Theoretical Computer Science 75 (1990) 111-138 111
North-Holland

A RATIONALE FOR CONDITIONAL EQUATIONAL
PROGRAMMING*

Nachum DERSHOWITZ
Department of Computer Science, University of Hllinois, Urbana, 1L 61801, U.S.A.

Mitsuh.:2 DKADA

Department of Computer Science, Concordia University, Montreal, Quebec H3G 1M8, Canada

Abstract. Conditional equations provide a paradigm of computation that combines the clean
syntax and semantics of LISP-iike functional programming with Prolog-like logic programming
in a uniform manner. For functional programming, equations are used as rules for left-to-right
rev.riting; for logic programming, the same rules are used for conditional narrowing. Together,
rewriting and narrowing provide increased expressive power. We discuss some aspects of the
theory of conditional rewriting, and the reasons underlying certain choices in designing a language
based on them. The most impoiiant correctness property a conditional rewriting program may
possess is ground confluence; this ensures that at most one value can be computed from any given
(variable-free) input term. We give criteria for confluence. Reasonable conditions for ensuring
the completeness of narrowing as an operational mechanism for solving goals are provided; these
results are then extended to handle rewriting with existentially quantified conditions and built-in
predicates. Some termination issues are also considered, including the case of rewriting with
higher-order terms.

1. Introduction

In recent years, various suggestions for combining features of functional program-
ming and logic (relational) programming have been made; see the cellection in [7]
and the survey in [2]. The simplest provide a convenient interface between resolution-
based goal reduction and rewrite-based term evaluation, by using rewrite rules to
normalize terms (i.e. rewriting them to terms that cannot be rewritten further) before
unification is attempted. For example, the append function can be defined as usual:

append (x, y) = if null(x) then y else cons(car(x), append(cdr(x), y))
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and Quicksort can be written with Horn clauses as follo. .-+
eq(x, x)
sort(nil, nil)
partition(y, x, y,, ¥2) A sort(y,, z;) A sort(y,, z,)
A eq(z, append(z,, cons(x, z,))) 2 sort(cons(x, y), z).

{with 3 suitable program for partition). Such languages do not use function definitions
to instantiate free variables during goal reduction, and, consequently, are incomplete,
in the sense that a solution to a goal will not necessarily be found whenever one
provably exists. For example, the above program would find no solutions to the goal

sort(cons(2, cons(1, nil)), append (x, y)).
An early example of such a language is QLOG [34].
An alternative approach is to treat function definitions, like append, as a pair of
implications
null(x) > append(x, y) =y
—null(x) > append (x, y) = cons(car(x), append (cdr(x), y)).
The necessary properties of car, cdr, and null could also be given as clauses:
null(nil)
—null(cons(x, y))
car(cons(x, y))=x
cdr(cons(x, y)) = y.

Paramodulation (unifying one side of an equation with a nonvariable subierm of a
clause and replacing with the other side) would then be used (with resolution) to
solve goals. Uniform [30] is an early extension of Prolog incorporating such an
equality rule. Though completeness is achievable in such a manner, the resultant
language requires non-linear forward reasoning and lacks the sense of direction
that distinguishes computing from theorem proving.

Another alternative is to use function definitions as one-way rewriting rules:

append (x, y) — if null(x) then y else cons(car(x), append (cdr(x), y)).

Rewrite rules are used to replace equals-by-equals, but only in the left-to-right
direction. That is, a rule ] — r may be applied to a term ¢ if a subterm s of ¢ matches
(by “one-sided” unification) the left-hand side ! with some substitution o of terms
for the variables in I The rule is applied by replacing the subterm so = lo in t with
the right-hand side ro. Two additional rules for simplification are always needed:

if true then r else s — r

if false then r else s — s.
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In the above example, rules for car, edr, and null are also needed. Terms are rewritten
until no rule applies; when (and if) that situation occurs, the resultant irreduc ble
term, called a normal form, is considered the value of the initial term.

Often, the two cases defined by a condition can be Letter expressed as mutually
exclusive left-hand-side patterns. For example, the following set of rules suffices
for append :

append(nil, y) — y

append(cons(x, y), z) — cons(x, append(y, z))
null(nil) — true

null(cons(x, y)) — false

car(cons(x, y)) — x

cdr(cons(x, y)) — y.

To use rewrite rules for logic programming, i.e. to find values for variabies that
satisfy an equational goal like append (x, y) = x, a “linear” restriction of paramodula-
tion, analogous to the SLD-strategy for Horn-clause logic, can be used. Narrowing
[52] is like rewriting, except that unification is used in place of pattern matching:
a rule /- r may be applied to a term ¢ if a nonvariable subterm s of t unifies with
the left-hand side ! with some substitution of terms for the variables in [ (Variables
in | and ¢ are treated as disjoint.) The result is to- with so replaced by ro, where o
is the most general unifier of / and s. A programming language with narrowing-like
operational semantics was first suggested in [9]. Other languages using narrowing
or related mechanisms as a way of incorporating functions with goal reduction
include: SEC [18]; EQLOG [21]; TABLOG [36]; QUTE [51]; FGL+LV [35]; and
EQL[26]. Like paramodulation, narrowing can be simulated in Prolog by decompos-
ing terms [8, 55].

For completeness of narrowing, ground cor.fluence of the system of oriented
equations is required. Ground confluence implies that a variable-free term can have
at most one normal form. With ground confluence, any irreducible solution to a
goal can be found by narrowing. Orthogonal (or regular) rewriting systems obey
the following syntactic conditions:

(a) no variable appears morz than once on any left-hand side,

(b) only variables that aprear an the left appear on the right,

(c) no ieft-hand side is unifiable with a nonvariable (not necessarily proper)
subterm of another left-hand side, and

(d) noleft-hand side unifies with (a renamed) nonvariable proper subterm of itself.
Orthogonal systems are always confluent [40].

The above system for appeid, for instarce, meets all these requirements. Semantic
methods for establishing ground confluence are given in [47, 56].

The main problem with using conditional terms is that the resultant rules are
usually nonterminating. In other words, uninhibited rewriting need not halt with
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an irreducible term. For example, with the “if-then-else” definition of append, an
infinite sequence of rewrites is possible:

append (nil, nil) — if null(nil) then nil else cons(car(nil), append (cdr(nil), nil))
— if frue then nil else cons(car(nil), append (cdr(nil), nil))
— if true then nil else cons(car(nil), if null(cdr(nil)) ithen nil
else cons(car(cdr(nil)), append(cdr(cdr(nil)), nil)))

- ...

Thus, to guarantee that normal forms of terms and irreducible solutions to goals
will be found whenever they exist, requires a lazy, outermest evaluation strategy,
in which conditions are evaluated first and the “if-then-else” is simplified. See, for
example, [49]. Thus, eager evaluation of arguments (as in LISF, is not permissible.
Furthermore, rather strict syntactic conditions (i.e. orthogonality) are necessary for
completeness.

These considerations suggest the use of conditional rewrite rules as a means of
expressing function definitions. Each definition

JS(x)=if p[x] then r[x] else s[x]

(square brackets are used to indicate that the variables X may appear anywhere in
the indicated term) translates into two conditional rules:

plx] = true | f(%) —> r[%]
pL%]=false | (%) — s[].

Using conditional equations allows one to program with rules that can never lead
to infinite sequences of rewrites. Such systems are called terminating. Proposed
languages along these lines include RITE [14, 27], SLOG [19], and EQLOG [22].

In this paper, we concentrate on narrowing-based programming languages that
require the programmer to use only terminating rules. Termination does not limit
expressibility, since any potentially nonterminating function definition (such as the
definition of an interpreter) can be rephrased to include a bound, as illustrated in
[14]. Instead of a definition

J(x)=1[f(3)],

a definition with one extra argument,
J(X, suce(n))=t[ (5, n)],

is used, and instead of computing f(7), the goal f'(5, n) = z can be solved.
Section 2 is on completeness of conditional rewriting and Section 3 is on decidabil-
ity and uniqueness of normal forms. Section 4 addresses the completeness of
conditional narrowing, and Section 5 considers what happens when conditions
contain existentially quantified variables. Section 6 extends previous results to the
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case in which conditions involve built-in predicates. Then, Section 7 considers
rewriting with higher-order lambda terms and existential variables. We conclude
with a brief discussion.

2. Tonditional rewriting

In functional programming, one is usually interested in finding a “normal form”
t that is “equal” to a given (variable-free) input term s. To be a normal form, ¢
must satisfy some criterion, usually that no “rule” or “function definition™ applies
to it. Equality of s and ¢t must be provablc in some logical system. In this section,
we explore the adequacy of rewriting as a means of computing normal forms. A
preliminary version of this section appeared in [43].

We use standard notations [23]: s =1t stands for the usual sense of equality in
logical systems; s — ¢ stands for one rewrit:' stefs in a given rewriting system; < is
the inverse of the rewrite relation —; < is the symmetric closure of —; —" is its
transitive closure; —* is its reflexive-transitive closure; s &* t is its symmetric-
reflexive-transitive closure; *« is the reflexive-transitive closure of «; and <jr
means s —=>* u *« ¢, for some u. A term s is in normal form if there is no t such
that s — t; we write s—'t if s—*t for normal form ¢ We will assume some
familiarity with the main notions in rewriting, viz. termination, confluence, and
critical pair; see [24] or [10].

By a conditional equational system, we mean a set of Horn clauses of the form

$i =LA AS,=t, O I=r
A natural conditional rewriting system R has rules of the form
S| LA A, S|l

When such a rule applies, an instance lo of I in: a term s is replaced by ro, yielding
a term t. We write R — s — t, or just s — . The rule applies, however, only if there
exists a proof s; *1; for each of the instantiated conditions, where these proofs
may use any number of rewrites in either direction. If n =0, the rule is unconditional.

Note that a natural rewriting system is not very different from the underlying
equational system. Every rule (of the above form) corresponds to the conditional
equation (shown above), obtained by replacing — with =, «&* with =, and | with
>. Let R°™" denote the underlying equational system obtained from a natural system
R™ in this way.

Theorem 2.1. For any natural conditional rewriting system R™* and underlying condi-
tional equational system R,
Rnat}-pé q iﬁ‘ Reqn}_p:_q

for all terms p and q.
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Proof. If p=gq is provable in the logical system R®Y", there is a proof in SPU
(Selected Posizive 1/nit) form, i.e. a proof in which each condition 5,0 = t,0 is proved
before a substitution instance

SIO=0LOA - AS,C=1,0 D lo—ro

of a conditional rule is used to replace equals. Thus, R™ can prove p*gq by
imitating the proof in R, step by step. In fact, the rewriting proof has exactly the
same proof structure as the SPU one, where a right-to-left use of a rule in the proof
of pe*q in R™ corresponds to use of the symmetric axiom in the proof of p=g¢
in R°9". The SPU-proof strategy is complete with respec: to first-order equational
validity and provability, from which it follows that conditional replacement of equals
for natural rewriting systems also is complete. Conversely, any proof in R™ can
readily be interpreted as a proof in R*". [

For this reason we can identify (SPU-)proofs in an equational system with the
corresponding proofs in the corresponding natural system. A proof pe*q in a
natural rewriting system is therefore called an equational proof.

The question is, under what conditions can one be assured that any normal form
provably equal to a given input term can be found by rewriting? In other words,
when is it the case that s &*¢, for an unrewritable term ¢, implies s—*1?

From classical rewriting theory, we know that the confluence property (plq
whenever p *«— u —* g for some u), is equivalent to the Church-Rosser property
(any equational proof p<*q can be repiaced by a rewrite proof plq). Thus, for
any coniiuent system and normal form ¢, s &* t implies s =™ ¢, since t =¥ v implies
t = v. So, rewriting with confluent systems can be used to find normal forms.

One problem with natural systems is that the conditions for applying a rule involve
arbitrary proofs of equality, so we have gained little from the notion of rewriting.
To remedy this defect, we consider a more restrictive definition of conditional
rewriting: A standard { join) conditional rewriting system is a set of ruies of the form

sdta - as |l =

meaning that an instance lo of ! rewrites to ro only if each s, can ve reduced (by
zero or more rewrites) to the same term as the corresponding t,0. For example, with
the standard system

null(nil) — true

null(cons(x, y)) — false

car(cons(x, y)) — x

cdr(cons(x, y)) — y

null(x)| true ! append(x, y) — y

null(x)| false | append(x, y) — cons(car(x), append (cdr(x), y))

we have append (cons(a, cons(b, nil)), cons(c, nil)) —* cons(a, cons(b, cons(c, nil))).
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For a standard system R™, let R°™" denote the underlying equational system and
R™ denote the corresponding natural sysiem (replacing each | with ©*). An
inductive argument provides the following.

Theorem 2.2. For any confluent standard conditional rewriting system R*°,
RStdl“plq I_ﬂ Reqn}__p____q.

It is easy to see that if R™ is confluent, then so is the natural system R"™, but
the converse does not hold, in general, since the enabling conditions in a natural
proof need not have proofs that are transformable into downarrow ones.

A (standard or natural) conditional system is decreasing (cf. [13, 28, 32]) if there
exists a well-founded extension > of the rewrite relation — which satisfies two
additional properties:

(a) > contains the proper subterm relation [> (1.e. if 5 is a proper subterm of ¢
then t>s) and

(b) foreach rule s;{t,A - - - as, it |l = r, lIo> 56, to for all substitutions o and
indices i (1<i<n).

We will say that a proof s<™*1 is fully normal if it is a normai proof s}, and
there are fully normal subproofs of the conditions s, &* 1,0 used in the “surface”
proof sl With these notions, we have the following.

Theorem 2.3. If u natural conditional rewriting system R"™" is decreasing and confluent,
then

Rnal'_plq '_ﬁ Rs‘dl—plq.

Proof. Any proof in the standard system is also a proof in the natural system, so
one direction is trivial. For the other direction, we show that any proof in the natural
system can be transformed into a fully normal proof, which holds in the standard
system.

The proof proceeds by replacing each proof level with a rewrite ({) proof. More
precisely, first we normalize a surface proof s <* ¢ to a normal form s/t in the given
natural system. This is possible by the confluence of the natural system. Then we
consider the immediate conditions ¢,<*d,, ..., ¢, <*d, used for the proof |1,
and normalize the surface prnof of each of these to ¢ld;, exactly as in proof
simplification for unconditional systems [1]. This normalization process is repeated
until all proofs and subproofs are rewrite proofs.

To see that the successive subproof normalizations stop after a finits number of
steps, one can use multiset induction [10a], with elements compared in the well-
founded ordering > showing decreasingness. Normalizing the surface proof of s =t
above has complexity {s, ¢}, while normalization of the conditions ¢, =* d; have
complexity {c, d;}, which is smaller on account of the decreasingness condition.
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Since the multiset ordering is well-founded, normalization must terminate with a
fully normal proof of s=¢ O

One can weaken the condition of rule applicability even further. A normal
conditional rewrite systein is a rewrite system whose rules have the following form:

(]
S1;= QA AS, = | 1>,

meaning, for each condition, that ; is a normal form derivable from s;.

The following two theorems show that normal systems arc not too restrictive. The
first states that any standard system can be simulated by a normal system. For any
given standard system R*, let R®™ be the normal system obtained by replacing
rules of the form

syhn-casdtll—r
with rules of the form
eq(s,, t;) = truen- - - neq(s,, t,) = true|l— i

where eg(-, ) is a new binary function symbol and true is a new constant (0-ary
function) symbol. Additionally, R°*' contains the rule

eq(x, x) — irue.

We have the following.

Theorem 2.4 (Simulation). For any standard rewrite system R and terms s, t,

R™ s\t implies R+ s|t.

The proof of this theorem (and others to follow) is by induction on the “depth”
of a proof, by which we mean the maximum depth of recursion in the evaluation
of conditions. More precisely, depth is defined as follows:

(1) the depth of a proof of s— ¢ is 0 if s —- ¢ is the result of an application of
an uncouditional rule;

(2) the depth of a proof of s— t is one more than the maximum depth of
subproofs for conditions u,{v,, ..., u,lv, if s — ¢ is the result of an application of
a substitution instance of the form ;Jv, A« - - A u,lv,|l— r of a rule;

(3) the depth of a proof s—s,—>s,—>:-—>¢, >vet,—t <t is ihe
maximum depin of subproofs for s— s, $;—=8,...,85. =0, l,—=0,...,
L—t, 1> t.

Proof. Consider the depth of a proof P of s\t in R, If the depth is zero, that

means s|? is provable in R*? without any use of conditions. Then, obvicusly, the
same proof P is a proof of s}t in R



Conditional equational programming 119

Assume, then, that P has depth m+1 P+ the induction hypothesis each subproof
of P whose depth is at mos. #. s¢*. iies the property of the theorem. Suppose that
P uses a substitution instance of a rule of the form

SWhAAsdt, |[I—r
to replace ! by r, and that
P,...,P,

are subproofs in R* for s,01,, ..., s,lt,, respectively. By the induction hypothesis,
there are proofs

1seees Po
in R*™ for s,{t,,..., s,!t,, respectively. Hence, there are proofs
Vseens Po

in R°* for eq(s,, t,) = true, .. ., eqg(s,, t,) ="' true, respectively. It follows that there
is a substitution instance of the corresponding rule (in R®*') of the form,

eq(s,, t,) = truen- - - neq(s,, t,)— true|l—r,
and in R®™ the same rewrite | — r may be used. Hence, there is a proof P of s}t

in R°*. O

In general, for two deduction systems R, and R, in languages (i.e. signatures) L,
and L,, respectively, where L, is a subset of L,, R, is called a conservative extension
of R,, if for every formula ¢ which is expressed in L,

R, ¢ implies R, ¢.
We have the following converse of the previous theorem.
Theorem 2.5 (Conservation). For any standard rewrite system R**® and terms s and

t (having no occurrence of “eq” and of “true”), if R+ st then R®‘+ s|t, i.e. R
is a conservative extension of R™.

Together, the two theorems tell us that for all s and ¢ in the language of R
R 5|t iff R+ st

Without los:, of generality the language of R*“ may be assumed not to include eq
or true. If it does, then, one could choose alternative symbols for R°*.

Proof. The proof is by induction on the depth of a given proof P of s{tin R If
the depth is 0, then the same proof holds in R because the additional rule
eq(x, x) — true is not used.
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The inductive step is similar to that in the previous proof, and uses the fact that
if eq(s, t) —' true is provable in R® with depth , then sl is also provable in R**
with the same depth [ (for s, t not containing eq or true. It follows that a subproof
P! of P with depth less than [ for a condition eg{s;, t;) —' true, admits a proof P/
for s;lt; in R°™ with the same depth. By the induction hypothesis, we have
R s, hence, the same rewrite step (of P) can be used for R+ s|t. O

These two theorems state that the expressive power of the class of normal
conditional systems is the same as that of the class of standard conditional systems.
But, as we will see in the next section, some confluence results for normal systems
also require left-linearity, i.e. each variable occurring in a left-hand side !/ occurs
only once in L In general, however, one cannot re-express a left-linear non-normal
system as a left-linear normal system, since we need the non-left-linear rule
eq(x, x) — true.

For a comparison of different formulations of conditional rewriting, see [13].

3. Conditional convergence

A convergent (conditional or unconditional) rewriting system is one with both
confluence and termination properties. Convergent systems give unique normal
forms for any given term. Ground confluence means that |t for some v whenever
s ¥« u—* ¢ for a variabie-free term u. A ground convergent system is one that is
both terminating and ground confluent. Ground convergent rewriting may be used
as the evaluation mechanism for first-order functional programs and lends itself
easily to parailel evaluaiion sci.emes.

For terminating unconditional systems, the Critical Pair Lemma [33] provides an
effective test for confluence. Also, for such systems (assuming a finite number of
rules), the joinability (|) relation is decidable. Thus, validity is decidable for
convergent unconditional systems. Unfortunately, with conditional systems, we are
faced with two new phenomena:

(a) joinability is not necessarily decidable, even for finite terminating conditional
systems [32];

(b) contrary to what had been surmised [32], the critical pair test does not
guarantee confluence for terminating standard systems [12].

To overcome these difficulties, additional constraints on conditional systems are
required.

Theorem 3.1. ror decreasing standard systems, the basic notions are decidable, i.e. the
rewrite relation (—), derivability relation (—*), joinability relation (|), and normal
Jorm attribute are all recursive.

This can be proved by simultaneous induction with respect to the ordering >
that makes it decreasing. For example, to prove that the relation - — t is decidable,
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we use the decidability of the related conditions of the form u|v, where u, v<s by
the decreasingness constraint.

One can readily confirm that decreasing systems are stricily more generai than
“simplifying systems” [32] or “reduciive systems™ {28! but enjoy the same nice
properties (see [13]). In fact, decreasing systems exactiy capture the finiteness of
recursive evaluation of tcrms, in the following technical sense. For given conditional
system R, let ~» be the relation defined by s~ p if there are a rule s;t,A -+ - A
Sndt.1{— r in R and substitution o such that lo is a subterm of s and p is one of
the s;o or t,0. The relation — U~ corresponds to one step of computation, and its
transitive ciosure (—u~~)" represents an arbitrary computation branch.

Theorem 3.2. For any decreasing natural conditional rewriiing system R, the relation
(—=ua)" is well-founded if and only if R is decreasing.

Proof. The “if” direction foiiows direciiy from the definition of “decreasing”. For
the “only if” direction, we can show that if there are no infinite computations (i.e.
if no infinite sequences of — and ~» steps are possible), then the ordering (= U~ U
D>)" satisfies the conditions for *“‘decreasingness”, where [> is the subterm order-
ing. To see that the latter ordering is well-founded, note that were there an infinite
chain of —, ~ and [>, then there would also be an infinite chain of just = and »,
since s — t > v for some ¢t whenever s > u — v for some u, and s ~» v whenever
s> um v forsome u O

It follows from results in the previous section, that in order for a standard rewriting
system to be complete with respect to provability in the underlying equational system
(or, equivalently, with respect to validity in the sense of first-order logic with ideatity),
we need either to directly establish its confluence, or else to show that the correspond-
ing natural system is decreasing and confluent. We turn now to consider conditions
under which a terminating conditional system ic confluent whenever its critical pairs
are joinable.

If c|l— r and p|s — ¢ are rules in a conditional system R and [ unifies via most
general unifier u with a nonvariable subterm of s, then the conditional equation
cu A pp D su[rw] = tu is a critical pair of R, where su[ru] is sp with its subterm
Iu replaced hy ru. It can be verified that the critical pair test does hold for terminating
naturai systems, i.e. if so|to for every critical pair c A p>s=t and substitution o
such that cuo and puo hold, then the system is confluent.

Theorem 3.3 (Dershowitz and Plaisted [15]). A terminating natural condiiional rewrit-
ing system is confluent if every critical pair is joinable.

But standard systems require an additional constraint: no left-hand side may
unify with a proper nonvariable subterm of any left-hand side. Such systems will
be called overlay systems.
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Theorem 3.4 (Dershowitz et al. [12]}. A terminating overlay standard conditional
rewriting system is confluent if everv critical pair is joinable.

This theorem is a corollary of the following substitution lemma.

Lemma 3.5 (Substitution Lemma). In any terminating overlay standard conditional
rewriting system, for any terms s, t, r (containing any number of occurrences of s) and
normal form N, ifr[s,s,...s]—' Nand s = thold, thenris, 1,...tj—" N also holds.

To prove the lemma, we define the degree of a term s, deg(s), so that for any
terms s and 1, deg(s) <deg(?) if s is a subterm of t or t — 5. The proof depends on
a triple induction on (a, b, c¢), where a is deg(s), b is the depth of the given proof
of r[s, s,s]—' N, and c is deg(r[s, s, ... s]). See [12] for more details of the proof.

We should remark that interpreting Horn clauses as conditional rewrite rules
(with right-hand side true) leads to an overlay system, because predi:ate symbols
are never nested in the head of a clause. Furthermore, all critical pairs are joinable,
since a!l right-hand sides are the same. This theorem also applies to pattern-directed
funciional languages in which defined functions may not be nested on left-hand sides.

Recall (from Section 2) that when one side of each condition is an irreducibie
term (like true), the system is said to be normal. Bergstra and Klop [3] extended
the confluence result for orthogonal unconditional systems [39] to normal condi-
tional systems. They showed that any left-linear (possibly nonterminating) normal
system with no critical pairs is confluent. Since our interest here is solely in
terminating systems, we can relax the ‘“‘no critical pair” part. A critical pair cu A
pu O suiru]=tu, obtained from rules ¢|/— r and p|s— 1, is said to be shallow
joinable if there exist a term v, a derivation tu —* v with depth less than or equal
to the depth of the rewrite lu — ru, and a derivation su[ru]—™* v with depth less
than or equal to that of su — fu.

Theorem 3.6 (Dershowitz et al. [12]). A left-linear terminating normal conditional
rewriting system is confluent, if every critical pair is shallow joinable.

This theorem is a corollary of the following.

Lemma 3.7 (Diamond Lemma). Let R be a terminating left-linear, conditional rewrite
normul system all critical pairs of which are shallow-joinable. Then, if u—* s with
depth at most m and u —* t with depth at most n there exists a term v such that s —% v
with depth at most n and t — 7, v with depth at most m.

Proof. The proof is by induction on the pair (m + n, u) with respect to the (lexico-
graphic combination of the) natural ordering of natural numbers and the well-
founded relation — on terms (cf. [12]). O
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For the last result of this section, we have the following theorem (cf. [32]).

Theorem 3.8. A decreasing standard conditional rewriting system is confluent if every
critical pair is joinable.

The proof uses a substitution lemma similar to Lemma 3.5. This substitution
lemma for decreasing systems is proved by induction on the underlying well-founded
ordering. In this proof, one need only consider normal systems (by Theorem 2.5).

By virtue of Theorems 2.3 and 3.3, one can also establish confluence of decreasing
standard systems R*¢ by showing that the corresponding natural system R™ is
decreasing and all its critical pairs are joinable.

4. Conditional narrowing

The previous two sections concerned the use of conditional rewrite systems to
reduce terms to their value and to answer universal queries of the form Vi s[x] = ([ X].
In this and the following section, we discuss the application of rewriting techniques
to solving existential queries of the form 3x s[x]=t[x]. This corresponds to the
logic-programming capability of resolution-based languages like Prolog.

Narrowing has been proposed as an extension for solving goals in rewriting-based
languages. Conditional narrowing may be defined as follows. Let s}t be a goal. If
s and t are unifiable, then the goal is said to “narrow to true” via their most general
unifier. Alternatively, if there is a conditional rule ¢{/— r such that / unifies with
a nonvariable subterm of s (or t) via most general unifier x (the variables in the
rule are renamed so that they are disjoint from those in s), then all the conditions
in cu are narrowed in tandem until they are solved, say via substitution p. Then we
say that the top-level goal narrows to sup|tup via the composed substitution up.
Thus, narrowing is a “linear” process: rules are overlapped only on goals, not on
other rules.

For example, given the standard conditiona! sysiem for append in Section 2, the
goal append(x, y){ x narrows using the last rule if null(x)| false narrows to true. By
using (the renamed rule) null(cons(u,v)) — false, we can solve the condition,
narrowing the original goal to cons(car(cons(u, v)), append(cdr(cons(u, v)),
y)) cons{, v) Rewriting is a special case of narrowing; it reduces the above goal
to cons(u, append (v, y)){ cons(u, v). This, in turn, is narrowable by the first rule for
append if nuli(v)| true narrows to true. Solving, by letting v be nil, we narrow to a
new goal cons(u, y)|{ cons(u, v). Since the two terms are now unifiable (letting y = v),
narrowing has produced the solution x = cons(u, v) = cons(u, nil) and y = v = nil.

In the uncondgitional case, it has been shown that narrowing is complete for any
(ground) convergent system [25]. By complete, we mean that if there exists a
substitution ¢ such that so «* 1o, then s}¢ narrows to true. Similarly, the variant
of narrowing in which terms are reduced to normal form before narrowing is
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complete [17]. For conditional systems the analogous result is that (under the
same assumptions) any equationally satisfiable goal can be solved by conditional
narrowing.

Theorem 4.1 (Dershowitz and Plaisted [15]). Narrowing is complete for ground
convergent standard conditional rewriting systems (with no extra variables in
conditions).

The restriction that all variables occurring in conditions also appear on the left
will be lifted in the next section.

For ground convergent systems, all goals may be reduced to normal form before
any narrowing step. Simplification, that is, reduction via terminating rules, is a very
powerful feature, particularly when defined function symbols are allowed to be
arbitrarily nested in left-hand sides. Assuming ground confluence and termination,
any strategy can be used for simplification. Furthermore, negation can be partially
handled by incorporating negative information in the form of rewrite rules, which
are then used to simplify subgoals to false. Combined with eager simplification, this
approach has the advantage of allowing unsatisfiabie goals to be pruned, thereby
avoiding some potentially infinite narrowing paths (see [14]). Normalizing before
narrowing is not necessary, however, and other language proposals employ different
strategies. Some superfluous paths (that cannot lead to solutions) can be avoided
by making a distinction between constructor symbols and defined ones (assuming
that terms built entirely from constructors are irreducible). Two terms headed by
different constructors can never be equal; when headed by the same constructor,
they are equal if and only if their respective arguments are equal. See, for example
{14, 19, 31, 49]. Other restrictions and variations of narrowing which preserve com-
pleteness are included in [25, 38, 16].

Even if a program is ground convergent, alternative narrowing derivations must
be explored if completeness is to be assured. Thus, narrowing-based languages that
deterministically choose one possible narrowing over others cannot guarantee that
solutions will be found. Preprocessing and structure-sharing techniques for rewriting
and narrowing are explored in [27].

5. Extra variables

Thaditional rewriting theory (e.g. [23]) usually has a constraint on occurrences
of variables, namely that every variable occurring on a right-hand side of a rule
also occurs on the corresponding left-hand side. A natural extension of this constraint
for conditional rules is that every variable occurring either in a condition or on the
right-hand side also occurs on the left. But if conditional rules are to generalize
Horn-clause programming, such a constraint is unacceptable, since even very simple
relations, such as transitivity, require extra variables in conditions.



Conditional equational programming 125

Accordingly, we can redefine rewriting in the extra-variable case as follows:
u[lo]— u[ro7] for arule c|l — r if there exists a substitution 7 for the new variables

such that ¢o7 holds. As an example, let us replace the rules for append with

append (nil, y) — y
x}cons(u, v) A append (v, y)| z | append(x, y) — cons(u, z),

where u, v, and z are extra variables. The last rule is applicable if there exist
substitutions for the extra variables that make the condiiions hoid. Now we have
append (cons(a, nil), nil) — cons(a, nil), since u = a, v = nil, and z = nil is a solution
to the conditions. Operationally, narrowing may be used to solve conditions with
extra variabies; the definition of narrowing is unchanged.

Even with extra variables, Theorems 3.4 and 3.6 hold as stated. Allowing extra
variables, however, does introduce a problem: ground confluence no longer guaran-
tees the completeness of the narrowing mechanism [3b]. The following theorem
allows for extra variables, at the expense of a stronger confluence condition, called
“level-confluence”. A standard system R is (ground) level-confluent if there exists
a term v such that whenever s *<— u —>* ¢ with a maximum depth of n, there is a
rewrite proof s}t of depth no greater than n.

Theorem 5.1 (Bosco et al. [3b]). Narrowing is complete for terminating ground
level-confluent standard conditional rewriting systems.

The proof of this thicorem {as well as the previous theorem) is based on the
following.

Lemma 5.2. Let R be a standard conditional rewrite system ( possibly having extra
variables). If so —* t, o is an irreducible substitution, and all the instances of rewrite
rules use in the proof (not orly the surface proof but also subproofs for conditions)
are irreducible, then there exist a term u and substitutions n and 7 such that s narrows
to u via m, ut =1t, and 97 = 0.

By “irreducible substitution™’, we mean that the substitution maps all variables
to irreducible terms; by “irreducible instance”, we mean that the rule is applied to
a subterm having irreducible terms matching left-hand side variables and any extra
variables appearing in conditions.

The lemma is proved by double induction on the depth and length of the derivation
so —* t. If the derivation is empty (has zero steps), then so = t, and the result is
obvious. Suppose then that so is first reduced using some rule p|i — r in R. Since
o is irreducible, it must be that s has a nonvariable subterm u such that uo is an
instance 16 of [, i.e. so[uo]=so[l0]— sa[r8]—* t and pf narrows to true where
0 is a substitution for variables in [ and/or p. Let u bz the most general unifier of
u and I Then, for some irreducible substitution 7, we have o =pu7 when u is
restricted to the variables in s, and 6 = u7 when u is restricted to variables in [
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Since p# = pur, by induction pu narrows to true via some p such that 7-=pn for
some irreducible 5. By the definition of a single narrowing step, s{u] narrows to
suplrup] via pp. Since so[r0] = supn[rupn]—* t, by induction sup[rup] narrows
to u via some ¢, 7 = ¢, and ¢ = uy for some . Hence, we have s[u] narrows to
u via upe, o = updyP, and t = uy, as desired.

Unfortunately, level-confluence of critical paiis does not ensure level-confluence
of the system, as can be seen from the following counterexample:

h(f(a) -
did | h(x)= j(x)
did| e j(f(a))

j(g(b))—d
dlh(f(x)) | f(x)— g(x).

This normal system is terminating and cvery critical pair is level-joinable, but despite
the fact that f{b) < f(a) — g(a) — g(b), narrowing cannot solve the goal f(b)| g(x).
However, since shallow-joinable critical pairs are level-joinable, we can apply
Theorem 3.6, thereby ensuring completeness of narrowing for terminating left-linear
shallow-joinable normal systems. The following, similar counterexample demon-
strates the need for left-linearity:

k(a, a)lc| h(f(a))— p(a)
k(a, a)lc| h(x)— j(x)
p(b)— j(f(a))
k(a,a)lcla—b

k(x, a)lc| p(x) — q(x)
q(b)— j(g(a))
h(f(x)lc|f(x)— g(x)
j(g(b))—c

kix,x)—>c.

An alternative approach to new variables can be based con the notion of decreasing
systems. There is of course no way one can insist that left-hand sides be greater
than all instances of a condition containing a new variable. Instead, we revise our
definition of rewriting in the extra-variable case, and define u[lo]— u[ror] for a
rule ¢|/— r only if there exists an irreducible substitution 7 for the new variables
such that cor holds. Then we can say that a system R is decreasing if there exists



Conditional equational programming 127

a well-founde ::1'2ring containing the (new) rewrite relation — and the proper
subterm relaticn © , and for which lo is greater than boih terms of each condition
in cor, for any irreducible substitution .

For example, the above append system is decreasing in this sense. Note that the
joinability of the conditions must take the form x —* cons(u, v) A append (v, y) —>* z,
if the new variables are irreducible.

Employing the above lemma again, the following theorem can be shown.

Theorem 5.3. Narrowing is complete for decreasing ground-confluent standard condi-
tional rewriting systems.

Related ideas appear in [3a].

6. Built-in predicates and functions

In this section, we consider programs utilizing built-in predicates and functions
to evaluate the value for values of given terms. We first consider built-in predicates.
A rule may have the form

P(e[x], s[x]) A Q(u[x]) | I[x]— r[X],

where P and Q are built-in predicates. For example, we can define append as before,
using built-in null and nonnull predicates:

null(x) | append(x,y)—y
nonnull(x) | append(x, y) — cons(car(x), append(cdr(x), y)).

We assume that a built-in predicate evaluates the Boolean value of a ‘erm by some
mechanism that is independent of rewriting (e.g. by hardware, or using a theorem-
prover). This is like the ‘hierarchical” conditional case of [56]. We allow the usual
equational conditicns, as before, as well as a mixture of built-in predicates and
equations such as

P(t[%], s[X]) A Q(u[x]) A v[ XN wx] | I[x]— r[X].

Here we assume that built-in predicates evaluate truth values only for terms in
normal form. (In practical applications, they may evaluate only for ground normal
terms.) More precisely, a rewriting system is usually based on a many-sorted theory,
in which case a built-in predicate evaluates the truth value for the values (normal
forms) of given types. For example, if a predicate P(x,,...,Xx,,) has variables of
types A,, A,, ..., A, then for any values (normal forms) n,, n,,..., 1, of types
A, As,....A,, P(n,,..., n,) returns Boolean value true or false. In an actual
implementation, the normal form of a given type in the language of the rewriting
system needs to be interpreted as a value of the corresponding built-in type. For
example, for an arithmetical predicate P(x) of type Natural aad for a ground term
t of type Natural, the rewriting system first executes P(r) to reach a norimal form,
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say P(s(s(s(0)))), and interprets it as P(3), then the built-in execution evaluates
P(3). If P(3) evaluates to true, the condition is satisfied.

In this new setting, the results of earlier sections can be extended. The definition
of a decreasing system should be modified as follows. A system (with built-ins) is
decreasing if there exists a well-founded extension > of the rewrite relation — which
satisfies

(a) > contains the proper subterm relation > and

(b) foreachrule splt;A -+ - Asdta AP A~ - A Py(un)|l— 1, lo> 50, to, uo
for all substitutions ¢ and indices i (1 <i<n) and j (1 <j =< m). With this definition,
the earlier theorems on decreasing systems still hold.

Theorem 6.1. For a decreasing standard conditional rewriiing system with built-in
predicates:

(a) the basic notions are decidable, i.e. the rewrite relation (—). derivability relation
(—=*), joinability relation (l), and normal form attribute aze all recursive {cf.
Theorem 3.1);

(b) the system is confluent if every critical pair is joinable (cf. Theorem 3.8);

(c) when confluent, it is equivalent to the corresponding natural system (cf. Theorem
2.3).

Proof. The earlier induction arguments on the underlying well-founded ordering
< still hold. We use a substitution lemma similar to Lemma 3.5 for (b). Here, in
the induction step we need to show, for example, that if P(u[s]) is true and s —>™ ¢
then P(u[t]) is also true. This statement can be reduced to the statement that if
u[sIY N and s =* ¢ then u[t]| N, where N is a normal form of u[s]. Hence, one
can ignore the occurrence of built-in predicates in the induction argument. For (c)
we regard a proof of P(u[t]) as a normal proof if a proof of u[t]—* N is normal,
where N is a normal term. [

The same reduction argument as in the proof of the substitution lemma for (b}
above leads to a modified proof of the substitution lemma corresponding to Lemma
3.5 for an overlay system, which implies the following.

Theorem 6.2. A terminating overlay standard conditional rewriting system with built
in predicates is confluent if every critical pair is joinable.

We define the uepth of a proof P(u[t]) to be the depth of the subproof of
u[t] >* N, where N is a normal form. In other words, once a term u[¢] reaches a
normal form iV, we regard the evaluation process of P(N) as a zero-depth proof.
We can now use the notion ot shallow joinability based on this modified definition
of depth. Using a reduction argument, we can re-prove the Diamond Lemma (Lemma
2.2), which implies the following.
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Theorem 6.3. A left-linear terminating normal conditional rewriting system with built-in
predicates is confluent if every critical pair is shallow joina®'~.

Note that built-in predicates typically evaluate only ground terms. In such a
situation, the above convergence criteria are actually criteria for ground convergence
only.

Our earlier results on conditional narrowing can be extended to the case in which
built-in predicates occur, but completeness requires that built-ins also solve for
variables (not normally the case). In particular, ground confluence for standard
systems ensures completeness of conditional narrowing. The argument for complete-
ness of conditional narrowing with extra variables holds true even with built-in
predicates and extra variables, but the definition of level confluence must be moa‘fied
to use the above re-definition of proof-depth. The definition of a decreasing system
with extra-variabie conditions (from the previous section) alsc applies to built-in
predicates.

A condition expressed by a built-in predicate, say P(#[x]) can also be expressed
by using the corresponding built-in function, say G in the form of G(t[x])= true.
Here, G is the characteristic function of P such that G(s) = true iff P(s) for any
normal term (or ground normal term) of the underlying type. This use of a built-in
function can naturally be extended to a function of any type, i.e. a function, say G
of type Pyx P,x - -+ x P, 5 (Q, instead of type Boolean. Hence we assume that the
value of G(m,,...,m,) for given (ground) normal terms m,,..., m, of sorts
P,,..., P, is a (ground, respectively) normal term of type Q. With this extension,
all the arguments in this section still hold.

One may, of course, use composition of built-in functions to express conditions.
For example, one can use an expression F(G(t), H(s, u)), where F(G(*), H(*,%*))
is a composition of built-in functions and ¢, s and u are terms of the rewriting
system. But we do not allow built-in functions as arguments of non-built-ins.

7. Conditional rewriting with higher-order terms

The expressiveness of functional languages owes much to the ease with which
higher-order functions can be defined and used. Rewriting systems, on the other
hand, are better suited to computing with first-order ierms. This suggesis ihat one
might obtain even more expiessive languages by combining a A-calculus with (term)
rewriting systems. It is by no means clear, a priori, that such a combination would
have the necessary properties for computation. Klop [32a] has shown that, although
the untyped A-calculus has the Church-Rosser (confluence) property, the combina-
tion of untyped A-calculus with a convergent term-rewriting system is not necessarily
Church-Rosser. As is well known, the typed A-calculus is convergent (terminating
and Church-Rosser). Breazu-Tannen [5] noticed that the combination of the (con-

vergent) typed A-calculus and a convergent term-rewriting system is Church-Rosser,
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i.e. the Church-Rousser property is preserved (cf. also [4]). The preservation of the
termination property was proved in [44, 40, 4]. These two preservation results imply
the preservation of the convergence property. Breazu-Tannen and Gallier [4] use
polymorphically typed A-calculus for those preservation results, as does [41]. The
purpose of this section is to provide a basic framework for combined systems of
A-calculus and conditional term rewriting. We first consider a very simple version
of a combined system with only unconditional rewriting and give a simple proof
technique for termination. We show how to reduce the termination problem for u
wide class of typed A-calculi, and for more general rewrite systems, including the
conditional case, to our simpie framework.

It is easily seen that introduction of higher order terms provides more expressive
power in rewriting rules. For example, consider the conditional or unconditional
first-order rules for append given earlier, along with the following algebraic rules:

append{l, nil) — |

append (append (i, m), n) — append (I, append(m, n)),
and two additicnal rules wiih higlicr-order terms:

mapcan( X, nil) — nil

mapcan(X, cons(x, l)) - append(X(x), mapcan( X, I)).

Here, nil is a constan* of base type List; I, m and n are variables of base type List;
append is of type List x List > List; x is a variable of base type, say Integer; cons
is a function of constant type Integer x List > List; X is a higher-order variable of
type Integer o List; and mapcan is a higher-order constant of type [ Integer o List] X
List © List.

Although the main result of this section holds for many versions of the typed
A-calculus, we fix our attention on the simply-typed A-calculus, which we combine
with a many-sorted rewrite theory. Each function symbol of arity n in the signature
of the theory has a base type P,x P,x - -+ x P,> Q, where P,, P,,..., P,, and Q
are base types. Given a set {P,, P,,..., P,} of base types, we define the general
notion of (higher order) type inductively:

(1) If P is a base type then P is a type.

(2) If A and B are types then A> B is a type.

We vill write A;2(A;>(---(A,2B)---)) in the abbreviated form A,x A, X
-+ xA,DB.

Typed A-terms are defined as follows. The language has countably many (free
and bound) variables for each type. It may also contain constants.

(1) If x is a variable of type A then it is a A-term of iype A.

(2) If t is a A-term of type B and x is a variable of type A then Ax.f is a A-term
of type A> B.
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(3) If t is a A-term of type A> B and s is a A-term of type A, then #(s) is a
A-term of type 5.
(Juxtaposition is a binary operation.)

The pure typed A-calculus is the reduction system consisting of the following rule
(called B-reduction):

(Ax.t[x])(s) — [s].

where each occurrence of the bouiid variable x is replaced by s, a A-term of the
same type as x.

We consider combined systems, consisting of an arbitrary convergent term rewrit-
ing system and the typed A-calculus as defined above. (Note that the append example
does not fit this paradigm, since the rewrite rules contain higher-order variables,
not just symbols of base types.) The following theorem is the principal result of
this section.

Theorem 7.1. If a term rewriting system R is terminating, then the combined system
of R and the types A-calculus is also terminating.

Preservation of convergence follows as a corollary of this and local confiuence
(Sublemma 7.9); cf. [5].

To prove termination, we modify the strong normalization technique of
[20, 37, 48, 54]. We assume a fixed version of the computability (reducibility) predi-
cate used in the usual Tait-Girard type of strong normalization proof. For our
argument to work, we make the fcllowing assumption:

Condition 7.2. If t is of a base type P, then Rp(f) (meaning ‘¢t belongs to the
reducibility set of type P”) iff ¢ is strongly normalizable (meaning “no infinite
reduction sequences from t are possible”).

The usual definitions of computability predicates for the various typed calculi
satisfy this condition. This point is that under this common condition, one can
factor out the computability predicate from the strong-normalizability argument,
and just establish the Principal Case given below.

We give one example of a computability predicate (we will use “R-reduction”
as a synonym for a rewrite step —x in R). For each type A, we can define the
computability predicate R, in a way similar to [37, 48]

(1) When ¢ is of the form Ax.s[x], for x of type A and s of type A> B, Ra-5(t)
if for all u of type A, Ra(u) implies Rp(s[u]).

(2) When t is not of the form Ax.s, then Ra(t) if ¢ is a normal form {i.e. irreducible)
with respect to both B-reduction and R-reduction, or if R ,(u) for every term u
obtainable from t by one 8- or R-reduction step.
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Leinma 7.3, I RA(¢) ifien t is strongly normalizable.

Lemma 7.4. For any term s of type A, if R5(s) and t reduces to s in one or more steps
of B- or R-reduction, then R,(t).

Both of these lemmas are proved by induction on the construction of the predicate
R, as in [37,48].

Lemma 7.5. If Ry (wy), ..., Ry (u,), then Rg(t{u,, ..., u,]) for any t[x,...,x] of
type B, where x, . . ., x are all the jree variables occurring in t and have types A,, . .., A,
respectively.

Proof. The proof is by induction on the length of . Since the other cases are similar
to those in [37], we describe only the case in which the outermost operator is a
function symbol, say £, in the signature of the rewrite system R.

In this case, ¢ and any reduced form of ¢ have a base type, say P. In particular,
the symbol A will not appear as the outermost symbol after any reductions for .
Hence, by definition of R, to show Rp(t), it suffices to show the strong normalizability
of t. To check for strong normalizability of the combined system, we need only
establish the following one case; all other cases are treated exactly in the same way
as the traditional argument for strong normalizability of the A-calculus, by computa-
bility predicates.

Principal Case 7.6. If t=f(s,,..., s,) is of a base type and s,,..., s, are of base
type, then t is strongly normalizable.

For any term ¢, we define the estimated cap (ec) of t. Assume that ¢ is of the form
sfuy,....u,], where s is the maximum subterm of ¢ such that s contains the top
operator (the rootj and is a term of the original language of R. Then s is the cap
of . If pure A-terms except for variables of the base type are attached to the cap,
then all such A-terms of each base type are regarded as occurrences of the same
new variable symbol of that base type when the cap is defined. Variables of base
types attached to the cap remain (cf. [44, 40]).

For example, if s[z(AyAx.y), x'(Ay.y), w(v), u] where s is in the signature of R,
z and w have result type C, x’ has resuit type B, and u is of type C, then the cap
is s[x, y, x, u], where x and u are variables of type C and y is of type B.

The estimated cap (ec) s of term ¢ is the cap for the 8-normal form of t (written
BNF(t)), which is the irreducible form of ¢ with respect to B8-reduction; the B-normal
form is always detzrmined uniquely. Hence the estimated cap is uniquely defined
for any term t.

We prove this case by transfinite induction on (ec(t), sub(t)), where sub(t) is the
multiset {sy,...,s,}. The pair (ec(t), sub(t)) is ordered lexicographically: the first
component in the well-founded R-reduction relation, and the second in the multiset
extension of the combined reduction relation. By our induction hypothesis,
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R (u;),..., Ry (u,) imply Rp(sy),..., Rp (s,) for suitable base types 2,,..., P,.
By Lemma 3.5, s,, ..., s, are strongly normalizable. Hence, sub(t) is well-founded.

We consider three subcases as follows:

(1) fis obtained from ¢ by one-step B-reduction. Then obviously sub(#) < sub(1)
and ec(?) = ec(t).

(2) f is obtained from t by one-step R-reduction, and the R-reduction applies
only within ec(t). Then ec(f) < ec(t).

(3) t is obtained from f by one-step R-reduction, and the R-reduction does not
reduce any part of ec(t). Obviously, sub(#) < sub(t). On the other hand, as we will
see from Sublemmas 7.8 and 7.9, ec(t) = ec(t).

Sublemma 7.7. If A-terms s,, .. ., s, are of base types and if s,, ..., s, and t[x, ..., x]
are B-normal forms, then t[s,, ..., s,] is also a B-normal form.

This is obvious from the definition of 8-normal form.

Sublemma 7.8. If t a B-normal form, and if s is obtained from t by an R-reduction
that does not reduce any part of the cap of t, then ec(t) = ec(s).

Even if some R-term part collapses by the R-reduction, there is no further
possibility of B-reduction, by Sublemma 7.7 and there is no further possibility of
collapsing any A-term part. Hence, ec(t) = ec(s).

Sublemma 7.9 (Breazu-Tannen [S]). If t —x f, via some rule in R, then the B-normal
form of t can be R-reduced to the B-normal form of f by (possibly repeated use of)
the same R-rule.

In particuiar, if the reduction t — g { is in case (3) above, tlicn NI ) =% BNF(1)
is obtained by the reductions only from the part which does not reduce the cap.
That is, the diagram in Fig. 1 commutes. U

t

R
Bji* Bl*
BNF(t) ——— BNF(1)
Fig. 1.

The proof of strong normalization can be extended to the combined system of
the polymorphically typed A-calculus and an arbitrary convergent rewrite system,
using Girard’s notation of the candidates of the compuiability predicates. For
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example, ~ne can follow the strong normalizability proof in [37]. Again, the essential
difference between that and our result is in the last of the three subcases just
mentioned. Otherwise, the proofs are essentially the same [44, 41, 4]. In particular,
we can reduce oui problem to the form of the Principal Case 7.0, and prove it by
transfinite induction exactly the same way as before. This means that even if we go
to the polymorphically typed system, we can reducc ihe whole problem to the
Principal Case, which is independent of the details of the strong normalization
argument (by candidates of reducibility).

The above proof of termination of the combined system of typed A-calculus with
a terminating term rewriting system does not require finiteness of the number of
rewriting rules. At the same time, any conditional term rewriting system can be
viewed as a set of (possibly infinitely many) unconditional rewrite rules by choosing
those substitution instances of a rule for which the condition parts 2re satisfied.
This unconditional system has the same rewrite relation as the conditional one.
Therefore, the above termination results hold for any combined system of typed
A-calculus with a terminating conditional term rewriting system. Preservation of
convergence follows from this and the fact that the confluence property is preserved

[5].

Corollary 7.10. If a conditional rewri'ting system R is terminating, then the coiined
system of R and the typed A-calculus is also ierminating.
Now we consider the inclusion of the following rule (called n-reduction):
Ax.(t(x))~>t,

where x does not appear in ¢ as a free variable. The analogue of Theorem 7.1 for
termination (strong normalization) continues to hold and the proof is essentially
the same as before. Especially, all the lemmas and sublemmas above hold, with
B-normal form replaced by B-r-normal form in the sublemmas. The only hitch is
that Sublemma 7.7 does not hold as is for B-n-normal form, but one parallel
n-reduction returns the terms to normal form. With this modification, the rest of
the proof can be carried through (cf. [4]).

The above termination and convergence results also hold for higher order rewrite
systems, if the rewrite rules are restricted to the form of higher-order primitive
recursive definition based on given constructor terms [44, 29]. Here, the primitive
recursion takes the following form: Let F be a new higher-order constant. For each
constructor symbol f; of the same base type, there is a rule

F(fj(.}ls te. ,y,,),.f) -> S[F(yl7f)’ LA ] F(J’n,x),}’h .. ,J’mf],
and for each constant ¢, of that type, there is a rule
F(cka x) -> t[f]’

where s and ¢ are (a higher-order term) composec of predefined constants and any
of the variables and expressions in the square brackets. We also allow explicit
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definitions of the form:
F(x) - 1[x],

where 1 is as above (in particular, F does not appear in ¢). This is a natural extension
of Godel's System T to arbitrary inductive data structures. The rules for mapcan at
the beginning of this section are a simple example.

Theorem 7.11. If a first-order conditional rewrite system is terminating, then the system
extended by higher-order constructor-based primitive recursive rules and the typed
A-calculus is also terminating.

The usual proof (by computability predicates) for termination of System T (based
on the typed A-calculus) can be extended to include these primitive-recursive
higher-order functionals. Then, the combination of this system with a terminating
set of first-order rules is terminating, as before.

In the above, if we relax the constraint on the form of higher-order rewriting,
then this theorem no longer holds, i.e., there is a terminating higher-order rewrite
system which, when combined with B-reduction, is nonterminating: Consider the
higher-order rule: F(X(x), x)-»> F(X(x), X(x)), where F is a higher-order func-
tional constant and X is a functional variable. If one substitutes Ax.x for X, one
gets an infinite reduction sequence with this rule and B-reduction:

F((Ax.x)(x), x)~> F((Ax.x)(x), (Ax.x)(x))~> F((Ax.x)(x), x)~> - -

In the previous two sections, we considered extensions of expressive power in
conditions, allowing existential quantifiers and built-in predicates and functions.
As the last topic of this section, we consider another extension to expressivity by
allowing mixed terms with A -expressions in conditions (not in the rule). We consider
a combined system consisting of a set of such rewrite rules with B-reduction. If one
can transform the set of conditional rewrite rules to an equivalent terminating set
of (maybe infinitely many) first-order rewrite .ules (not containing A-expressions),
then one can apply Theorem 7.1 for strong normalization of the combined system.
in particular, if the free variables are all of base types, one can substitute all normal
forms of base types (which do not contain A-expressions) for them.

8. Conclusion

There is much to be gained from a theory that supports several high-level
paradigms of programming. In this paper, we have presented new results which
make conditional term rewriting an obvious candidate for such a theory. Our results
help demonstrate that, although the theory of conditional term rewriting systems is
more subtle than that of unconditional systems, it is no less useful. Conditional
systems are considerably more expressive and natural than unconditional systems
and for this reason alone they deserve study. Finally, by proving the convergence
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of comhined higher-order systems, we demonstrate that term rewriting can be

.
mneer

sorated within existing functionul frameworks without the loss of important

correctness properties.
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