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Abstract

A calculus XPCF of 1⊥-sequences, which are infinite sequences of {0, 1,⊥} with at most one copy of bottom,
is proposed and investigated. It has applications in real number computation in that the unit interval I is
topologically embedded in the set Σω

⊥,1
of 1⊥-sequences and a real function on I can be written as a program

which inputs and outputs 1⊥-sequences. In XPCF, one defines a function on Σω
⊥,1

only by specifying its

behaviors for the cases that the first digit is 0 and 1. Then, its value for a sequence starting with a bottom
is calculated by taking the meet of the values for the sequences obtained by filling the bottom with 0 and 1.
The validity of the reduction rule of this calculus is justified by the adequacy theorem to a domain-theoretic
semantics. Some example programs including addition and multiplication are shown. Expressive powers of
XPCF and related languages are also investigated.

Keywords: Bottom, stream, real number computation, domain model, PCF, adequacy, parallel or

1 Introduction

Streams are a useful data structure used for expressing infinite sequences and

one can implement real number computation with streams through signed digit

expansion[1,2] or other expansions of real numbers[6]. However, since a stream can

only be accessed one-way from left to right, if there is a bottom, i.e., a term whose

evaluation does not terminate, in a stream, then a program get stuck when it tries

to read in the value of the bottom cell and cannot input the rest of the sequence

though it may contain valuable data.

Usually, a bottom is considered as a kind of programming error which should be

avoided in a correct program. However, it is known that infinite sequences which

may contain bottoms are useful in representing continuous topological spaces like
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R. Here, we call an infinite sequence of Σ∪{⊥} which may contain at most one copy

of bottom a 1⊥-sequence. It is shown in [8] and [15] that R and I = [0, 1] can be

topologically embedded in the space Σω
⊥,1 of 1⊥-sequences of Σ for Σ = {0, 1} and

this embedding is called the Gray embedding in [15]. The signed-digit expansion and

other admissible representations of R turn out to be redundant in the sense that

infinitely many reals each satisfy the property of being represented by infinitely

many codes[4,17]. On the other hand, with the Gray embedding, a unique code

can be assigned to each real number by extending the code space with at most one

copy of ⊥. This embedding result is extended in [16] to other topological spaces

and it is shown that any n-dimensional separable metric space can be topologically

embedded in the space Σω
⊥,n of n⊥-sequences.

[8] expressed a 1⊥-sequence as a function from N⊥ to {−1, 1,⊥} and used the

parallel if operator pif to access 1⊥-sequences and showed that real number algo-

rithms can be expressed in PCF + pif. In order to evaluate pif L M N , one need to

evaluate L, M , and N in parallel. Therefore, pif operator causes explosion of par-

allel computations and it seems difficult to implement it efficiently. Martin Escardó

proposed Real PCF[6] which is an extension of PCF with real numbers. It is based

on interval domains and a kind of parallel conditional operator is used.

On the other hand, [15] restricted the number of ⊥ to one and introduced an

IM2-machine (Indeterministic Multiheads Type2 Machine) which enables extended

stream access to 1⊥-sequences. However, the behavior of an IM2-machine needs to

be specified through a set of overlapping rules and therefore functions expressible

with IM2-machines are multi-valued functions in general. Moreover, a program of

an IM2-machine is complicated because one needs to express its behaviors for inputs

from extra heads.

In this paper, we introduce a calculus XPCF of 1⊥-sequences with which one can

express extended stream accesses to them. It is an extension of PCF with a datatype

S of 1⊥-sequences and is based on the algebraic domain BD of 1⊥-sequences[16].

The datatype S has, in addition to the constructors 0 : S → S and 1 : S → S to

prepend a digit to a sequence, constructors 0 : S → S and 1 : S → S to insert a

digit as the second element of a sequence. However, a function on S is defined by

expressing its behaviors only for cases the argument has the form 0N and 1N with

the expression 〈0x→M0; 1x→M1〉. It means a function on Σω
⊥,1 to apply [[λx.M0]]

to s if the argument is 0s, to apply [[λx.M1]] to s if the argument is 1s, and apply

both of them to s and take the meet of the results if the argument is ⊥s. XPCF

can be considered as an algebraic domain variant of Real PCF. This calculus has

the computational adequacy property with respect to its domain-theoretic model.

We give some example programs of XPCF including addition and multiplication

on I through the Gray embedding. We also studied the expressive power of this

language and showed that XPCF has the same expressive power as PCF + pif on

types which do not contain S, that all computable elements of BD are expressible

on type S, and that if we extend XPCF with the ∃ operator, then all the computable

elements in the semantic domains are expressible.

As [7] showed, any real number calculus which is adequate to the interval do-
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Fig. 1. The Binary and Gray expansion of I

main model and in which the average function can be represented, does not have

a sequential reduction strategy. Their proof also applies to our model with some

modifications and thus any sequential reduction strategy of this calculus is not ad-

equate. We designed a sequential reduction strategy of XPCF and implemented it

with Haskell. Though it is not adequate and some of the terms cannot be reduced

to their denotations, it sequentially evaluates many of the terms like addition and

multiplication.

In the next section, we start with explaining the Gray embedding of I in Σω
⊥,1 and

the domain BD of 1⊥-sequences. In Section 3, we define the syntax and semantics

of XPCF and, in Section 4, we show how real functions can be expressed in XPCF

with some program examples. Then, we give reduction rules of XPCF in Section

5 and show the adequacy property in Section 6. In section 7, we study expressive

powers of XPCF.

Notations: Recall that we fix Σ = {0, 1}. We denote by Γ∗ the set of finite

sequences of a character set Γ and by Γω the set of infinite sequences of Γ. We

define Γ∞ = Γ∗∪Γω, which is a Scott domain, i.e., a bounded complete ω-algebraic

dcpo. Let Σ⊥ = Σ ∪ {⊥}, and Σω
⊥ be the set of infinite sequences of Σ⊥. Σ⊥ has

the order generated by ⊥ ⊑ 0 and ⊥ ⊑ 1. On Σω
⊥, we define the order ⊑ as s ⊑ t

if s(n) ⊑ t(n) for every n. (Σω
⊥,⊑) is a Scott domain. We define Σω

⊥,1 = {s ∈

Σω
⊥ | s contains at most one ⊥}.

2 Real number computation and 1⊥-sequences

2.1 Gray embedding

The Gray expansion is an expansion of I as infinite sequences of Σ which is different

from the ordinary binary expansion [15]. It is based on Gray code[10], which is a

coding of natural numbers with Σ different from the binary code. Figure 1 shows

the binary and Gray expansion of I. In the binary expansion of x, the head h of

the expansion indicates whether x is in [0, 1/2] or in [1/2, 1] and the tail is the

expansion of f(x, h) for f the function defined as
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f(x, h) =







2x (if h = 0)

2x− 1 (if h = 1)
.

Thus, with the binary expansion, the tail of the expansion of 1/2 depends on the

choice of the head character h and 1/2 has two expansions 1000... and 0111.... On

the other hand, the head of the Gray expansion is the same as that of the binary

expansion, whereas the tail is the expansion of t(x) for t the so-called tent function:

t(x) =







2x (0 ≤ x ≤ 1/2)

2(1− x) (1/2 < x ≤ 1)
.

Note that t(x) is continuous on x = 1/2 and therefore the tail of the expansion

does not depend on the choice of the first digit. Actually, the two expansions of 1/2

are 01000... and 11000... which coincide from the second character. It means that

the value is half not depending on the first character. Therefore, we leave the first

character undefined (⊥) and define a new expansion of 1/2 as ⊥1000 . . . . It is also

the case for expansions of dyadic numbers (rational numbers of the form m/2k) and

therefore we assign codes of the form p⊥1000 . . . for p ∈ {0, 1}∗ to those numbers.

In this way, we have a mapping ϕ : I → Σω
⊥,1 called the Gray-embedding as follows.

Definition 2.1 ([15]) Let P : I → Σ⊥ be the map

P (x) =



















0 (x < 1/2)

⊥ (x = 1/2)

1 (x > 1/2)

.

the Gray embedding ϕ is a function from I to Σω
⊥,1 defined as ϕ(x)(n) = P (tn(x))

(n = 0, 1, . . .).

An embedding of R in {−1, 1}ω⊥,1 is defined in [8] independently by Gianantonio,

and the Gray embedding is essentially the same as the restriction of his embedding

to I. We call the 1⊥-sequence ϕ(x) the modified Gray expansion of x. The Gray

embedding ϕ is actually a topological embedding with the topology of Σω
⊥,1 the

subspace topology of the Scott topology of Σω
⊥.

2.2 Domains of 1⊥-sequences

We explain the domain BD of 1⊥-sequences [16]. Let Σ∗
⊥,1 be the set of finite 1⊥-

sequences of Σ. Here, p ∈ Σ⊥
∗ is a finite 1⊥-sequence of Σ if ⊥ appears at most

once in p and ⊥ is not the final character of p. We have Σ∗
⊥,1 = {ǫ, 0, 1,⊥0,⊥1, ...}

with ǫ the empty sequence. We can regard Σ∗
⊥,1 as a subset of Σω

⊥ by identifying

p ∈ Σ∗
⊥,1 with p⊥ω ∈ Σω

⊥. We define BD = Σ∗
⊥,1∪Σω

⊥,1, which is a Scott subdomain

of Σω
⊥ with the least element ⊥BD = ǫ as Figure 2 shows. For c ∈ Σ, we also denote
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by c the continuous function from BD to BD to prepend c and denote by c the

continuous function from BD to BD to insert c as the second character, where c(ǫ)

is defined as ⊥c. We have the equation b ◦ c = c ◦ b for b, c ∈ Σ.

We regard that each finite sequence s = d0d1 . . . dn−1 of {0, 1, 0, 1} represents

the element d0(d1(. . . (dn−1(ǫ)))) of Σ
∗
⊥,1 and each infinite sequence s = d0d1 . . . of

{0, 1, 0, 1} represents the limit of the infinite increasing sequence (sn)n=0,1,... in BD

for sn = d0(d1(. . . (dn−1(ǫ)))). Note that this limit exists in Σω
⊥,1. In particular,

the sequence b0b1 . . . bm−1c0c1 . . . cn−1 represents b0b1 . . . bm−1⊥c0c1 . . . cn−1 ∈ Σ∗
⊥,1

(or b0b1 . . . bm−1 if n = 0), and the infinite sequence b0b1 . . . bm−1c0c1 . . . represents

b0b1 . . . bm−1⊥c0c1 . . . ∈ Σω
⊥,1.

Since BD is a Scott domain, the meet (i.e., the greatest lower bound) exists for

any subset of BD. We show it explicitly, because it plays an important role in the

semantics of XPCF. First, the meet on Σ⊥ = {0, 1,⊥} is obviously defined. It is

naturally extended to the meet s ⊓Σω
⊥
t in Σω

⊥ as (s ⊓Σω
⊥
t)(n) = s(n) ⊓ t(n). Let

trunc be the function from Σω
⊥ to BD to truncate the sequence after the second ⊥

to form a finite 1⊥-sequence if it contains more than one copies of ⊥, and returns

itself if it does not.

Proposition 2.2 The meet s ⊓ t of s, t ∈ BD is equal to trunc(s ⊓Σω
⊥
t).

We define the subdomain RD of BD which is used for expressing I through the

Gray representation. We define

RD = {p⊥10n : p ∈ Σ∗, n ∈ {0, 1, . . . , ω}} ∪ Σ∞.

It is a Scott domain. Let LRD be the subset {p⊥10ω : p ∈ Σ∗}∪Σω of Σω
⊥,1. LRD

is the set of limit (i.e., non-compact) elements of RD as Figure 3 shows. LRD

consists of ϕ(I) and those sequences obtained by filling a bottom of s ∈ ϕ(I) with

0 and 1. One can see that I is a retract of LRD and I is homeomorphic to the

set of minimal elements of LRD with the retract map δ : LRD → I defined as

δ(s) = x if ϕ(x) ⊑ s. One can see that the triple (RD,LRD, δ) is a retract domain

representation of I in the sense of [3] and we call the map δ : LRD → I the Gray

representation.
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We can consider two codings of I based on the Gray embedding. The first one

is obtained by identifying x with ϕ(x) through the embedding and the other one

is the Gray representation δ. For example, for 1/2 ∈ I, ⊥10ω is the unique codes

with ϕ. On the other hand, there are three codes ⊥10ω, 010ω and 110ω for 1/2 with

respect to δ. Based on these codings, we have two notions that a function on BD

realize a function on I.

Definition 2.3 Let F be a function from BDn to BD and f be a (partial) real

function from I
n to I.

(1) F exactly realizes f if, for every (x1, . . . , xn) ∈ dom(f),

F (ϕ(x1), . . . , ϕ(xn)) = ϕ(f(x1, . . . , xn)).

(2) F realizes f if, for every (p1, . . . , pn) ∈ (δn)−1(dom(f)),

δ(F (p1, . . . , pn)) = f(δ(p1), . . . , δ(pn)).

3 Syntax and denotational semantics of XPCF

Throughout this paper, we write types and constants of syntactic entities in Sans-

serif font and program names and the names of semantic domains in Bold font.

3.1 PCF

We review the syntax, the semantics, and the reduction rules of the language PCF

in Table 1. See [11] or some textbooks like [14] for the details of PCF. PCF has

ground types B for boolean values and N for integers. For a term M , FV (M)

denotes the free variables of M and M is closed if FV (M) is empty. A program is

a closed term of a ground type. An environment ρ is a type-respecting map from

the set of variables to
⋃

{Dσ |σ type} and, for a ∈ Dσ, ρ[a/x
σ] is the environment

which maps xσ to a and any other variable yσ to ρ(yσ). If M is a closed term, then

[[M ]](ρ) does not depend on ρ and we write [[M ]] for [[M ]](ρ).

The operational semantics of PCF is given by the immediate reduction relation

in Table 1. The result of evaluation of a program M is a constant c defined as

EvalPCF(M) = c iff M ⊲∗ c.

The following theorem is often referred to as the Adequacy Property of PCF. It

asserts that the operational and denotational semantics coincide.

Theorem 3.1 ([11, Theorem 3.1]) For any PCF program M and constant c,

EvalPCF(M) = c iff [[M ]] = [[c]].

3.2 Syntax and semantics of XPCF

The syntax and denotational semantics of XPCF is listed in Table 2. We list only

the differences compared with the PCF specification. It has a ground type S such
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Syntax of PCF

Types: σ ::= B |N |σ → σ

Variables(of type σ): xσ ::= xσ, yσ , zσ, ...

Constants: c ::= tt,ff, ifσ,Yτ , kn, inc, dec, zero (σ:ground type, τ :type, n ∈ N)

Terms: M ::= xσ | c | (MM) | (λxσ .M)

Typing Rules:
xσ : σ tt : B ff : B kn : N inc : N → N

dec : N → N zero : N → B ifσ : B → σ → σ → σ

Yσ : (σ → σ) → σ
M : τ

λxσ.M : σ → τ
M : σ → τ N : σ

MN : τ

Denotational semantics of PCF

Domains: DB :the flat domain {⊥B, tt, ff} of truth values.

DN :the flat domain {⊥N, 0, 1, ...} of natural numbers.

Dσ→τ :the domain [Dσ → Dτ ] of continuous functions from Dσ to Dτ ,

with the least element denoted by ⊥σ→τ .

Interpretation of constants:

[[tt]] = tt [[ff]] = ff [[kn]] = n

[[inc]] = λn ∈ DN.

{

n+ 1 (n 6= ⊥N)

⊥N (n = ⊥N)
[[dec]] = λn ∈ DN.

{

n− 1 (n ≥ 1)

⊥N (n ∈ {⊥N, 0})

[[zero]] = λn ∈ DN.











tt (n = 0)

ff (n > 0)

⊥B (n = ⊥N)

[[Yσ]] = λF ∈ Dσ→σ.
⊔

n∈N Fn(⊥σ)

[[ifσ]] = λb ∈ DB.λx ∈ Dσ.λy ∈ Dσ .











x (b = tt)

y (b = ff)

⊥σ (b = ⊥B)

Denotational semantics:

(i) [[xσ]](ρ) = ρ(xσ) (ii) [[c]](ρ) = [[c]]

(iii) [[MN ]](ρ) = [[M ]](ρ)([[N ]](ρ)) (iv) [[λxσ.M ]](ρ) = λa ∈ Dσ.[[M ]](ρ[a/xσ ])

Operational semantics of PCF

Reduction rules:

(λxσ.M)N ⊲M [N/xσ ] Yσ M ⊲M(Yσ M) inc kn ⊲ kn+1 dec kn+1 ⊲ kn

zero k0 ⊲ tt zero kn+1 ⊲ ff ifσ ttM N ⊲M ifσ ffM N ⊲ N
M ⊲M ′

M N ⊲M ′ N
N ⊲ N ′

M N ⊲M N ′ (ifM is ifσ, inc, dec or zero)

Table 1
Syntax and semantics of PCF
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Syntax of XPCF Syntax of PCF extended with the followings.

Types: S

Constants: 0, 1, 0, 1

Terms: 〈0xS→M ; 1xS→M〉 | 〈〈0xS→M ; 1xS→M〉〉

Typing Rules:

0 : S → S 1 : S → S 0 : S → S 1 : S → S
M0 : σ M1 : σ

〈0xS→M0; 1x
S→M1〉 : S → σ

M0 : σ M1 : σ

〈〈0xS→M0; 1x
S→M1〉〉 : S → σ

Denotational semantics of XPCF Semantics of PCF extended with

the followings.

Domains: DS = BD

Interpretation of constants:

[[0]] = 0 ∈ DS→S (where 0(s) = 0s for s ∈ DS)

[[1]] = 1 ∈ DS→S (where 1(s) = 1s for s ∈ DS)

[[0]] = 0 ∈ DS→S (where 0(as) = a0s for a ∈ Σ⊥ and s ∈ DS, 0(ǫ) = ⊥0)

[[1]] = 1 ∈ DS→S (where 1(as) = a1s for a ∈ Σ⊥ and s ∈ DS, 1(ǫ) = ⊥1)

Denotational semantics:

(v) [[〈0xS→M0; 1x
S→M1〉]](ρ) =

λs ∈ DS.























⊥σ (if s = ǫ)

[[M0]](ρ[s
′/xS]) (if s = 0s′)

[[M1]](ρ[s
′/xS]) (if s = 1s′)

[[M0]](ρ[s
′/xS]) ⊓ [[M1]](ρ[s

′/xS]) (if s = ⊥s′)

(vi) [[〈〈0xS→M0; 1x
S→M1〉〉]](ρ) =

λs ∈ DS.























[[M0]](ρ[ǫ/x
S]) ⊓ [[M1]](ρ[ǫ/x

S]) (if s = ǫ)

[[M0]](ρ[s
′/xS]) (if s = 0s′)

[[M1]](ρ[s
′/xS]) (if s = 1s′)

[[M0]](ρ[s
′/xS]) ⊓ [[M1]](ρ[s

′/xS]) (if s = ⊥s′)

Table 2
Syntax and denotational semantics of XPCF

that DS = BD with constants 0, 1, 0, 1 of type S → S which denote the functions

0, 1, 0, 1, respectively. For a variable of type S, we omit the type and write x for xS,

for simplicity. We have function terms 〈0x→M0; 1x→M1〉 and 〈〈0x→M0; 1x→M1〉〉

of type S → σ for M0 and M1 terms of type σ. The variable x is a bound variable

of 〈0x→M0; 1x→M1〉 and 〈〈0x→M0; 1x→M1〉〉.

We call 〈0x → M0; 1x → M1〉 and 〈〈0x → M0; 1x → M1〉〉 extended conditional

terms. For the two functions f0 = [[λxS.M0]] and f1 = [[λxS.M1]] from DS to Dσ,
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the function f = [[〈0xS→M0; 1x
S→M1〉]] : DS → Dσ returns f0(s) if the argument

is 0s and f1(s) if the argument is 1s. For the case the argument starts with ⊥, we

define f(⊥s) = f0(s) ⊓ f1(s), which is the meet of f0(s) and f1(s) in Dσ. Here,

meets on DN and DB are obviously defined, meets on DS are explained in Section

2.2, and the meet of two functions g, h ∈ Dσ→τ is the pointwise meet function

(g⊓h)(x) = g(x)⊓h(x). We define f(ǫ) = ⊥σ. Thus, f is a strict function. It means

that we adopt call by value semantics to an application of 〈0xS→M0; 1x
S→M1〉.

The meaning of the term 〈〈0xS→M0; 1x
S→M1〉〉 is different from that of 〈0xS→

M0; 1x
S→M1〉 only for the case of ǫ, and [[〈〈0xS→M0; 1x

S→M1〉〉]] is not a strict

function. Note that if we identify ǫ and ⊥ω and match ⊥s′ with ⊥ω for s′ = ǫ, then

the last case of the semantics of 〈〈0xS →M0; 1x
S →M1〉〉 subsumes the first case.

Note that both functions [[〈0xS→M0; 1x
S→M1〉]] and [[〈〈0xS→M0; 1x

S→M1〉〉]] are

continuous. Our intention in introducing two kinds of extended conditional terms is

that 〈0xS→M0; 1x
S→M1〉 is used in writing a program and 〈〈0xS→M0; 1x

S→M1〉〉

is used only in reduction steps, which we explain in Section 5. We call a closed

ground type term a program if it does not contain extended conditional terms of

the form 〈〈0xS→M0; 1x
S→M1〉〉 as subterms.

4 Program examples of XPCF

The function nh to invert the first digit is written as

nh = 〈0x→1x; 1x→0x〉.

Note that [[nh]](⊥s) = 0s ⊓ 1s = ⊥s for s ∈ Σω.

The function ns to invert the second digit is written as

ns = 〈0x→0(nh x); 1x→1(nh x)〉.

The following terms head : S → B and tail : S → S are the head and the tail

function on DS.

head = 〈0x→ff; 1x→tt〉,

tail = 〈0x→x; 1x→x〉.

Here, we identify 0, 1,⊥ ∈ Σ⊥ with ff , tt ,⊥B ∈ DB, respectively. Note that there

is no cons function: B → S → S because if we prepend ⊥ to a 1⊥-sequence, then

the result may not be a 1⊥-sequence. The function inv to invert all the digits is

written as

inv = YS→S(λf
S→S.〈0x→1(f x); 1x→0(f x)〉).

For simplicity, we use the recursive definition notation to abbreviate a term

defined with the Y operator. For example, inv is written as

inv = 〈0x→1(inv x); 1x→0(inv x)〉.

We show how real numbers and real functions are expressed in XPCF. Since

ϕ(0) = 0ω, ϕ(1) = 10ω and ϕ(1/2) = ⊥10ω, we can express these numbers as

0 = YS 0,
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1 = 1(YS 0),

1/2 = 1(YS 0).

In Section 2.1, we defined notions that a function on BD (exactly) realizes a

function on I. We say that a closed XPCF term (exactly) realizes a real function if

it denotes a function which (exactly) realizes the function. The program

div2 = λxS.0x.

realizes the function div2(x) = x/2 but does not exactly realize it because

[[div2]](10ω) = 010ω whereas ϕ(1/2) = ⊥10ω. There is also a program which exactly

realizes div2, which is given later. Since the complement function comp(x) = 1− x

is realized by the function to invert the first digit, comp is exactly realized by the

program nh. The tent function t is exactly realized by tail.

Programs which realize addition (average) av, subtraction sub, multiplication

mult and a program div2b which exactly realizes div2 can be written as follows.

av = 〈0x→〈0y→0(av x y); 1y→1(ns(av x (nh y)))〉;

1x→〈0y→1(ns(av (nh x) y)); 1y→1(av x y)〉〉

sub = 〈0x→〈0y→0(sub x y); 1y→YS0〉;

1x→〈0y→nh(av x y); 1y→0(sub y x)〉〉

mult = 〈0x→〈0y→0(0(mult x y)); 1y→0(mult x (1y))〉;

1x→〈0y→0(mult (1x) y);

1y→av (nh(av x y)) (1(nh(mult (nhx) (nh y))))〉〉

div2b = 〈0x→0(0x); 1x→1(fx)〉

f = 〈0x→0(fx); 1x→0(1x)〉

Here, [[f ]] is a function which satisfies [[f ]](0ω) = ⊥0ω and [[f ]](x) = 0x if x contains

the character 1.

5 Operational semantics of XPCF

5.1 Operational semantics of XPCF

Table 3 shows the reduction rule of XPCF. For d ∈ {0, 1, 0, 1}, we say that a term

M of type S outputs d if M is reduced to dM ′.

We explain how the reduction of a term 〈0x → M0; 1x → M1〉 N proceeds.

The first lines of rules (COND 0), (COND 1), (COND 0), and (COND 1) are for

the reduction of an application term 〈0x→M0; 1x→M1〉 N . Note that a closed

term N is reduced by (APP-R) to one of these four forms if [[N ]] is not ⊥ by the

adequacy theorem in the next section. If N has the form 0N ′, (COND 0) is applied

and then we have a term M0[0x/x] and M1[1x/x]. After that, M0 and M1 are

evaluated by (LEFT) and (RIGHT) only with the additional information that the

first character of x is 0. Note that if M0 contains x, then M0[0x/x] also contains

x and therefore it is expected that this evaluation terminates when it requires the
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Reduction rule of XPCF

In addition to the reduction rule of PCF, we have the following rules.

(COND 0) 〈0x→M0; 1x→M1〉(0N) ⊲ M0[N/x]

〈〈0x→M0; 1x→M1〉〉(0N) ⊲ M0[N/x]

(COND 1) 〈0x→M0; 1x→M1〉(1N) ⊲ M1[N/x]

〈〈0x→M0; 1x→M1〉〉(1N) ⊲ M1[N/x]

(COND 0) 〈0x→M0; 1x→M1〉(0N) ⊲ 〈〈0x→M0[0x/x]; 1x→M1[0x/x]〉〉N

〈〈0x→M0; 1x→M1〉〉(0N) ⊲ 〈〈0x→M0[0x/x]; 1x→M1[0x/x]〉〉N

(COND 1) 〈0x→M0; 1x→M1〉(1N) ⊲ 〈〈0x→M0[1x/x]; 1x→M1[1x/x]〉〉N

〈〈0x→M0; 1x→M1〉〉(1N) ⊲ 〈〈0x→M0[1x/x]; 1x→M1[1x/x]〉〉N

(OUT 1) 〈〈0x→dM0; 1x→dM1〉〉N ⊲ d(〈〈0x→M0; 1x→M1〉〉N) (d ∈ {0, 1, 0, 1})

(OUT 2) 〈〈0x→b(cM0); 1x→b′(cM1)〉〉N ⊲ c(〈〈0x→bM0; 1x→b′M1〉〉N)

(b, b′ ∈ {0, 1} and b 6= b′)

(OUT 3) 〈〈0x→bM0; 1x→c(bM1)〉〉N ⊲ b(〈〈0x→M0; 1x→cM1〉〉N) (b, c ∈ {0, 1})

(OUT 4) 〈〈0x→c(bM0); 1x→bM1〉〉N ⊲ b(〈〈0x→cM0; 1x→M1〉〉N) (b, c ∈ {0, 1})

(OUT 5) 〈〈0x→c; 1x→c〉〉 ⊲ c (c ∈ {tt,ff, kn})

(BAR) b(cM) ⊲ c(bM) (b, c ∈ {0, 1})

(PERM) 〈0x→M0; 1x→M1〉NL ⊲ 〈0x→M0L; 1x→M1L〉N

〈〈0x→M0; 1x→M1〉〉NL ⊲ 〈〈0x→M0L; 1x→M1L〉〉N

(If x ∈ FV (L), then rename the bound variable x to avoid variable collision.)

(LEFT) M0 ⊲ M
′
0

〈〈0x→M0; 1x→M1〉〉 ⊲ 〈〈0x→M ′
0; 1x→M1〉〉

(RIGHT) M1 ⊲ M
′
1

〈〈0x→M0; 1x→M1〉〉 ⊲ 〈〈0x→M0; 1x→M ′
1〉〉

(APP-R) N ⊲N ′

MN ⊲MN ′ (if M is 0, 1, 0, 1, 〈0x→M0; 1x→M1〉 or 〈〈0x→M0; 1x→M1〉〉)

Table 3
Operational semantics of XPCF

value of x. Then, (BAR) rule is used to arrange outputs of M0[0x/x] and M1[0x/x]

to the form b0b1 . . . bkc0c1 . . . cj for bi, ci ∈ {0, 1}. After that, if they coincide on

the first or the second digit, then it makes an output with rules (OUT 1) to (OUT

5) and repeat it until no more output is possible. Thus, we obtain a term of the

form d0d1 . . . di(〈〈0x→M ′
0; 1x→M ′

1〉〉 N ′) and we can continue this process to the

subterm 〈〈0x→M ′
0; 1x→M ′

1〉〉 N ′ with (APP-R) since all the rules applicable to

〈0x→M0; 1x→M1〉 N are also applicable to 〈〈0x→M0; 1x→M1〉〉 N .

One can see that the above reduction procedure fails to reduce

〈0x→M0; 1x→M1〉 N L for M0 and M1 function type terms and [[N ]] = ⊥s because

the output of L cannot be fed to function terms M0 and M1. For the evaluation of
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this term, we need the (PERM) rule. Suppose that 〈0x→M0; 1x→M1〉 : S → S → S

and M0 and M1 are extended conditional terms of the form 〈0y→ ...; 1y→ ...〉. We

first reduce the term 〈0x→M0; 1x→M1〉 N L to 〈0x→ (M0 L); 1x→ (M1 L)〉 N

with the (PERM) rule and then reduce it as we explained. The (PERM) rule corre-

sponds to reducing the lambda term (λx.M) N L to (λx.(M L)) N , and it is similar

to the permutative conversion rule used for proof normalization in proof theory [12].

One may wonder why we distinguish 〈0x→M0; 1x→M1〉 with 〈〈0x→M0; 1x→

M1〉〉 because we can make the same reduction if we replace the former with the

latter. However, strictness of 〈0x→M0; 1x→M1〉 plays an important role in writing

recursively defined functions. Many of the functions on S are defined with the Y

operator as F = YS→S(λf.M) with M = 〈0x→M0; 1x→M1〉 and it is reduced to

M [YS→S(λf.M)/f ] which cannot be reduced any more. IfM = 〈〈0x→M0; 1x→M1〉〉

instead, then copies of YS→S(λf.M) in M0 and M1 can be reduced with the rules

(LEFT) and (RIGHT) and therefore it causes an infinite computation even if no

argument is given to the function term F .

5.2 A sequential strategy of XPCF

Though one needs to evaluate M0, M1, and N in parallel for the evaluation of M =

〈〈0x→M0; 1x→M1〉〉 N , the procedure we mentioned above is almost sequential in

that the evaluations of M0 and M1 are expected to terminate because they contain

the free variable x in many cases. There are some cases that the evaluation of M0

does not terminate and it outputs infinitely many digits. However, if M0 has the

form d0d1M
′, then, from the forms of (OUT 1) to (OUT 4), one can consider that

M0 has enough outputs for M to make an output and terminate its reduction and

proceed to the evaluation of M1. We also need to take care of the case M0 has

the form 〈〈0y→M00; 1y→M11〉〉 L. In this case, if we reduce M according to the

procedure we mentioned above, and L is reduced to 0L1 ⊲
∗ 0

2
L2 ⊲

∗ · · · ⊲∗ 0
n
Ln ⊲

∗ · · · ,

for example, then one repeats the application of (COND 0) without instantiating

the outputs of N to x. However, we can handle many of the cases by defining that

〈〈0y→M00; 1y→M11〉〉 L cannot be reduced if M00 and M11 cannot be reduced and

all the appearances of y in M00 and M11 have the form c0c1 . . . cky for k > 1 and ci ∈

{0, 1}. Note that, in this case, further digits of y do not change the situation that

M00 cannot be reduced. In this way, we designed a sequential reduction strategy of

XPCF. We implemented it with Haskell. As it is proved in [7], in an interval domain

model, an adequate real number calculus in which average function is definable does

not have a sequential reduction strategy. It is also the case in our model and this

sequential strategy is not adequate. Therefore, it does not evaluate all the terms

to their denotations. However, we observed that applications of terms in Section 4

are reduced with our implementation and we expect that it evaluates many of the

”meaningful” terms to their semantics.
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6 Computational adequacy of XPCF

We show the soundness and completeness properties of XPCF. We first show that

two kinds of substitutions in the reduction rule of XPCF preserve meanings.

Lemma 6.1 (i) For terms M : τ and N : σ, a variable xσ, and an environment

ρ, [[M [N/xσ ]]](ρ) = [[M ]](ρ[[[N ]]/xσ ]).

(ii) For a term M and b ∈ {0, 1, 0, 1}, [[M [bx/x]]](ρ) = [[M ]](ρ[[[b]]ρ(x)/x]).

Proof. By structural induction on M . ✷

From Lemma 6.1, the following proposition holds.

Proposition 6.2 For XPCF terms M,N and an environment ρ, if M ⊲ N then

[[M ]](ρ) = [[N ]](ρ).

Proof. It is proved by showing that the denotational semantics of the left side and

the right side coincide for every reduction rule. ✷

In PCF, the result of evaluation of a program M of type σ is a constant of

type σ if it exists. On the other hand, in XPCF, we consider non-terminating

computations which output digits in {0, 1, 0, 1} as M ⊲. . . ⊲d0(d1 · · · (dn−1M
′))⊲ . . ..

Note that the sequence d0, d1, · · · is not determined uniquely by M . For example,

the term M = 〈〈0x→ 0(Y0); 1x→ 1(Y0)〉〉(1ΩS) for ΩS = YS→S(λx
S.xS) is reduced

to terms of the forms 10nM ′ and 0
n
N ′ for every n. However, from Proposition 6.2,

if M ⊲∗ d0(d1 · · · (dn−1M
′)), then we have d0(d1...(dn−1ǫ)) ⊑ d0(d1...(dn−1[[M

′]])) =

[[M ]] and thus the outputs are bounded by the denotation [[M ]] of M and have the

least upper bound. Therefore, we define an evaluation function Eval from XPCF

programs of type σ to elements of Dσ as follows.

Definition 6.3 (i) For an XPCF program M of type N or B, we define

Eval(M) =

{

[[EvalPCF(M)]] if EvalPCF(M) exists,

⊥ otherwise.

(ii) For an XPCF program M of type S, we define

Eval(M) =
⊔

{d0(d1...(dn−1(ǫ))) | M ⊲∗ d0(d1 · · · (dn−1M
′)) for someM ′}

with di ∈ {0, 1, 0, 1} and di = [[di]] for 0 ≤ i < n.

The soundness of XPCF is derived from Proposition 6.2 immediately.

Theorem 6.4 (Soundness of XPCF) For a program M , Eval(M) ⊑ [[M ]].

To show the completeness, we use the computability method (see [11]). That is,

define the set Compσ of computable terms of type σ for each type σ and then show

that all the XPCF terms are computable.
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Definition 6.5 We define the predicate Compσ for each type σ by induction on

types.

(i) Let σ be B or N. A program M : σ has property Compσ if [[M ]] = Eval(M).

(ii) A program M : S has property CompS if [[M ]] ⊑ Eval(M). That is, for any

p ∈ Σ∗
⊥,1 with p ⊑ [[M ]], p ⊑ Eval(M) holds.

(iii) A closed term M : σ → τ has property Compσ→τ if whenever N : σ is a closed

term with property Compσ then MN is a term with property Compτ .

(iv) An open term M : σ with free variables xσ1

1 , ..., xσn
n has property Compσ if

M [N1/x
σ1

1 ] · · · [Nn/x
σn
n ] has property Compσ whenever N1, ..., Nn are closed

terms having properties Compσ1
,...,Compσn

respectively.

We say that a term of type σ is computable if it has property Compσ.

It is immediate to show the followings. (1) If M : σ → τ and N : σ are closed

computable terms, so isMN . (2) For a ground type τ , a term M : σ1 → · · · → σn →

τ is computable if and only if M̃N1 · · ·Nn is computable for all closed computable

terms N1 : σ1, ..., Nn : σn and closed instantiation M̃ of M by computable terms.

For s ∈ Σ∗
⊥,1, we define the context s[X] as follows,

s[X] =

{

b0(b1 · · · (bn−1X)) if s = b0b1 · · · bn−1,

b0(b1 · · · (bn−1(c0(c1 · · · (cm−1X))))) if s = b0b1 · · · bn−1⊥c0c1 · · · cm−1.

Here, bi, cj ∈ {0, 1}, bi = [[bi]], and cj = [[cj ]] for 0 ≤ i < n and 0 ≤ j < m. We

say that a term M of type S outputs s ∈ Σ∗
⊥,1 if there is a reduction M ⊲∗ s[M ′] for

some M ′.

Lemma 6.6 Let M : S be a computable term such that x is the only free variable

and let s ∈ Σ∗. For any p ⊑ [[M ]](ρ[s/x]) with p ∈ Σ∗
⊥,1, M [s[x]/x] outputs q ∈ Σ∗

⊥,1

such that p ⊑ q

Proof. We have [[M ]](ρ[ǫ/x]) = [[M [ΩS/x]]] by structural induction on M . From

the equation [[s[ΩS]]] = s and Lemma 6.1 (i), we have

[[M ]](ρ[s/x]) = [[M ]](ρ[[[s[ΩS]]]/x]) = [[M [s[ΩS]/x]]].

Since M and s[ΩS] are computable, M [s[ΩS]/x] is computable. Therefore, for any

p ∈ Σ∗
⊥,1 with p ⊑ [[M ]](ρ[s/x]), there exists a reduction M [s[ΩS]/x] ⊲

∗ q[M ′] with

q ∈ Σ∗
⊥,1 such that p ⊑ q. If there is a reduction sequence M [s[ΩS]/x]⊲

∗ q[M ′], then

there is a reduction sequence M [s[x]/x] ⊲∗ q[M ′′] by ignoring the reductions related

to ΩS. Therefore, M [s[x]/x] outputs q such that p ⊑ q. ✷

Proposition 6.7 Every XPCF term is computable.

Proof. We prove it by structural induction on terms.

In order to prove the computability of Yσ for an XPCF type σ, we use an

extension of the syntactic information order in [11], which we omit here. We only

explain the proof of the cases 0, 1, 0, 1, 〈0x→M0; 1x→M1〉 and 〈〈0x→M0; 1x→M1〉〉.
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The case d ∈ {0, 1, 0, 1}. We show that for any computable term M of type

S, dM is computable. Because the function [[d]] : DS → DS is continuous, for any

p ∈ Σ∗
⊥,1 with p ⊑ [[dM ]] = [[d]]([[M ]]), there exists q ∈ Σ∗

⊥,1 with q ⊑ [[M ]] such

that p ⊑ [[d]](q). Since M is computable, M outputs q′ ∈ Σ∗
⊥,1 such that q ⊑ q′.

Therefore, dM outputs [[d]](q′) which satisfies p ⊑ [[d]](q) ⊑ [[d]](q′) and thus d is

computable.

We show that if terms M0 and M1 of type σ are computable, so is the term 〈0x→

M0; 1x→M1〉. It is enough to show that the term 〈0x→M̃0; 1x→M̃1〉N1N2 · · ·Nn

of type a ground type τ is computable when N1 : S, N2, ..., Nn are closed computable

terms and M̃0 and M̃1 are instantiations of all free variables, except x, of M0 and

M1 by closed computable terms, respectively. We only show the case τ = S.

Case [[N1]] = ǫ. From the reduction rule, we have the following equation:

[[〈0x→M̃0; 1x→M̃1〉N1N2 · · ·Nn]]

= [[〈0x→M̃0; 1x→M̃1〉]](ǫ)([[N2]]) · · · ([[Nn]])

= ⊥σ([[N2]]) · · · ([[Nn]]) = ⊥S.

Therefore, 〈0x→M̃0; 1x→M̃1〉N1N2 · · ·Nn is computable.

Case [[N1]] = 0s. For any p ∈ Σ∗
⊥,1 such that p ⊑ [[〈0x → M̃0; 1x →

M̃1〉N1 · · ·Nn]] = [[M̃0]]ρ([s/x])([[N2]]) · · · ([[Nn]]), from the continuity, there ex-

ists s′ ∈ Σ∗
⊥,1 such that p ⊑ [[M̃0]]ρ([s

′/x])([[N2]]) · · · ([[Nn]]) and 0s′ ⊑ [[N1]].

From the computability of N1, there exists 0s′′ ∈ Σ∗
⊥,1 such that N1 outputs

0s′′ and 0s′ ⊑ 0s′′. Then, p ⊑ [[M̃0]]ρ([s
′′/x])([[N2]]) · · · ([[Nn]]) holds. Since we

have [[M̃0[s
′′[ΩS]/x]N2 · · ·Nn]] = [[M̃0]]ρ([s

′′/x])([[N2]]) · · · ([[Nn]]) and s′′[ΩS] is com-

putable, M̃0[s
′′[ΩS]/x]N2 · · ·Nn is also computable and outputs t ∈ Σ∗

⊥,1 such that

p ⊑ t. Therefore, we have a reduction sequence 〈0x→ M̃0; 1x→ M̃1〉N1 · · ·Nn ⊲∗

〈0x→M̃0; 1x→M̃1〉0s
′′[N ′

1] · · ·Nn ⊲∗ t[M ′′] such that p ⊑ t.

Case [[N1]] = 1s. The proof is similar to the case [[N1]] = 0s.

Case [[N1]] = ⊥u with u ∈ Σ∞\{ǫ}. From the reduction rule, we have the

following equation:

[[〈0x→M̃0; 1x→M̃1〉N1 · · ·Nn]]

= [[〈0x→M̃0N2 · · ·Nn; 1x→M̃1N2 · · ·Nn〉N1]]

= [[〈0x→M̃0N2 · · ·Nn; 1x→M̃1N2 · · ·Nn〉]](⊥u)

= [[M̃0N2 · · ·Nn]](ρ[u/x]) ⊓ [[M̃1N2 · · ·Nn]](ρ[u/x]).

Because of the continuity of [[M̃0N2 · · ·Nn]] and [[M̃1N2 · · ·Nn]], for any p ∈ Σ∗
⊥,1

with p ⊑ [[〈0x→ M̃0; 1x→ M̃1〉N1 · · ·Nn]], there is s ∈ Σ∗ such that s ⊑ u, p ⊑

[[M̃0N2 · · ·Nn]](ρ[s/x]), and p ⊑ [[M̃1N2 · · ·Nn]](ρ[s/x]). Since N1 is computable,

N1 outputs ⊥s. By Lemma 6.6, (M̃0N2 · · ·Nn)[s[x]/x] outputs q0 ∈ Σ∗
⊥,1 such that

p ⊑ q0 and (M̃1N2 · · ·Nn)[s[x]/x] outputs q1 ∈ Σ∗
⊥,1 such that p ⊑ q1. Therefore,
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〈0x→M̃0; 1x→M̃1〉N1 · · ·Nn has the following reduction:

〈0x→M̃0; 1x→M̃1〉N1 · · ·Nn

⊲∗ 〈0x→M̃0N2 · · ·Nn; 1x→M̃1N2 · · ·Nn〉⊥s[N ′
1]

⊲∗ 〈〈0x→(M̃0N2 · · ·Nn)[s[x]/x]; 1x→(M̃1N2 · · ·Nn)[s[x]/x]〉〉N
′
1

⊲∗ 〈〈0x→q0[M
′
0]; 1x→q1[M

′
1]〉〉N

′
1

⊲∗ q[M ′]

for some q ∈ Σ∗
⊥,1 such that p ⊑ q ⊑ (q0 ⊓ q1).

The computability proof of 〈〈0x→M̃0; 1x→M̃1〉〉 is that of 〈0x→M0; 1x→M1〉

without the case [[N1]] = ǫ and without restricting in the final case to u 6∈ ǫ. ✷

Therefore, the completeness of XPCF holds.

Theorem 6.8 (Completeness of XPCF) For a program M , Eval(M) ⊒ [[M ]].

Combining the soundness and completeness of XPCF, we have the computa-

tional adequacy of XPCF. That is, Eval(M) = [[M ]] for every program M .

7 Expressive power of XPCF

In this section, we often omit the type and write x for xσ and if for ifσ when no

confusion can arise.

We compare expressive powers of XPCF and PCF+. Here, PCF+ is the calculus

PCF extended with the parallel conditional pifσ : B → σ → σ → σ as a constant

for each σ ∈ {B,N}. The interpretation of pifσ is given as follows

[[pifσ]] = λb ∈ DB.λx ∈ Dσ.λy ∈ Dσ.























x (b = tt)

y (b = ff)

x (b = ⊥B and x = y)

⊥σ (otherwise).

The operational semantics of PCF + is the operational semantics of PCF together

with:

pifσ M cc ⊲ c, pifσ ttM N ⊲M, pifσ ffM N ⊲ N,

M ⊲M ′

pifσ M ⊲ pifσ M
′,

N ⊲ N ′

pifσ M N ⊲ pifσ M N ′,
L ⊲ L′

pifσ M N L ⊲ pifσ M N L′.

Consider the following XPCF term pif ′σ of type B → σ → σ → σ for σ ∈ {B,N}.

pif ′σ = λuB.λyσ.λzσ .〈〈0x→y; 1x→z〉〉(ifS u (0ΩS) (1ΩS)).

It satisfies [[pif ′σ]] = [[pifσ]] and therefore it expresses the pifσ operator. Note that

one can also express it as an XPCF program

λuB.λyσ.λzσ.〈0x→y; 1x→z〉0(ifS u (0ΩS) (1ΩS))
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without using 〈〈...〉〉. Thus, PCF + terms can be translated into XPCF terms by

replacing pifσ with pif ′σ.

Theorem 7.1 For a PCF+ term M : σ and a PCF environment ρ, there exists an

XPCF term M ′ : σ such that [[M ]](ρ) = [[M ′]](ρ′). Here, ρ′ is any extension of ρ to

an XPCF environment.

On the other hand, there is an embedding-projection pair (e-p pair in short)

(e, p) between the domains DS = BD and DN→B
∼= Σω

⊥ where the projection p is

the function trunc in Section 2.2. Here, a pair of continuous functions e : X → Y

and p : Y → X is an e-p pair if they satisfy p ◦ e = idX and e ◦ p ⊑ idY . Terms

e : S → (N → B) and p : (N → B) → S such that [[e]] = e and [[p]] = p can be

written in XPCF as follows,

e : = YS→N→B(λf
S→N→B.λgS.λnN.if (zeron) (head g) (f (tail g) (dec n)))

p : = YN→(N→B)→S(λg
N→(N→B)→S.λnN.λfN→B.〈0x→0(g (incn) f); 1x→1(g (incn) f)〉

0(if(f n)(0ΩS)(1ΩS)))k0

where tail = 〈0x→x; 1x→x〉 and head = 〈0x→tt; 1x→ff〉.

We can extend the e-p pair (e, p) to higher order types. We inductively define

σt for every XPCF type σ as follows

Bt = B,Nt = N,St = N → B, and (σ → τ)t = σt → τ t.

We inductively define eσ : σ → σt and pσ : σt → σ for every XPCF type σ as

follows,

eN = pN = λxN.x, eB = pB = λxB.x, eS = e, pS = p,

eσ→τ = λfσ→τ .λxσ
t

.eτ (f(pσ(x))),

pσ→τ = λfσt→τ t.λxσ.pτ (f(eσ(x))).

It is immediate to show that ([[eσ]], [[pσ ]]) is an e-p pair for every type σ.

We define a syntactical translation (−)t from XPCF terms to PCF + terms so

that M t : σt for M : σ. Before that, we define a function r : DN→B → DN→B as

r = e ◦ p and rσ : Dσt → Dσt as rσ = eσ ◦ pσ. The function r satisfies

r(f)(n) =











tt if f(n) = tt and ⊥ appears at most once in f(0), · · · , f(n− 1)

ff if f(n) = ff and ⊥ appears at most once in f(0), · · · , f(n− 1)

⊥ otherwise.

for f : DN → DB and n ∈ DN. Let r be any PCF + term such that [[r]] = r. For

every XPCF type σ, we inductively define a PCF+ term rσ : σt → σt which satisfies

[[rσ ]] = rσ as follows

rB = λxB.xB, rN := λxN.xN, rS := r, and rσ→τ = λfσt→τ t .λx(σ
t).rτ (f(rσx)).
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For an XPCF term M , we inductively define M t : σt as follows,

(xσ)t = rσx
(σt), ct = c, iftσ = ifσ, Yt

σ = λfσt→σt

.Yσt(rσ→σf),

(λxσ.M)t = λx(σ
t).M t, (MN)t = (M tN t),

0t = λfN→B.λxN.if (zerox) tt ((rS f) (dec x)),

1t = λfN→B.λxN.if (zerox)ff ((rS f) (dec x)),

0
t
= λfN→B.λxN.if (zerox) ((rS f) k0)

(if (zero (dec x)) tt ((rS f) (dec x))),

1
t
= λfN→B.λxN.if (zerox) ((rS f) k0)

(if (zero (dec x))ff ((rS f) (dec x))),

〈〈0x→M0; 1x→M1〉〉
t = λfN→B.pif ((rS f) k0)M

t
0[λy

N.(rS f)(inc y)/x
N→B]

M t
1[λy

N.(rS f)(inc y)/x
N→B],

〈0x→M0; 1x→M1〉
t = λfN→B.if(pif (if ((rS f) k0) tt tt) tt (if ((rS f) k1) tt tt))

(pif ((rS f) k0)M
t
0[λy

N.(rS f)(inc y)/x
N→B]

M t
1[λy

N.(rS f)(inc y)/x
N→B]) Ωσ

where c is a constant other than 0, 1, 0, 1, ifσ or Yσ and the type of terms M0 and

M1 is σ. Here, we assume that the same XPCF variable does not appear in different

types to prevent conflictions in the translation to PCF+ terms.

We define a translation (-)t of environments as ρt(xσ
t

) = eσ(ρ(x
σ)).

Proposition 7.2 For any term M : σ in XPCF and environment ρ, eσ([[M ]](ρ)) =

[[M t]](ρt) holds.

Proof. By structural induction on M . ✷

It is known that in PCF + all compact elements and all computable first-order

functions are definable [11]. Through the translation (-)t, we can derive the following

results on expressive power of XPCF.

Theorem 7.3 (i) XPCF and PCF + have the same expressive power on PCF

types.

(ii) All computable elements of DS are definable in XPCF.

(iii) The function exist is not definable in XPCF. Here, exist : DN→B → DB is the

function

λf ∈ DN→B.











ff f(⊥) = ff

tt ∃n ∈ N.f(n) = tt

⊥ otherwise.

Proof. (i) Since eσ is the identity function if σ does not contain S, Theorem 7.1

and Proposition 7.2 show that XPCF and PCF + have the same expressive power

on PCF types.
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(ii) For any computable element x ∈ DS, eS(x) ∈ DN→B is a computable element

because eS is a computable function. Therefore, eS(x) is definable in PCF + [11].

Since pS is definable in XPCF, pS(eS(x)) = x is definable in XPCF.

(iii) Suppose that there exists a closed XPCF term M : (N → B) → B such

that [[M ]] = exist. Since eσ is identity for a PCF type σ, we have [[M ]] =

e(N→B)→B([[M ]]) = [[M t]] from Proposition 7.2. However, exist is not definable in

PCF+ [11] and this is a contradiction. Therefore, exist is not definable in XPCF.✷

In [11], Plotkin introduced the language PCF++ which is an extension of PCF+

by adding the existential quantifier ∃ : (N → B) → B as a constant such that

[[∃]] = exist. [5] showed that Real PCF extended with ∃ is universal, based on

a technique due to Thomas Streicher [13] to establish that PCF extended with

recursive types, parallel-or and ∃ is universal. We define a calculus XPCF ∃, which

is the extension of XPCF with the ∃ operator. XPCF ∃ is universal in the following

sense.

Theorem 7.4 For every XPCF type σ, all computable elements of Dσ are definable

in XPCF ∃.

Proof. For any XPCF type σ and computable element x ∈ Dσ, eσ(x) ∈ Dσt is

a computable element because eσ is a computable function. Therefore, eσ(x) is

definable in PCF ++ by [11]. Since pσ is definable in XPCF, pσ(eσ(x)) = x is

definable in XPCF ∃. ✷
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