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a b s t r a c t

Let X1 be the m-vector (−r,−r + 1, . . . ,−1, 0, 1, . . . , r − 1, r), m = 2r + 1, and
X2, . . . , Xn be permutations of X1. Then X1, X2, . . . , Xn is said to be an additive sequence
of permutations (ASP) of order m and length n if the vector sum of every subsequence of
consecutive permutations is again a permutation of X1. ASPs had been extensively studied
and used to construct perfect difference families. In this paper, ASPs are used to construct
perfect difference families and properly centered permutation matrices (which are related
to radar arrays).More existence results on perfect difference families andproperly centered
permutation matrices are obtained.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Given an additive group G of order v, a (v, k, λ) difference family ((v, k, λ)-DF in short) over G is a family of subsets of G
(base blocks) having size k and such that each non-zero element of G can be represented as the difference of two elements
of some base block in exactly λways. The interested reader may refer [11] for more details about difference families.
It is clear that the necessary conditions for the existence of a (v, k, λ)-DF are λ(v − 1) ≡ 0(mod k(k − 1)) and v ≥ k.

Much work had been done on the existence of (v, k, λ)-DFs (see [4–10]).
LetD = {D1,D2, . . . ,Dh}, where Di = {xi1, xi2, . . . , xik} is a collection of h subsets of Zg = {0, 1, . . . , g−1} called blocks.

If the differences1D = {xim − xin : i = 1, 2, . . . , h, 1 ≤ n < m ≤ k} cover the set {1, 2, . . . , (g − 1)/2}, then we call D a
perfect (g, k, 1) difference family, or briefly, a perfect (g, k, 1)-DF. A perfect (g, k, 1)-DF is also a graceful labeling of a graph
with g connected components all isomorphic to the complete graph on k-vertices [18].
A perfect (g, k, 1)-DF is a powerful tool for constructing optimal optical orthogonal codes [2]. It is not difficult to see that

the necessary conditions for the existence of a perfect (v, k, 1)-DF are v− 1 ≡ 0(mod k(k− 1)) and v ≥ k. The existence of
perfect (v, 3, 1)-DFs was solved. It was also proved that there are no perfect (v, k, 1)-DFs for k ≥ 6. The following is a brief
summary of known results on perfect difference families.

Theorem 1.1 (See [1,14,16]).

(1) If v ≡ 1, 7(mod 24), then there exists a perfect (v, 3, 1)-DF.
(2) Let v = 12t + 1. Then perfect (v, 4, 1)-DFs exist for the following values of t < 50 : 1, 4− 33, 36, 41.
(3) Suppose a perfect (12t+1, 4, 1)-DF exists. Then perfect (v, 4, 1)-DFs exist for v = 60t+13, 156t+13, 228t+49, 276t+
61, 300t + 61 and 300t + 73.

(4) Let v = 20t + 1. Then perfect (v, 5, 1)-DFs are known for t = 6, 8, 10 but for no other small values of t.
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(5) There are no perfect (v, k, 1)-DFs for the following values:
(a) k = 3, v ≡ 13, 19(mod 24),
(b) k = 4, v ∈ {25, 37},
(c) k = 5, v ≡ 21(mod 40) or v ∈ {41, 81},
(d) k ≥ 6.

In this paper, we focus our attention on perfect (v, k, 1)-DFs for k = 4, 5. The following results are obtained.

Theorem 1.2. If there exist both a perfect (v, k, 1)-DF and a perfect (w, k, 1)-DF, then there exists a perfect (vw, k, 1)-DF, for
k = 4, 5.

Theorem 1.3. Suppose a perfect (12t+1, 4, 1)-DF exists. Then perfect (L, 4, 1)-DFs exist for L = 324t+61, 324t+73, 348t+
73, 348t + 85.

In [20], properly centered permutation matrices are introduced to construct radar arrays. A permutation matrix is a
square matrix containing exactly one dot in each row and in each column. LetPL be the collection of all L× L permutation
matrices. As in [20], we denote an L× L permutation matrix by an L× 1 vector whose elements correspond to the column
positions of dots. Let A, B ∈ PL, and A = (a1, a2, . . . , aL)T, B = (b1, b2, . . . , bL)T. Subtract bi from ai term by term to form
the ’’set of differences’’ of A and B, which is denoted as

SAB = {a1 − b1, a2 − b2, . . . , aL − bL}.

If SAB = {0,±1,±2, . . . ,± L−12 } for someA, B ∈ PLwhere L is an odd integer, thenwe say that SAB is properly centered, andA
and B are a pair of properly centered permutationmatrices. A set of n pairwise properly centered L×L permutationmatrices
can be briefly denoted as an L × n array, where the n columns correspond to the n properly centered L × L permutation
matrices.
In their conclusion section, Zhang and Tu [20] posed the following open problems:
Finding permutation matrices with pairwise properly centered sets of differences is an open problem. Except for L =

5, 7, 13 (and their products), we did not find any other cases. There are three interesting questions regarding these special
permutation matrices.

(1) Do they exist for other values of L?
(2) Can we find more than four permutation matrices with such properties?
(3) Does there exist a systematic method (except for the direct product method used here) for constructing these permu-
tation matrices?

Ge, Ling andMiao [12] gave positive answers to Problems (1) and (3) by constructing such properly centered permutation
matrices.
In this paper, more properly centered permutation matrices are constructed, and the following results are obtained.

Theorem 1.4. (1) There exist sets of 3 pairwise properly centered v × v permutation matrices for each v =
∏14
i=6(2i + 1)

ai−5

5b17b245b3121b4161b520156 , where a1, . . . , a9, b1, . . . , b6 are non-negative integers, not all equal to zero;
(2) There exist sets of 4 pairwise properly centered w × w permutation matrices for each w = 5a1121a2161a3201a4 , where

a1, . . . , a4 are non-negative integers, not all equal to zero.

From Theorem 1.4 and general constructions in Section B of [20], more radar arrays can be obtained.

2. Application to perfect difference families

Additive sequence of permutations were first considered in [13]. In [16], additive sequence of permutations were used
to construct perfect difference families. Let X1 be the m-vector (−r,−r + 1, . . . ,−1, 0, 1, . . . , r − 1, r), m = 2r + 1, and
X2, . . . , Xn be permutations of X1. Then X1, X2, . . . , Xn is said to be an additive sequence of permutations of order m and
length n, or briefly ASP(m, n), if the vector sum of every subsequence of consecutive permutations is again a permutation
of X1. ASPs had been extensively studied, it also can be used to construct optimal optical orthogonal codes and optimal
constant weight cyclically permutable codes. The interested readers may refer to [3,4,14,15,17], and the references therein
for the details.
In [4], an n × k difference array, which is also called a difference matrix, denoted by (n, k)-DM, is used to the recursive

construction of optimal constant weight cyclically permutable codes. Let n be an odd integer. An (n, k)-DM over Zn is called
perfect if the entries of this matrix are all lie in {0, 1, . . . , (n− 1)/2}.

Lemma 2.1. A perfect (v, k+ 1)-DM is equivalent to an ASP(v, k).

Proof. Suppose D is a perfect (v, k+ 1)-DM. Let Y i be the i’th row of D, 1 ≤ i ≤ k+ 1. Set X i = Y i+1 − Y i, 1 ≤ i ≤ k, then
X1, X2, . . . , Xk is an ASP(v, k).
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Suppose X1, X2, . . . , Xk is an ASP(v, k). Let Y 0 be a row of v zeros, and Y i = Y i−1 + X i, 1 ≤ i ≤ k. ThenM is a (v, k+ 1)-
DM, where the i’th row of M is Y i, 0 ≤ i ≤ k. For each 0 ≤ j ≤ v − 1, suppose yijj is the smallest element in column j, add
−yijj to all entries in column j, the resulting matrixM

′ is a perfect (v, k+ 1)-DM. This completes the proof. �

Remark. If we add (v − 1)/2 to all entries of M in Lemma 2.1, and delete the 1st row, then the resulting matrix is a
PHUDM(k, v) in Section 3.

The following result was stated in [4].

Lemma 2.2. If there exist both a (v1, k)-DM and a (v2, k)-DM, then there exists a (v1v2, k)-DM.

Similar to the proof of Lemma 2.2, one can obtain the following result.

Lemma 2.3. If there exist both a perfect (v1, k)-DM and a perfect (v2, k)-DM, then there exists a perfect (v1v2, k)-DM.

From Lemmas 2.1 and 2.3, one can obtain the following product construction of additive sequence of permutations
in [15] (no explicit construction appeared in [15]).

Theorem 2.4. If there exist both an ASP(v1, k) and an ASP(v2, k), then there exists an ASP(v1v2, k).

Lemma 2.5. For k ∈ {4, 5}, if there exists a perfect (k(k− 1)t + 1, k, 1)-DF, then there exist an ASP(k(k− 1)t + 1, k− 1).

Proof. For k = 4, the result comes from [16]. For k = 5, the result from [19]. We can also prove the result as follows.
Let v = k(k− 1)t+ 1, where k is a prime power. If there exists a (v, k, 1)-DF, then one can obtain a matrix D: (1) replace

each base block {a1, a2, . . . , ak} by the k(k− 1) columns of k− 1 orthogonal Latin squares (MOLS) of order k on the symbols
{a1, a2, . . . , ak}; (2) add a column of k zeros. It is clear that D is a (v, k)-DM. It is not difficult to check that if the (v, k, 1)-DF
is perfect, then the (v, k)-DM is also perfect. The conclusion comes from Lemma 2.1. �

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Since a perfect (w, k, 1)-DF exists, then an ASP(w, k − 1) exists from Lemma 2.5, thus a perfect
(w, k)-DM exists from Lemma 2.1. The conclusion comes from the recursive construction of optimal constant weight
cyclically permutable codes in [4]. �

In the reminder of this section, we will prove Theorem 1.3.
In order to construct new perfect difference families, one needs to find ASPs.

Lemma 2.6. There exists an ASP(m, 3) for each m ∈ {21, 27, 29}.

Proof. Form = 21:

X1 = (−10,−9,−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
X2 = (0, 1,−1, 2, 3,−2, 4, 5, 8, 9, 10, 6, 7,−9,−8,−7,−5,−4,−3,−10,−6)
X3 = (6, 7, 1, 5,−7, 0,−9,−8, 2,−10,−5, 3,−3, 10,−1, 9, 8,−6,−4, 4,−2)

Form = 27:

X1 = (−13,−12,−11,−10,−9,−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
X2 = (0, 1,−1, 2, 3,−2, 4,−3, 5, 6, 10, 11, 12, 13, 7, 8, 9,−11,−10,−8,−6,−12,−4,−7,−5,−13,−9)
X3 = (2, 4, 8,−1, 10, 13,−9, 9,−13,−12,−10,−8,−2,−5, 5,−11, 0, 1,−3, 12,−6, 11,−7, 3,−4, 6, 7)

Form = 29:

X1 = (−14,−13,−12,−11,−10,−9,−8,−7,−6,−5,−4,−3,−2,−1,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)

X2 = (0, 1,−1, 2, 3,−2, 4,−3, 5, 6, 7, 11, 12, 13, 14, 8, 9, 10,−12,−11,
−9,−7,−13,−4,−8,−5,−14,−6,−10)

X3 = (5, 7, 11, 9,−4,−3,−8, 12,−12, 8,−13,−14,−11,−6,−1,−2,
3,−10, 0, 14, 13,−7, 2,−9, 10,−5, 6, 4, 1). �

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. Form ∈ {27, 29}, let X1, X2, X3 be the ASP in Lemma 2.6, and

αl = {αl1, α
l
2, . . . , α

l
m} =

∑
1≤i≤l

X i, 1 ≤ l ≤ 3.
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Let Di = {0, ai, bi, ci}, 1 ≤ i ≤ t be the perfect (12t + 1, 4, 1)-DF,

Bmi−m+j = {0,mai + α
j
1,mbi + α

j
2,mci + α

j
3}, 1 ≤ i ≤ t, 1 ≤ j ≤ m,

andBm =
⋃
1≤s≤mt Bs. Then

1Bm =
⋃

1≤s≤mt

1Bs = {(m− 1)/2+ 1, (m− 1)/2+ 2, . . . , (m− 1)/2+ 6mt}.

For (m, x) ∈ {(27, 61), (27, 73), (29, 73), (29, 85)}, define

R(27,61)
= {{0, 1, 6tm+ 18, 6tm+ 23}, {0, 2, 12, 6tm+ 26}, {0, 3, 11, 6tm+ 30},
{0, 4, 6tm+ 20, 6tm+ 29}, {0, 7, 13, 6tm+ 28}}.

R(27,73)
= {{0, 1, 10, 6tm+ 36}, {0, 5, 6tm+ 19, 6tm+ 25}, {0, 2, 6tm+ 24, 6tm+ 32},
{0, 3, 6tm+ 18, 6tm+ 31}, {0, 4, 6tm+ 21, 6tm+ 33}, {0, 7, 6tm+ 23, 6tm+ 34}}.

R(29,73)
= {{0, 1, 5, 6tm+ 25}, {0, 2, 6tm+ 18, 6tm+ 32}, {0, 3, 13, 6tm+ 34}, {0, 6, 6tm+ 23, 6tm+ 35},
{0, 7, 6tm+ 22, 6tm+ 33}, {0, 8, 6tm+ 27, 6tm+ 36}}.

R(29,85)
= {{0, 1, 6tm+ 16, 6tm+ 20}, {0, 2, 6tm+ 31, 6tm+ 40}, {0, 3, 6tm+ 26, 6tm+ 39},
{0, 5, 6tm+ 22, 6tm+ 33}, {0, 6, 6tm+ 27, 6tm+ 41},
{0, 7, 6tm+ 25, 6tm+ 37}, {0, 8, 6tm+ 32, 6tm+ 42}}.

Then it is not difficult to check thatBm
⋃

R(m,x) form a perfect (L, 4, 1)-DF, where L = 12tm+ x ∈ {324t + 61, 324t +
73, 348t + 73, 348t + 85}. This completes the proof. �

Remark. From the known existence results of perfect (v, 4, 1)-DFs and new results in Theorem 1.3, one can obtain more
existence results of perfect (L, 4, 1)-DFs. For example, since perfect (v, 4, 1)-DFs exist for v = 61, 73, 85, then there exist
perfect (L, 4, 1)-DFs for L = 732t + 61, 876t + 73, 1020t + 85 provided that a perfect (12t + 1, 4, 1)-DF exists. One can
also obtain more perfect (v, 4, 1)-DFs by the product construction in Theorem 1.2.

At the end of this section, wewill use our construction to improve result (2) of perfect (12t+1, 4, 1)-DFs in Theorem 1.1.

Theorem 2.7. Let v = 12t + 1. Then perfect (v, 4, 1)-DFs exist for the following values of t < 50 : 1, 4− 36, 41, 46.

Proof. From Theorem 1.1, one needs only to prove that there exists a perfect (12t + 1, 4, 1)-DF for t = 34, 35 and 46.
Let

D = {{0, 1, 202, 204}, {0, 3, 178, 200}, {0, 4, 110, 155}, {0, 5, 117, 170}, {0, 6, 109, 191},
{0, 7, 97, 184}, {0, 8, 85, 126}, {0, 9, 138, 159}, {0, 11, 76, 116}, {0, 12, 179, 192},
{0, 14, 162, 187}, {0, 15, 95, 157}, {0, 16, 114, 174}, {0, 18, 49, 92}, {0, 19, 149, 172},
{0, 20, 111, 181}, {0, 26, 119, 190}, {0, 27, 79, 96}, {0, 28, 143, 199}, {0, 29, 123, 133},
{0, 30, 154, 196}, {0, 32, 121, 169}, {0, 35, 108, 163}, {0, 37, 144, 168}, {0, 38, 99, 183},
{0, 46, 146, 182}, {0, 54, 113, 194}, {0, 58, 160, 193}, {0, 63, 141, 188}, {0, 64, 147, 198},
{0, 66, 152, 186}, {0, 67, 139, 189}, {0, 68, 156, 195}, {0, 75, 132, 176}}.

Then, D is a perfect (12× 34+ 1, 4, 1)-DF.
Let s = 1, a perfect (12s + 1, 4, 1)-DF exists from Theorem 1.1, and hence a perfect (348s + 73, 4, 1)-DF exists from

Theorem 1.3. Since 348s+73 = 421 = 12×35+1, then a perfect (12×35+1, 4, 1)-DF exists. A perfect (12×9+1, 4, 1)-
DF exists from Theorem 1.1. Since 12 × 46 + 1 = 553 = 60 × 9 + 13, then a perfect (12 × 46 + 1, 4, 1)-DF exists from
Theorem 1.1. This completes the proof. �

3. Application to properly centered permutation matrices

In [12], Ge, Ling and Miao put forward the definition of homogeneous uniform difference matrix (HUDM(n, L) in short).
Let D = (dij), 0 ≤ i ≤ k − 1, 0 ≤ j ≤ v − 1, be a k × v matrix with entries from the set Iv = {0, 1, . . . , v − 1}.
D is called a uniform difference matrix, denoted by UDM(k, v), if for all 0 ≤ s < t ≤ k − 1, the sets Dts of differences
{dtj − dsj : 0 ≤ j ≤ v − 1} are all identical, and for any two distinct differences d1, d2 ∈ Dts, d1 − d2 6≡ 0(mod v)
always holds. A k × v uniform difference matrix D = (dij) over Iv = {0, 1, . . . , v − 1} is said to be homogeneous, denoted
by HUDM(k, v), if the entries of each row of D comprise all the elements of Iv = {0, 1, . . . , v − 1}. For our purpose, an
HUDM(k, v) with the property that for all 0 ≤ s < t ≤ k − 1, the sets Dts of differences {dtj − dsj : 0 ≤ j ≤ v − 1} are all
equal to {0,±1,±2, . . . ,± v−1

2 } is called perfect, and denoted by PHUDM(k, v).
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It is not difficult to see that the transpose of the L × n array obtained from a set of n pairwise properly centered L × L
permutation matrices is equivalent to an PHUDM(n, L).
In the following, we will construct PHUDM(n, L)s from ASPs. In [3], it is shown that there exists an ASP(v, 3) for each

v ∈ {5, 7, 13, 15, 17, 19, 45, 121, 161, 201}. It is also mentioned that by using the ’’multiplication’’ of additive sequence of
permutations as outlined in [15], there exists an ASP(w, 3), where w = 5a7b13c15d17e19f 45g121h161i201j, a, b, . . . , j are
non-negative integers, not all equal to zero.

Lemma 3.1. If there exists an ASP(v, k), then there exists a PHUDM(k, v), and hence there exist sets of k pairwise properly
centered v × v permutation matrices.

Proof. Suppose X1, X2, . . . , Xk be an ASP(v, k), where X i = (xi1, x
i
2, . . . , x

i
v), 1 ≤ i ≤ v, and v = 2r + 1. Let dij = x

j
1 +

xj2+, . . . ,+x
j
i+r , 1 ≤ i ≤ k, 1 ≤ j ≤ v. According to the definition of ASP, it is obvious thatD = (dij), 1 ≤ i ≤ k, 1 ≤ j ≤ v is a

k×vmatrix,with entries of each row comprise all the elements of Iv = {0, 1, . . . , v−1}. Furthermore, for any 1 ≤ s < t ≤ k,
the set Dts = {dtj − dsj : 1 ≤ j ≤ v} = {x|x ∈ X s+1 + X s+2, . . . , X t} = {−r,−r + 1, . . . ,−1, 0, 1, . . . , r − 1, r}. Since
v = 2r + 1, then it is clear that for any two distinct differences d1, d2 ∈ Dts, d1 − d2 6≡ 0(mod v). So, D = (dij) is a
PHUDM(m, v). This completes the proof. �

Example. A PHUDM(3, 21) constructed from the ASP(21, 3) in Lemma 2.6.(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 2 1 5 7 3 10 12 16 18 20 17 19 4 6 8 11 13 15 9 14
6 9 2 10 0 3 1 4 18 8 15 20 16 14 5 17 19 7 11 13 12

)
.

We are now in a position to prove Theorem 1.4.

Proof of Theorem 1.4. From [3], there exists an ASP(v1, 3) for each v1 ∈ {5, 7, 13, 15, 17, 19, 45, 121, 161, 201}. From
[16], there exists an ASP(v2, 3) for each v2 ∈ {23, 25}. From Lemma 2.6, there exists an ASP(v3, 3) for each v3 ∈ {21, 27, 29}.
So, from Theorem 2.4, there exists an ASP(v, 3) for each v =

∏14
i=6(2i + 1)

ai−55b17b245b3121b4161b520156 , where
a1, . . . , a9, b1, . . . , b6 are non-negative integers, not all equal to zero. Conclusion (1) of Theorem1.4 comes from Lemma 3.1.
It is shown in [3] that there exists anASP(5, 4). ASP(v4, 4)s for v4 ∈ {121, 161, 201} are fromTheorem1.1 and Lemma2.5.

So, there exists an ASP(w, 4) for each w = 5a1121a2161a3201a4 , where a1, . . . , a4 are non-negative integers, not all equal
to zero. Conclusion (2) of Theorem 1.4 comes from Lemma 3.1. This completes the proof. �
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