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Abstract

Let w be a domain ifk2 and letd : @ — R3 be a smooth immersion. The main purpose of this paper is to establish a “nonlinear
Korn inequality on the surfad®®)”, asserting that, under ad hoc assumptionsHHew)-distance between the surfabgv) and a
deformed surface is “controlled” by thel (w)-distance between their fundamental forms. Naturally}ﬂ’?éw)-distance between
the two surfaces is only measured up to proper isometrigs of

This inequality implies in particular the following interesting per se sequential continuity property for a sequence of surfaces.
Let#* :w — R3, k > 1, be mappings with the following properties: They belong to the sgbev); the vector fields normal to
the surface#® (w), k > 1, are well defined a.e. i and they also belong to the spaklé (w); the principal radii of curvature of the
surfacesﬂk(a)), k > 1, stay uniformly away from zero; and finally, the fundamental forms of the sur%’fc(es converge iI"ILl(a))
toward the fundamental forms of the surf#@) ask — co. Then, up to proper isometries Bf, the surfaceg* (») converge in
H(w) toward the surfacé(@) ask — co.

Such results have potential applications to nonlinear shell theory, the s@tacbeing then the middle surface of the reference
configuration of a nonlinearly elastic shell.

0 2005 Elsevier SAS. All rights reserved.

Résumé

Soitw un domaine d&? et soitd : @ — R3 une immersion réguliére. L'objet principal de cet article est d’établir une “inégalité
de Korn non linéaire sur la surfaéem)”, affirmant que, moyennant des hypothéses convenables, la distancH dansentre la
surfacef (@) et une surface déformée est “controlée” par la distance Has) entre leurs formes fondamentales. Naturellement,
la distance dan&l 1(») entre les deux surfaces est mesurée seulement modulo les isométries prdRﬁes de

Cette inégalité implique en particulier la propriété de continuité séquentielle suivante, intéressante par elle-méme. So
0% :w — R3, k > 1, des applications ayant les propriétés suivantes : Elles appartiennent a I'88kaoe les champs de vecteurs
normaux aux surface® (w), k > 1, sont définis presque partout dan®t appartiennent aussi a 'espallé () ; les modules
des rayons de courbure principaux des surfaées), k > 1, sont uniformément minorés par une constante strictement positive ;
finalement, les formes fondamentales des surfétes) convergent dan&l(w) vers les formes fondamentales de la surii@e
lorsquek — oo. Alors, a des isométries propres]ﬁ% prés, les surface® (w) convergent danBl 1(w) vers la surfacé (@) lorsque
k — oo.

Ce type de résultat a des applications potentielles a la théorie non linéaire des coques, | uyfétant alors la surface
moyenne de la configuration de référence d’une cogque non linéairement élastique.
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1. Introduction

Let w be a bounded and connected open subs&®afith a Lipschitz-continuous boundary, @t @ — RS be a
smooth enough immersion, and &tw) be the middle surface of the reference configuration mdmlinearly elastic
shell Let S? denote the space of all symmetric matrices of order two.

Let (aqp) and(byp) denote the first and second fundamental forms of the “undeformed” middle sSrfadéw)
and let(a.g) and (l;aﬂ) denote the first and second fundamental forms of a “deformed” suéface associated
with a smooth enough mappirfg whose normal vector field is well defined a.ecir{so as to insure that the second
fundamental form[l;(xlg) is well defined). Then thehange of metric tensor fieldqs — aqp) : @ — S? and thechange of
curvature tensor fieldbys — bop) : @ — S? associated with suchdeformatiord play a major réle iwo-dimensional
nonlinear shell theories

For instance, the well-known stored energy functiog proposed by Koiter [22, Egs. (4.2), (8.1), and (8.3)] for
modeling shells made with a homogeneous and isotropic elastic material takes the form

3
€ ~ - & ~ ~
Wk = Eaaﬂgt(aor - aar)(aaﬂ - aaﬂ) + Eaaﬂar(bar - bar)(baﬁ - baﬂ)v

where 2 is the (constant) thickness of the shell and
4rp
A4 2u

where(a®f) = (a(,[,g)—1 andx > 0 andu > 0 denote the Lamé constants of the elastic material.

The stored energy functions ofi@nlinearly elastic membrane shalhd of anonlinearly elastic flexural shellave
been identified and fully justified by means bfconvergence theory in two key contributions, respectively by Le
Dret and Raoult [25] and Friesecke, James, Mora and Milller [20] (a nonlinearly elastic shell is a “membrane shell” if
there are no nonzero admissible deformations of its middle suffétat preserve the metric 6f otherwise, the shell
is a “flexural shell”). It then turns out that the stored energy function of a membrane shelhislrarcquasiconvex
envelope that is only a function of the change of metric tensor field, and that the stored energy functdra
flexural shell is of the form

afot __

aaﬂaar_i_zﬂ(aaaaﬁr +aaraﬂa)’

3
WF = %aaﬂor (bor - bor)(baﬁ - baﬂ),
i.e., it is only a function of the change of curvature tensor field (in this case, the minimizers of the total energy are
sought in a set of admissible deformations that preserve the meticsee again [20], or Ciarlet and Coutand [11]).
Conceivably, an alternative approach to existence theory in nonlinear shell theory could thus regheshgjecof
metric and change of curvature tenspos equivalently, thdirst and second fundamental forrt,g) and (Eaﬂ) of
the unknown deformed middle surfaas theprimary unknownsinstead as the deformatidritself as is customary.
This observation is one of the reasons underlying the present study, the other onditiefaegtial geometryper
se. As such, it is a continuation of the works initiated by Ciarlet [8] and continued by Ciarlet and Mardare [18] for
“smooth” topologies, respectively those of the spat®&v) andC™ (w).
Let us henceforth restrict ourselves to deformatiérsH(w; R3) whose normal vector fields = ﬁﬁg , Where
ay = 9,0, is well defined a.e. im and satisfiesis € H(w: R3). The covariant components of the three fundamental
forms of the deformed surfadgw), viz.,

Gop = 0o - ag, bop = —0,a3 - ag, Cap = 0203 - 0pas,
are then well defined as functionsirt(w) and clearly, the mapping

(0.a3) € [H}(: RY)]" — (@up). (bop). Cup) € [LH (3 ST,
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restricted to such deformatiofisis continuous

One of the purposes of this paper is to show thatler appropriate assumptions, the converse also hakisthe
surfaced (w), together with their normal vector fields;, depend continuously on their three fundamental forms, the
topologies being those of the same spaces, i (w; R3)]? and [L1(w; S?)1°.

This continuity result is itself a consequence of the followingnlinear Korn inequality on a surface”which
constitutes the main result of this paper (see Theorem 4.1): Assuntedt@t(@; R3) is an immersion with a normal
vector fieldas € Cl(@; R3). Then, for each > 0, there exists a constantd, £) with the following property: Given
any mappingd € H(w; R3) such that the normal vector fielts to the surfaceﬂ(w) is well defined and satisfies
a3 € HY(w; R®), and such that the principal radii of curvatth of the surfacd (w) satlsfy|R | > ¢ a.e. inw, there
exists a vectob := b(6, 0, ¢) e R% and a matrixk = R(6, 8, ¢) € O such that

| (& +RO) — 0] 1,59 + el Ra3 — azll g1 (w:r3)
< c(0, &) Gop — aup) | 2,52, + €72 (Bep — bup) | 1) + 2| Cop — o) [ i 2, )
where©3 denotes the set of all proper orthogonal matrices of order three.

The proof of the above inequality relies in an essential way oprdinear Korn inequality in an open set Bf
recently established by Ciarlet and Mardare [16] (see Theorem 3.1). This inequality in turn makes an essential use
the fundamentaldeometric rigidity lemmaof Friesecke, James, and Muller [21] and of the methodology developed
in Ciarlet and Laurent [14].

That a vecto € R® and a matrixR € @3 should appear in the left-hand side of this inequality is no surprise in
light of the following extension, due to Clarlet and Mardare [15], of the classigiglity theorem Let § € C1(w; R®)
be an immersion that satisfies € C1(w; R3) and letd € H(w; R3) be a mapping that satisfies

aa/g = dup a.e. ina), flg (S Hl(a); Rs), l;ozﬂ = baﬁ a.e. inw
(as shown in ibid., the assumptiaps = aqp a.e. inw insures that the normal vector fiedd is well defined a.e. in

). Then the two surface(@) andé (w) areproperly isometrically equivalent.e., there exist a vectdre R3 and a
matrix R € 02 such that

0(y)=b+ RO(y) foramostally € .

One application of the nonlinear Korn inequality on a surface is the followiguential continuity property
(cf. Corollaries 5.1 and 5.2; in the same spirit, the same inequality is also recast as one involving distances in Coro
lary 5.3). Letd* :w — R3, k > 1, be mappings with the following properties: They belong to the sgibe); the
vector fields normal to the surfac@$(w), k > 1, are well defined a.e. i@ and they also belong to the spalié (w);
the principal radii of curvature of the surfacés(w), k > 1, stay uniformly away from zero; and finally, the three
fundamental forms of the surface$(w) converge inL!(w) toward the three fundamental forms of the surfa¢®)

_ Ak . . . .
ask — oo. Then, for eaclt > 1, there exists a surfade (w) that is properly isometrically equivalent to the surface

6% (w) such that the surfac@é(w) and their normal vector fields convergelift- () to the surfacé (@) and its normal
vector field.

Should the fundamental forms of the unknown deformed surface be viewed as the primary unknowns in a she
problem (as suggested earlier), this kind of sequential continuity result could thus prove to be useful when considerin
infimizing sequences the energy of a nonlinearly elastic shell (in particular for handling the part of the energy that
takes into account the applied forces and the boundary conditions, which are both naturally expressed in terms of tt
deformation itself).

In this respect, it is worth mentioning that a similar program has been successfully carried ouinedhease
More specifically, Ciarlet and Gratie [12] have recently revisited from a similar perspective the quadratic minimization
problem proposed by Koiter [23] for modelindiaearly elastic shell As expected, the stored energy function then
takes the form
8_3aaﬁo
6
where(yos (@) 1w — S? and(pu()) 0w — S? are thelinearized change of metri@ndlinearized change of curva-
ture, tensor fieldassociated with a displacement figle=  — 8 of the middle surface of the shell (“linearized” means

lin

& - ~ - -
wi' = Ea““”ym(n)yaﬁw) + ® Por (i) 0ap (i),
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that only the linear parts with respectjaare retained in the “complete” differenc@g,g — aup) and(l?a,g — bap)).

Then the novelty in [12] has consisteddnnsidering these linearized tensors as the new unknowsiead of the
displacement field; as is customary in linear shell theory. A new existence theory for the resulting minimization
problem has been established in [12], which interestingly also provides a new proofioEtdrekorn inequality on a
surface(in so doing, an essential use is made of a similar approach, which has been successfully applied to linearizec
three-dimensional elasticity by Ciarlet and Ciarlet, Jr [10]).

This linear inequality on a surface is also briefly reviewed here in Section 7, for the (different) purpose of showing
that it is indeed a linearization of the nonlinear inequality established here, thus justifying the terminology “nonlinear
Korn inequality on a surface” proposed in the present paper.

The results of this paper have been announced in [13].

2. Notations and definitions

The symbolsM”, §”, andO’ respectively designate the sets of all real matrices of ordef all real symmetric
matrices of order, and of all real orthogonal matricé of ordern with detR = 1. The Euclidean norm of a vector
b € R" is denotedb| and|A| := sup,_; |Ab| denotes the spectral norm of a matdxe M".

Let U be an open subset R". Given any smooth enough mappiggU — R", we letV x (x) € M" denote the
gradient matrix of the mapping atx € U and we let; x (x) denote theéth column of the matriv x (x). Given any
mappingF € L?(U; M"), p > 1, we let

1/p
I FllLr@;mmy := {/|F(X)|de} ,

U

and we defing| F || .».sn in an analogous manner i € L?(U; S"). Given any mapping € HX(U; R"), we let

n 1/2
X | 2y = {/<|x<x)|2 + Z|a,~x<x>|2> dx} .
i=1

U

A domainU in R” is an open and bounded subseffwith a boundary that is Lipschitz-continuous in the sense
of Adams [2] or N&as [26], the selV being locally on the same side of its boundang/Ifs a domain ifR”, the space
CY(U; R™) consists of all vector-valued mappingse C1(U; R™) that, together with all their partial derivatives of
the first order, possess continuous extensions to the clésofd/. The spac€(U; R™) also consists of restrictions
to U of all mappings in the spaa& (R”; R™) (for a proof, see, e.g., [29] or [17]).

Latin indices and exponents henceforth range in thg¢ls&, 3} save when they are used for indexing sequences,
Greek indices and exponents range in the{$e2}, and the summation convention is used in conjunction with these
rules.

The notations(aqg), (a*P)y, (bg ), and (g;;) respectively designate matrices 2 and M3 with components

AaBs a®f, bﬁ, andg;;, the index or exponent denoted herer i designating the row index.
3. Preliminaries

The proof of our main result (Theorem 3.1) relies on several preliminaries, which are gathered in this section. The
key preliminary is the followinghonlinear Korn inequality on an open subset®i recently established by Ciarlet
and Mardare [16], the proof of which is sketched below for the sake of completeness. See also Reshetnyak [28] fo
related results.

Theorem 3.1.Let £2 be a domain inR", n > 2. Given any mappin@® < Cl(.Q R") satisfyingdetV@® > 0 in 2,
there exists a constadi(®) with the foIIowmg propertyGiven any mappln@ € HY{(2:;R") saUsfymgdetV@ >0
a.e. ing2, there exist a vectab = b(@ ©) € R" and a matrixR = R(@ ©) € 0" such that

1/2

|| (b+R@) Ll(.Q SN

0| 105 < C@)|VO'VE —VOTVEO|
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Proof. We sketch the main parts of the proof under the additional assumption that the mépjgsngjectivein 2.
The proof in the general case is substantially more technical and relies on a methodology reminiscent to that propos
in Ciarlet and Laurent [14].

(i) Let a matrixF € M" be such thatletF > 0. Then

dist(F, 0. ) := S0, IF = 1< |FTF — 1|72,
It is known that
dist(F,0%) = |(FTF)"* - 1.
Let0<v1 < v <--- < v, denote the singular values of the matfix Then
|(FTF)"? — 1| = max{|vs — 11, |v, — 1]} < max{|v} — 1Y, |2 — 1]?)
=|FTF—1|"*

(ii) Let£2 be a domain ifR". Then there exists a constants2) with the following propertyGiven any mapping
Oc HY(2;R") sausfymgdetV@ > 0a.e. ing2, there exists a matriR = R(@) € 0" such that

1/2

IRV — 1|20 < AR VO' VO — I |15, .

By the “geometric rigidity lemmaof Friesecke, James and Miller [21, Theorem 3.1], there exists a constant

A($2) depending only on the s&2 with the following property: For eac® € H1(2;R"), there exists a rotation
R = R(®) € O’} such that

|RVO — I < A(2)|dis(Ve,0")

HLZ(Q;M") ||L2(Q)'

If in addition the mappin@) e HY(2;R") satisfies de¥® > 0 a.e. inf2, then part (i) implies that

dist(VO (x), 0") < |[VO ) VO (x) — I[V?
for almost allx € £2. Hence
. ~ 1/2
”d'St(V@’@n)”H(Q) ”V@ Vo - I”L/l(.Q Sy

(i) Let £2 be a domain inR". Given any injective mappin® < Cl(.Q R") satisfyingdetv® > 0in £, there
exists a constant(@) with the following propertyGiven any mappln@ e HY(2; R") satlsfylngdetV@ >0a.e.
in £2, there exists a rotatiolR = R(@, ©) € 0" such that

1/2

|RVO — VO 251, <c(©)|VO' VO - VOTVO 0. .

Since 2 is a domain, any mappin® in the spac&l(£2; R") can be extended to a mappi® in the space
CL(R™; R™). Moreover, since d&® > 0 in £2 ands2 is bounded, there exists a connected open sub$ebntaining
2 such that the restrictio®* e C1(£2%; R") to 2! of such an extensio®’ satisfies de¥@* > 0 in £2°. Conse-
quently, the sef? := ©(£2) is also a domain ifR". Besides, the inverse mappie: (2} > RofO belongs to
the spac&€l({2}~; R").

Given any mappmg? € HY(£2; R"), the composite mappmg 0.6 belongs to the spacHl(Q R™) since
the bijection® : 2 — {2} is bi- Lipschitzian. Moreover,

VORE)=VOx)VO@E)=VO(x)VO(x) "1 foralmostalli =0 (x) € 2,

the notationV indicating that differentiation is performed with respect to the varidbldence deV @ > 0 a.e. in2
if in addition detv® > 0 a.e. ins2.

By part (ii), there exists a constanip(®) := A(2) with the following property: Given any mapping
O c HY(2:R") satisfying deV® > 0 a.e. ing2, there exists a matriR = R(©,0) € O’} such that the mapping
& = O o O satisfies

PR 1/2
|RV® — 1,251 < c0(©)|VE I”L/l(fz s’



P.G. Ciarlet et al. / J. Math. Pures Appl. 85 (2006) 2-16 7

__ltis then easily seen that the assunigidctivity of the mapping® e C1(£2; R") and the relation de? @ > 0 in
£2 together imply that
~a 2 ~ 2
|[RVS - I||L2(§;M”) >c1(©)|RVO — V@”LZ(Q;M”)’
wherec1(@) = infx€§{|V@(x)|—2detV@(x)} > 0. Likewise, it is easily seen that

[V V& 1] ,15.00) <c2(©)|VE' VO -VO'VO| 1 ;0.

where ¢2(@) = suge§{|V@(x)—T||V9(x)‘1| detVO (x)} < oo. The announced inequality thus holds with
(@) :=co(@)c1(O) M2 (0)1/2.

(iv) Let the assumptions on the setand the mapping® be as in part(iii) . Then there exists a constafit{®)
with the following propertyGiven any mappin@) e HY(£2;R") satisfyingdetV@) > 0a.e. ing2, there exist a vector
b=5b(O,©®) cR" and a matrixR = R(©, ©) € 0" such that

1/2

” (b+Ré) Ll(.Q;S")'

~ 0| 1.5 <CO)|VO' VO -VO'VO|

Let there be given any mappir@ € H(£2;R") satisfying deV® > 0 a.e. inQ. By part (iii), there exists a
matrix R = R(©, ©) € 0" such that

1/2

|RVE - Ve LA(2:5")°

Lo <@ VO Ve —-veTve|

Let the vecto = b(©, @) € R" be defined by

b= (/dx>_1/(Ré(x)—@(x))dx.

2 2

By the generalized Poincaré inequality, there exists a condtamth that, for alr € H1(£2; R"),

/Wx).

2
Applying this inequality to the mapping := (b+RO)—0O yields the desired conclusion, Wit @) :=dc(®@). O

¥ ”Hl(Q;Rn) < d<||V|I’ ”LZ(_Q;MH) +

The next two lemmas show that some classical definitions and properties pertaining to surfaéesilinhold
under less stringent regularity assumptions than the usual ones (these definitions and properties are traditionally give
and established under the assumptions that the immersions dérinteemma 3.2 and in Lemma 3.3 below belong
to the spac&?(@; R3)). For this reason, we shall continue to use the classical terminologysertace(for (@)
oré(w)), normal vector fieldfor a3 or a3), first, secondandthird, fundamental formgfor (aqg) Or (Gug), (bag) OF
(Ba,g), and(cqp) OF (Cap)), €tC. If y = (y) designates the generic point in a domaiim R2, we letdy := 9/dyy.

Lemma 3.2.Letw be a domain ifR? and letd € C1(@; R®) be an immersion such that

aiANa
azg:= 21792 CH@; R®) wherea, :=d,0.
la1 A a2
Then the functions
Qup :=aq -ag, byg:=—0ya3-ag, bg = aﬂgbalg, and Cop = 0ya3- dgas,

where(a®?) := (a,5) 1, belong to the spacé®(@). Besides,

bap = bpa.
Define the mappin® < C1(@ x R; R3) by
O(y,x3):=0(y) +x3a3(y) forall (y,x3) €ew xR.
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Then

detVe (v, x3) = ya(y) {1 —2H (y)xs+ K (y)x3} forall (y,x3) € @ x R,
where the functions

1
a = dellagp) = la1 A azl?, szé(bierg), K :=bib3 — b2b3

belong to the spac€®(@). Finally, let
(gi)) =vOTve.
Then the functiong;; = g;; belong to the spac€®(@ x R) and they are given by

8up (¥, X3) = agp () — 2x3bep (y) + x3cap(y) and gia(y, x3) =83
forall (y,x3) e @ x R.

Proof. Because the mappirye C1(@; R3) is an immersion, the symmetric matrices,g(y)) are positive-definite
at all pointsy € @, the inverse matrice&*? (y)) are well defined and also positive-definite at all points @, and
the functionsz®? belong to the spac@®(@). Therefore the functions] are well-defined and they also belong to the
spaceC?(@).

While the relations,g = b, Clearly hold if € C%(@; R3) (sincebus = a3 - dyap in this case), this symmetry
requires a proof under the present weaker regularity assumptions. Following [15], we first note to this end that the
assumption® e C1(@; R%) andas € C1(@; R3) imply that —bus = 3p0 - deas € Li (w), hence thaBgé - d,as €
D ().

Given anyyp € D(w), let thenU denote an open subset®f such that supp c U andU is a compact subset of
. Denoting byy. (-, -) x the duality pairing between a topological vector sp&cand its dualX’, we have

’D/(a))(aw~3aa3,<P>D(w>=f<ﬂ3ﬁ9~3aa3dy=/3ﬂ0~8a(¢03) dy_/(8a¢)8ﬂ0'a3dy-

w w

Observing thabgh - a3 = 0 a.e. inw and that

—/8,30 - 0y (paz) dy = —/3,30 -0y (paz) dy = y-1y.r3){3 (350), was)H&(U;Rs),
w U
we reach the conclusion that the expression, (9s0 - d.a3, ¢)D(w) IS Symmetric with respect t¢ ando since
gl = dapb in D'(U; R3). Hencedph - dpas = 340 - dgas in L} (), and the announced symmetry is established.
Because&,asz - a3 = 0 (sinceas - a3z = 1), the classicalormula of Weingarterd,az = —bJa. still holds in the
present case. The definition of the mapp@ghows that

gq = 0,0 = (ay + x30,a3) € CO(& x R; R3), g3:= 930 =az e C(@ x R; RY),
hence that
detvVeO = (g1 A gy) - g3= (al A a2+ x3{ay A d2a3 + 01a3 A az} + x§31a3 A 82(13) -as.

The announced expression of the function\ét € C%(@ x R) then follows from the formula of Weingarten and
the relationa = |a1 A a2|2. The announced expression of the functigns= g; "8j € C%@ x R) follows from the
relationsbyg = bgo anddyaz-az=0. O

Lemma 3.3.Letw be a domain irR? and let there be given a mappifige H(w; R®) such thata; A @, # 0 a.e. in
w, wherea,, := 9,60, and such that
5 A G
d3i= 02 e HYw; RY).
lai A a2
Then the functions

ﬁaﬂ = &a . [lﬂ, baﬁ = —30,[13 . £~1'3, Eaﬂ = 3,1[13 . 3/3{13
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are well defined a.e. im and they belong to the spaéé (). Besides,
bap =bgo a.e.inw.
Define the mappin® :» x R — R3 by
é(y, x3) :=0(y) + xaaz(y) foralmostall(y, x3) € w x R.
Then® € H(w x ]-38, 8[; R3) for anys > 0. Furthermore,
detVO (y, x3) = va(y) {1 - 2H (y)x3 + K (y)x%}
for almost all(y, x3) € ® x R, where

a:=deldyp) = a1 Anaz?,  H:= %(51 +b3), K :=bib5—bib3,
by :=aPbos, and (a®f):=(Ggp)t
Finally, let
(3)):=VO' VO ae.inwxR.
Then the functiong;; = g;; belong to the spacel(wx]— 8, 8[) for anys > 0 and they are given by

Gap (v, X3) = Gap(¥) — 2x3bap (y) + x5Cap(y) and  gia(y,x3) =33
for almost all(y, x3) € w x R.

Proof. The assumptions made on the mappfinand on the vector fields clearly imply that the functiong,g, l;af;,
andcyg are in the spacé!(w). Because the symmetric matric€gs (v)) are positive-definite for almost ayl € o,

the inverse matrice&i*?(y)) are IlkeW|se posmve definite for almost alle @, and thus the functlonls" are well-
delzfmed a.e. inw, like the functionsi, H, and K (however, these functions do not necessarily belong to the space

L (w)).

Sin)ce the assumptiorse H(»; R%) andas € H(w; R®) again imply that-bes = 340 - d,as € L (), the
relationsﬁaﬂ = Eﬁa hold a.e. inw (see the proof of Lemma 3.2). Becauggis - as = 0 a.e. inw, the formula of
Weingartend,as = —Eg&g now holds a.e. imw. The announced expressions of the functionvi@t, which is well-
defined a.e. i x R, and of the functiong;;, which clearly belong to the spadé(w x 1-38, 8[) for anys > 0, then
follows from these observations.O

If a mappingd : w — R~3 is a smooth immersion, the functiofsand K simply represent thmean andGaussian
curvaturesof the surfacd (w). These functions are also given by

~ 171 1 ~ 1
H = = _ + - and K - ==,
2\R1 R> R1R>
Whereﬁa are theprincipal radii of curvaturealong the surfac@(w) (with the usual convention théR, (y)| may take
the value+oo at some pointy € w).

4. A nonlinear Korn inequality on a surface

We are now in a position to prove the announoedlinear Korn inequality on a surfac&he notations are the
same as those in Lemmas 3.2 and 3.3.

Theorem 4.1 Let there be given a domainin R2, an immersiom € C1(w; R®) such thaag € Cl(a) R3), ande > 0.
Then there exists a constantd, ¢) with the following propertyGiven any mapping € H(w; R3) such that
a1 Ad»#0a.e. inw, a3 € H(w; R3), and the principal radii of curvature,, of the surface (w) satisfy

|Ro,| >¢ ae. inw,
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there exist a vectob = b(9, 0, ¢) € R® and a matrixR = R(9, 8, ¢) € O3 such that

|6+ Ré) —9| Hi(w:r3) T EIRa3 — a3l g1, r3)
(w;R?)

81/2“ (~ 1/2

<. o[ (@ap — aup) “ Liws?) T bog — bag) | Liws?) T€ | Cap — cap) | i/lz(w;SZ) }.

Proof. Given a mapping satisfying the assumptions of Theorem 4.1, let the mapng C1(@ x R; R3) be
constructed as in Lemma 3.2. Consequently,

detVO (y, x3) = ya(y) {1 - 2H(y)x3+ K(»)x3} forall (y,x3) €@ x R,

by the same lemma. Since the functiang?, andK are in the spac€®(@) and there existsy > 0 such thatz(y) > ag
for all y € @, there exists a constaftd) > 0 such that de¢ @ (y, x3) > 0 for all (y, xX3) €D X [— 5(0),5(0)].

Given any mapping satisfying the assumptions of Theorem 4.1, let the mapﬁn@ x R — RS2 be constructed
as in Lemma 3.3. By this lemma,

detvVé (v, x3) = va(y) {1— 2H (y)x3 + K (y)x3}

for almost all(y, x3) € w x R. The assumpt|0mRa| ¢ a.e. inw imply that | H| < 1/e and|K| < 1/e2 a.e. inw.
Hence there exists a constarguch that

1- 2ﬁ(y)xs + E(y)x% >0 foralmostall(y, x3) € w x |—¢s¢, cel.
Without loss of generality, we henceforth assume thatl. Lettings (@) := min{¢, 5(9)} and
R=202(00,¢):=wx]|-80)e 50|,

noting thata > 0 a.e. inw by assumption, we conclude that the restriction, still den@etbr convenience, of the
mapplng@ to the set2 belongs to the spadcd!($2; R®) and satisfies d&t® > 0 a.e. ins2 on the one hand.
Since, on the other hand, the restriction, still dena@ébr convenience, of the mappir@ to the set2 belongs
to the spac€($2; R3) and satisfies d&® > 0 in §2, all the assumptions of Theorem 3.1 are satisfied. Therefore,
given anye > 0, there exists a constang(f, ) with the following property: Given any mappmﬁg satisfying the
assumptions of Theorem 4.1, there exist a vebtet b(6, 0,¢) e R3and amatrixR = R0, 0, ¢) € (0)3 such that
[(B+ RO) — O ;1.3 < 06, &) | (i) — g,,>||L1(9 59)-

In the remainder of this proof, we lét= §(@) for conciseness. In order to get a lower bound of the left-hand side
of this inequality in terms ot (w; R3)-norms of the mapping® andd, we simply note that, given any vector fields
u € L?(w; R3) andv € L2(w; R®),

2
/|u<y> + x3v(y) [ dy = zasfiu(y)|2dy + 58383/|v(y>|2dy,
22 w w

since [, x3(u(y) - v(y)) dx = 0. Consequently,

f}(b—i—R@)—@|2dx:23e/|(b+R5)—0}2dy+§8383/|R&3—a3|2dy,

and

/Z|R8ié—8,-@|2dx
Q i
=f{Z|R8aé—aao +x3(R8aé3—8aa3)|2+|R&3—a3|2}dx
o

. 2
=258/;}aa(1w—0)|2dy+258/|Ra3—a3|2dy+53383/%:|aa(1ea3—a3)|2dy.

w
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There thus exists a constamtgf) such that
H (b + Ré) -0 ||H1(.Q;R3) > 01(0)51/2{ ” (b + Ré) - OHHl(w;]RS) +elRas — a3||H1(w;JR3)}'

In order to get an upper bound of tié($2; S%)-norm of the matrix fieldg;; — gi;) interms of LY (w; S?)-norms
of the fundamental forms of surfacé&w) andé (@), we again resort to Lemmas 3.2 and 3.3, which imply that

8up — 8ap = (Gap — dap) — 2x3(bap — bap) + x3(Cap — cap) Q.€.INS2,

giz—gi3=0 a.e.inf.
Given a matrix fieldF*® := (fofﬂ) € LY(w; S?), define the matrix fieldF = (f;;) € L1(£2; S®) by letting fus(y, x3) =
f(fﬁ (y) and fi3(y, x3) = 0 for almost all(y, x3) € £2. Then it is easily seen that

11|11 ;69) = 208 [ F* | 1, 52)-
Combining these observations, we conclude that there exists a congrsuch that

@i — i) | rgie < 26V Gap — aup) 572, + €21 Bep = bep) [ riso, + €l Gap = cap) | 302}

The announced inequality then follows witt9, ) := co(8, £)c1(0) " 1c2(0). O

The essence of the inequality established above can thus be summed up as @il@nsany family of surfaces
0 (w) whose principal radii of curvature stay uniformly away from zero, Hi&w; R3)-distance between the two
surfacesd (w) and (@) and between their normal vector fields andas is “controlled” by the L1(«w; S?)-distance
between their three fundamental forgnscall that the principal radii of curvature of such “admissible” surfaes
are possibly understood in a generalized sense, viz., as the inverses of the eigenvalues of the associateﬂﬁrﬁatrices
Naturally, the H(w; R3)-distance between the surfaces is only measugedo properly isometrically equivalent
surfacessince such surfaces share the same fundamental forms.

5. Some consequences

Define the set (the notations are those of Lemma 3.3)
H}(0;R%) := {0 € H'(0; R®); @1 A G2 #0a.e. inw,ds e H'(w; R%)}.
Then two mapping8 € H}(w; R%) andf € H}(w; R?) are said to b@roperly isometrically equivalerit there exist
a vectorb € R® and a matrixR € 03 such that
0(y)=b+ R6(y) foralmostally € w,

and, by extension, tmrfacesf)(w) andé (w) are also said to bproperly isometrically equivalenNote that, while
the fundamental forms of properly isometrically equivalent surfaces are clearly equal a.ethie converse doawt
hold in general. The conversieeshold, however, if one of the mappings is@A(@) and its associated normal vector
field is also inC1(@) (see Ciarlet and Mardare [15, Theorem 3]).

One application of Theorem 4.1 is then the following resuk@duential continuity for surfaces

Corollary 5.1. Let (aup), (bap), (cap) denote the three fundamental forms of a surfag@&v), where

0 € C(@; R3) is an immersion satisfyings e C1(@: R®). Let6* € H}(w:R3), k > 1, be a sequence of mappings
with the following propertiesThere exists a constast> 0 such that the principal radii of curvatur&® of the
surfaced* (w) satisfy

|RE| >e>0 ae.inwforallk>1,

and (with self-explanatory notatiofs

(“iﬂ)kjoo(“aﬂ% (b]o(zﬂ)kjoo(baﬂ)v (Cgﬂ)kjoo(cﬂtﬂ) in Ll(w;gz)'



12 P.G. Ciarlet et al. / J. Math. Pures Appl. 85 (2006) 2—-16

. .~k . . . .
Then there exist mappinds < Hul(a); R3) that are properly isometrically equivalent to the mappid§sk > 1
such that

0 — 60 and a3ﬂ as inHl(w;Rs).

k— 00

Proof. The proof is an immediate consequence of the inequality established in Theorenm4.1.

A significant strengthening of the regularity assumptions regarding the convergence of the first and second fund
mental forms yields another result eéquential continuity for surfacgthis time without any assumptions on their
third fundamental forms nor on their principal radii of curvature.

Corollary 5.2. Let (ang) and (bog) denote the first and second fundamental forms of a surbd@e, where
0 € C1(@; R®) is an immersion satisfyings € C1(@; R3). Let#* € H}(w;R3), k > 1, be a sequence of mappings
such that(with self-explanatory notatiohs, € L™ (w), bz € L™(w), and

(agp) — _(aup) and (b)) — (bup) in L%(w:S?).

Then there exist mappin@s € Hul(a); RR3) that are properly isometrically equivalent to the mappidisk > 1
such that

0 — 0 and agk—> a3 in Hl(a);Rg).

— 0

Proof. The notations used in this proof should be self-explanatory. The above assumptions imply the following prop-

erties: The third fundamental fornﬁs"ﬁ) = (a°" "b’g[,b(’jﬁ) of the surface$” (w) are also inL™ (w; S?), they satisfy

(C‘)"B)k:oo(caﬁ) in Loo(a); SZ),

and the eigenvalues of matricég”‘) converge inL* (w) to the eigenvalues of the matrik?) ask — oo. This last
property implies that there exists> 0 such thatR*| > ¢ for all k > 1. The conclusion is then another consequence
of the Korn inequality of Theorem 4.1.0

The Korn inequality of Theorem 4.1 can also be recast as one invollistgnces in metric spaceso this end,
define the quotient set

A (w; R®) = H} (0; R%) /R,
where (x, 0) € R means thal € Hul(w; R3) and@ € Hul(w; R3) are properly isometrically equivalent, and tet
denote the equivalence classébt H}(w; R®%) moduloR. Since the normy| - || 1,3, is invariant under the ac-
tion of 03 (in the sense that Q0| ;1. z3) = 101l y1(:r3) for any Q € 0% and anyd € H'(w; R3)), the mapping
d: I-'Iﬁl(a); R3) x I-'Iﬁl(a); R3) — R defined by

d(6.6) = beRsi,”}; 0t {[|(®+ RO) — 0] 1.3 + IRE3 — @3]l p1(ires) )

is adistanceon the quotient sthl(w; RR3). In terms of this distance, the inequality of Theorem 4.1 then becomes:

Corollary 5.3. Let there be given a domaia in R?, an immersior? € C}(@; R3) such thatas € C*(@; R3), and
¢ > 0. Then there exists a constat(®, ¢) with the following propertyGiven any mapping < Hﬁl(a); RR3) such that

|R | > ¢ a.e. inw,

d(8.0) < 0.0 [ Giup — aup) [}, 52, + 72 (bup — buap) | 122y €| Cap — cap) | 7)) O
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6. The linear Korn inequality on a surface revisited

To begin with, we observe that the nonlinear Korn inequality on a surface established in Theorem 4.1 may be
equivalently restated as follows, thanks to the invariance of the rjorify1,.z3, under the action of the group

03. Given an immersiol € C1(@; R3) such thalas € C1(@; R®) ande > 0, there exists a constantd, ¢) with the
following property: Given any mapping € H(w:; R®) such thata; A @2 # 0 a.e. inw, as € H(w; R%), and the
principal radii of curvaturer,, of the surfac# (w) satisfy

]I?a] >¢ a.e. in,
there exist a vectar = a(6, 8, ¢) € R% and a matrixQ = Q(8, 0, ¢) € 02 such that

||é - (a + Qa) “ Hl(w;R3) + ‘9“&3 - Qa3||Hl(a);R3)
<c®. )] @ap — aup) | 2, 52, + &2 (Bap — bap) | 155,52 + €] Cap — cap) | o2,

To shed more light on this inequality, we now compare it witHiftear counterpart, the genesis of which we first
briefly review.

Letw be a domain ifR? and let there be given an immersier C1(@; R3) such thauz € C1(@; R3). The“linear”
Korn’s inequality on a surfacthen asserts the existence of a consta) such that

(112150, + | Az |52 5)

< 0O {1717 2,55, + [ Aas® |Gz, + | 0p (1) [ 202, | (oo D) 252

for all vector fields

1/2

ne V(w) = {Ty € Hl(a); ]R?’); Aa3z(y) € Hl(a); R?’)},

where
. . . 1. . .
Aas (i) = — (3,7 - az)a®Papg, Yap () := i(aﬂn “ag + il - ag) € L (w),

Pap (i) := — (35 - duaz + du Aaz(ij) - ag) € L*(w),

and the vectora; are defined as in Lemma 3.2 in terms of the immergi¢the notationAas(#) will be justified later).
Under the assumption théite C3(&; R3), this inequality was first proved by Bernadou and Ciarlet [4] and was later
given a simpler proof by Ciarlet and Miara [19] (see also Bernadou, Ciarlet and Miara [5]). The regularity assumption
on the immersio® was weakened to that considered here by Le Dret [24] (see also Blouza and Le Dret [6]).

The linear Korn inequality is the basis of thristence theorems in linear shell thegsge, e.g., [7] or [9]). In this
context, the surfac@(o) is themiddle surfacef alinearly elastic shellthe vector fieldg; € V (w) aredisplacement
fields of the surfac@(w), and the matrix field$y,s (7)) € L%(w) and(pes (1)) € L?(w) are respectively thinearized
change of metricandlinearized change of curvature, tens@ssociated with such displacement fields. Let

Rig™ (@) = {71 € V(®); yap(@)) = pup (@) = 0 inw}

denote the space affinitesimal rigid displacement of the surfa@&v). Then this space can be equivalently defined
as (see [3])

Rig™ (w) = {i1 € V(®); i =a+b A0 for somea, b € R3}.
Given any displacement fielgle ‘N/(w) of the surfacd (»), let
0:=0+17) e Hl(a); R3)
denote the associatel@formationof the surfacé (w), andassume in addition thdt; A a> # 0 a.e. inw and
aiAaz

. AL ®e 1(,.. @3).
3:= 1A e H (a),R ),
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in other words, the mappindsprecisely satisfy the assumptions of Theorem 4.1. Let
(aup) = (@q - ap) € L(@) and (bep) = (~dpa3- ap) € L¥(w),
and
(Gop) = (aq - ap) € L) and (bop) = (—da@3-ap) € L*(w),

respectively denote the first and second fundamental forms of the suffaoesndé(w). Then it is well known
(see, e.qg., [7] or [9]) that the tensaig,s (77)) and(p.p (7)) can also be defined as

1 . B .
(vep i) = (5[&0!/3 - aam"”) and  (pup(0)) = ([bep — bas]"),

wherel...]'" denotes the linear part with respectitin the expressiofi...]. In the same vein, it can also be easily
verified that

lin

Aaz(i) =[az —a3]".
Finally, define thequotient space

V() ==V (0)/Rig" ().

and let|| - | denote the associated quotient norm. Arguing as in [12], it can then be shown that the above lineal

V() :
Korn inequality isequivalentto the followingKorn inequality in the quotient spack(w): There exists a constant
c1(0) such that

2 2 2 2 2 1/2
5y <A@ (@) | L2z, + [ (P (1) [ 72052,

for all 7 € I7(w). Thanks to the definition of the quotient norm and to the specific form taken by the infinitesimal
rigid displacements of the surfaééw), this inequality can be immediately recast as follows: Given any vector field
i € V(w), there exist vectors = a(j, 8) € R® andb = b(j, 8) € R3 such that

{li1—@+bn 0)”?11((0;]1%3) + |Aas(i — (@ +b 1 6)) ”21@;]1%3)}1/2

< C1(0){ || ()/aﬂ (i,)) ||i2(w;S2) + || ('Oaﬂ (ﬁ)) || iz(w;Sz)}l/z

In terms of deformation of surfaces and fundamental forms|itiear Korn inequality on a surfacéhus asserts
the existence of a constant() with the following propertyGiven anydeformatiord = (9 + i) of the surface® ()
such thafj € V(w), @1 A d» # 0a.e. inw, andas € H(w), there exist vectors = a(8, 0) € R3 andb = b(8, 0) € R3
such that

{”é —(a+0+b /\o)HHl(a);R3) + H A“3(é —(@a+0+bn0)) ”Hl(w;RS)}l/z

< 1O (awp — aep™) [ F2(ey + | (e = bap] ™) 22,2

This last inequality provides thessence of the linear Korn inequality on a surfathe H(w; R®)-distance be-
tween the deformed surfa@éw) and the surfacé (@) and theH 1 (w; R3)-norm of the linearized difference between
their normal vector fieldgs andas are “controlled” by the Lz(ag; S2)-norms of the linearized change of metric, and
change of curvature, tensors associated with the vector flietd — 6.

As expected, the distance between the two surfaces is only meagutedhfinitesimal rigid displacements of the
surfaced (@), since these are precisely those whose associated matrix(i@lgs- a,s1"™) and([bys — bes]™) van-
ishes (this indeterminacy would no longer hold if the displacements fieldsre subjected to appropriate boundary
conditions, such as those of clamping along a porjgmf dw satisfyinglengthyg > 0; cf. [3, Theorem 4.1] and
[7, Theorem 2.6-3]). In the same spirit, the te®® appearing in the nonlinear inequality is replaced by the term
0 + b A 0 in the linear inequality. This replacement simply reflects that the marix @i is close to the identity
matrix if the displacement vector fielglis small (it is well known that the tangent space to the mani@id at the
identity matrix coincides with the space of all antisymmetric matrices of order three; cf., e.g., Avez [1]).



P.G. Ciarlet et al. / J. Math. Pures Appl. 85 (2006) 2-16 15

Recast in this way, thdinear” Korn inequality on a surface thus appears as a natural linearization of the nonlin-
ear Korn inequality on a surfacas rewritten at the beginning of this section.

This is obvious for their right-hand sides, where the matrix figidg — aqp) and(liy,g — byp) are replaced by their
linearized fields[Gys — dap]™) = (Yup () and([bap — bas]™) = (pup (i) (that theL(w; S?)-norm is replaced by
L%(w; S®)-norm is no surprise, since each norm corresponds to the regularity of the ma@ming#® respectively
assumed in the nonlinear and linearized cases).

This is true,albeit less evident, for their left-hand sides. As shown by Ciarlet and Mardare [15], the underlying
reason is that the set

M(w) := {é € Hl(a); R?’); (op = dop B.€. INw, az € Hl(a); R?’), l;af; =byp a.e. ina)}

is a submanifold (of dimension 6) of the spakié(w; R3), and furthermore, the spa&ig'” (w) (also of dimension
6) is nothing but theangent spac&y M (w) atf to M (w). In other words,

ToM () = {ij € H(w; R®); ij =a + b A 0 for somea, b € R3}.

Finally, that the linearized tensor fielfic,s — Caﬂ]"n) does not appear in the right-hand side of the linear Korn
inequality is no surprise: itis an easy matter to show thalLthi@; S%)-norm of this linearized tensor field is controlled
by the sum of the.?(w; S?)-norms of the linearized tensor fieldSi,s — awpl™) and([bap — basl™).

7. Concluding remarks

The nonlinear inequality established in this paper has potential applications to differential geometry and to non-
linear shell theory. From the viewpoint of differential geometry, the continuity result implied by this inequality is
a mathematical expression of a natural idea: If the fundamental forms of two surfai@sie close, then the two
surfaces are also close (up to proper isometries, of course). While the previous results in this direction involved topolo-
gies of spaces of continuously differentiable mappings (see [8,18] and [27]), the present result can be considered a
a genuine improvement over these, inasmuch as the norms used for evaluating the distance between the fundamen
forms and surfaces are “weaker”.

From the viewpoint of nonlinear shell theory, this inequality also represents a first step toward considering the
fundamental forms of the unknown deformed surface as the primary unknowns. But, unlike in the linear case [12],
much further work is clearly needed before a satisfactory existence theory can be developed along these lines.
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