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Abstract

The Wolfe’s duality theorems in interval-valued optimization problems are derived in this paper. Four kinds of interval-valued
optimization problems are formulated. The Karush–Kuhn–Tucker optimality conditions for interval-valued optimization problems
are derived for the purpose of proving the strong duality theorems. The concept of having no duality gap in weak and strong sense
are also introduced, and the strong duality theorems in weak and strong sense are then derived naturally.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The methodology for solving optimization problems has widely applied to many research fields. If the coefficients
of optimization problems are taken as real numbers, they are categorized as the deterministic optimization problems.
However, the coefficients can be taken as uncertain quantities. If the coefficients of optimization problem are assumed
as random variables with known distributions, they are categorized as the stochastic optimization problems. The books
written by Birge and Louveaux [3], Kall [5], Prékopa [11], Stancu-Minasian [15] and Vajda [17] give the main stream
of this topic, and also give many useful techniques for solving the stochastic optimization problems. On the other hand,
if the coefficients are taken as closed intervals, they will be categorized as interval-valued optimization problems.

As we have known in the stochastic optimization problems, the coefficients are assumed as random variables with
known distributions in most of cases. However, the specifications of the distributions are very subjective. For example,
many researchers invoke the Gaussian (normal) distributions with different parameters in the stochastic optimization
problems. These specifications may not perfectly match the real problems. Therefore, interval-valued optimization
problems may provide an alternative choice for considering the uncertainty into the optimization problems. That is
to say, the coefficients in the interval-valued optimization problems are assumed as closed intervals. Although the
specifications of closed intervals may still be judged as subjective viewpoint, we might argue that the bounds of
uncertain data (i.e., determining the closed intervals to bound the possible observed data) are easier to be handled than
specifying the Gaussian distributions in stochastic optimization problems.
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The duality theory for inexact linear programming problem was proposed by Soyster [12–14] and Thuente [16].
Falk [4] provided some properties on this problem. However, Pomerol [10] pointed out some drawbacks of Soyster’s
results and also provided some mild conditions to improve Soyster’s results. The interval-valued optimization problem
proposed in this paper is closely related with the inexact linear programming problem. The main difference between
those two problems are the solutions concepts imposed upon the objective functions. The solution concept in the in-
exact linear programming problem used the conventional solution concept in the scalar linear programming problems.
The solution concept of interval-valued optimization problems proposed in this paper follows from the nondominated
solution concept employed in multiobjective programming problems. Moreover, the interval-valued objective function
and interval-valued constraint functions are considered as nonlinear-type rather than linear-type in this paper.

Four kinds of interval-valued optimization problems are formulated in this paper. The solution concept for primal
and dual problems is proposed by following the nondominated solution concept employed in multiobjective program-
ming problem to interpret the optimality of primal and dual problems. In order to prove the strong duality theorems,
we derive the Karush–Kuhn–Tucker optimality conditions for interval-valued optimization problems. We also intro-
duce the concept of having no duality gap in weak and strong sense. Finally, we derive the strong duality theorems in
weak and strong sense.

In Section 2, we introduce some basic properties for closed intervals. In Section 3, four kinds of interval-valued
optimization problems are formulated. In Section 4, we formulate the Wolfe’s primal and dual pair problems. In
Section 5, we derive the Karush–Kuhn–Tucker optimality conditions for interval-valued optimization problems which
will be used to prove the strong duality theorems. In Section 6, we discuss the solvability for Wolfe’s primal and dual
problems. In Section 7, the duality theorems in weak and strong sense are derived.

2. Interval analysis

Let us denote by I the class of all closed intervals in R. If C is a closed interval, we also adopt the notation C =
[cL, cU ], where cL and cU mean the lower and upper bounds of C, respectively. Let C = [cL, cU ] and D = [dL, dU ]
be in I . Then, by definition, we have

(i) C + D = {c + d: c ∈ C and d ∈ D} = [cL + dL, cU + dU ];
(ii) −C = {−c: c ∈ C} = [−cU ,−cL].

Therefore, we see that C − D = C + (−D) = [cL − dU , cU − dL]. We also see that

kC = {kc: c ∈ C} =
{ [kcL, kcU ] if k � 0,

[kcU , kcL] if k < 0,

where k is a real number.
Let C = [cL, cU ] be a closed interval. We also write CL = cL and CU = cU . We see that if C = [cL, cU ] and

D = [dL, dU ] be closed intervals, then

(C + D)L = cL + dL = CL + DL and (C + D)U = cU + dU = CU + DU. (1)

The function F : R
n → I defined on the Euclidean space R

n is called an interval-valued function, i.e., F(x) =
F(x1, . . . , xn) is a closed interval in R for each x ∈ R

n. The interval-valued function F can also be written as F(x) =
[FL(x),FU (x)], where FL and FU are real-valued functions defined on R

n and satisfy FL(x) � FU(x) for every
x ∈ R

n. We also see that (F (x))L = FL(x) and (F (x))U = FU(x). We say that the interval-valued function F is
differentiable at x0 ∈ R

n if and only if the real-valued functions FL and FU are differentiable at x0. For more details
on the topic of interval analysis, we refer to Moore [6,7] and Alefeld and Herzberger [1].

3. Formulation of interval-valued optimization problems

Let {Kj }nj=1 and K be n + 1 nonempty convex subsets of R
m. We consider the following set:

X = {
x = (x1, . . . , xn) ∈ R

n: x1K1 + · · · + xnKn ⊆ K
}
.
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Soyster [12] has shown that X is also a convex subset of R
n. Let b ∈ R

m and

K(b) = {
k ∈ R

m: k � b
}
,

where k � b means that ki � bi for all i = 1, . . . ,m. Then K(b) is also a convex subset of R
m. Therefore, we can

consider the following set:

X(b) = {
x = (x1, . . . , xn) ∈ R

n: x1K1 + · · · + xnKn ⊆ K(b)
}
. (2)

The support functional sK : R
m → R of a convex set K is defined by, for y ∈ R

m,

sK(y) = sup
k∈K

yT k,

where yT means the transpose of y. Let {Kj }nj=1 be n nonempty convex subsets of R
m. We consider the column

vector āj with the ith component defined by āij = sKj
(ei ), where ei is the unit vector (0, . . . ,0,1,0, . . . ,0) with 1 in

the ith position. Then we see that

āij = sKj
(ei ) = sup

kj ∈Kj

eT
i kj = sup

kj ∈Kj

kij ,

where kj = (k1j , . . . , kij , . . . , kmj ). We further assume that {Kj }nj=1 are compact subsets in R
m (i.e., closed and

bounded in R
m). Then āij = supkj ∈Kj

eT
i kj < ∞ for all i = 1, . . . ,m and j = 1, . . . , n. Let Ā be an m × n matrix

comprises the column vectors āj for j = 1, . . . , n, i.e., Ā = (ā1, . . . , ān). Now we consider the following set:

X̄(b) = {
x ∈ R

n: Āx � b and x � 0
}
. (3)

Proposition 3.1. (See Soyster [12].) The sets X(b) and X(b) described in (2) and (3), respectively, are identical.

Now we consider the following interval-valued optimization problem:

(IVP1) min F(x) = [
FL(x),FU (x)

]
subject to x1K1 + · · · + xnKn ⊆ K(b) and x � 0.

Then x = (x1, . . . , xn) is called a feasible solution of problem (IVP1) if and only if x1a1 + · · · + xnan ∈ K(b) for
all possible aj ∈ Kj , j = 1, . . . , n. We also consider the auxiliary interval-valued optimization problem of (IVP1) as
follows:

(IVP2) min F(x) = [
FL(x),FU (x)

]
subject to Āx � b and x � 0.

Then we have the following useful result.

Proposition 3.2. Suppose that problems (IVP1) and (IVP2) use the same solution concept. Then (IVP1) and (IVP2)
have the same optimal solutions.

Proof. We see that the feasible sets of problems (IVP1) and (IVP2) are X(b) and X(b), respectively. Since problems
(IVP1) and (IVP2) have the same objective functions, the result follows from Proposition 3.1 immediately. �

The above proposition shows that the solution of problem (IVP1) can be obtained from the solution of an easier
problem (IVP2), since the feasible set of problem (IVP2) is easier to be handled than that of problem (IVP1).

Now let us consider the following minimization problem with interval-valued coefficients:

(IVP3) min F(x) = [
FL(x),FU (x)

]
subject to x1

[
kL

11, k
U
11

] + x2
[
kL

12, k
U
12

] + · · · + xn

[
kL

1n, k
U
1n

] ⊆ [
bL

1 , bU
1

]
,

x1
[
kL , kU

] + x2
[
kL , kU

] + · · · + xn

[
kL , kU

] ⊆ [
bL, bU

]
,
21 21 22 22 2n 2n 2 2



302 H.-C. Wu / J. Math. Anal. Appl. 338 (2008) 299–316
...

x1
[
kL
m1, k

U
m1

] + x2
[
kL
m2, k

U
m2

] + · · · + xn

[
kL
mn, k

U
mn

] ⊆ [
bL
m,bU

m

]
,

xj � 0, j = 1, . . . , n.

Then we say that x = (x1, . . . , xn) is a feasible solution of problem (IVP3) if and only if x1ki1 + · · · + xj kij + · · · +
xnkin ∈ [bL

i , bU
i ] for all possible kij ∈ [kL

ij , k
U
ij ], i = 1, . . . ,m and j = 1, . . . , n. In other words, x = (x1, . . . , xn) is a

feasible solution of problem (IVP3) if and only if

bL
i �

n∑
j=1

xj kij � bU
i (4)

for all possible kij ∈ [kL
ij , k

U
ij ], i = 1, . . . ,m and j = 1, . . . , n. We adopt the notations bL = (bL

1 , . . . , bL
m) and bU =

(bL
1 , . . . , bU

m). Let

K
(
bL,bU

) = {
k = (k1, . . . , km): ki ∈ [

bL
i , bU

i

]
, i = 1, . . . ,m

}
,

and, for j = 1, . . . , n,

Kj = {
kj = (k1j , . . . , kij , . . . , kmj ): kij ∈ [

kL
ij , k

U
ij

]
, i = 1, . . . ,m

}
.

Then it is easy to see that {Kj }nj=1 and K(bL,bU) are compact and convex subsets of R
m. Now let AL and AU be

two m×n matrices comprise the column vectors aL
j and aU

j for j = 1, . . . , n, respectively, where aL
j and aU

j are given
by

aL
ij = inf

kj ∈Kj

eT
i kj = inf

kj ∈Kj

kij = kL
ij and aU

ij = sup
kj ∈Kj

eT
i kj = sup

kj ∈Kj

kij = kU
ij . (5)

We consider the augmented matrix Â = [AU,−AL] and vector b̂ = [bU ,−bL]. Then we consider the following
auxiliary interval-valued optimization problem of (IVP3):

(IVP4) min F(x) = [
FL(x),FU (x)

]
subject to Âx � b̂ and x � 0.

Proposition 3.3. The feasible set of problem (IVP4) can be rewritten as{
x: AU x � bU , −ALx � −bL and x � 0

} = {
x: AU x � bU , ALx � bL and x � 0

}
.

Next we are going to show that the feasible sets of problems (IVP3) and (IVP4) are identical with each other.

Proposition 3.4. Let X1 and X2 be the feasible sets of problems (IVP3) and (IVP4), respectively. Then X1 = X2.

Proof. Let M be the set of matrices given by M = {A = (a1, . . . ,an): aj ∈ Kj , j = 1, . . . , n}. Then it is obvious
that AL � A � AU for all A ∈ M from (5). Let x̄ ∈ X2, i.e., x̄ is a feasible solution of problem (IVP4). Then, from
Proposition 3.3, we see that AU x̄ � bU and ALx̄ � bL. Since AL � A � AU for all A ∈ M and x̄ � 0, we have
bL � ALx̄ � Ax̄ � AU x̄ � bU for all A ∈ M, which shows that x̄ is a feasible solution of problem (IVP3) from
expression (4), i.e., X2 ⊆ X1. Conversely, if x̄ is a feasible solution of problem (IVP3), then

bL
i �

n∑
j=1

x̄j · inf
kj ∈Kj

kij and
n∑

j=1

x̄j · sup
kj ∈Kj

kij � bU
i

since (4) is satisfied for all possible kij ∈ [kL
ij , k

U
ij ], i = 1, . . . ,m and j = 1, . . . , n. Equivalently, from (5), we have

bL
i �

n∑
j=1

x̄j a
L
ij and

n∑
j=1

x̄j a
U
ij � bU

i ,

which shows that x̄ is a feasible solution of problem (IVP4) from Proposition 3.3. This completes the proof. �
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The above proposition also shows the following useful result.

Proposition 3.5. Suppose that problems (IVP3) and (IVP4) use the same solution concept. Then (IVP3) and (IVP4)
have the same optimal solutions.

Let us say that the constraints discussed in the above problems are linear-type constraints with interval-valued
coefficients. Next we are going to discuss the nonlinear-type constraints with interval-valued coefficients. Suppose
that we consider the following simple problem:

(IVP5) min F(x1, x2, x3) = [
FL(x1, x2, x3),FU(x1, x2, x3)

]
subject to x2

1

[
kL

11, k
U
11

] + x1x2
[
kL

12, k
U
12

] + x3
2x2

3

[
kL

13, k
U
13

] ⊆ [
bL

1 , bU
1

]
,

x1x3
[
kL

21, k
U
21

] + x2x3
[
kL

22, k
U
22

] + x1x3
[
kL

23, k
U
23

] ⊆ [
bL

2 , bU
2

]
,

x1x2x3
[
kL

31, k
U
31

] + x2
[
kL

32, k
U
32

] + x3
[
kL

33, k
U
33

] ⊆ [
bL

3 , bU
3

]
,

x1, x2, x3 � 0.

Let k1 = (k11, k12, k13) for some k11 ∈ [kL
11, k

U
11], k12 ∈ [kL

12, k
U
12] and k13 ∈ [kL

13, k
U
13]. For the first constraint, we can

form a constraint function

Gk1(x1, x2, x3) = k11 · x2
1 + k12 · x1x2 + k13 · x3

2x2
3 . (6)

Similarly, let k2 = (k21, k22, k23) and k3 = (k31, k32, k33). For the second and third constraints, we can also form two
corresponding constraint functions Gk2 and Gk3 . Then x = (x1, x2, x3) is the feasible solution of problem (IVP5)

if and only if Gki
(x1, x2, x3) ∈ [bL

i , bU
i ] (where ki = (ki1, ki2, ki3)) for all possible kij ∈ [kL

ij , k
U
ij ], i = 1, . . . ,3 and

j = 1, . . . ,3. Also, the first constraint can be written as

G1(x1, x2, x3) = x2
1

[
kL

11, k
U
11

] + x1x2
[
kL

12, k
U
12

] + x3
2x2

3

[
kL

13, k
U
13

]
= [

kL
11 · x2

1 + kL
12 · x1x2 + kL

13 · x3
2x2

3 , kU
11 · x2

1 + kU
12 · x1x2 + kU

13 · x3
2x2

3

]
⊆ [

bL
1 , bU

1

]
,

i.e., G1(x1, x2, x3) = [GL
1 (x1, x2, x3),G

U
1 (x1, x2, x3)] is an interval-valued constraint function with

GL
1 (x1, x2, x3) = kL

11 · x2
1 + kL

12 · x1x2 + kL
13 · x3

2x2
3 = GkL

1
(x1, x2, x3),

GU
1 (x1, x2, x3) = kU

11 · x2
1 + kU

12 · x1x2 + kU
13 · x3

2x2
3 = GkU

1
(x1, x2, x3),

where kL
1 = (kL

11, k
L
12, k

L
13) and kU

1 = (kU
11, k

U
12, k

U
13) by referring to (6). Therefore, the three original constraints in

problem (IVP5) can be written as Gi(x1, x2, x3) ⊆ [bL
i , bU

i ] for i = 1,2,3, where Gi(x1, x2, x3) = [GL
i (x1, x2, x3),

GU
i (x1, x2, x3)] are interval-valued constraint functions for i = 1,2,3. Let kL

i = (kL
i1, k

L
i2, k

L
i3) and kU

i = (kU
i1, k

U
i2, k

U
i3)

for i = 1,2,3. Then it is not hard to see that GL
i (x1, x2, x3) = GkL

i
(x1, x2, x3) and GU

i (x1, x2, x3) = GkU
i
(x1, x2, x3)

for i = 1,2,3, since x1, x2, x3 � 0.
According to the above convenient notations, we consider the following general problem:

(IVP6) min F(x) = [
FL(x),FU (x)

]
subject to Gi(x) ⊆ [

bL
i , bU

i

]
, i = 1, . . . ,m,

x � 0,

where Gi(x) = [GL
i (x),GU

i (x)] are interval-valued constraint functions for i = 1, . . . ,m. Then x = (x1, . . . , xn) is the
feasible solution of problem (IVP6) if and only if Gki

(x1, . . . , xn) ∈ [bL
i , bU

i ] (where ki = (ki1, ki2, . . . , kiri )) for all
possible kij ∈ [kL

ij , k
U
ij ], i = 1, . . . ,m and j = 1, . . . , ri . Let kL

i = (kL
i1, k

L
i2, . . . , k

L
iri

) and kU
i = (kU

i1, k
U
i2, . . . , k

U
iri

) for
i = 1, . . . ,m. Then we can consider its auxiliary interval-valued optimization problem described as follows:
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(IVP7) min F(x) = [
FL(x),FU (x)

]
subject to GL

i (x) = GkL
i
(x) � bL

i , i = 1, . . . ,m,

GU
i (x) = GkU

i
(x) � bU

i , i = 1, . . . ,m,

x � 0.

Since x � 0, we see that

bL
i � GL

i (x) = GkL
i
(x) � Gki

(x) � GkU
i
(x) = GU

i (x) � bU
i

for all possible kij ∈ [kL
ij , k

U
ij ], i = 1, . . . ,m and j = 1, . . . , n. Using the similar arguments of Proposition 3.4, we have

the following results.

Proposition 3.6.

(i) The feasible sets of problems (IVP6) and (IVP7) are identical with each other.
(ii) Suppose that problems (IVP6) and (IVP7) use the same solution concepts. Then (IVP6) and (IVP7) have the same

optimal solutions.

Let C = [cL, cU ] and D = [dL, dU ] be two closed intervals in R. We write

C � D if and only if cL � dL and cU � dU .

It means that C is inferior to D, or D is superior to C. It is easy to see that “�” is a partial ordering on I . Now we
consider another problem by using the ordering relation “�” for the constraints:

(IVP8) min F(x) = [
FL(x),FU (x)

]
subject to Gi(x) �

[
bL
i , bU

i

]
, i = 1, . . . ,m,

x � 0,

where Gi(x) = [GL
i (x),GU

i (x)] are interval-valued constraints functions for i = 1, . . . ,m. Then x = (x1, . . . , xn) is a
feasible solution of problem (IVP8) if Gi(x) � [bL

i , bU
i ] for all i = 1, . . . ,m; or, equivalently, GL

i (x) = GkL
i
(x) � bL

i

and GU
i (x) = GkU

i
(x) � bU

i for all i = 1, . . . ,m. Then the auxiliary interval-valued optimization problem of (IVP8)
can be taken as follows:

(IVP9) min F(x) = [
FL(x),FU (x)

]
subject to GL

i (x) = GkL
i
(x) � bL

i , i = 1, . . . ,m,

GU
i (x) = GkU

i
(x) � bU

i , i = 1, . . . ,m,

x � 0.

It is obvious that the feasible sets of problems (IVP8) and (IVP9) are identical with each other. Then the following
proposition is also obvious.

Proposition 3.7. Suppose that problems (IVP8) and (IVP9) use the same solution concept. Then (IVP8) and (IVP9)
have the same optimal solutions.

In the sequel, we are going to propose the dual problems of the above interval-valued optimization problems
(IVP1), (IVP3), (IVP6) and (IVP8), respectively, and derive the duality theorems.
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4. The Wolfe’s primal and dual problems

First of all, we present the Wolfe’s primal and dual pair problems for conventional nonlinear programming problem
by referring to Wolfe [18]. Let f and gi , i = 1, . . . ,m, be real-valued functions defined on R

n. Then we consider the
following primal minimization problem:

(P1) min f (x) = f (x1, . . . , xn)

subject to gi(x) � 0, i = 1, . . . ,m,

x � 0.

Suppose that f and gi , i = 1, . . . ,m, are differentiable on R
n+. The dual problem is formulated as follows:

(D1) max f (x) +
m∑

i=1

ui · gi(x)

subject to ∇f (x) +
m∑

i=1

ui · ∇gi(x) = 0,

x � 0,

u = (u1, . . . , um) � 0.

From Propositions 3.2, 3.5–3.7, we see that, in order to propose the dual problems of problems (IVP1), (IVP3),
(IVP6) and (IVP8), respectively, it will be enough to propose the dual problems of problems (IVP2), (IVP4), (IVP7)
and (IVP9), respectively. We see that the interval-valued optimization problems (IVP2), (IVP4), (IVP7) and (IVP9)
have the common form as shown below:

(IVP) min F(x)

subject to gi(x) � 0, i = 1, . . . ,m,

hi(x) � 0, i = 1, . . . ,m,

x � 0,

where F : R
n → I is an interval-valued function, and gi : R

n → R and hi : R
n → R, i = 1, . . . ,m, are real-valued

functions.

Example 4.1. We consider the following problem:

min F(x1, x2) = [1,1]x2
1 + [1,1]x2

2 + [1,2] = [
x2

1 + x2
2 + 1, x2

1 + x2
2 + 2

]
subject to [1,6]x1 + [1,2]x2 � [1,12],

x1, x2 � 0.

Therefore, we have

FL(x1, x2) = x2
1 + x2

2 + 1 and FU(x1, x2) = x2
1 + x2

2 + 2

and

g1(x1, x2) = −x1 − x2 + 1 and h1(x1, x2) = −6x1 − 2x1 + 12.

We denote by

X = {
x ∈ R

n: x � 0, gi(x) � 0 and hi(x) � 0, i = 1, . . . ,m
}

the feasible set of primal problem (IVP). We also denote by

ObjP (F,X) = {
F(x): x ∈ X

}
the set of all objective values of primal problem (IVP).
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Let C = [cL, cU ] and D = [dL, dU ] be two closed intervals in R. Let us recall that C � D if and only if cL � dL

and cU � dU . Now we write C ≺ D if and only if C � D and C �= D. Equivalently, C ≺ D if and only if{
cL < dL,

cU � dU
or

{
cL � dL,

cU < dU
or

{
cL < dL,

cU < dU .
(7)

We need to interpret the meaning of minimization in problem (IVP). Since “�” is a partial ordering, not a to-
tal ordering, on I , we may follow the similar solution concept (the nondominated solution) used in multiobjective
programming problem to interpret the meaning of minimization in primal problem (IVP).

In the minimization problem (IVP), we say that the feasible solution x̄ is better than (dominates) the feasible
solution x∗ if F(x̄) ≺ F(x∗). Therefore, we propose the following definition.

Definition 4.1. Let x∗ be a feasible solution of primal problem (IVP). We say that x∗ is a nondominated solution
of problem (IVP) if there exists no x̄ ∈ X such that F(x̄) ≺ F(x∗). In this case, F(x∗) is called the nondominated
objective value of F .

We denote by Min(F,X) the set of all nondominated objective values of problem (IVP). More precisely, we write

Min(F,X) = {
F(x∗): x∗ is a nondominated solution of (IVP)

}
.

Let c be a real number. Then we can regard the real number c as an interval [c, c]. Let C = [cL, cU ] be a closed
interval. If we write C + c, then we shall mean that C + [c, c] = [cL + c, cU + c].

Now we assume that the interval-valued function F and the real-valued functions gi and hi , i = 1, . . . ,m, are
differentiable on R

n+. The dual problem of (IVP) is formulated as follows:

(DIVP) max F(x) +
m∑

i=1

μi · gi(x) +
m∑

i=1

λi · hi(x)

subject to ∇FL(x) + ∇FU(x) +
m∑

i=1

μi · ∇gi(x) +
m∑

i=1

λi · ∇hi(x) = 0,

μ = (μ1, . . . ,μm) � 0,

λ = (λ1, . . . , λm) � 0,

x � 0.

We denote by Y the feasible set of dual problem (DIVP) consisting of elements (x,μ,λ) ∈ R
n+ × R

m+ × R
m+. We write

H(x,μ,λ) = F(x) +
m∑

i=1

μi · gi(x) +
m∑

i=1

λi · hi(x)

and denote by

ObjD(H,Y ) = {
H(x,μ,λ): (x,μ, λ) ∈ Y

}
the set of all objective values of dual problem (DIVP). We also see that H is an interval-valued function with

HL(x,μ,λ) ≡ (
H(x,μ,λ)

)
L

= FL(x) +
m∑

i=1

μigi(x) +
m∑

i=1

λihi(x) (8)

and

HU(x,μ,λ) ≡ (
H(x,μ,λ)

)
U

= FU(x) +
m∑

i=1

μigi(x) +
m∑

i=1

λihi(x). (9)

Example 4.2. Continued from Example 10, the dual problem is formulated as follows:
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max
[
x2

1 + x2
2 + 1, x2

1 + x2
2 + 2

] + μ · (−x1 − x2 + 1) + λ · (−6x1 − 2x1 + 12)

subject to

[
2x1

2x2

]
+

[
2x1

2x2

]
+ μ

[−1

−1

]
+ λ

[−6

−2

]
=

[
0

0

]
,

μ,λ, x1, x2 � 0.

We also have

HL(x1, x2,μ,λ) = x2
1 + x2

2 + 1 + μ · (−x1 − x2 + 1) + λ · (−6x1 − 2x1 + 12)

and

HU(x1, x2,μ,λ) = x2
1 + x2

2 + 2 + μ · (−x1 − x2 + 1) + λ · (−6x1 − 2x1 + 12).

Definition 4.2. Let (x∗,μ∗,λ∗) be a feasible solution of dual problem (DIVP). We say that (x∗,μ∗,λ∗) is a nondom-
inated solution of dual problem (DIVP) if there exists no (x,μ,λ) such that H(x∗,μ∗,λ∗) ≺ H(x,μ,λ). In this case,
H(x∗,μ∗,λ∗) is called the nondominated objective value of problem (DIVP).

We denote by Max(H,Y ) the set of all nondominated objective values of problem (DIVP). More precisely, we
write

Max(H,Y ) = {
H

(
x∗,μ∗,λ∗):

(
x∗,μ∗,λ∗) is a nondominated solution of (DIVP)

}
.

5. Karush–Kuhn–Tucker optimality conditions for interval-valued optimization problems

Now we consider the following optimization problem:

(P2) min f (x) = FL(x) + FU(x)

subject to gi(x) � 0, i = 1, . . . ,m,

hi(x) � 0, i = 1, . . . ,m,

x � 0.

Then we have the following observation.

Proposition 5.1. If x∗ is an optimal solution of problem (P2), then x∗ is a nondominated solution of problem (IVP).

Proof. We see that problems (P2) and (IVP) have the identical feasible sets. Suppose that x∗ is not a nondominated
solution. Then there exists a feasible solution x such that F(x) ≺ F(x∗). From (7), it means that{

FL(x) < FL

(
x∗),

FU (x) � FU

(
x∗) or

{
FL(x) � FL

(
x∗),

FU(x) < FU

(
x∗) or

{
FL(x) < FL

(
x∗),

FU(x) < FU

(
x∗).

It also shows that f (x) < f (x∗), which contradicts the fact that x∗ is an optimal solution of problem (P2). We complete
the proof. �
Example 5.1. Continued from Example 4.1, we are going to obtain the nondominated solution of primal problem by
applying Proposition 5.1. It means that we shall minimize the objective function f (x1, x2) = 2x2

1 + 2x2
2 + 3 subject

to (x1, x2) ∈ X. The optimal solution is (x1, x2) = (9/5,3/5), which is also a nondominated solution by applying
Proposition 5.1.

Now we consider the following optimization problem:

(D2) max f (x,μ,λ) = HL(x,μ,λ) + HU(x,μ,λ)

subject to ∇FL(x) + ∇FU(x) +
m∑

μi · ∇gi(x) +
m∑

λi · ∇hi(x) = 0,
i=1 i=1
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μ = (μ1, . . . ,μm) � 0,

λ = (λ1, . . . , λm) � 0,

x � 0.

Then we also have the following observation.

Proposition 5.2. If (x∗,μ∗,λ∗) is an optimal solution of problem (D2), then (x∗,μ∗,λ∗) is a nondominated solution
of problem (DIVP).

Proof. We see that problems (D2) and (DIVP) have the identical feasible sets. Suppose that (x∗,μ∗,λ∗) is not a
nondominated solution. Then there exists a feasible solution (x,μ,λ) such that H(x∗,μ∗,λ∗) ≺ H(x,μ,λ). From (7),
it means that{

HL

(
x∗,μ∗,λ∗) < HL(x,μ,λ),

HU

(
x∗,μ∗,λ∗) � HU(x,μ,λ)

or

{
HL

(
x∗,μ∗,λ∗) � HL(x,μ,λ),

HU

(
x∗,μ∗,λ∗) < HU(x,μ,λ)

or

{
HL

(
x∗,μ∗,λ∗) < HL(x,μ,λ),

HU

(
x∗,μ∗,λ∗) < HU(x,μ,λ).

It also shows that f (x∗,μ∗,λ∗) < f (x,μ,λ), which contradicts the fact that (x∗,μ∗,λ∗) is an optimal solution of
problem (D2). We complete the proof. �
Example 5.2. Continued from Example 4.2, we are going to obtain the nondominated solution of dual problem by
applying Proposition 5.2. Therefore, we shall solve the following problem:

max 2x2
1 + 2x2

2 + 3 + μ · (−x1 − x2 + 1) + λ · (−6x1 − 2x1 + 12)

subject to 4x1 − μ − 6λ = 0,

4x2 − μ − 2λ = 0,

μ,λ, x1, x2 � 0.

From the constraints, we can obtain

x1 = 1

4
(μ + 6λ) and x2 = 1

4
(μ + 2λ),

which can be substituted into the objective function to obtain a function of μ and λ. After some algebraic calcu-
lations, we obtain μ = 0 and λ = 6/5, which also implies x1 = 9/5 and x2 = 3/5. Therefore, the optimal solution
is (x1, x2,μ,λ) = (9/5,3/5,0,6/5), which is also a nondominated solution of dual problem by applying Proposi-
tion 5.2.

Let us rename the constraint functions hi for i = 1, . . . ,m as gm+i = hi for i = 1, . . . ,m. Let J (x∗) be the index
set defined by

J
(
x∗) = {

i: gi

(
x∗) = 0 for i = 1, . . . ,2m

}
.

We say that the constraint functions gi and hi , i = 1, . . . ,m, satisfy the Kuhn–Tucker constraint qualification at x∗
if and only if the real-valued functions gi , i = 1, . . . ,2m, satisfy the Kuhn–Tucker constraint qualification at x∗;
that is to say, if ∇gi(x∗)T d � 0 for all i ∈ J (x∗), where d ∈ R

n, then there exists an n-dimensional vector function
a : [0,1] → R

n defined on [0,1] such that a is right-differentiable at 0, a(0) = x∗, a(t) ∈ X for all t ∈ [0,1], and there
exists a real number α > 0 with a′+(0) = αd.

For the further discussions, we need the Motzkin’s theorem of the alternative. It states that, given matrices A �= 0
and C, exactly one of the following system has a solution:

System I: Ax < 0, Cx � 0 for some x ∈ R
n;

System II: AT λ + CT μ = 0 for some μ � 0 and λ � 0 with λ �= 0.
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Theorem 5.1 (KKT Conditions). Suppose that x∗ is a nondominated solution of primal problem (IVP), and F , gi and
hi , i = 1, . . . ,m, are differentiable at x∗. We also assume that the constraint functions gi and hi , i = 1, . . . ,m, satisfy
the Kuhn–Tucker constraint qualification at x∗. Then there exist multipliers 0 � ζ = (ζL, ζU ) ∈ R

2 with ζ �= 0 and
0 � μi,λi ∈ R, i = 1, . . . ,m, such that

ζL · ∇FL

(
x∗) + ζU · ∇FU

(
x∗) +

m∑
i=1

μi · ∇gi

(
x∗) +

m∑
i=1

λi · ∇hi

(
x∗) = 0;

μi · gi

(
x∗) = 0 = λi · hi

(
x∗) for all i = 1, . . . ,m.

Proof. Since F is differentiable at x∗, we see that FL and FU are differentiable at x∗ by definition. Suppose that there
exists d ∈ R

n such that

∇FL

(
x∗)T d < 0,

∇FU

(
x∗)T d < 0,

∇gi

(
x∗)T d � 0 for all i ∈ J

(
x∗). (10)

Since gi , i = 1, . . . ,2m, satisfy the Kuhn–Tucker constraint qualification at x∗ and FL is differentiable at x∗, we have

FL

(
a(t)

) = FL

(
x∗) + ∇FL

(
x∗)T (

a(t) − x∗) + ∥∥a(t) − x∗∥∥ · ε(a(t),x∗)
= FL

(
x∗) + ∇FL

(
x∗)T (

a(t) − a(0)
) + ∥∥a(t) − a(0)

∥∥ · ε(a(t),a(0)
)

= FL

(
x∗) + t · ∇FL

(
x∗)T

(
a(0 + t) − a(0)

t

)
+ ∥∥a(t) − a(0)

∥∥ · ε(a(t),a(0)
)
,

where ε(a(t),a(0)) → 0 as ‖a(t) − a(0)‖ → 0. Therefore, as t → 0+, we see that ‖a(t) − a(0)‖ → 0 and

a(0 + t) − a(0)

t
→ a′+(0) = αd, where α > 0.

Since ∇FL(x∗)T d < 0, we obtain that FL(a(t1)) < FL(x∗) for a sufficiently small t1 > 0. Similarly, since
∇FU(x∗)T d < 0, we can also obtain that FU(a(t2)) < FU(x∗) for a sufficiently small t2 > 0. In other words,
we have that FL(a(t)) < FL(x∗) and FU(a(t)) < FU(x∗) for a sufficiently small t < min{t1, t2}; or equivalently,
F(a(t)) ≺ F(x∗) for a sufficiently small t , which contradicts that x∗ is a nondominated solution of primal prob-
lem (IVP), since a(t) is a feasible solution. Therefore, we conclude that the system of inequalities presented in (10)
has no solutions. Let A be the matrix whose rows are ∇FL(x∗)T , ∇FU(x∗)T and C be the matrix whose rows are
∇gi(x∗)T for i ∈ J (x∗). According to the Motzkin’s theorem of the alternative, since system I, i.e., (10), has no
solutions, there exist multipliers 0 � ζ = (ζL, ζU ) ∈ R

2 with ζ �= 0 and 0 � μi ∈ R for i ∈ J (x∗) such that

ζL∇FL

(
x∗) + ζU∇FU

(
x∗) +

∑
i∈J (x∗)

μi∇gi

(
x∗) = 0.

We set μi = 0 for i ∈ {1, . . . ,2m} \ J (x∗). Then we obtain that

ζL∇FL

(
x∗) + ζU∇FU

(
x∗) +

2m∑
i=1

μi∇gi

(
x∗) = 0;

μigi

(
x∗) = 0 for all i = 1, . . . ,2m.

Let λi = μi+m for i = 1, . . . ,m. Then we complete the proof. �
Theorem 5.2 (KKT Conditions). Suppose that x∗ is an optimal solution of problem (P2) (also a nondominated solution
of primal problem (IVP) by Proposition 5.1), and F , gi and hi , i = 1, . . . ,m, are differentiable at x∗. We also assume
that the constraint functions gi and hi , i = 1, . . . ,m, satisfy the Kuhn–Tucker constraint qualification at x∗. Then
there exist multipliers 0 � μi,λi ∈ R for i = 1, . . . ,m such that
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∇FL

(
x∗) + ∇FU

(
x∗) +

m∑
i=1

μi · ∇gi

(
x∗) +

m∑
i=1

λi · ∇hi

(
x∗) = 0;

μi · gi

(
x∗) = 0 = λi · hi

(
x∗) for all i = 1, . . . ,m.

Proof. Since F is differentiable at x∗, we see that FL and FU are differentiable at x∗. It also says that f = FL + FU

is differentiable at x∗. Suppose that there exists d ∈ R
n such that

∇f
(
x∗)T d < 0,

∇gi

(
x∗)T d � 0 for all i ∈ J

(
x∗). (11)

Using the similar arguments in the proof of Theorem 5.1, we obtain f (a(t)) < f (x∗) for a sufficiently small t ,
which contradicts the fact that x∗ is an optimal solution of problem (P2). Therefore, we conclude that the system
of inequalities presented in (11) has no solutions. According to the Motzkin’s theorem of the alternative, there exist
multipliers 0 < ζ and 0 � μi ∈ R for i ∈ J (x∗) such that

ζ · ∇f
(
x∗) +

∑
i∈J (x∗)

μi∇gi

(
x∗) = 0;

or equivalently,

∇f
(
x∗) +

∑
i∈J (x∗)

μ̄i∇gi

(
x∗) = 0,

where μ̄i = μi/ζ . We complete the proof by renaming the multipliers. �
Example 5.3. Continued from Example 5.1, we see that

g2(x1, x2) = h1(x1, x2) = −6x1 − 2x1 + 12.

It is not hard to check that the constraint functions g1(x1, x2) and g2(x1, x2) satisfy the Kuhn–Tucker constraint
qualification at (x∗

1 , x∗
2 ) = (9/5,3/5). We also see that J (9/5,3/5) = {2}. Now we have

∇FL(9/5,3/5) + ∇FU(9/5,3/5) + μ · ∇g1(9/5,3/5) + λ · ∇h1(9/5,3/5)

=
[

18/5

6/5

]
+

[
18/5

6/5

]
+ μ

[−1

−1

]
+ λ

[−6

−2

]
=

[
0

0

]
.

Then we obtain μ = 0 and λ = 6/5 that verify Theorem 5.2.

6. Solvability

Let f be a differentiable real-valued function defined on a nonempty open convex subset X of R
n. Then f is

convex at x∗ if and only if

f (x) � f
(
x∗) + ∇f

(
x∗)T (

x − x∗) (12)

for x ∈ X (ref. Bazarra et al. [2, Theorem 3.3.3]).

Definition 6.1. Let X be a nonempty convex subset of R
n and F be an interval-valued function defined on X. We say

that F is convex at x∗ if

F
(
λx∗ + (1 − λ)x

)
� λF

(
x∗) + (1 − λ)F (x)

for each λ ∈ (0,1) and each x ∈ X.

Proposition 6.1. Let X be a nonempty convex subset of R
n and F be an interval-valued function defined on X. The

interval-valued function F is convex at x∗ if and only if the real-valued functions FL and FU are convex at x∗.
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Proof. By definition, we have

FL

(
λx∗ + (1 − λ)x

)
�

[
λF

(
x∗) + (1 − λ)F (x)

]
L

and

FU

(
λx∗ + (1 − λ)x

)
�

[
λF

(
x∗) + (1 − λ)F (x)

]
U

.

From Eq. (1), since λ > 0 and 1 − λ > 0, we obtain

FL

(
λx∗ + (1 − λ)x

)
� λFL

(
x∗) + (1 − λ)FL(x)

and

FU

(
λx∗ + (1 − λ)x

)
� λFU

(
x∗) + (1 − λ)FU(x).

We complete the proof. �
Lemma 6.1. Let F , gi and hi , i = 1, . . . ,m, be differentiable on R

n+. Suppose that x̄ is a feasible solution of primal
problem (IVP) and (x,μ,λ) is a feasible solution of dual problem (DIVP). If F , gi and hi , i = 1, . . . ,m, are convex
at x, then the following statements hold true.

(i) If FU(x) � FU(x̄), then FL(x̄) � HL(x,μ,λ).
(ii) If FU(x) > FU(x̄), then FL(x̄) > HL(x,μ,λ).

(iii) If FL(x) � FL(x̄), then FU(x̄) � HU(x,μ,λ).
(iv) If FL(x) > FL(x̄), then FU(x̄) > HU(x,μ,λ).

Proof. From Proposition 6.1, we see that FL and FU are differentiable on R
n+ and convex at x. Since x̄ is a feasible

solution of primal problem, we see that

gi(x̄) � 0 and hi(x̄) � 0, (13)

for all i = 1, . . . ,m. Then we have

FL(x̄) � FL(x) + ∇FL(x)T (x̄ − x)
(
by Eq. (12)

)
= FL(x) − ∇FU(x)T (x̄ − x) −

m∑
i=1

μi · ∇gi(x)T (x̄ − x) −
m∑

i=1

λi · ∇hi(x)T (x̄ − x)

(
since (x,μ,λ) is a feasible solution of dual problem (DIVP)

)
� FL(x) + FU(x) − FU(x̄) +

m∑
i=1

μi · [gi(x) − gi(x̄)
] +

m∑
i=1

λi · [hi(x) − hi(x̄)
]

(
by μi,λi � 0 and Eq. (12)

)
� FL(x) + FU(x) − FU(x̄) +

m∑
i=1

μi · gi(x) +
m∑

i=1

λi · hi(x)

(
by μi,λi � 0 and Eq. (13)

)
� FL(x) +

m∑
i=1

μi · gi(x) +
m∑

i=1

λi · hi(x), if FU(x) − FU(x̄) � 0

= HL(x,μ,λ), if FU(x) − FU(x̄) � 0
(
by Eq. (8)

)
.

Therefore statement (i) holds true. We also see that if FU(x) − FU(x̄) > 0, then

FL(x̄) > FL(x) +
m∑

i=1

μi · gi(x) +
m∑

i=1

λi · hi(x) = HL(x,μ,λ),

which proves statement (ii). On the other hand, considering the function FU , statements (iii) and (iv) can also be
obtained by using the similar arguments. �
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Lemma 6.2. Let F , gi and hi , i = 1, . . . ,m, be differentiable on R
n+. Suppose that x̄ is a feasible solution of primal

problem (IVP) and (x,μ,λ) is a feasible solution of dual problem (DIVP). If F , gi and hi , i = 1, . . . ,m, are convex
at x, then the following statements hold true.

(i) If FL(x) � FL(x̄), then FL(x̄) � HL(x,μ,λ).
(ii) If FL(x) < FL(x̄), then FL(x̄) > HL(x,μ,λ).

(iii) If FU(x) � FU(x̄), then FU(x̄) � HU(x,μ,λ).
(iv) If FU(x) < FU(x̄), then FU(x̄) > HU(x,μ,λ).

Proof. We have that

FL(x̄) − HL(x,μ,λ)

= FL(x̄) − FL(x) −
m∑

i=1

μi · gi(x) −
m∑

i=1

λi · hi(x)

� ∇FL(x)T (x̄ − x) −
m∑

i=1

μi · gi(x) −
m∑

i=1

λi · hi(x)
(
by Eq. (12)

)

= ∇FL(x)T (x̄ − x) +
[
−

m∑
i=1

μi · gi(x̄) +
m∑

i=1

μi · gi(x̄) −
m∑

i=1

μi · gi(x)

]

+
[
−

m∑
i=1

λi · hi(x̄) +
m∑

i=1

λi · hi(x̄) −
m∑

i=1

λi · hi(x)

]

� ∇FL(x)T (x̄ − x) +
[
−

m∑
i=1

μi · gi(x̄) +
m∑

i=1

μi · ∇gi(x)T (x̄ − x)

]

+
[
−

m∑
i=1

λi · hi(x̄) +
m∑

i=1

λi · ∇hi(x)T (x̄ − x)

]
(
by μi,λi � 0 and Eq. (12)

)
=

[
∇FL(x)T +

m∑
i=1

μi · ∇gi(x)T +
m∑

i=1

λi · ∇hi(x)T

]
(x̄ − x) −

m∑
i=1

μi · gi(x̄) −
m∑

i=1

λi · hi(x̄)

= −∇FU(x)T (x̄ − x) −
m∑

i=1

μi · gi(x̄) −
m∑

i=1

λi · hi(x̄)

(
since (x,μ,λ) is a feasible solution of dual problem (DIVP)

)
� FU(x) − FU(x̄) −

m∑
i=1

μi · gi(x̄) −
m∑

i=1

λi · hi(x̄)
(
by Eq. (12)

)
= FU(x) − HU(x̄,μ,λ)

(
by Eq. (9)

)
� 0, if FL(x) � FL(x̄)

(
using Lemma 6.1(iii)

)
.

Therefore statement (i) holds true. We also see that if FL(x) < FL(x̄), then statement (ii) holds true by using
Lemma 6.1(iv). On the other hand, statements (iii) and (iv) can also be obtained by using the similar arguments
and Lemma 6.1(i) and (ii), respectively. �

Let C = [cL, cU ] and D = [dL, dU ] be two closed intervals. We say that C and D are comparable if and only if
C � D or C � D. Therefore if C and D are not comparable, then{

cL � dL,

cU > dU,

{
cL < dL,

cU � dU ,

{
cL < dL,

cU > dU,

{
cL � dL,

cU < dU,

{
cL > dL,

cU � dU
or

{
cL > dL,

cU < dU .
(14)

In other words, if C and D are not comparable, then C �= D, and C ⊇ D or C ⊆ D.
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Proposition 6.2. Let F , gi and hi , i = 1, . . . ,m, be differentiable on R
n+. Suppose that x̄ is a feasible solution of

primal problem (IVP) and (x,μ,λ) is a feasible solution of dual problem (DIVP). If F , gi and hi , i = 1, . . . ,m, are
convex at x, then the following statements hold true.

(i) If F(x) and F(x̄) are comparable, then F(x̄) � H(x,μ,λ).
(ii) If F(x) and F(x̄) are not comparable, then FL(x̄) > HL(x,μ,λ) or FU(x̄) > HU(x,μ,λ).

Proof. (i) If F(x) � F(x̄), then F(x̄) � H(x,μ,λ) using Lemma 6.1(i) and (iii). On the other hand, if F(x) � F(x̄),
then F(x̄) � H(x,μ,λ) using Lemma 6.2(i) and (iii).

(ii) Since F(x) �= F(x̄), from (14), we have that{
FL(x) � FL(x̄),

FU(x) > FU(x̄),

{
FL(x) < FL(x̄),

FU(x) � FU(x̄),

{
FL(x) < FL(x̄),

FU(x) > FU(x̄),{
FL(x) � FL(x̄),

FU(x) < FU(x̄),

{
FL(x) > FL(x̄),

FU(x) � FU(x̄)
or

{
FL(x) > FL(x̄),

FU (x) < FU(x̄).

Using Lemma 6.1(ii) and (iv), and Lemma 6.2(ii) and (iv), we conclude that FL(x̄) > HL(x,μ,λ) or FU(x̄) >

HU(x,μ,λ). �
Theorem 6.1 (Solvability). Let F , gi and hi , i = 1, . . . ,m, be convex and differentiable on R

n+. Suppose that
(x∗,μ∗,λ∗) is a feasible solution of dual problem (DIVP) and H(x∗,μ∗,λ∗) ∈ ObjP (F,X). Then (x∗,μ∗,λ∗) solves
dual problem (DIVP), i.e., H(x∗,μ∗,λ∗) ∈ Max(H,Y ).

Proof. We are going to prove this result by contradiction. Suppose that (x∗,μ∗,λ∗) is not a nondominated solution of
dual problem (DIVP). Then there exists a feasible solution (x,μ,λ) in the feasible set of dual problem (DIVP) such
that H(x∗,μ∗,λ∗) ≺ H(x,μ,λ). Since H(x∗,μ∗,λ∗) ∈ ObjP (F,X), it says that there exists a feasible solution x̄ of
primal problem (IVP) such that

F(x̄) = H
(
x∗,μ∗,λ∗) ≺ H(x,μ,λ). (15)

It also means that{
FL(x̄) < HL(x,μ,λ),

FU(x̄) � HU(x,μ,λ),

{
FL(x̄) � HL(x,μ,λ),

FU (x̄) < HU(x,μ,λ)
or

{
FL(x̄) < HL(x,μ,λ),

FU(x̄) < HU(x,μ,λ).
(16)

Suppose that F(x) and F(x̄) are comparable. Then, from Proposition 6.2(i), we have that F(x̄) � H(x,μ,λ), which
violates expressions (15) or (16). Suppose now that F(x) and F(x̄) are not comparable. Then, from Proposition 6.2(ii),
we have that FL(x̄) > HL(x,μ,λ) or FU(x̄) > HU(x,μ,λ), which also violates expression (16). This completes the
proof. �
Theorem 6.2 (Solvability). Let F , gi and hi , i = 1, . . . ,m, be convex and differentiable on R

n+. Suppose that x∗ is
a feasible solution of primal problem (IVP) and F(x∗) ∈ ObjD(H,Y ). Then x∗ solves primal problem (IVP), i.e.,
F(x∗) ∈ Min(F,X).

Proof. Suppose that x∗ is not a nondominated solution of primal problem (IVP). Then there exists a feasible solution x
in the feasible set of primal problem (IVP) such that F(x) ≺ F(x∗). Since F(x∗) ∈ ObjD(H,Y ), it says that there exists
a feasible solution (x̄, μ̄, λ̄) of dual problem (DIVP) such that

H(x̄, μ̄, λ̄) = F
(
x∗) � F(x). (17)

It also means that{
FL(x) < HL(x̄, μ̄, λ̄),

FU(x) � HU(x̄, μ̄, λ̄),

{
FL(x) � HL(x̄, μ̄, λ̄),

FU (x) < HU(x̄, μ̄, λ̄)
or

{
FL(x) < HL(x̄, μ̄, λ̄),

FU(x) < HU(x̄, μ̄, λ̄).
(18)

Suppose that F(x) and F(x̄) are comparable. Then, from Proposition 6.2(i), we have that F(x) � H(x̄, μ̄, λ̄), which
violates expressions (17) or (18). Suppose now that F(x) and F(x̄) are not comparable. Then, from Proposition 6.2(ii),
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we have that FL(x) > HL(x̄, μ̄, λ̄) or FU(x) > HU(x̄, μ̄, λ̄), which also violates expression (18). This completes the
proof. �
Theorem 6.3 (Solvability). Let F , gi and hi , i = 1, . . . ,m, be convex and differentiable on R

n+. Suppose that x∗ is a
feasible solution of primal problem (IVP) and (x̄, μ̄, λ̄) is a feasible solution of dual problem (DIVP). If H(x̄, μ̄, λ̄) =
F(x∗), then x∗ solves primal problem (IVP) and (x̄, μ̄, λ̄) solves dual problem (DIVP).

Proof. Since F(x∗) = H(x̄, μ̄, λ̄) ∈ ObjD(H,Y ), according to the proof of Theorem 6.2, we see that x∗ solves primal
problem (IVP). On the other hand, since H(x̄, μ̄, λ̄) = F(x∗) ∈ ObjP (F,X), according to the proof of Theorem 6.1,
we see that (x̄, μ̄, λ̄) solves dual problem (DIVP). The proof is complete. �
7. The duality theorems

In some sense, Min(F,X) and Max(H,Y ) can be regarded as kinds of “optimal objective values” of primal prob-
lem (IVP) and dual problem (DIVP), respectively. Therefore, we are going to present the strong duality theorem by
considering

Min(F,X) ∩ Max(H,Y ) �= ∅,

which also means that there exist F(x∗) ∈ Min(F,X) and L(x̄, μ̄, λ̄) ∈ Max(H,Y ) such that

F(x∗) = L(x̄, μ̄, λ̄). (19)

We provide the following definition.

Definition 7.1. Two kinds of concepts for having no duality gap are presented below:

(i) We say that the primal problem (IVP) and dual problem (DIVP) have no duality gap in weak sense if and only if
Min(F,X) ∩ Max(H,Y ) �= ∅.

(ii) We say that the primal problem (IVP) and dual problem (DIVP) have no duality gap in strong sense if and only if
there exist F(x∗) ∈ Min(F,X) and L(x∗,μ∗,λ∗) ∈ Max(H,Y ) such that F(x∗) = L(x∗,μ∗,λ∗).

We see that the primal problem (IVP) and dual problem (DIVP) having no duality gap in strong sense implies that
the primal problem (IVP) and dual problem (DIVP) have no duality gap in weak sense. We also see that if x∗ = x̄ in
Eq. (19), then the primal problem (IVP) and dual problem (DIVP) having no duality gap in weak sense implies that
the primal problem (IVP) and dual problem (DIVP) have no duality gap in strong sense.

Theorem 7.1 (Strong duality theorem in weak sense). Let F , gi and hi , i = 1, . . . ,m, be convex and differentiable
on R

n+. Suppose that one of the following conditions is satisfied:

(i) there exists a feasible solution x∗ of primal problem (IVP) such that F(x∗) ∈ ObjD(H,Y );
(ii) there exists a feasible solution (x∗,μ∗,λ∗) of dual problem (DIVP) such that H(x∗,μ∗,λ∗) ∈ ObjP (F,X).

Then the primal problem (IVP) and dual problem (DIVP) have no duality gap in weak sense.

Proof. Suppose that condition (i) is satisfied. Then, from Theorem 6.2, it remains to show that F(x∗) ∈ Max(H,Y ).
Since F(x∗) ∈ ObjD(H,Y ), there exists a feasible solution (x̄, μ̄, λ̄) of dual problem (DIVP) such that F(x∗) =
H(x̄, μ̄, λ̄). Therefore we just need to show that H(x̄, μ̄, λ̄) ∈ Max(H,Y ). Using the similar arguments in the proof
of Theorem 6.1 by looking at Eq. (15), we obtain that H(x̄, μ̄, λ̄) ∈ Max(H,Y ). Now suppose that condition (ii)
is satisfied. Then, from Theorem 6.1, it remains to show that H(x∗,μ∗,λ∗) ∈ Min(F,X). Since H(x∗,μ∗,λ∗) ∈
ObjP (F,X), there exists a feasible solution x̄ of primal problem (IVP) such that F(x̄) = H(x∗,μ∗,λ∗). Using the
similar arguments in the proof of Theorem 6.2 by looking at Eq. (17), we obtain that F(x̄) ∈ Min(F,X). This com-
pletes the proof. �



H.-C. Wu / J. Math. Anal. Appl. 338 (2008) 299–316 315
Theorem 7.2 (Strong duality theorem in strong sense). Let F , gi and hi , i = 1, . . . ,m, be convex and differentiable
on R

n+. Suppose that x∗ is an optimal solution of problem (P2) (also a nondominated solution of primal problem (IVP)
by Proposition 5.1). We also assume that the constraint functions gi and hi , i = 1, . . . ,m, satisfy the Kuhn–Tucker
constraint qualification at x∗. Then there exist μ∗,λ∗ ∈ R

m such that (x∗,μ∗,λ∗) solves dual problem (DIVP) and
H(x∗,μ∗,λ∗) = F(x∗); that is to say, the primal problem (IVP) and dual problem (DIVP) have no duality gap in
strong sense.

Proof. Using Theorem 5.2, there exist 0 � μ∗,λ∗ ∈ R
m such that

∇FL

(
x∗) + ∇FU

(
x∗) +

m∑
i=1

μ∗
i · ∇gi

(
x∗) +

m∑
i=1

λ∗
i · ∇hi

(
x∗) = 0;

μ∗
i · gi

(
x∗) = 0 = λ∗

i · hi

(
x∗) for all i = 1, . . . ,m.

It shows that (x∗,μ∗,λ∗) is a feasible solution of dual problem (DIVP) and H(x∗,μ∗,λ∗) = F(x∗). From Theo-
rem 6.3, we complete the proof. �
Example 7.1. Continued from Examples 5.1 and 5.2, we see that (x∗

1 , x∗
2 ) = (9/5,3/5) solves the primal problem and

(x∗
1 , x∗

2 ,μ∗, λ∗) = (9/5,3/5,0,6/5) solves the dual problem. We also see that the primal and dual problems have the
same objective value [23/5,28/5], which verifies Theorem 7.2.

8. Conclusions

We see that “�” is a partial ordering. That is to say, H(x∗,μ∗,λ∗) and H(x,μ,λ) are not comparable in general,
even though (x∗,μ∗,λ∗) is a nondominated solution of dual problem (DIVP). In other words, we cannot always
give the relationship H(x∗,μ∗,λ∗) � H(x,μ,λ) in general for any feasible solutions (x,μ,λ) of problem (DIVP),
even though (x∗,μ∗,λ∗) is a nondominated solution of dual problem (DIVP). However, under the assumptions in
Theorem 7.2, we can get an interesting result. From Theorem 7.2 and Proposition 6.2, we have that, for any feasible
solutions (x,μ,λ) of problem (DIVP),

(i) H(x∗,μ∗,λ∗) = F(x∗) � H(x,μ,λ) if F(x) and F(x∗) are comparable;
(ii) HL(x∗,μ∗,λ∗) = FL(x∗) > HL(x,μ,λ) or HU(x∗,μ∗,λ∗) = FL(x∗) > HU(x,μ,λ) if F(x) and F(x∗) are not

comparable.

Therefore we conclude that HL(x∗,μ∗,λ∗) � HL(x,μ,λ) or HU(x∗,μ∗,λ∗) � HU(x,μ,λ) for any feasible solutions
(x,μ,λ) of problem (DIVP).

From (12), we see that if ∇f (x∗)T (x − x∗) � 0 for all x ∈ X, then x∗ minimizes the real-valued function f . The
inequality of the form ∇f (x∗)T (x − x∗) � 0 is called the variational inequality. The details of this topic may refer
to Noor [8,9]. Arising from this inspiration, it is naturally to investigate the variational inequalities for interval-valued
functions. Let F(x) = [FL(x),FU (x)] be an interval-valued function. Suppose that F is differentiable. Then we can
consider the following two variational inequalities:

∇FL

(
x∗)T (

x − x∗) � 0 and ∇FU

(
x∗)T (

x − x∗) � 0

for all x ∈ X, which also says that x∗ minimizes FL and FU simultaneously. Moreover, we have

∇FL

(
x∗)T (

x − x∗) + ∇FU

(
x∗)T (

x − x∗) � 0

for all x ∈ X, which is equivalent to

∇(
FL

(
x∗) + FU

(
x∗))(x − x∗) = (∇FL

(
x∗)T + ∇FU

(
x∗)T )(

x − x∗) � 0 (20)

for all x ∈ X. By referring to problem (P2), since f (x) = FL(x) + FU(x), Eq. (20) says that ∇f (x∗)T (x − x∗) � 0
for all x ∈ X. That is to say, x∗ is an optimal solution of problem (P2). From Proposition 5.1, we conclude that x∗ is
a nondominated solution of problem (IVP). In other words, if ∇FL(x∗)T (x − x∗) � 0 and ∇FU(x∗)T (x − x∗) � 0 for
all x ∈ X, then x∗ is a nondominated solution. In the future research, we may study more interesting properties and
results about the variational inequalities for interval-valued functions.
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