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Abstract

The geodesic deviation equation is generalized to worldline deviation equations describing the relative accelerations of
charged spinning particles in the framework of Dixon—Souriau equations of motion.
0 2005 Elsevier B.VOpen access under CC BY license.
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1. Introduction the particles under study possess some internal struc-
ture like spin, or if they are subject to extra interactions

In the study of the dynamics of particles in a given like the Lorentz force, their worldlines will no Iong'er'
space-time, one important object is the relative accel- P& geodesics. In such cases the geodesic deviation
eration of particles. For nearby test particles, this is €duation should be modified so as to accommodate
given by the well-known geodesic deviation equation. the effect_s of those extra interactions on the relative
This equation gives in a frame-independent way, how qccelerguons of the pa_rtlclgs. For th_e case of test par-
much two nearby geodesics deviate from each other. {icles with charge moving in an arbitrary space-time
For test particles which are not necessarily nearby, N the presence of some electromagnetic fields, a set
similar equations may be derived by keeping higher of worldline _dewatpn equations has been obtamgd in
order terms in the approximation whose first order [1l- For particles with spin (but no charge), described

terms lead to the equation of geodesic deviation. When PY the Mathison—Papapetrou-Dixon equations, a set
of such generalized worldline deviation equations was

derived in a recent publicatigj2]. In [3] the relative
E-mail address: m-mohseni@pnu.ac.{M. Mohseni). motion of a spinning particle with respect to a nearby
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free test particle in the gravitational field of a rotating
source was studied. The aim of the present Letter is to
obtain worldline deviation equations for charged spin-
ning particles moving in an arbitrary space—time in the
presence of electromagnetic fields.

In general relativity, the motion of charged spin-
ning particles is described by the so-called Dixon—
Souriau (DS, for abbreviation) equatiof#s5]. These
equations reflect the effects of the spin-curvature,
the charge-electromagnetic field, and the spin-electro-
magnetic field on the motion of the particle. These
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supplemented by the following equations

®)

where D represents covariant differentiation,is an
affine parameter along the worldline of the particle,
Xt = % is the 4-velocity of the particlep” is the
components of its 4-momentuny!” is the particle’s
spin tensorg is the particle’s charge*” is the elec-
tromagnetic tensor, ant = % is a constant withg
being the particle’s gyromagnetic ratio amndts mass,

andR* g = 8o Iy —9p e+ o g — T Iy The

Bk var

pust’ =0,

equations consist of seven independent equations toparticle’s spin may also be described by a four-vector

describe the particle’s four-momentum and spin tensor
supplemented by three other equations to render the
equations of motion complete. The particle’s trajec-
tory is then determined by integrating its four-velocity
which is obtained indirectly from the equations of mo-
tion. These equations or simplified versions of them
have been used to study the motion of charged spin-
ning particles in different space—timgs-13]. An ex-
tension of these equations to the case where torsion
fields are also included was obtained [i¥,15] It

has also been shown that the DS equations reduce to

the well-known Bargmann—Michel-Telegdi equations
in the limit of the weak and homogeneous external
field [16].

In the following sections we first review the DS
equations briefly and derive the worldline deviation
equations along the lines of RgR2]. We then apply
these equations to the case of motion of charged spin-
ning particles in a gravitational wave space—time and a
uniform magnetic field and show how they can be used
to calculate the relative accelerations and also to gen-
erate approximate solutions to the DS equations via a
known one. In the last section we present our conclu-
sions.

2. The DS equations of motion

The motion of a charged spinning particle is de-
scribed by the Dixon—Souriau equatidi3]

Dp* 1 . . k
e — _ERM\)A/)SM]XV +qFMﬁxﬁ + ESKPDMFK/)’
1
DsH*Y @
D = pHxV — p¥xt — k(s’“‘FK” - s”"FK“), (2)

VK,
sh = et oo pV <.

1
2m/—g
It can be shown that these equations lead to
1

—supst? = 52

4

in which the spins of the particle is constant. We can

also deduce the following relation from the DS equa-
tions[5]
el

dt
We fix the gauge by

d

dt

qag

(%

Pu (P/LPM) — pup” Fuﬂ””) =0. (5)

(6)

which reduces to the Dixon’s gauge introducedilia]
if we let the electromagnetic field to be absent. Now it
follows from Eq.(5) that

R p—

%Fﬂus’“’ =-m?

pup” — @

is a constant of motion.

In the DS framework no direct equations of motion
exist forx*, but it can be shown that in the gau(@®,
the following relation results from Eqél)—(3)

PH = Epu
m
q8 1
— 2 | —s** DM F,5 — p's*“F,
+ Zm(pﬂp") (25 afp — DS KU)
sHY fK]
S ®
1+ ES le
where
1 1
Ly = W<—§Rvmﬂsaﬂ +qu>-
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The above equation reduces to the equation given in respectively. Also the relatioff) leads to

[19] in the case of,, =0.

3. Worldline deviations

. Dn q8 q8 DFy,
i H4p _ 45 pwv A8 cpv 7O MY
J " Dt 2m M s DA

(15)
To find the deviatiom* itself, one should solve the

Let us now consider a one-parameter family of above equations fof#, J#” and findn* from these

worldlines {x*(z, 1)} describing the worldlines of

indirectly. Having this in mind, a useful equation may

charged spinning particles of the same spin-to-mass be obtained by starting from E(B) and following the
ratios and the same charge-to-mass ratios. In this fam-same procedure described above. Thus we have

ily, worldlines are obtained from a specific “fiducial”
worldline viax* — x* + Ain# with n# = 4~ We

dr
now define
DsH*V Dp*
= =2 ©)
DA DA

Now by settingc” — x* + Ain* in Egs.(1)—(3), and
keeping only linear terms ok in the resulting equa-
tions, and making use of

Di*  Dn*

DL Dt’

we obtain the worldline deviation equations, which
read

Dj#* 1
—Dj = —R“ﬁo,,()'c’(no‘p’S - EnKD,(R“W\ps)‘pfc”
T
1 o s 1 5, D1
_ERM\)M)J pxU_ERMv)LpS P Dt
Dn# DF*,
F#* -
tarTs Dt ta Dt *
+ 25 IO DI Fep + T8 00" D, D e,
10
DI _ wuprl . ap P w ~[u-v1( !
Dr =s"" R qpn”x" + p D—Tn + jrx
q8 [k v] q8 [a D v]
— =g 2 glre v 11
= AN CE
and
s;wjv + J;wpv =0, (12)

respectively. Here A*B"l meansA*B” — A”BH.
Similarly one can obtain from Eq&4) and (7)the fol-
lowing useful relations

s =0, (13)
DF,
pujt = B - L= —o 14)

n m
Dn (r)ziju(t)_’_E( r )
m

16
D+ D)\ p,p* (16)

where
1
P — v (_ERVKaﬁ)-CKSaﬂ + quxxK

g

+ am SaﬁDuFaﬂ) — gm_gpvsl"KFKv.

4. Motion in a gravitational wave

Here, we apply our results to the case of the mo-
tion of a charged spinning particle in the space—time
of a plane gravitational wave when a uniform mag-
netic field is present. We take this magnetic field to be
in the same direction the wave propagates and the gy-
romagnetic ratio ag = 2.

The space—time metric is given by

dsZ:—dudv—K(u,x,y)du2+dx2+dy2 a7

representing a gravitational wave propagating along
the z-direction. Here(u, v) are the light-cone coordi-
nates given byy =t — zandv =t 4+ z andK (u, x, y)

is given by

K, x,y) = f@)(x* = y?) (18)

in which f(«) is an arbitrary function corresponding
to the linear polarization of the wave. We also take
the non-vanishing components of the electromagnetic
tensorF,,, as follows

F3,=8B (19)

which corresponds to a uniform magnetic field in the
z-direction. We label the coordinates v, x, y with
1, 2,3, 4, respectively.
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With this metric and field, the DS equations admit
the following solution

vlt = (15 19 07 0)9
plt=WM,M,0,0),
s3¥=g. s — g2 — 0, (20)

whereM = \/m? — ¢ BS. This describes a particle sit-
ting in the origin of the coordinates with its spin di-
rected along the-direction. We take the worldline of
this particle,(z, 7,0, 0), as a fiducial worldline and
calculate the relative acceleration of nearby charged
spinning particles and also show that how approxi-
mate solutions to the DS equations may be found in
the vicinity of the above fiducial worldline. Now by
using the deviation equations of the previous section
we reach at

nt(r)=-n?(t)=aq, (21)
and consequently
n*(1) = —a, (22)

wherea is a constant. This means that the particles
gain no relative velocity in the-direction. For conve-
nience we set = 0 hereafter. We also obtain

dj®
Jdir) = fa)(1%(@) — Mn®(1))
4
g (23)
dt
dj*
]dit) = — f (@) = Mt (1))
3
_ gl (24)
dt
257%(r) = ~M(J%0) + J2(1)), (25)
28%(t) = M(1¥(0) + 1%(D), (26)
J2(1) =0, @7
7¥ (1) =0, @9
13 3
R QY GO TGN ST (29)
dt drt
14 4
dJ*(1) :Mdn ) — %) — w0, (30)
dt dt
23 3
A LN CON TR X
dt dt
— 25 (o), 1)
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24 4
dJ<*(7) _ Mdn (7) B j4(r) _ a)J23(r)
drt drt
— 28f (u)n®(x), (32)
dn(t) 1 4 S 14
e (r)+ mf(”)f (r), (33)
i —m’ (r)+ Mz——qBSf(u)J (r), (34)

wherew = %. The solutions to these equations give
n* and hence the relative accelerations of the particles
near the fiducial worldline and also approximate solu-
tions of the DS equations there. These equations are
simplified in the interesting situation whed = 0,
thatis in the fine-tuned case gf= 1 Inthis case the
above equations resultin

w

3@ =0=j%u). (35)

JP2(1)=0=J3(1), (36)

JB(1) = J sin(wt + ¢), (37)

J¥ (1) = Jcodwr + ¢), (38)

n3(r) = —qu f f (1) codwt + ¢)dr, (39)

n*(r) = _L / f (@) sin(wt + ¢)dr, (40)
qB

J%3(1) = —cogwt + x)n(r) — sinwt + x)p(7),
(41)
J?4(1) = sin(wt + x)n(t) — coswt + x)p(r) (42)

with J, ¢, x being constants and

n(z) =28 / (n*(v) coswr + x)
—n3(0) sin(wt + X)) f(v) dx,

p(7) = ZS/(n?’(t) coswt + x)

+ n*(7) sin(wt + X))f(‘c) dr.

5. Conclusions

In this Letter we have studied worldline deviations
of charged spinning particles of the same spin-to-mass
and the same charge-to-mass ratios in the framework
of the DS equations and determined the effects of the
spin-curvature, the charge-electromagnetic field, and
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