ = a3 · ∂αaβ in this case), this symmetr

requires a proof under the present weaker regularity assumptions. Following [15], we first note to this end
assumptionsθ ∈ C1(ω;R

3) anda3 ∈ C1(ω;R
3) imply that −bαβ = ∂βθ · ∂αa3 ∈ L1

loc(ω), hence that∂βθ · ∂αa3 ∈
D′(ω).

Given anyϕ ∈ D(ω), let thenU denote an open subset ofR
2 such that suppϕ ⊂ U andU is a compact subset o

ω. Denoting byX′ 〈· , ·〉X the duality pairing between a topological vector spaceX and its dualX′, we have

D′(ω)〈∂βθ · ∂αa3, ϕ〉D(ω) =
∫
ω

ϕ∂βθ · ∂αa3 dy =
∫
ω

∂βθ · ∂α(ϕa3)dy −
∫
ω

(∂αϕ)∂βθ · a3 dy.

Observing that∂βθ · a3 = 0 a.e. inω and that

−
∫
ω

∂βθ · ∂α(ϕa3)dy = −
∫
U

∂βθ · ∂α(ϕa3)dy = H−1(U ;R3)

〈
∂α(∂βθ), ϕa3

〉
H1

0 (U ;R3)
,

we reach the conclusion that the expressionD′(ω)〈∂βθ · ∂αa3, ϕ〉D(ω) is symmetric with respect toβ andα since
∂βαθ = ∂αβθ in D′(U ;R

3). Hence∂βθ · ∂αa3 = ∂αθ · ∂βa3 in L1
loc(ω), and the announced symmetry is establishe

Because∂αa3 · a3 = 0 (sincea3 · a3 = 1), the classicalformula of Weingarten∂αa3 = −bσ
αaσ still holds in the

present case. The definition of the mappingΘ shows that

gα := ∂αΘ = (aα + x3∂αa3) ∈ C0(ω × R;R
3), g3 := ∂3Θ = a3 ∈ C1(ω × R;R

3),
hence that

det∇Θ = (g1 ∧ g2) · g3 = (
a1 ∧ a2 + x3{a1 ∧ ∂2a3 + ∂1a3 ∧ a2} + x2

3∂1a3 ∧ ∂2a3
) · a3.

The announced expression of the function det∇Θ ∈ C0(ω × R) then follows from the formula of Weingarten an
the relationa = |a1 ∧ a2|2. The announced expression of the functionsgij = gi · gj ∈ C0(ω × R) follows from the
relationsbαβ = bβα and∂αa3 · a3 = 0. �
Lemma 3.3.Let ω be a domain inR2 and let there be given a mappingθ̃ ∈ H 1(ω;R

3) such thatã1 ∧ ã2 �= 0 a.e. in
ω, whereãα := ∂α θ̃ , and such that

ã3 := ã1 ∧ ã2

|ã1 ∧ ã2| ∈ H 1(ω;R
3).

Then the functions

ãαβ := ãα · ãβ, b̃αβ := −∂α ã3 · ãβ, c̃αβ := ∂α ã3 · ∂β ã3
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are well defined a.e. inω and they belong to the spaceL1(ω). Besides,

b̃αβ = b̃βα a.e. inω.

Define the mapping̃Θ :ω × R → R
3 by

Θ̃(y, x3) := θ̃(y) + x3ã3(y) for almost all(y, x3) ∈ ω × R.

ThenΘ̃ ∈ H 1(ω × ]−δ, δ[;R
3) for anyδ > 0. Furthermore,

det∇Θ̃(y, x3) = √
ã(y)

{
1− 2H̃ (y)x3 + K̃(y)x2

3

}
for almost all(y, x3) ∈ ω × R, where

ã := det(ãαβ) = |ã1 ∧ ã2|2, H̃ := 1

2

(
b̃1

1 + b̃2
2

)
, K̃ := b̃1

1b̃
2
2 − b̃2

1b̃
1
2,

b̃σ
α := ãβσ b̃αβ, and

(
ãαβ

) := (ãαβ)−1.

Finally, let

(g̃ij ) := ∇Θ̃
T ∇Θ̃ a.e. inω × R.

Then the functions̃gij = g̃j i belong to the spaceL1(ω×] − δ, δ[) for anyδ > 0 and they are given by

g̃αβ(y, x3) = ãαβ(y) − 2x3b̃αβ(y) + x2
3 c̃αβ(y) and g̃i3(y, x3) = δi3

for almost all(y, x3) ∈ ω × R.

Proof. The assumptions made on the mappingθ̃ and on the vector field̃a3 clearly imply that the functions̃aαβ , b̃αβ ,
and c̃αβ are in the spaceL1(ω). Because the symmetric matrices(ãαβ(y)) are positive-definite for almost ally ∈ ω,
the inverse matrices(ãαβ(y)) are likewise positive-definite for almost ally ∈ ω, and thus the functions̃bσ

α are well-
defined a.e. inω, like the functionsã, H̃ , andK̃ (however, these functions do not necessarily belong to the s
L1(ω)).

Since the assumptions̃θ ∈ H 1(ω;R
3) and ã3 ∈ H 1(ω;R

3) again imply that−b̃αβ = ∂β θ̃ · ∂α ã3 ∈ L1
loc(ω), the

relationsb̃αβ = b̃βα hold a.e. inω (see the proof of Lemma 3.2). Because∂α ã3 · ã3 = 0 a.e. inω, the formula of
Weingarten∂α ã3 = −b̃σ

α ãσ now holds a.e. inω. The announced expressions of the function det∇Θ̃ , which is well-
defined a.e. inω × R, and of the functions̃gij , which clearly belong to the spaceL1(ω × ]−δ, δ[) for anyδ > 0, then
follows from these observations.�

If a mappingθ̃ :ω → R
3 is a smooth immersion, the functions̃H andK̃ simply represent themean, andGaussian,

curvaturesof the surfacẽθ(ω). These functions are also given by

H̃ = 1

2

(
1

R̃1
+ 1

R̃2

)
and K̃ = 1

R̃1R̃2
,

whereR̃α are theprincipal radii of curvaturealong the surfacẽθ(ω) (with the usual convention that|Rα(y)| may take
the value+∞ at some pointsy ∈ ω).

4. A nonlinear Korn inequality on a surface

We are now in a position to prove the announcednonlinear Korn inequality on a surface. The notations are th
same as those in Lemmas 3.2 and 3.3.

Theorem 4.1.Let there be given a domainω in R
2, an immersionθ ∈ C1(ω;R

3) such thata3 ∈ C1(ω;R
3), andε > 0.

Then there exists a constantc(θ , ε) with the following property: Given any mapping̃θ ∈ H 1(ω;R
3) such that

ã1 ∧ ã2 �= 0 a.e. inω, ã3 ∈ H 1(ω;R
3), and the principal radii of curvaturẽRα of the surfacẽθ(ω) satisfy∣∣R̃α

∣∣ � ε a.e. inω,
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there exist a vectorb = b(θ , θ̃ , ε) ∈ R
3 and a matrixR = R(θ , θ̃ , ε) ∈ O

3+ such that∥∥(
b + Rθ̃

) − θ
∥∥

H1(ω;R3)
+ ε‖Rã3 − a3‖H1(ω;R3)

� c(θ , ε)
{∥∥(ãαβ − aαβ)

∥∥1/2
L1(ω;S2)

+ ε1/2
∥∥(

b̃αβ − bαβ

)∥∥1/2
L1(ω;S2)

+ ε
∥∥(c̃αβ − cαβ)

∥∥1/2
L1(ω;S2)

}
.

Proof. Given a mappingθ satisfying the assumptions of Theorem 4.1, let the mappingΘ ∈ C1(ω × R;R
3) be

constructed as in Lemma 3.2. Consequently,

det∇Θ(y, x3) = √
a(y)

{
1− 2H(y)x3 + K(y)x2

3

}
for all (y, x3) ∈ ω × R,

by the same lemma. Since the functionsa, H , andK are in the spaceC0(ω) and there existsa0 > 0 such thata(y) � a0
for all y ∈ ω, there exists a constantδ̃(θ) > 0 such that det∇Θ(y, x3) > 0 for all (y, x3) ∈ ω × [−δ̃(θ), δ̃(θ)].

Given any mapping̃θ satisfying the assumptions of Theorem 4.1, let the mappingΘ̃ :ω × R → R
3 be constructed

as in Lemma 3.3. By this lemma,

det∇Θ̃(y, x3) = √
ã(y)

{
1− 2H̃ (y)x3 + K̃(y)x2

3

}
for almost all(y, x3) ∈ ω × R. The assumption|R̃α| � ε a.e. inω imply that |H̃ | � 1/ε and |K̃| � 1/ε2 a.e. inω.
Hence there exists a constantc̃ such that

1− 2H̃ (y)x3 + K̃(y)x2
3 > 0 for almost all(y, x3) ∈ ω × ]−c̃ε, c̃ε[.

Without loss of generality, we henceforth assume thatε � 1. Lettingδ(θ) := min{c̃, δ̃(θ)} and

Ω = Ω(θ , ε) := ω × ]−δ(θ)ε, δ(θ)ε
[
,

noting thatã > 0 a.e. inω by assumption, we conclude that the restriction, still denotedΘ̃ for convenience, of th
mappingΘ̃ to the setΩ belongs to the spaceH 1(Ω;R

3) and satisfies det∇Θ̃ > 0 a.e. inΩ on the one hand.
Since, on the other hand, the restriction, still denotedΘ for convenience, of the mappingΘ to the setΩ belongs

to the spaceC1(Ω;R
3) and satisfies det∇Θ > 0 in Ω , all the assumptions of Theorem 3.1 are satisfied. There

given anyε > 0, there exists a constantc0(θ , ε) with the following property: Given any mapping̃θ satisfying the
assumptions of Theorem 4.1, there exist a vectorb := b(θ , θ̃ , ε) ∈ R

3 and a matrixR = R(θ , θ̃ , ε) ∈ O
3+ such that∥∥(

b + RΘ̃
) − Θ

∥∥
H1(Ω;R3)

� c0(θ , ε)
∥∥(g̃ij − gij )

∥∥1/2
L1(Ω;S3)

.

In the remainder of this proof, we letδ := δ(θ) for conciseness. In order to get a lower bound of the left-hand
of this inequality in terms ofH 1(ω;R

3)-norms of the mappings̃θ andθ , we simply note that, given any vector fiel
u ∈ L2(ω;R

3) andv ∈ L2(ω;R
3),∫

Ω

∣∣u(y) + x3v(y)
∣∣2 dx = 2δε

∫
ω

∣∣u(y)
∣∣2 dy + 2

3
δ3ε3

∫
ω

∣∣v(y)
∣∣2 dy,

since
∫
Ω

x3(u(y) · v(y))dx = 0. Consequently,∫
Ω

∣∣(b + RΘ̃
) − Θ

∣∣2 dx = 2δε

∫
ω

∣∣(b + Rθ̃
) − θ

∣∣2 dy + 2

3
δ3ε3

∫
ω

|Rã3 − a3|2 dy,

and ∫
Ω

∑
i

∣∣R∂iΘ̃ − ∂iΘ
∣∣2 dx

=
∫
Ω

{∑
α

∣∣R∂α θ̃ − ∂αθ + x3(R∂α ã3 − ∂αa3)
∣∣2 + |Rã3 − a3|2

}
dx

= 2δε

∫ ∑
α

∣∣∂α

(
Rθ̃ − θ

)∣∣2 dy + 2δε

∫
|Rã3 − a3|2 dy + 2

3
δ3ε3

∫ ∑
α

∣∣∂α(Rã3 − a3)
∣∣2 dy.
ω ω ω
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There thus exists a constantsc1(θ) such that∥∥(
b + RΘ̃

) − Θ
∥∥

H1(Ω;R3)
� c1(θ)ε1/2{∥∥(

b + Rθ̃
) − θ

∥∥
H1(ω;R3)

+ ε‖Rã3 − a3‖H1(ω;R3)

}
.

In order to get an upper bound of theL1(Ω;S
3)-norm of the matrix field(g̃ij − gij ) in terms ofL1(ω;S

2)-norms
of the fundamental forms of surfacesθ̃(ω) andθ(ω), we again resort to Lemmas 3.2 and 3.3, which imply that

g̃αβ − gαβ = (ãαβ − aαβ) − 2x3
(
b̃αβ − bαβ

) + x2
3(c̃αβ − cαβ) a.e. inΩ,

g̃i3 − gi3 = 0 a.e. inΩ.

Given a matrix fieldF � := (f
�
αβ) ∈ L1(ω;S

2), define the matrix fieldF = (fij ) ∈ L1(Ω;S
3) by lettingfαβ(y, x3) =

f
�
αβ(y) andfi3(y, x3) = 0 for almost all(y, x3) ∈ Ω . Then it is easily seen that

‖F‖L1(Ω;S3) = 2δε
∥∥F �

∥∥
L1(ω;S2)

.

Combining these observations, we conclude that there exists a constantc2(θ) such that∥∥(g̃ij − gij )
∥∥1/2

L1(Ω;S3)
� c2(θ)ε1/2{∥∥(ãαβ − aαβ)

∥∥1/2
L1(ω;S2)

+ ε1/2
∥∥(

b̃αβ − bαβ

)∥∥1/2
L1(ω;S2)

+ ε
∥∥(c̃αβ − cαβ)

∥∥1/2
L1(ω;S2)

}
.

The announced inequality then follows withc(θ , ε) := c0(θ , ε)c1(θ)−1c2(θ). �
The essence of the inequality established above can thus be summed up as follows:Given any family of surface

θ̃(ω) whose principal radii of curvature stay uniformly away from zero, theH 1(ω;R
3)-distance between the tw

surfacesθ̃(ω) andθ(ω) and between their normal vector fieldsã3 anda3 is “controlled” by the L1(ω;S
2)-distance

between their three fundamental forms(recall that the principal radii of curvature of such “admissible” surfacesθ̃(ω)

are possibly understood in a generalized sense, viz., as the inverses of the eigenvalues of the associated mat(b̃
β
α )).

Naturally, theH 1(ω;R
3)-distance between the surfaces is only measuredup to properly isometrically equivalen

surfaces, since such surfaces share the same fundamental forms.

5. Some consequences

Define the set (the notations are those of Lemma 3.3)

H 1
�

(
ω;R

3) := {
θ̃ ∈ H 1(ω;R

3); ã1 ∧ ã2 �= 0 a.e. inω, ã3 ∈ H 1(ω;R
3)}.

Then two mappingŝθ ∈ H 1
� (ω;R

3) andθ̃ ∈ H 1
� (ω;R

3) are said to beproperly isometrically equivalentif there exist

a vectorb ∈ R
3 and a matrixR ∈ O

3+ such that

θ̂(y) = b + Rθ̃(y) for almost ally ∈ ω,

and, by extension, thesurfacesθ̂(ω) andθ̃(ω) are also said to beproperly isometrically equivalent. Note that, while
the fundamental forms of properly isometrically equivalent surfaces are clearly equal a.e. inω, the converse doesnot
hold in general. The conversedoeshold, however, if one of the mappings is inC1(ω) and its associated normal vect
field is also inC1(ω) (see Ciarlet and Mardare [15, Theorem 3]).

One application of Theorem 4.1 is then the following result ofsequential continuity for surfaces:

Corollary 5.1. Let (aαβ), (bαβ), (cαβ) denote the three fundamental forms of a surfaceθ(ω), where
θ ∈ C1(ω;R

3) is an immersion satisfyinga3 ∈ C1(ω;R
3). Let θk ∈ H 1

� (ω;R
3), k � 1, be a sequence of mappin

with the following properties: There exists a constantε > 0 such that the principal radii of curvatureRk
α of the

surfacesθk(ω) satisfy ∣∣Rk
α

∣∣ � ε > 0 a.e. inω for all k � 1,

and (with self-explanatory notations)(
ak
αβ

)
−→ (aαβ),

(
bk
αβ

)
−→ (bαβ),

(
ck
αβ

)
−→ (cαβ) in L1(ω;S

2).

k→∞ k→∞ k→∞
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Then there exist mappingsθ̂
k ∈ H 1

� (ω;R
3) that are properly isometrically equivalent to the mappingsθk , k � 1,

such that

θ̂
k

−→
k→∞θ and âk

3 −→
k→∞a3 in H 1(ω;R

3).
Proof. The proof is an immediate consequence of the inequality established in Theorem 4.1.�

A significant strengthening of the regularity assumptions regarding the convergence of the first and secon
mental forms yields another result ofsequential continuity for surfaces, this time without any assumptions on th
third fundamental forms nor on their principal radii of curvature.

Corollary 5.2. Let (aαβ) and (bαβ) denote the first and second fundamental forms of a surfaceθ(ω), where
θ ∈ C1(ω;R

3) is an immersion satisfyinga3 ∈ C1(ω;R
3). Let θk ∈ H 1

� (ω;R
3), k � 1, be a sequence of mappin

such that(with self-explanatory notations) ak
αβ ∈ L∞(ω), bk

αβ ∈ L∞(ω), and(
ak
αβ

)
−→

k→∞(aαβ) and
(
bk
αβ

)
−→

k→∞(bαβ) in L∞(
ω;S

2).
Then there exist mappingsθ̂

k ∈ H 1
� (ω;R

3) that are properly isometrically equivalent to the mappingsθk , k � 1,
such that

θ̂
k

−→
k→∞θ and âk

3 −→
k→∞a3 in H 1(ω;R

3).
Proof. The notations used in this proof should be self-explanatory. The above assumptions imply the followin
erties: The third fundamental forms(ck

αβ) = (aστ,kbk
ατ b

k
σβ) of the surfacesθk(ω) are also inL∞(ω;S

2), they satisfy(
ck
αβ

)
−→

k→∞(cαβ) in L∞(
ω;S

2),
and the eigenvalues of matrices(bσ,k

α ) converge inL∞(ω) to the eigenvalues of the matrix(bσ
α ) ask → ∞. This last

property implies that there existsε > 0 such that|Rk| � ε for all k � 1. The conclusion is then another conseque
of the Korn inequality of Theorem 4.1.�

The Korn inequality of Theorem 4.1 can also be recast as one involvingdistances in metric spaces. To this end,
define the quotient set

Ḣ 1
�

(
ω;R

3) = H 1
�

(
ω;R

3)/R,

where(χ , θ) ∈ R means thatχ ∈ H 1
� (ω;R

3) and θ ∈ H 1
� (ω;R

3) are properly isometrically equivalent, and letθ̇

denote the equivalence class ofθ ∈ H 1
� (ω;R

3) moduloR. Since the norm‖ · ‖H1(ω;R3) is invariant under the ac

tion of O
3+ (in the sense that‖Qθ‖H1(ω;R3) = ‖θ‖H1(ω;R3) for anyQ ∈ O

3+ and anyθ ∈ H 1(ω;R3)), the mapping
d : Ḣ 1

� (ω;R
3) × Ḣ 1

� (ω;R
3) → R defined by

d
( ˙̃
θ , θ̇

) := inf
b∈R3, R∈O

3+

{∥∥(
b + Rθ̃

) − θ
∥∥

H1(ω;R3)
+ ‖Rã3 − a3‖H1(ω;R3)

}
is adistanceon the quotient seṫH 1

� (ω;R
3). In terms of this distance, the inequality of Theorem 4.1 then become

Corollary 5.3. Let there be given a domainω in R
2, an immersionθ ∈ C1(ω;R

3) such thata3 ∈ C1(ω;R
3), and

ε > 0. Then there exists a constantċ(θ , ε) with the following property: Given any mapping̃θ ∈ H 1
� (ω;R

3) such that

|R̃α| � ε a.e. inω,

d
( ˙̃
θ , θ̇

)
� ċ(θ , ε)

{ ∥∥(ãαβ − aαβ)
∥∥1/2

L1(ω;S2)
+ ε1/2

∥∥(
b̃αβ − bαβ

)∥∥1/2
L1(ω;S2)

+ ε
∥∥(c̃αβ − cαβ)

∥∥1/2
L1(ω;S2)

}
. �
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6. The linear Korn inequality on a surface revisited

To begin with, we observe that the nonlinear Korn inequality on a surface established in Theorem 4.1
equivalently restated as follows, thanks to the invariance of the norm‖ · ‖H1(ω;R3) under the action of the grou
O

3+. Given an immersionθ ∈ C1(ω;R
3) such thata3 ∈ C1(ω;R

3) andε > 0, there exists a constantc(θ , ε) with the
following property: Given any mapping̃θ ∈ H 1(ω;R

3) such thatã1 ∧ ã2 �= 0 a.e. inω, ã3 ∈ H 1(ω;R
3), and the

principal radii of curvaturẽRα of the surfacẽθ(ω) satisfy∣∣R̃α

∣∣ � ε a.e. inω,

there exist a vectora = a(θ , θ̃ , ε) ∈ R
3 and a matrixQ = Q(θ , θ̃ , ε) ∈ O

3+ such that∥∥θ̃ − (a + Qθ)
∥∥

H1(ω;R3)
+ ε‖ã3 − Qa3‖H1(ω;R3)

� c(θ , ε)
{∥∥(ãαβ − aαβ)

∥∥1/2
L1(ω;S2)

+ ε1/2
∥∥(

b̃αβ − bαβ

)∥∥1/2
L1(ω;S2)

+ ε
∥∥(c̃αβ − cαβ)

∥∥1/2
L1(ω;S2)

}
.

To shed more light on this inequality, we now compare it with itslinear counterpart, the genesis of which we fi
briefly review.

Let ω be a domain inR2 and let there be given an immersionθ ∈ C1(ω;R
3) such thata3 ∈ C1(ω;R

3). The“linear”
Korn’s inequality on a surfacethen asserts the existence of a constantc0(θ) such that{‖η̃‖2

H1(ω;R3)
+ ∥∥�a3(η̃)

∥∥2
H1(ω;R3)

}1/2

� c0(θ)
{‖η̃‖2

L2(ω;R3)
+ ∥∥�a3(η̃)

∥∥2
L2(ω;R3)

+ ∥∥(γαβ

(
η̃
))∥∥2

L2(ω;S2)
+ ∥∥(

ραβ(η̃)
)∥∥2

L2(ω;S2)

}1/2

for all vector fields

η̃ ∈ Ṽ (ω) := {
η̃ ∈ H 1(ω;R

3); �a3(η̃) ∈ H 1(ω;R
3)},

where

�a3(η̃) := −(∂α η̃ · a3)a
αβaβ, γαβ(η̃) := 1

2
(∂β η̃ · aα + ∂α η̃ · aβ) ∈ L2(ω),

ραβ(η̃) := −(
∂β η̃ · ∂αa3 + ∂α�a3(η̃) · aβ

) ∈ L2(ω),

and the vectorsai are defined as in Lemma 3.2 in terms of the immersionθ (the notation�a3(η̃) will be justified later).
Under the assumption thatθ ∈ C3(ω;R

3), this inequality was first proved by Bernadou and Ciarlet [4] and was
given a simpler proof by Ciarlet and Miara [19] (see also Bernadou, Ciarlet and Miara [5]). The regularity assu
on the immersionθ was weakened to that considered here by Le Dret [24] (see also Blouza and Le Dret [6]).

The linear Korn inequality is the basis of theexistence theorems in linear shell theory(see, e.g., [7] or [9]). In this
context, the surfaceθ(ω) is themiddle surfaceof a linearly elastic shell, the vector fields̃η ∈ Ṽ (ω) aredisplacemen
fields of the surfaceθ(ω), and the matrix fields(γαβ(η̃)) ∈ L2(ω) and(ραβ(η̃)) ∈ L2(ω) are respectively thelinearized
change of metric, andlinearized change of curvature, tensorsassociated with such displacement fields. Let

Riglin(ω) = {
η̃ ∈ Ṽ (ω); γαβ(η̃) = ραβ(η̃) = 0 in ω

}
denote the space ofinfinitesimal rigid displacement of the surfaceθ(ω). Then this space can be equivalently defin
as (see [3])

Riglin(ω) = {
η̃ ∈ Ṽ (ω); η̃ = a + b ∧ θ for somea,b ∈ R

3}.
Given any displacement field̃η ∈ Ṽ (ω) of the surfaceθ(ω), let

θ̃ := (θ + η̃) ∈ H 1(ω;R
3)

denote the associateddeformationof the surfaceθ(ω), andassume in addition that̃a1 ∧ ã2 �= 0 a.e. inω and

ã3 := ã1 ∧ ã2 ∈ H 1(ω;R
3);
|ã1 ∧ ã2|
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in other words, the mappings̃θ precisely satisfy the assumptions of Theorem 4.1. Let

(aαβ) = (aα · aβ) ∈ L2(ω) and (bαβ) = (−∂αa3 · aβ) ∈ L2(ω),

and

(ãαβ) = (ãα · ãβ) ∈ L2(ω) and
(
b̃αβ

) = (−∂α ã3 · ãβ) ∈ L2(ω),

respectively denote the first and second fundamental forms of the surfacesθ(ω) and θ̃(ω). Then it is well known
(see, e.g., [7] or [9]) that the tensors(γαβ(η̃)) and(ραβ(η̃)) can also be defined as(

γαβ(η̃)
) =

(
1

2
[ãαβ − aαβ ]lin

)
and

(
ραβ(η̃)

) = ([
b̃αβ − bαβ

]lin)
,

where[. . .]lin denotes the linear part with respect toη̃ in the expression[. . .]. In the same vein, it can also be eas
verified that

�a3(η̃) = [ã3 − a3]lin .

Finally, define thequotient space

˙̃V (ω) := Ṽ (ω)/Riglin(ω),

and let‖ · ‖ ˙̃V (ω)
denote the associated quotient norm. Arguing as in [12], it can then be shown that the abov

Korn inequality isequivalentto the followingKorn inequality in the quotient spacẽ̇V (ω): There exists a consta
c1(θ) such that ∥∥ ˙̃η∥∥ ˙̃V (ω)

� c1(θ)
{∥∥(

γαβ( ˙̃η)
)∥∥2

L2(ω;S2)
+ ∥∥(

ραβ

( ˙̃η))∥∥2
L2(ω;S2)

}1/2

for all ˙̃η ∈ ˙̃V (ω). Thanks to the definition of the quotient norm and to the specific form taken by the infinite
rigid displacements of the surfaceθ(ω), this inequality can be immediately recast as follows: Given any vector
η̃ ∈ Ṽ (ω), there exist vectorsa = a(η̃, θ) ∈ R

3 andb = b(η̃, θ) ∈ R
3 such that{∥∥η̃ − (a + b ∧ θ)

∥∥2
H1(ω;R3)

+ ∥∥�a3
(
η̃ − (a + b ∧ θ)

)∥∥2
H1(ω;R3)

}1/2

� c1(θ)
{∥∥(

γαβ(η̃)
)∥∥2

L2(ω;S2)
+ ∥∥(

ραβ(η̃)
)∥∥2

L2(ω;S2)

}1/2
.

In terms of deformation of surfaces and fundamental forms, thelinear Korn inequality on a surfacethus assert
the existence of a constantc1(θ) with the following property:Given anydeformationθ̃ = (θ + η̃) of the surfaceθ(ω)

such that̃η ∈ Ṽ (ω), ã1 ∧ ã2 �= 0 a.e. inω, andã3 ∈ H 1(ω), there exist vectorsa = a(θ̃ , θ) ∈ R
3 andb = b(θ̃ , θ) ∈ R

3

such that {∥∥θ̃ − (a + θ + b ∧ θ)
∥∥

H1(ω;R3)
+ ∥∥�a3

(
θ̃ − (a + θ + b ∧ θ)

)∥∥
H1(ω;R3)

}1/2

� c1(θ)
{∥∥([ãαβ − aαβ ]lin)∥∥2

L2(ω;S2)
+ ∥∥([

b̃αβ − bαβ

]lin)∥∥2
L2(ω;S2)

}1/2
.

This last inequality provides theessence of the linear Korn inequality on a surface: TheH 1(ω;R
3)-distance be-

tween the deformed surfaceθ̃(ω) and the surfaceθ(ω) and theH 1(ω;R
3)-norm of the linearized difference betwe

their normal vector fields̃a3 anda3 are “controlled” by theL2(ω;S
2)-norms of the linearized change of metric, a

change of curvature, tensors associated with the vector fieldη̃ = θ̃ − θ .
As expected, the distance between the two surfaces is only measuredup to infinitesimal rigid displacements of th

surfaceθ(ω), since these are precisely those whose associated matrix fields([ãαβ − aαβ ]lin) and([b̃αβ − bαβ ]lin) van-
ishes (this indeterminacy would no longer hold if the displacements fieldsη̃ were subjected to appropriate bound
conditions, such as those of clamping along a portionγ0 of ∂ω satisfyinglengthγ0 > 0; cf. [3, Theorem 4.1] an
[7, Theorem 2.6-3]). In the same spirit, the termQθ appearing in the nonlinear inequality is replaced by the t
θ + b ∧ θ in the linear inequality. This replacement simply reflects that the matrixQ ∈ O

3+ is close to the identity
matrix if the displacement vector field̃η is small (it is well known that the tangent space to the manifoldO

3+ at the
identity matrix coincides with the space of all antisymmetric matrices of order three; cf., e.g., Avez [1]).
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Recast in this way, the“linear” Korn inequality on a surface thus appears as a natural linearization of the non
ear Korn inequality on a surface, as rewritten at the beginning of this section.

This is obvious for their right-hand sides, where the matrix fields(ãαβ −aαβ) and(b̃αβ −bαβ) are replaced by the
linearized fields([ãαβ − aαβ ]lin) = (γαβ(η̃)) and([b̃αβ − bαβ ]lin) = (ραβ(η̃)) (that theL1(ω;S

2)-norm is replaced by
L2(ω;S

2)-norm is no surprise, since each norm corresponds to the regularity of the mappingsθ̃ andθ respectively
assumed in the nonlinear and linearized cases).

This is true,albeit less evident, for their left-hand sides. As shown by Ciarlet and Mardare [15], the unde
reason is that the set

M(ω) := {
θ̃ ∈ H 1(ω;R

3); ãαβ = aαβ a.e. inω, ã3 ∈ H 1(ω;R
3), b̃αβ = bαβ a.e. inω

}
is a submanifold (of dimension 6) of the spaceH 1(ω;R

3), and furthermore, the spaceRiglin(ω) (also of dimension
6) is nothing but thetangent spaceTθM(ω) at θ to M(ω). In other words,

TθM(ω) = {
η̃ ∈ H 1(ω;R

3); η̃ = a + b ∧ θ for somea,b ∈ R
3}.

Finally, that the linearized tensor field([c̃αβ − cαβ ]lin) does not appear in the right-hand side of the linear K
inequality is no surprise: it is an easy matter to show that theL2(ω;S

2)-norm of this linearized tensor field is controlle
by the sum of theL2(ω;S

2)-norms of the linearized tensor fields([ãαβ − aαβ ]lin) and([b̃αβ − bαβ ]lin).

7. Concluding remarks

The nonlinear inequality established in this paper has potential applications to differential geometry and
linear shell theory. From the viewpoint of differential geometry, the continuity result implied by this inequa
a mathematical expression of a natural idea: If the fundamental forms of two surfaces inR

3 are close, then the tw
surfaces are also close (up to proper isometries, of course). While the previous results in this direction involve
gies of spaces of continuously differentiable mappings (see [8,18] and [27]), the present result can be cons
a genuine improvement over these, inasmuch as the norms used for evaluating the distance between the fu
forms and surfaces are “weaker”.

From the viewpoint of nonlinear shell theory, this inequality also represents a first step toward conside
fundamental forms of the unknown deformed surface as the primary unknowns. But, unlike in the linear ca
much further work is clearly needed before a satisfactory existence theory can be developed along these line
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