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Primary Ciliary Dyskinesia Caused by Homozygous
Mutation in DNAL1, Encoding Dynein Light Chain 1

Masha Mazor,1 Soliman Alkrinawi,2 Vered Chalifa-Caspi,3 Esther Manor,1,4 Val C. Sheffield,5

Micha Aviram,2 and Ruti Parvari1,3,*

In primary ciliary dyskinesia (PCD), genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease,

randomization of left-right body asymmetry, and, frequently, male infertility. The most frequent defects involve outer and inner dynein

arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Although

it has long been suspected that mutations in DNAL1 encoding the ODA light chain1 might cause PCD such mutations were not found.

We demonstrate here that a homozygous point mutation in this gene is associated with PCD with absent or markedly shortened ODA.

The mutation (NM_031427.3: c.449A>G; p.Asn150Ser) changes the Asn at position150, which is critical for the proper tight turn

between the b strand and the a helix of the leucine-rich repeat in the hydrophobic face that connects to the dynein heavy chain.

The mutation reduces the stability of the axonemal dynein light chain 1 and damages its interactions with dynein heavy chain and

with tubulin. This study adds another important component to understanding the types of mutations that cause PCD and provides

clinical information regarding a specific mutation in a gene not yet known to be associated with PCD.
Cilia are ancient, evolutionarily conserved organelles that

project from the surfaces of most cells to perform diverse

biological roles, including whole-cell locomotion; move-

ment of fluid; chemo-, mechano-, and photosensation;

and paracrine signal transduction. These organelles can

be classified according to the arrangement of their micro-

tubule cytoskeleton core, called an axoneme.1 The

axoneme consists of nine outer-doublet microtubules,

which are connected by nexin links and surround a central

pair of microtubules (i.e., 9 þ 2 pattern). In some cilia, the

central pair of microtubules is absent (i.e., 9 þ 0 pattern).

The 9 þ 0 primary cilia are immotile, except in the embry-

onic node, where they are involved in left-right asymme-

try.2 The 9þ 2motile cilia, structurally identical to sperma-

tozoan flagella, are involved in the transport of

extracellular fluids, as in the respiratory tract, where they

propel mucus and therefore represent the first line of

airway defenses.1 Motile cilia are powered by outer dynein

arms (ODAs) and inner dynein arms (IDAs), multiprotein

ATPase complexes that are attached to the peripheral

doublets and are essential for ciliary motion.1 For most

motile cilia, additional accessory structures, for example

radial spokes and central pair projections, are involved in

regulating dynein-mediated motility.

Primary ciliary dyskinesia (PCD [MIM 242650]) refers

to a heterogeneous group of genetic disorders character-

ized by ultrastructural defects in the axonemal structure

of the 9 þ 2 motile cilia and sperm flagella.3 The incidence

is estimated at 1:15,000–30,000,4 and there is a higher

incidence in certain consanguineous and isolated popula-

tions.5,6 Clinical features reflect the distribution of

immotile cilia in the body and include neonatal respiratory
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distress, chronic respiratory infections, sinusitis, and bron-

chiectasis because of deficient function of motile cilia in

the upper and lower airways. Male and female subfertility

occur as a result of defective sperm flagella and oviduct

cilia, respectively. Occasionally, hydrocephalus occurs as

a result of deficient ependymal cilia.7,8 In most families,

there is an apparent randomization of left-right axis devel-

opment; this randomization is proposed to result from the

defective function of the embryonic node. This manifests

in about half of patients as situs inversus ormore severe lat-

erality defects, such as cardiovascular abnormalities. The

association of PCD and situs inversus is also referred to as

Kartagener’s syndrome (MIM 244400).9,10 There is a large

variation in the severity of the clinical phenotype. Clinical

features of PCD can also mimic those of other diseases,

such as cystic fibrosis, allergies or immunologic disorders.

Studying the ciliary-beat pattern and frequency by direct

microscopy on transnasal brushings and examining the

axonemal structure of respiratory cilia by transmission

electron microscopy allows diagnosis of PCD. Typical

ultrastructural defects in PCD consist of total or partial

absence of dynein arms, absence or dislocation of central

tubules, defects of the radial spoke, and peripheral micro-

tubule anomalies. However, in a subset of patients, no

ultrastructural defect are observed.11,12 Additionally, in

patients with PCD, nasal nitric oxide (nNO) levels are often

extremely low in comparison to controls. A nNO concen-

tration of <200 ppb could indicate PCD.13

PCD is usually recessively inherited, and mutations

that cause PCD have been identified in several genes and

chromosomal loci.9 Most of the genes encode axonemal

dyneins and are associated with reduction or loss of
ces, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; 2Division

ional Institute of Biotechnology in the Negev, Ben Gurion University of the

r, Beer Sheva 84101, Israel; 5Department of Pediatrics, Division of Medical

52242, USA

Genetics. All rights reserved.

rican Journal of Human Genetics 88, 599–607, May 13, 2011 599

mailto:ruthi@bgu.ac.il
http://dx.doi.org/10.1016/j.ajhg.2011.03.018


Figure 1. PCD Bedouin Pedigrees, Fine Mapping of the Chromosome 14 Locus in Pedigree A, and Absence of the ODAs in Patient
Cilia
(A) The haplotype analysis based on microsatellite markers from 14q24.2-q31.3 revealed a founder haplotype (gray bar) for which the
patients are homozygous in the critical region harboringDNAL1. The numbers of the patients correspond to those presented in Table 1.
Patient IV-1 of family B was identified by analysis of the mutation. Filled symbols represent the homozygote for the mutation and
a double line indicates a consanguineous union. The two lines indicate the crossing events delimiting the homozygous interval shared
by the two patients. Markers rs17176306 and rs41471545 define the minimal homozygosity locus associated with the disease.
(B) Transmission electronmicrograph of nasal ciliary epithelium from patient IV-1 of family A in comparison to a control (sibling IV-3 of
family A). The arrows in the micrographs point to the ODA that is missing in the patient.
axonemal ODAs, which are the multisubunit axonemal

ATPase complexes that generate the force for cilia motility

and govern beat frequency. Mutations in DNAH5 (MIM

603335) and DNAI1 (MIM 604366) are a relatively more

common cause of disease, underlying an estimated 28%

(DNAH5)14 and 2%–10% (DNAI1)15,16 of total cases. The

other genes are so far only associated with single or rare

PCD cases; therefore, the genetic basis of at least 60% of

PCD cases is not yet known. These genes include addi-

tional components of dynein arms: DNAI2, DNAH11,

and TXNDC3.17 Mutations in genes encoding cytoplasmic

proteins such as KTU and LRRC50 affect the assembly

of both IDA and ODA complexes in the cytoplasm by

a process that is still poorly understood.18–21 Mutations

in RSPH9 and RSPH4A, encoding two radial spoke head

proteins, have been recognized in Pakistanis and

Bedouins.22 These mutations cause primary ciliary dyski-

nesia with central-microtubular-pair abnormalities

involved in central-pair defects. Lastly, it was recently

reported that mutations in CCDC3923 and CCDC40,24

two proteins for coiled-coil domains, cause a PCD variant

that is characterized by misplacement of the central pair

of microtubules and defective assembly of IDAs and

dynein regulatory complexes. CCDC40 localizes to motile

cilia at the apical cytoplasm and is required for axonemal

recruitment of CCDC39;24 the latter underlies a substantial

fraction of PCD cases with axonemal disorganization and

abnormal ciliary beating.23
600 The American Journal of Human Genetics 88, 599–607, May 13,
We have identified two consanguineous Bedouin fami-

lies with three PCD patients (Figure 1A). The patients

had the classical presentation of PCD, the clinical data

and laboratory findings that established the PCD diagnosis

of the patients are presented in Table 1. Example transmis-

sion electron microscope images demonstrating the

absence of eight out of the nine ODAs and occasional

marked shortening of the ninth is shown in Figure 1B in

comparison to the healthy homozygous normal sibling

IV-3. The same ODA defect was observed in a total of

37 cilia documented from the two patients of family A.

Additional images of the 2 patients are presented in

Figure S1, available online.

The study was approved by the institutional review

board of the Soroka Medical Center, and informed consent

was obtained from all participants or their legal guardians.

Genomic DNA was isolated by standard methods directly

from blood samples. Assuming disease by homozygosity

of a mutation from a common ancestor, we excluded

linkage to the DNAH5 andDNAI1 by the finding of hetero-

zygosity of alleles at known polymorphic markers adjacent

to these genes.25 We further searched for homozygous

regions consistent with linkage by genotyping the patients

and both parents from pedigree A with the Affymetrix

(Santa Clara, CA) GeneChip Human Mapping 250K

Sty arrays. We determined the genotype calls by using Af-

fymetrix GeneChip Genotyping Analysis Software

(GTYPE) and dedicated software KinSNP developed in
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Table 1. Clinical Data and Laboratory Findings of the PCD Patients

Family A Family B

Patient IV-1 Patient IV-2 Patient IV-1

Patient characteristics

Age/gender 17.5 years/male 14.5 years /female 6.6 years/male

Complete situs inversus yes yes yes

Neonatal period neonatal pneumonia tachypnea, oxygen
requirement for 12 days

tachypnea, oxygen
requirement for 18 days

Reactive airway disease yes yes yes

Chronic nasal discharge yes yes yes

Chronic serous otitis media yes yes yes

Bronchiectasis yes yes no

Surgery no yes: adenoidectomy at 5.5 years,
lymphangioma in right forearm

ventilation tubes

Cilia movementa weak movement weak movement no movement

Electron microscopy absence of ODAs absence of ODAs absence of ODAs

nNO 5 ppb 3 ppb not done

Pulmonary function tests

Forced vital capacity (FVC)b 105% 103% not done

Forced expiratory volume in 1 s (FEV1)c 61% 76% not done

FEV1/FVC 54% 70% not done

Forced midexpiratory flow rated 25% 40% not done

The following abbreviations are used: ODAs, outer dynein arms; nNO, nasal nitric oxide; and ppb, parts per billion.
a Ciliary movement was measured by direct light microscopy.
b The volume of air that can forcibly be blown out after full inspiration, measured in liters.
c The average values for FEV1 in healthy people depend mainly on sex and age, and values between 80% and 120% of the average value are considered normal.
d The rate of flow between 25% and 75% of the FVC. Its value is determined from the FVC curve, and it is reduced in early obstruction involving the smaller
airways.
house to automatically perform autozygosity analysis of

the microarray results.26 A single large homozygous region

between rs17176306 and rs41471545 (>16 cM and

14.4 Mb) on chromosome 14 was found to be shared by

the two affected patients. To confirm linkage to this region,

we tested all family members with both known polymor-

phic microsatellite markers and with additional markers

developed for this purpose.27 Linkage was identified to

chromosomal locus 14q24.2-q31.3, chr14: 70,128,727–

84,524,979 (NCBI Build 36.1) (Figure 1A). We calculated

the multipoint Lod score by using the Pedtool server and

assuming recessive inheritance with 99% penetrance and

an incidence of 0.01 or 0.001 for the disease allele in the

population, was 2.49.

The linkage interval contains 84 genes; by using the cil-

iaproteome server, we found 22 of them. Among these,

we considered DNAL1 to be the strongest candidate for

PCDbecause it encodes the ortholog of theChlamydomonas

axonemal dynein light chain 1 (LC1), an ODA component

that contains themolecularmotors for ATP-dependent cilia

movement. Therefore, we analyzed it first. Total RNA was

extracted from lymphoblastoid cells of patient IV-1 with

the EZ-RNA Reagent (Biologic Industries, Israel). Reverse
The Ame
transcriptase reactions were performed with the Super-

Script II Reverse Transcriptase Synthesis Kit (Invitrogen).

The whole cDNA coding region for DNAL1 was amplified

in overlapping segments by PCR. No splice variants were

detected. The PCR products were directly sequenced on

an ABI PRISM 3100 DNA Analyzer with the BigDye Termi-

nator v. 1.1 Cycle Sequencing Kit (Applied Biosystems,

CA, USA) according to the manufacturer’s protocol. The

primers that revealed the mutation were primer 50-CC
CTAGCAACCAGAGCAGTGA-30 (forward) and primer

50-AGGTTGGCATTACCAGTTTTG-30 (reverse).We identified

a homozygous nonsynonymous variation (NM_031427.3:

c.449A>G; NP_113615.2: p.Asn150Ser) (Figure 2A). Because

the patient in family B is from the same population,

although not known to be related to family A, we evaluated

him for the p.Asn150Ser mutation by sequencing of a PCR

product amplified from his genomic DNA (see below) and

found to be homozygous for the mutation. His parents,

who were similarly analyzed, are heterozygous for this

variant. The patient’s siblings are either heterozygous

(IV-2) or homozygous normal (IV-3). Testing for the varia-

tion in all members of both families and controls was per-

formed by restriction analysis because the variation creates
rican Journal of Human Genetics 88, 599–607, May 13, 2011 601



Figure 2. Identification of the DNAL1 Mutation
(A) Sequence of the genomic DNA corresponding to the c.449A>G mutation resulting in p.Asn150Ser. Patients were homozygous for
the mutation; parents and siblings carrying the founder haplotype were heterozygous, and the healthy siblings without the founder
haplotype were normal.
(B) Restriction analysis for family A with BsmFI enzyme. The 148 bp band (marked with a red arrow) is apparent only in the mutated
allele. The wild-type (fragments were 370 bp and, uncut, 495 bp) versus mutation (fragments were 370 bp and, cut, 148 bp and
347 bp) alleles.
(C) Evolutionary conservation of the sixth LRR domain (conserved residues defining the LRR consensus are in bold). Position 150 of the
mutated Asn is shown on top.
(D) Structural prediction of the mutated LC1 protein (MUT) in comparison to a normal (WT) structure performed by the SWISS-MODEL
tool. The change in structure is marked with a red arrow.
a BsmFI restriction site that does not exist in the wild-type

sequence. PCR amplification of genomic DNA, around

exon 7 of the gene, was performed with the use of the

primers 50- CCTCCCATCCTGTACTGTCTTC-30 (forward)

and 50- GCTTTTGGTCTAGGGAGAATCTT-30 (reverse).

BsmFI restriction analysis of the PCR amplicons generated

differential cleavage products of the wild-type (fragments

were 370 bp and, uncut, 495 bp) versus variation

(fragments were 370 bp and, cut, 148 bp and 347 bp) allele.

Fragments were separated by electrophoresis on 2%agarose

gel (Figure 2B). This variation segregates as expected in the

families. Themutationwas found in the heterozygous state

in only one individual and was not found in the homozy-

gous state in any individuals out of 124 healthy Bedouin

controls.

We sought evidence for the pathogenic relevance of this

variation by analyzing the conservation of the protein
602 The American Journal of Human Genetics 88, 599–607, May 13,
sequence. Sequence alignment of the human DNAL1

with other species orthologs demonstrated complete

conservation of the leucine-rich-repeat (LRR) consensus

domain. Asn at position150 in human DNAL1 is one of

the LRR consensus residues (Figure 2C); it aligns with

the Asn located between the b10 and a7 folds of the sixth

LRR domain of the corresponding Chlamydomonas (LC1)

ortholog.28 Human DNAL1 is highly conserved: align-

ment of its predicted 3D structure to the orthologous

Chlamydomonas LC1 show minor differences, a loop

instead of a7 helix and shortened C terminus.29 We

verified the effect of the change on the protein conforma-

tion by using the SWISS-MODEL tool and found that

the replacement of Asn by Ser at position 150 indeed

has a major effect on the structure of the protein, in

that it disturbs the folding of the sixth LRR domain

(Figure 2D).
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Figure 3. Effect of the Mutation on the
Stability of the DNAL1 Protein
(Top panel) A representative immunoblot
analysis presenting DNAL1 protein at 0,
3, and 6 hr after addition of CMX. GAPDH
is shown as a loading control. (Bottom
panel) Quantification of the DNAL1-Myc
stability relative to GAPDH for three exper-
iments. The densitometric ratio of DNAL1-
Myc to GAPDH at the time of addition of
CMX was established as 100% and the
ratio of the DNAL1 to GAPDH at 3 and
6 hr is compared to time 0. The data is pre-
sented as mean5 standard deviation. The
difference between the normal and
mutated protein at the two time points
was evaluated by a two-tailed Student t
test, assuming unequal variance. **p ¼
0.006, ***p¼ 0.001. The following abbrevi-
ations are used: MUT, mutated DNAL1
protein; and WT, normal DNAL1 protein.
Next, we studied the effect of the mutation on the

protein. We subcloned the mutated and normal protein

sequences into the pc3myc plasmid to produce the DNAL1

protein fused at its N terminal to a Myc tag. In brief, we

used RNA from lymphoblastoid cells of patient IV-1 in

family A and lymphoblastoid cells of a healthy control to

reverse transcribe (byusing SuperScript II Reverse Transcrip-

tase Synthesis kit [Invitrogen]) and amplify the whole

coding sequence of DNAL1 by PCR with the primers

EcoRI-F, 50-GAATTCATGGCGAAAGCAACAACAATCAA-30,
and XhoI-R, 50-CTCGAGGTTGTCTTCTTCCTCATCCCC-30,
by using the DreamTaq DNA Polymerase (Fermentas). The

PCRproductwas restrictedwith EcoRI andXho-I and subcl-

oned into these sites of the plasmid. We sequenced the

inserts with the flanking regions with the T7 and SP6

primers to ascertain insertion in frame with the Myc tag

and to verify that no PCR mutations were introduced

during the cloning process. HEK293T cells were transiently

transfected with the constructs by using TransIT-LT1

reagent (Mirus) and lysed with RIPA lysis buffer 48 hr after

transfection. The DNAL1-Myc protein levels were studied

by immunoblot with a Myc antibody (gift of Noah Isakov).

Although the transfection conditions were identical, there

was a marked reduction (7-fold) in the quantity of the

mutated protein in comparison to the normal amount, as

estimated with the GAPDH protein as a loading control

(not shown). We tested the possibility that the observed

low level of the mutant protein is caused by its instability.

Forty-eight hours after transfection of HEK293T with

the DNAL1-Myc plasmid, cycloheximide (CMX, Sigma-Al-
The American Journal of Human
drich), an inhibitor of protein transla-

tional elongation in eukaryotes, was

added (to a final concentration of

10 mg/ml). The quantities of mutated

and control DNAL1-Myc proteins,

starting from approximately equal

quantities, were compared by immu-
noblot analysis at 3 and 6 hr after the addition of CMX. A

representative experiment, demonstrating faster reduction

in the quantity of the mutant protein than in that of the

normal protein, is shown in Figure 3A. To quantify this

reduction, we performed three independent experiments.

The intensity of the immunoblot signals was measured

with the Image Lab software (Bio-Rad). The densitometric

ratio of DNAL1-Myc to GAPDH at the time of addition of

CMX was established as 100%, and the ratio of the

DNAL1-Myc to GAPDH at 3 and 6 hr was compared to

time 0. Indeed, the quantity of the mutated protein was

reducedby40%and94%at 3 and6hr, respectively,whereas

the normal protein was reduced only by 10% and 30%. The

difference between the normal and mutated protein at the

two time points was evaluated by a two-tailed Student’s t

test, under an assumption of unequal variance (p < 0.01

and p < 0.001 at 3 hr and 6 hr, respectively) (Figure 3B).

In humans, dynein is composed of two heavy chains

(~500 kD), two intermediate chains (70–125 kD), and

several light chains (15–30 kD).30 The heavy chains

form the globular heads and stems of the complex. In

Chlamydomonas two molecules of LC1 are tightly associ-

ated with AAA nucleotide-binding domains of the g heavy

chain.28,31 The interaction of the LC1 is mediated through

a central LRR section that folds as a cylindrical, right-

handed spiral formed from six b-b-a motifs. This central

cylinder is flanked by terminal helical subdomains. The

C-terminal helical domain juts out from the cylinder and

is proposed to interact with the dynein heavy chain. The

position of the mutated aspargine is just at the last LRR
Genetics 88, 599–607, May 13, 2011 603



Figure 4. Interaction of the Mutated and Normal DNAL1 Protein with the Dynein Heavy Chain and with Tubulin
(A) Schematic representation of the interaction of DNAL1 with the dynein heavy chain (DNAH) and tubulin.31,32

(B) Immunoprecipitation of dynein heavy chain. (a) Immunoprecipitation of the dynein heavy chain with the mutated (MUT) and
normal (WT) DNAL1-Myc by Myc antibody probed with an anti-dynein heavy chain antibody. (b) The beads were incubated solely
with the lysate mixture and axoneme and probed with an anti-dynein heavy chain antibody, thus presenting the background dynein
heavy chain signal in the immunoprecipitation. (c) Input quantity of DNAL1-Myc for the reaction. (d) Input quantity of dynein heavy
chain extracted from rat tracheas. The percentage in brackets refers to the loading on the gel of the lysate mixture with axoneme relative
to the quantity used for the immunoprecipitation. The antibody used for the Immunoblot analysis is denoted at the right side.
(C) Immunopercipitation of a-tubulin. (a) IP of a-tubulin with the mutated (MUT) and normal (WT) DNAL1-Myc by Myc antibody
probed with an anti-a-tubulin antibody. (b) The beads were incubated solely with the lysate mixture and axoneme and probed with
an anti-a-tubulin antibody, thus presenting the background of a-tubulin signal in the immunoprecipitation. (c) Input quantity of
a-tubulin for the reaction. (d) Input quantity of DNAL1. The percentage in brackets refers to the loading on the gel of the lysate mixture
with axoneme relative to the quantity used for the immunoprecipitation. The antibody used for the Western analysis is denoted at
the right side.
The stability of the mutated DNAL1 after the incubation with the axonemal extracts and with the primary antibody at 4�C was
comparable to the normal DNAL1 (not shown).
consensus that stabilizes the turn between the b strand and

the a helix. In humans, the ortholog of the g heavy chain

is encoded by two genes, DNAH5 and DNAH8,30 and

a similar association of DNAL1 to DNAH5 was also demon-

strated29. It was also shown that Chlamydomonas LC1

interacts directly with tubulin and tethers the g heavy

motor unit to the A tubule of the outer-doublet microtu-

bules within the axoneme31,32 (schematically presented

in Figure 4A). To verify whether the change in the mutated

protein effects binding between DNAL1 to dynein heavy

chain and to tubulin, we tested their direct interaction

by immunoprecipitation.

To obtain sufficient amounts of dynein heavy chain

proteins and microtubules for immunoprecipitation, we

prepared axonemal extracts from rat tracheas. Tracheas

with larynx were removed from rats and placed in ice-cold

saline. After excision of the larynx and removal of excess

connective tissue and fat, the tracheas were transferred to

fresh ice-cold saline. High-salt axonemal extracts were

prepared as previously described.33 We produced mutant

and normal DNAL1-tagged proteins by transfecting

HEK293T cells with the respective DNAL1-Myc plasmids

and incubated cell extracts containing equal quantities of

the normal and mutated DNAL1-tagged proteins (72 mg

and 500 mg of the normal and mutated protein extracts,

respectively) for 24 hr at 4�C with equal amounts of rat

axonemal extracts (230 mg for each extract).Myc antibodies

were used for immunoprecipitation of the tagged DNAL1,

and the quantity of dynein heavy chain and tubulin in

the immunoprecipitate was tested by dynein heavy chain

antibody (Abcam, catalog number ab6305) and a-tubulin
604 The American Journal of Human Genetics 88, 599–607, May 13,
antibody (B-5-1-2, Abcam, catalog number ab11304),

respectively. Both dynein heavy chain and tubulin were

readily coimmunoprecipitated with the normal DNAL1-

tagged protein, whereas themutated protein showed about

80% reduction in the immunoprecipitated quantities of

both the dynein heavy chain and a-tubulin (Figures 4B

and 4C). The stability of themutatedDNAL1 after the incu-

bation with the axonemal extracts and with the primary

antibody at 4�C was comparable to that of the normal

DNAL1. From these results, it can be concluded that the

physical interaction between the mutated DNAL1 protein

and both dynein heavy chain and tubulin is damaged.

Most of the genetically characterized PCD variants

exhibitmutations in genes that encode dynein armcompo-

nents that are responsible for ciliary-beat generation.14–21

Using a total genome scan, we now provide evidence that

a DNAL1 point mutation, inherited in a recessive manner,

causes PCD in two Bedouin families. The patients had the

classical presentation of PCD, characterized by complete

situs inversus, early neonatal respiratory distress, and

chronic sino-pulmonary infection leading to severe

morbidity. PCD was confirmed by the laboratory results

of very low nNO; a significant decrease in cilia movement,

determined by light microscopy; and an absence of ODAs,

determined by transmission electron microscopy. The

identification of a mutation in DNAL1 demonstrates that

the Chlamydomonas LC1 human ortholog, like other

components of the ODA, is important for ciliary function

in the airways. The presence of situs inversus in the patients

indicates that DNAL1 is also necessary for the function of

the cilia that produce the nodal flow essential for the
2011



determination of left-right asymmetry.10 The function of

the orthologs of Chlamydomonas LC1 was intensively

studied in model systems. RNAi silencing of expression of

the LC1 ortholog of Trypanosoma brucei, TbLC1, resulted

in the complete loss of the dominant tip-to-base beat that

is a hallmark of trypanosome flagellar motility and the

concomitant emergence of a sustained reverse beat that

derived cell movement in reverse. Ultrastructure analysis

revealed that the outer-arm dyneins are disrupted in

TbLC1 mutants. Therefore, LC1 was shown to be required

for stable dynein assembly and forward motility in

T. brucei.34 The cloning and study of the LC1 ortholog of

Phytophthora nicotianae (PnDLC1) demonstrated that

RNAi-mediated silencing of PnDLC1 expression yielded

transformants that released nonflagellate, nonmotile

zoospores from their sporangia.35 The ciliated epithelium

of the planarian Schmidteamediterraneawas used for dissect-

ing the role of ODAmotors in the coordination of the oscil-

lations of neighboring cilia and the formation ofmetachro-

nal synchrony of motile cilia.36 Metachronal synchrony is

important for effective clearance of mucus and transport of

other periciliary fluids over the surface of the epithelium. It

is thought to be achieved by coupling betweenneighboring

cilia by a system that provides mechanical feedback.

Manipulation of the S. mediterranea by an RNAi vector so

that there was an absence of the ODAs resulted in a signifi-

cant decline in beat frequency and an inability of cilia to

coordinate their oscillations and form metachronal waves.

Specifically, similar manipulation to eliminate LC1 yields a

similar phenotype even though, in contrast to other

models, in this case the outer arms still assemble in the

axoneme. The lack ofmetachronywas not due to a decrease

in ciliary-beat frequency or to temporal variability in the

beat cycle of impaired cilia. Therefore, it was suggested

that LC1 acts in a mechanosensory feedback mechanism

controlling ODA activity, and thus the ciliary beat, based

on external conformational cues. This enables the coordi-

nation of ciliary beating and ultimately the formation of

metachronal waves.36 These data are consistent with obser-

vations of a Chlamydomonas mutant (oda-2t), which lacks

the outer arm heavy chain motor domain and LC1 and

exhibits pronounced motility defects.37 Interestingly, in

Chlamydomonas reinhardtii, a series of mutations affecting

the amino acids that are crucial for the structure of the

LC1a9 helix, which protrudes into the HC AAAþ domains

and is important for the interaction between LC1 and

heavy chain, demonstrated a dominant-negative adverse

effect. The swimming velocity was reduced, and the flagella

beat constantly out of phase and stalled near the power/

recovery stroke switch point.32 These findings again

support the suggestion that LC1 regulates the activity

outer-arm dyneins through a conformational switch.

Although the DNAL1 mutation replacing Asn150 with Ser

causes instability of the mutated protein, it does not lead

to its complete absence. Similarly, it does not completely

abolish the binding to either dynein heavy chain or to

tubulin. Thus, it is still possible that the Asn150Ser muta-
The Ame
tion leads to a partial loss of protein function and has

a semidominant mode of transmission of the disease

phenotype, that is, a typical PCD phenotype in homozy-

gous individuals, whereas heterozygous carriers could

have a much less severe phenotype. Although, we were

not able to obtain nasal epithelial cells fromaheterozygote,

and thus cannot exclude a defect in the structure or move-

ment of the cilia, there is no support for a dominant effect

on the basis of clinical data; None of the parents or the he-

trozygous siblings suffered from any of the symptoms that

affected the of PCD patients (e.g., reactive airway disease,

chronic nasal discharge, chronic serous otitis media, situs

inversus). Moreover, there were no reports of any infertility

problems, the families having numerous children.

To date, the structure of LC1 of C. reinhardtii and its

interactions with the g heavy chain have been

resolved.28,31,38 The human (DNAL1) and murine (Dnal1)

orthologs of the Chlamydomonas LC1 gene were identified

and in silico protein analysis showed complete conserva-

tion of the LC1/g heavy chain-binding motif in DNAL1

and actual binding of DNAL1 to DNAH5,29 one of the

two human orthologs of the Chlamydomonas g heavy

chain.30 LC1 binds to the g heavy chain motor domain

and becomes crosslinked to a relatively small region

between the P1 ATP hydrolytic site and the P2 or P3 nucle-

otide-binding site.31,38 LC1 is a member of the LRR

subclass defined by SDS22þ (which contains 22-residue

repeats).This LRR motif structure consists of a b strand

and a a helix interconnected via a tight turn. The turn is

stabilized by a hydrogen-bonding network set up by the

invariant Asn residue. The conserved hydrophobic and

Asn side chains within the LRR consensus (LxxLxLxxNxL)

pack to form the hydrophobic core. A single hydrophobic

patch formed by the six central LRRs is exposed on the

molecular surface of LC1 and is presumed to mediate inter-

action with the g heavy chain. The C-terminal helical

domain juts out from the cylinder, is adjacent to the

hydrophobic surface within the repeat region that inter-

acts with the dynein heavy chain, and is suggested to insert

itself into the dynein ATP hydrolytic site.38 Attachment of

LC1 to this region represents the only known example of

an accessory polypeptide directly associated with the cata-

lytic motor domain of the dynein heavy chain. The Asn at

position 150 in DNAL1 aligns with the critical Asn that is

in the last LRR consensus of LC1 and that stabilizes the

turn between the b strand and the a helix by the side chain

that forms hydrogen bonds in the loop structure.

Additionally, this Asn is immediately adjacent to the

C-terminal helical domain that inserts itself into the ATP

hydrolytic site. Thus, the prediction that the mutation of

this Asn to Ser will eliminate the fold agrees with the

finding of the drastic reduction in the binding of the

mutated DNAL1 to dynein relative to the normal protein

because the replacement of the Asn’s with Ser probably

changes the pattern of hydrogen bonds in the loop.

The structural domain mediating the binding between

LC1 of C. reinhardtii and tubulin is not yet defined. The
rican Journal of Human Genetics 88, 599–607, May 13, 2011 605



missense mutations of amino acids crucial for the structure

of the LC1 a9 helix, which is important for the interaction

of LC1 and g heavy chain, do not affect the binding to

tubulin.32 The drastic reduction in binding that we

observed with the p.Asn150Ser mutation might indicate

the importance of this residue, and possibly the whole

last LRR domain, to the interaction of DNAL1 with

tubulin. It is possible that the loss of tethering of the

dynein heavy chain to tubulin contributes to the recessive

mode of inheritance of the PCD in our families, in contrast

to the dominant negative effect observed for the missense

mutations of LC1 of C. reinhardtii.32

Our study also demonstrates the importance of the Asn at

position 150 for protein stability, in agreement with the

proposals of the importance of the proper folding of the

LRR domain for protein stability.39 Similarly, mutations

that replace the critical Asn in LRR with Ser were demon-

strated to cause several genetic diseases,40 such as congen-

ital stationary night blindness type 1 (CSNB1)/X-linked

congenital stationary night blindness (XLCSNB), which is

caused by p.Asn312Ser in nyctalopin. Another example

was observed in the ninth LRR domain of keratocan,

causing autosomal recessive cornea plana (CNA2) in which

the forward convex structure is flattened, leading to

a decrease in refraction. PCD was also demonstrated to be

caused by a mutation (p.Leu175Arg) disrupting a SDS22-

like subfamily LRR structure of LRRC50.18 This LRR might

participate in the structural link between the inner- and

outer-row dyneins during their preassembly.18,19

In summary, although the importance of the human

(DNAL1) ortholog of the Chlamydomonas LC1 gene was

already appreciated, and mutations in this gene had been

searched for in 86 PCD patients,29 we present evidence

that a mutation of a critical amino acid in DNAL1 causes

PCD. This mutation could help to elucidate the interaction

between the DNAL1 to dynein heavy chain and to tubulin.

Our finding adds DNAL1 as a gene mutated in PCD

patients and an important component of our under-

standing of the types of mutations that cause PCD.

Supplemental Data

Supplemental Data include one figure and can be found with this

article online at http://www.cell.com/AJHG/.
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16. Failly, M., Saitta, A., Muñoz, A., Falconnet, E., Rossier, C., San-

tamaria, F., de Santi, M.M., Lazor, R., DeLozier-Blanchet, C.D.,

Bartoloni, L., and Blouin, J.L. (2008). DNAI1 mutations

explain only 2% of primary ciliary dykinesia. Respiration 76,

198–204.

17. Barbato, A., Frischer, T., Kuehni, C.E., Snijders, D., Azevedo, I.,

Baktai, G., Bartoloni, L., Eber, E., Escribano, A., Haarman, E.,

et al. (2009). Primary ciliary dyskinesia: A consensus state-

ment on diagnostic and treatment approaches in children.

Eur. Respir. J. 34, 1264–1276.

18. Duquesnoy, P., Escudier, E., Vincensini, L., Freshour, J., Bri-

doux, A.M., Coste, A., Deschildre, A., de Blic, J., Legendre,

M., Montantin, G., et al. (2009). Loss-of-function mutations

in the human ortholog of Chlamydomonas reinhardtii ODA7

disrupt dynein arm assembly and cause primary ciliary dyski-

nesia. Am. J. Hum. Genet. 85, 890–896.

19. Loges, N.T., Olbrich, H., Becker-Heck, A., Häffner, K., Heer, A.,
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