
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 157, 469494 (1991) 

Non-Convex-Valued Differential inclusions 
in Banach Spaces 

F. S. DE BLASI 

Dipartimento di Matematica, Universitir di Roma II, 
Via Fontanile di Carcaricola, Roma 00133, Italy 

AND 

G. PIANICIANI 

Dipartimento di Matematica Applicata, Universith di Firenze, 
Via Montebello 7, Firenze 5OI23, Italy 

Submitted by KJ Fan 

Received December 10, 1989 

1. INTRODUCTION 

Let E be a separable reflexive real Banach space. Let F be a multifunc- 
tion defined on a nonempty open subset of R x E with values in the space 
of the nonempty compact convex subsets of E. 

In the present paper we are concerned with some existence and density 
results for the differential inclusion 

i-~ext F(t,x), x(a) = u, (1.1) 

where ext F(t, X) stands for the set of the extreme points of F(t, x). The case 
in which F satisfies assumptions which exclude compactness has been 
treated in [lS]. The compact case is studied in the present paper. 

To this end we use an improved version of the Baire category method 
introduced in [ 12-141 in order to prove the existence of solutions for non- 
convex-valued differential inclusions under noncompactness assumptions 
on F. To cover the compact case, we use here a new technique resting on 
the notion of a partition transversal to F and, ultimately, on an 
appropriate application of the nonempty intersection theorem for a 
decreasing sequence of nonempty compact sets. In this construction a 
crucial role is played by a technical approximation result (Lemma 4.2) of 
the type proved by Pianigiani [28], following some ideas of Waiewski 
[33] and Antosiewicz and Cellina Cl]. 
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If F is compact and continuous or, more generally, if F is compact and 
satisfies Carathtodory hypotheses, then the set J&, F of all solutions of 
(1.1) is proved to be nonempty. A similar result holds if F satisfies assump- 
tions of a-Lipschitz type, where M. denotes the Kuratowski measure of non- 
compactness. Incidentally, we note that, since ext F(f, x) is not necessarily 
closed, the aforementioned existence theorems are new also in finite 
dimension, thus sharpening some results due to Filippov [lS], Kaczynski 
and Olech [20], and Antosiewicz and Cellina [ 1). 

As a matter of fact, in each of the cases considered above, the existence 
of solutions follows at once from corresponding density results which are 
of an independent interest. More specifically, suppose that F is continuous 
(resp. Caratheodory) and compact. Then, as shown in Theorem 4.1 (resp. 
Theorem 5.1) for each continuous (resp. Caratheodory) selection of F, the 
set 4xt F has nonempty intersection with P,, where Pl stands for the 
solution set of the Cauchy problem ;i- =f(t, x), x(a) = U. 

These density results prove to be useful. Indeed, by using Theorem 5.1, 
it is shown (Theorem 6.1) that, under an invariance condition on the flow, 
the boundary value problem 1 E ext F(t, x), x(a) = x(b), admits solutions. 
This settles a question that, in the convex case, goes back to Cellina [7]. 
As another application of Theorem 5.1, it is shown (Theorem 6.2) that the 
solution set of a compact-valued differential inclusion is closed if and only 
if the right-hand side is almost everywhere convex valued (see Tolstonogov 
[32] and Cellina and Ornelas [9]). 

The idea of using Baire category for differential inclusions in R appears 
in Cellina [8]. Subsequently, the authors [ 12-141 have developed a 
method, based on the Baire category, in order to prove the existence of 
solutions to the Cauchy problem for non-convex-valued differential 
inclusions in Banach spaces. Further contributions can be found in Bahi 
[4], Chuong [ll], Suslov [29]. More recently, an existence theorem 
containing both the main result of [ 1.51 and Filippov’s theorem [IS] has 
been obtained by Bressan and Colombo [5]. In their proof a multivalued 
version of the Baire category theorem is used, which has furnished a hint for 
our present approach. For further contributions, from other view points, 
see Filippov [ 171, Mushinov [25], Tolstonogov [30], Tolstonogov and 
Finogenko [ 3 11, and Papageorgiou [ 26,271. 

The paper consists of six sections, with the Introduction. Section 2 
contains notations and preliminaries, including a review of some properties 
of the Choquet function associated to F. In Section 3, the definition of a 
partition transversal to F is introduced, and some properties of such 
partitions are established. In Section 4, a first existence and density 
result (Theorem 4.1) for the Cauchy problem (l.l), under a continuity 
assumption on F, is proved. Two generalizations, for F satisfying 
Carathbodory hypotheses (Theorem 5.1) and a-Lipschitz conditions 
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(Theorem 5.2), are given in Section 5. Some applications are presented in 
Section 6, namely, an existence result for a boundary value problem 
(Theorem 6.1), and two characterizations of convex-valued multifunctions 
(Theorems 6.2 and 6.3). 

2. NOTATIONS AND PRELIMINARIES 

Throughout this paper E denotes a reflexive separable real Banach 
space, and E* the topological dual of E. We denote by X(E) (resp. V(E)) 
the metric space of all nonempty, compact (resp. compact convex) subsets 
of E endowed with Hausdorff metric h. For any A E%?(E), by ext A we 
mean the set of the extreme points of A. The closed convex hull of a set 
A c E is denoted by Z A. 

Let X be a metric space with distance d. For any A c X, we denote by 
A the closure of A and, if A is bounded, by cc(A) the Kuratowski measure 
of noncompactness of A [22]. For any nonempty set A c X and r > 0 we 
set B,(A, r)= {x~X(d(x, A)<r) and B,(A, r)= {x~Xjd(x, A)<r}, 
where d(x, A) = inf{ d( x, a) 1 a~ A]. In the sequel, when a set A c X is 
considered as a metric space, it is understood that A retains the metric 
of x. 

Let G:X+ X(E) be any multifunction. G is said to be bounded, 
continuous if it is so as a function from X to the metric space X(E). G is 
said to be compact if the set G(X), where G(X) = UXEX G(x), is compact 
in E. Let J be a (Lebesgue) measurable subset of R. A multifunction 
G: J-t .X(E) is said to be measurable if for every U open in E the set 
{td G(t)nU#4} is measurable. Let A c X be nonempty. A single- 
valued function g: A + E such that g(x) E G(x) for every x E A is called a 
selection of G on A (a selection of G, if A =X). For any function g: X-t E 
we denote by g, the restriction of g to A, and by graph g the graph ofg. 

If J is a nonempty compact interval of R, by C(J, E) we mean the 
Banach space of all continuous functions x: J + E with the norm of 
uniform convergence. 

Let Jc R be a left-closed, bounded, nondegenerate interval. By a 
partition of J we mean a finite family { Jk } z = , of left-closed, nondegenerate, 
pairwise disjoint intervals Jk whose union is J. The family of all partitions 
of J is denoted P(J). If the intervals of a partition are of the same length 
/I, we say that /I is the step of the partition. 

If Jc R is bounded and measurable, m(J) stands for the measure of J. 
The length of a bounded interval Jc R is denoted, for short, by 1 JI. 

In the sequel the space Rx E (resp. Rx E x E) is supposed to be 
endowed with the norm max{ ItI, ilxli} (resp. max{lt(, (Ix/I, llvli )), where 
(t, x) E R x E (resp. (t, x, V) E R x E x E). As usual, Z (resp. N) denotes the 
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set of the integers (resp. integers n > 1). Given d E N, we denote by Zd the 
set of all ordered d-uples h = (h,, . . . . hd) of integers hi E Z, i = 1, . . . . d. 

Now let us consider a multifunction 

F:ZxX+%‘(E), (2.1) 

where I= [a, 61, X= B,(X,,, Y), X,E%?(E), and r >O. We say that F 
satisfies (H) if: 

(Hi) F is continuous on Ix X, 
(H2) the set A = F(I x X) is compact in E, 
(H,) O<b-a<r/M, where M>h(A,O). 

Let F satisfy (H). For u E X,, we consider the Cauchy problems 

and 
iE F(t, x), x(a) = u, (2.2) 

1Eext F(t, x), x(a) = u. (2.3) 

By a solution of (2.2) (resp. (2.3)) we mean a Lipschitzean function 
x: J -+ E, defined on a nondegenerate interval Jc Z containing a, with 
x(a) = U, satisfying the differential inclusion (2.2) (resp. (2.3)) for t E J a.e. 
We set 

A&‘~= {x: I+ E ) x is a solution of (2.2) for some u E X0}, 

A? extP= {x:Z+El x is a solution of (2.3), for some u E A’,}. 

The set A+?~ is nonempty and compact in C(Z, E). Thus the space A%‘~, 
endowed with the metric of uniform convergence, is complete. For F 
satisfying (H) we set 

YF= (f:ZxX+E(f’ IS a continuous selection of F}. 

By Michael’s theorem [23], Y;- is nonempty. For f~9~ and UE A’,, 
consider the Cauchy problem 

We set 
i =f(t, xl, x(a) = u. (2.4) 

P,= {x:Z-,Ejx is a solution of (2.4), for some UEA’~}. 

Clearly Pf is a nonempty compact subset of A?~. 
Now, let {Zn} c E*, //Z,l( = 1, be a sequence dense in the unit sphere of 

ET. Let ( ., . ) denote the pairing between E* and E. For 1 E E* and x E E, 
we put Z(x) = (I, x >. Let F satisfy (H). Following Choquet [ 10 Vol. II, 
Chap. 61, we define (Pi: Ix Xx E --) [0, + co[ by 



DIFFERENTIAL INCLUSIONS IN BANACH SPACES 473 

UEE\F(~, x). 

Let d be the set of all continuous aftine functions a: E -+ R. Let 
e,:IxXxE+[-cc, +GO[ begiven by~,(t,x,v)=inffa(o)JaEd, and 
a(z) S (~~(2, x, z) for every z E F(t, x)}. We define d,: Ix X x E -+ 
C-w +a[ by 

Some properties of d,-, the Choquet function associated to F, are reviewed 
in the next Proposition 2.1 (see [6], [4]). 

PROPOSITION 2.1. Let F satisfy (H). Then we have: 

(i) Foreuch(t,x)~IxXandv~F’(t,x)wehuueO~d,(t,x,u)<M2. 
Moreover, dF( t, x, u) = 0 if and only if v E ext F( t, x). 

(ii) For each (t, x) E Ix X, dF(t, x, .) is strictly concave on F(t, x), 
and concuue on E. 

(iii) d, is upper semicontinuous on Ix Xx E. 

(iv) For each x E JA!~ the function t -+ d,(t, x(t), i(t)) is nonnegative, 
bounded, and integrable on I. 

(v) If (x,} c ~4’~ converges uniformly to x E J&‘~, then we have 

I dF(t, x(t), a(t)) dt 3 lim sup dF(t, x,,(t), i,(t)) dt. 
I s n-+s I 

3. PARTITIONS TRANSVERSAL TO F 

In this Section we introduce the notion of a partition transversal to F 
and we establish some properties of such partitions which will be used 
later. 

Let F satisfy (H). Set 

c=x,+ IJ (t-u)coA, (3.1) 
rsf 

and observe that Cc X and C E ‘i%‘(E). Next, define 

./lr = (x: I-+ C/x is Lipschitzean with constant ,< M}. 

Clearly A’” is a compact convex subset of C(Z, E) containing J&!~. 

(3.2) 

4091 I57/2- I2 
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Now let us introduce the notion of a partition of Ix C transversal to F. 

DEFINITION 3.1. Let F satisfy (H). Let Z,eE*, I/1,1) = 1, i= 1, . . . . d. Let 
{Zk}p= r E 9(Z) be a partition of I of step fl, and let CI > 0. For k = 1, . . . . k, 
and heZd, h= (h,, . . . . hd), set 

where M is the constant in (H). The family W of all nonempty sets Ri is 
called a partition of Ix C transversal to F (corresponding to { Zj}f= , and 
(Zk)kko_ I of space step CI and time step p). 

Remark 3.1. 947 is a finite partition of Z x C, that is .94! is a finite family 
of nonempty pairwise disjoint sets whose union is Zx C. 

For any Rk E 9, the corresponding interval I, will be also called the time 
interval of Rt. Furthermore, by norm v(9) of 9! we mean the largest of the 
diameters of the sets Rk, when Ri ranges over 9’. 

LEMMA 3.1. Let F satisfy (H). Let A > 0. Then there exists a partition .9 
of Ix C transversal to F with norm ~(92’) < 1. 

ProoJ Let 9 = {Zi} c E*, 111,11 = 1, be a sequence dense in the unit 
sphere of E*. For each n E N, let 9& = (R:(n) > denote a partition of Z x C 
transversal to F, corresponding to (I,}:= r and {I:)?= I of space step ~1, and 
time step fl,, where tl, -+ 0 and /I, + 0 as n -+ + co. We claim that there 
exists n,c N such that for every n 3 n, we have v(g) < 2. Suppose the 
contrary. Then there is a strictly increasing sequence {n,} c N such 
that for every je N there exist a set RE(n,) E &,, and two points 
CL,, x,), (f,,, Y,) E Rf(n,), such that 

maxi Is,, - t,L lb,, -Y,,II 1 > 42. 

On the other hand, from the definition of Ri(nj), we have 

(3.3) 

IUX,,,-YJI <hi+ 24 Is,,- L,l Ban,+ 2wL,> i = 1, . . . . n,. 

Since CG,>, {Y,> are contained in C, a compact set, passing to sub- 
sequences (without change of notations) we have that x,, -+ x and y,, + y 
as j -P + co, for some x, y E C. Now let 1, E 9 be arbitrary. For every n, >, i 
we have 

lfi(x-Y)l d Ifi(xn,-Y~,)l + Ili((x-x,,,)-(Y-Yn,))l 

< %, + =fBn, + IIX - %I/ + II Y - Y,ll 
from which, letting j-+ + 00, it follows that Z,(x - y) =O. As lit 9 is 
arbitrary and 9 is dense in the unit sphere of E*, we have x =y. This 
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contradicts (3.3), because Is,,, - t,,] + 0 as j+ + co, and so the proof is 
complete. 

Remark 3.2. Under the hypotheses of Lemma 3.1, there exists a parti- 
tion @, of Ix C transversal to F, corresponding to (li}y=, and {Jr}:= I of 
space step o[ and time step PO, where 0 < Do < cr/(3M), with norm v(s) < 2. 

LEMMA 3.2. Let F satisfy (H). Let E >O and 13. > 0. Then there exists a 
partition 9 of Ix C transversal to F corresponding to {Ii>:‘= 1 and (Z,}p= , 
of space step LX and time step p, 0 < a < min(c )ZI, &/(3M)], with norm 
v(B) <I,, such that we have: 

(3.4) 

where K= { 1, . . . . k,), and 

K, = {k E K( there exists h E Zd such that graph x1, c Rt, Rt E 9}. 

ProoJ: Let E > 0 and A> 0. Let @, be as in Remark 3.2. Fix n EN such 
that n > max{&,/(s Ill), d/E}. Denote by W a partition of Zx C transversal 
to F, corresponding to (I,>:= 1 and 9 = {Jk}p=, , k, = mn, of space step CI 
and time step p=&/n. Clearly v(9) <1 and O<p<min{s II), cr/(3M)}. It 
remains to show that, for such 9, (3.4) is satisfied. 

Indeed, let x E M be any. Let J, E J$, 90 = {Jr} r= 1, and denote by 
tr, tr+l (t, < t,, ,) the end points of J,. For i = 1, . . . . d, set 
t+b,(t)=lj(x(t))-2Mt, tEZ, and observe that -M>tji(t)> -3M, tE1a.e. 
For some Rt E B we have (t,, x(tl)) E Ri, thus 

h,a < $;(t,) < (hi+ 1 )a, i = I, . . . . d. (3.5) 

Since t);(t)> -3M a.e. in J,, ll/;(t,)>h,cc, and b0<a/(3M), we have 

Il/,(t)BIC/i(t,)-3M(t-t,)3h;~-3Ma,>(h,-l)a, 

tEJ,, i=l,..., d. (3.6) 

As $, is continuous and strictly decreasing on J,, with $i( t,) z hicr, for each 
i= 1, . . . . d there exists at most one point T;E J, such that tii(ri)= h,cc. 
Suppose that ti is in the interior of J, (the argument is similar if zi is an 
end point of J,). Then, by virtue of (3.5) and (3.6) for i= 1, . . . . d we have 

and 

h;a < tii(t) < (hi+ 1)x, foreach t<T’,, tEJ, 

(h, - 1)cc < t,bi(t) < kia, for each t>ti, te J,. 
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From these inequalities it follows that if an interval Zk E 9 contains none of 
the points zi then, for some h’ E Zd, we have 

graph xl, c Ri’. (3.7) 

As the intervals I, E 9, I, c J,, containing some point z, are at most cl, it 
follows that in J, there are at most d intervals Zk E 9 for which (3.7) fails. 
Since the intervals J, E 9, are m, there are at most md intervals I, E 9 for 
which (3.7) fails. Hence 

for d/n < E and k,P = \I[. As XE .M is arbitrary, (3.4) is satisfied. This 
completes the proof. 

Remark 3.3. From (3.4) it follows that K, is nonempty, if 0 <E < 1 

Let 92 = { Ri} be a partition of Ix C transversal to F, corresponding 
to {li}:‘=, and {Zk}~cl of space step cx and time step b, satisfying the 
properties stated in Lemma 3.2. For each Ri E 9% consider a partition 
(Jj>p= 1 E 9(1,) of I,, where p =p(Ri), and Zk is the time interval of Rt. 
Set 

R:, j = Ri n (Jj x E), j=l , ..‘, p. (3.8) 

We agree to call J, the time interval of R:, j. Let 9’ be the family of all non- 
empty sets Ri j given by (3.8), when Rt ranges over 9. Clearly W’ is a finite 
partition of Z;( C, and 9’ is a refinement of 9. Now, set 

po=min (3.9) 

where po=max{p(R:)I R~EB?}, and co= min{ lJli j Rz,j~B?‘} (J, the time 
interval of Ri,,). Let 0 < p < po. For each Ri,, E BY, define 

R~.,(~)={(~,~)ER~,,I~EJ~(~),~,~+~~~~~(x)-~M~ 

<(A,+ l)z-pM,i=l,..., d}, (3.10) 

whereJj(~)=[t,+~,t,+,-~],andt,,ti+,(tj<ti+,)aretheendpointsof 
the time interval Jj of R: ,. As 0 <p < min{c,/2, or/(ZM)}, the definition of 
R:,,(p) makes sense. Deiote by 9?; the family of all nonempty sets R:,,(p) 
given by (3.10), when Rt, i ranges over 9’. Set 

A,= u $I (P). (3.11) 
R;,,(P)E”; 
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LEMMA 3.3. Let F satisfy (H). Let 0 <E < 1 and I,> 0. Let 9 he a parti- 
tion of I x C transversal to F with the properties stated in Lemma 3.2. Let 
B’,Wk and A,, with 0 < p < pO, be as above. Then we have: 

W\L) < 2E 14, fbr every XEN, (3.12) 

where I, = {t E II (t, x(t)) E A,}. Moreover, A,, is a nonempty compact subset 
of Ix c. 

Proof Let XE N be any. By Remark 3.3, the set K, is nonempty. Let 
k E K,, thus there exists an Ri E 9 such that graph xlk c Rf, where Z, is the 
time interval of Rt . Let Rz, j c Rt , Ri, j E 8, be any, and let J, = [ ti, t,+ 1] 
be the time interval of Ri,j. Since (t,, x(t,)) E Ri, for each i= 1, . . . . d we 
have h,ccd$i(tj)<(h,+ l)cc, where $j(t)=/,(x(t))-2Mt, tEZ. We claim 
that 

graph xJ,(p) = R~,,(P), (3.13) 

where Rt,&) is given by (3.10), and Jj(p)= [t,+p, ti+,-,a]. In fact, 
since i+&,(t) < - M, t E Z a.e., i = 1, . . . . d, for each t E J,(p) we have 

$i(t)<IC/i(tj)-M(t-tj)<(h,+l)cc-pM, i=l,..., d. (3.14) 

Similarly, for each t E J,(p) we have t,bi(t) > hir +pM, i= 1, . . . . d. From 
these inequalities and from (3.14), the claim (3.13) follows at once. As 
graph x,~ c Ri and Rt = UP=, Rt, j, by virtue of (3.13) we have 

m((fEzkI(f,x(t))4A~c))~m (,J (Jj\Jj(PL)) 62,a~u~22~0, 
j= 1 > 

and so 

m U {~EZ~I(&X(~))~A,} 
> 

~Gm&<~ 14, 
kEK, 

for ZJ < E /11/(2p,k,). From (3.15) and Lemma 3.2 we have 

(3.15) 

W\z,)=m U {t~zkl(~,x(t))#A,,) 
ktK, > 

+m 
i 

kei2J\K (fdxl (4 X(t)&f,,j) 

< & IZ( + & (I[ = 2E III, 
from which (3.12) follows, as x E M is arbitrary. The last statement of the 
lemma is evident. This completes the proof. 
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4. MAIN RESULTS 

In this Section we prove an existence and density theorem for the 
Cauchy problem (2.3). Our approach is based on the method of the Baire 
category. Here a fundamental role is played by the approximation 
Lemma 4.2. 

Let F satisfy (If). For 0 > 0, set 

dp(t, x(t), i(t)) dt < 6 . 

LEMMA 4.1. Let F satisfy (H). Then for every 0 > 0 the set A$ is open 
in AF. 

Proof. Let (xn} c JZ~\A$ be any sequence which converges uniformly 
to an x in A$!~. By Proposition 2.1 (v), we have 

s d,(t,x(t),$(t))dt>,limsup d,(t,x,(t),I,(t))dt>8, 
I I ,,++z I 

and thus x E .AZ~\J$‘~. This shows that J&~\ A0 is closed in Ap, completing 
the proof. 

LEMMA 4.2. Let F satisfy (H). Let f E Y;., and let 0 > 0 and 6 > 0. Then 
there exists a function g E YF such that, for every x E JV, we have 

s ddf, x(t), At, x(t))) dt -=z 0, (4.1) 
, 

and 

sup 
ii j 

' MS, x(s)) -f ($2 x(s))1 ds < 6. (4.2) 
IEI a 

Proof Let fey,., 8>0, and 6 >O. Let E be such that 

O<E<min 
0 6 

4(1 +M2) IZl’2(1 +4M) 121’ ’ ’ 

where A4 is the constant occurring in the assumption (H). Moreover, set 
Z=IXX. 

Step 1. (Local approximation off by functions taking values near the 
extreme points of F). 

Let (s, u)eZx C, where C is given by (3.1). Since f(s, U)E F(s, u) by 
Krein-Mil’man’s theorem there exist an integer P~,~E N, points 
u{,,eext F(s, u), j= 1, . . . . p\-,,, and numbers A&, 0<1!,,< 1, j= 1, . . . . p,,,, 
with A:,, + . . a + A?; = 1, such that 

(4.3 1 
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By Proposition 2.1 (i), (iii), d, is upper semicontinuous and vanishes 
at (s, 4 &), thus there exists O<qy,,< c/3 such that, for every 
(f, x) E BA(s, ~1, ,&) and every 0 E BE(ui,,, pf,,), j= 1, . . . . P,,,, we have 

d,( t, x, 2)) < E. (4.4) 

As F is continuous at (s, u) and vi,, E F(s, u), there exists 0 < p,:,, < py,,, such 
that for every (t, X) E B,((s, u), p,:,,) we have 

F(t> -u) n BdV/r,u, P:.,, # 4, j= 1, . ..) p, U. 

By Michael’s theorem [23], there exist pS,. continuous functions 
zi,,: B,((s, u), pi,,) -+ E such that for every (I, x) E B,((s, u), p,:,,,) we have 

z:,(f, xl E F(f, xl n h(~:,u~ P:,,), j=l 2 .‘., PA,,. (4.5) 

By the continuity offat (s, u), and by virtue of (4.5) and (4.4), there exists 
0 <P&U < I?:., such that for every (t, x) E B,((s, u), P,~,,) we have: 

llf(c xl -.fh u)ll -=c ;> (4.6) 

j= 1 9 . . . . P.S... (4.8) 

By construction, the functions z:,~ assume values near the extreme points 
of F(s, U) (by virtue of (4.8)), and approximatef (by virtue of (4.3), (4.6), 
and (4.7)). 

Step 2. (Construction of y, a discontinuous selection of F on Ix C). 
The family {z((s, u), p,,,) I (s, U) E Ix C} is an open covering of Ix C, 

a compact set, and so it contains a finite subcovering, say 

Let 1> 0 be a Lebesgue number of this subcovering. By Lemma 3.2, for the 
given E and 2, there exists a partition &? = { Ri} of Ix C transversal to F, 
corresponding to {I,} :‘=, and { Zk}F=, of space step cc and time step /3, 
0 <p-c min{e 111, a/(3M)}, with v(a) <I, such that (3.4) is satisfied. 
Clearly each R~EB is contained in at least one ball of the family (4.9) for, 
by construction, Rf has diameter strictly smaller than A. Now let Cp: .%? + N 
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be a function which assigns to each R: E W one and only one integer, fixed 
in an arbitrary way among the integers n, 1 d n < n,, such that 

R; = Bz(bn, unh P,,), where P,, = P.,...,. (4.10) 

Take Rt E 9 and suppose @(Ri) = II. Then (4.10) is fulfilled and, from the 
construction in Step 1, there exist a p, =p,,,., E N, pn numbers Al, = Aifl,U” 
with O<I.L<l, and AA+ . . . +A:=], pn points o~=o~~,,~~extF(s,,u,), 
and p,, continuous selections zI; = z:~,~~ of F, defined on B=((s,, un), p,), 
such that we have 

and, for every (t, xl E BAb,, 4, P,), 

llf(c x) -f(%, %)I1 <$ 

Ilzi,(t, x) - II;11 < 5, j= 1, ..., pn, 

(4.11) 

(4.12) 

(4.13) 

d,(t, x, z$, xl) < 5 j=l 3 ‘.., Pn. (4.14) 

Now we are ready to construct y, a perhaps discontinuous selection of F 
on Ix C. To this end, let R;E~ be any and let @(Ri)=n. Let p,, iA, II;, 
and z;‘,, j= 1, . . . . pit, correspond accordingly so that (4.1 l)-(4.14) are 
satisfied. Denoting Zk the time interval of Rk, construct the partition 
{Ji};:, E 9(1,) of Zk in p,, intervals J, of length 

and set 

IJ,I =A; l&l, j= 1, . . . . pn, (4.15) 

Ri,, = Rt n (J, x E), j= 1, . . . . pn. (4.16) 

As Rt ranges over 9, the family W’ of those sets R:,j, given by (4.16), 
which are nonempty, is a finite partition of Ix C. Define y: I x C + E by 

r(4 x) = z:ct, XL if (t,x)~Rt,~. (4.17) 

This definition is unambiguous. Moreover, as the functions z!, j= 1, . . . . pn 
are continuous selections of F on B,((s,, u,), p,) 2 RE, it follows that y is 
a perhaps discontinuous selection of F on Ix C whose restriction to each 
set Rt , is continuous. 
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Step 3. (Properties of y). 
For every x E JV we have 
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I dAt> 4th y(t, x(t))) dt < fj> (4.18) 
I 

sup 
!lJ 

’ CY(S, x(s)) -fb, -+))I ds 
Ii 
< ;. (4.19) 

,E, fJ 

Indeed, let x E JV be any. By construction SS! satisfies the properties stated 
in Lemma 3.2, so we have 

m (ksg,,,.zk) Cc IZl, 
(4.20) 

where K= { 1, . . . . k,}, and 

K, = {k E Kj there exists h E Zd such that graph x1, c R;, Rt E 9;). 

As 0 <E < 1, the set K, is nonempty. 
Let k E K,. Then there exists an R; E %Y such that graph x1, c Ri (Zk the 

time interval of Ri) and, for some 1 < n < yt,,, (4.10) is satisfied. Moreover, 
with the notations of Step 2, we have 

graph -xJ, c Rk,j c BA(s,, ~1, P,,), j= 1, . . . . pn, (4.21) 

where (.Z,},P=, E F(Zk) satisfies (4.15), and the sets R;,, are given by (4.16). 
As consequence of (4.21) and (4.17) we have 

I44 x(t)) = --i,(t, $t)), tEJi, j=l,..., pn. (4.22) 

Now we prove the following inequalities: 

I ddt, x(t), At> x(t))) dt < E lZ,I, kEK,, (4.23 
fk 

(ii ,k Cy(tv x(t)) -At, x(t))1 dt < 8 IZA, kc K,. (4.24) 

Let kc K,. By virtue of (4.22), (4.21) (4.14), and (4.15) we have 

/ 
Ik 

d,(t, x(t), y(t, x(t))) dt = 2 s d,(t, x(t), z;i(t, x(t))) dt 
j=l Ji 

<E f lJjl =E lZkl, 
,=I 
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and so (4.23) is true. It remains (4.24). By virtue of (4.22) we have 

,f, j, Cz”,(t, x(t))-At, x(t))] dt 11 

G 2 j Cllz’,(t, x(t)) - u’,ll + Il./It, x(t))-fb,, dll dt 
j=l 4 

+ II ,;, jJ, Cd -f(sn, 41 dt I(. 

Hence, by using (4.21), (4.13), (4.12), (4.15) and (4.11) we have 

Cy(t, x(t)) -At, x(t))1 dt 

+ 2 (0; -S(s,, u,)) IJ.1 =2 II I + 5 q$i,-f(&, u,) IZkl <E IZkl, 
II j=l ‘II 3Ek lljzl II 

and so (4.24) is also satisfied. 
Now we are ready to prove (4.18) and (4.19). Let XEJV. By virtue of 

(4.23) and (4.20) we have 

jI dF(t> 4th y(t, x(t))) dt = c j dAtr 4th y(t, x(t))) dt 
ktK, 4 

+ ks;, K. s, d,(t, 4th y(t> x(t))) dt I 
< kFK 8 (I,\ + 1 

kcK\K, 

M2 Izkl <& 111 +d’f’ I11 + 

for 8 <o/(4(1 + M2) IZI), and so (4.18) is true. It remains (4.19). Let t EZ be 
any, thus t E Z, for some x E K. We have 
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+ c I( j 
ktK\K, Ik 

CY(S, x(s)) -f(s, x(s))1 ds!i + l,L Il~h x(s)) -fk x(s))ll ds. 
/ 

From this, by virtue of (4.24) and (4.20) recalling that IZrj =fi<s II), we 
have 

[-As, x(s)) -.I+, -+))I ds 
II 

CkFK E/zkl+ c 2~l~,l+2~~l~l 
keK\K, 

<E 111+2&M 111+2&M 111 =s(1+4M) II), 

from which (4.19) follows at once, because t E Z is arbitrary and E < 
h/(2(1 + 4M) VI ). 

Step 4. (Construction of a continuous selection g of F approxi- 
mating y). 

By restricting y to an appropriate compact set A, c Ix C we make y a 
continuous selection of F on A,. By Michael’s theorem [23], y admits a 
continuous extension g, say, which is also a selection of F. It is shown that 
such g satisfies the properties stated in Lemma 4.2. 

We retain the notations of Step 2. Let .6% and W’ be as in Step 2. Let 

p. = min{c,P, d(2M), E M/(2~, po)I, 

where co = min{ lJ,I I Ri,j~W) (J, the time interval of Ri,,), and 
po=max{pnI 16n <No}. Fix 0 <p <po. Denote by g; the family of all 
nonempty sets Ri,i(p), given by (3.10), when RL, j ranges over 9’ and let 
A, be defined by (3.11). By Lemma 3.3, A,, is a nonempty compact subset 
of Ix C. As y, restricted to A,, is a continuous selection of F, by Michael’s 
theorem [23] there exists a continuous selection g of F such that 

g(c x) = y(t, -xl, for every (t, x) 6 A,,. (4.25) 

Now let x E JV” be any. Set Z, = { t E Z I (t, x(t)) E A,}, and observe that 
by Lemma 3.3 we have 

m(Z\Z,) < 2E IZI. (4.26) 
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By virtue of (4.25), we have 

j dAt> x(t), g(t, x(t))) dt 6 j d,(t, -u(t), y(t, x(t))) dt I I 

+ I IdAt, -4th g(t, x(t))) - dAf, x(t), 144 x(t)))1 dt. I?I, 
From this, in view of (4.18), Proposition 2.1(i), and (4.26) we have 

s I 
dF(trx(t), g(t,x(t)))dt<~+M2m(l\l,)<~+2M2 111 <8, 

where the last inequality holds since E < O/(4(1 + M2) 111). Hence (4.1) is 
satisfied. It remains (4.2). For each t E I we have 

;II 
’ MS> x(s)) -f-b> x(s))1 ds u d j, II&, x(s)) - yh x(s))ll ch 

+ j’ CY( I( 3, -$s)) -f(s, 4s))l ds u !I 

From this, by virtue of (4.25), (4.19), and (4.26) we have 

il ’ MS, x(s)) -f(s, x(s))1 ds 0 II 
< j,,,,, II&> x(s)) - 10, x(s))ll ds +; 

<2Mm(z\z.y)+q<4sMIIl ++, 

where the last inequality holds since E < d/(2( 1 + 4M) 111). Hence also (4.2) 
is satisfied. As g E Y; and, for x E JV arbitrary, (4.1) and (4.2) are satisfied, 
Lemma 4.2 is proved. 

LEMMA 4.3. Let F satisfy (H). Let f E 9& and let E > 0. Then there exists 
6 = c~,(E) > 0 such that, for x E JH~ any, 

sup 
Iri 

' implies x E B,,,( P,, E). (4.27) 
tsl a 

C4s) -f (8, x(s))1 ds 1 < 6 

ProofI If the statement is not true, there exist KEYS, E >O, and a 
sequence {x, ) c AF\ BMf( P,, E) satisfying 

C&(s) -f( s, x,,(s))] ds < 1 
n’ 

nEN. 
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As JI’~ is compact, a subsequence of {xn} converges uniformly to a point 
x E P,, and so for n large enough we have x, E B,.,(P,, E), a contradiction. 
This completes the proof. 

LEMMA 4.4. Let F satisfy (H). Let SE Y& and let E > 0 and 0 > 0. Then 
there exists a function g E Sp, such that P, c A& n B,Rf(P/-, E). 

Proof Let SE $, E > 0, and 6 > 0. By Lemma 4.3 there exists 6 > 0 
such that (4.27) holds, for x E AF. By Lemma 4.2, there exists go YF 
(corresponding to f, 0, and 6) such that, for every x E JV”, we have 

I d,(t, x(t), s(t, x(t))) dt < 0, I 
(4.28) 

and 

MS, x(s)) -f(s, x(s))1 ds 
il 

< 6. (4.29) 

Now let x E P, be arbitrary. As i(t) = g(t, x(t)), t E Z, from (4.29) and (4.27) 
it follows that XE B,,,(P/, E). Moreover, (4.28) implies that XE J&. Hence 
x E -k’@ n B&(,(P,-, E) and so P, c A0 n B,,(Pf, E), as x E P, is arbitrary. 
This completes the proof. 

THEOREM 4.1. Let F satisfy (H). Let f E Y, and E > 0. Then 
A! extFnB.H,(Pf, E)Z# and, in particular, the Cauchy problem (2.3) has 
solutions. 

ProojI Set 8, = I/n, n E N. By Lemma 4.4, there exists g, E 5f$ such that 
P,, = B.,,(Pp 8). H ence, as P,, is compact, there exists 0 < ‘I, < 8, such 
that 

(4.30) 

Similarly, there exists g, E ,4pF such that Pgz c J&, n B,(P,,, ql). This set is 
open in dF, for &ZO, is so by Lemma 4.1. As PR, is compact, there exists 
0 < q2 < 8, such that 

k&‘,2, ~12) = -41, n B.&$, > ~1). 

Continuing in this way gives a decreasing sequence of nonempty compact 
subsets B,xF(PRn, q,,) of &Z,, with g, E Y, and 0 < rn < O,,, satisfying 

LF(P,“,P )In+ 1 I= JG, n B.KF(pPn9 vln), nEN. 
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Let x E k’F be a point belonging to each set BdgKF(PB., y,), IZ EN. By (4.30) 
we have x E BdA/,(P,, E). Moreover, since x E J&n for every n E N, we have 

s dF( t, x(t), i(t)) dt = 0, 
I 

and thus, by Proposition 2.1 (i), m(t) E ext F( t, x(t)), t E I a.e.. Hence 
XEA? ext Fn BAF(P,, E). The last statement of Theorem 4.1 is evident. This 
completes the proof. 

5. SOME EXTENSIONS 

The existence and density results proved in Section 4 under a continuity 
assumption on F are extended in this Section to the case in which F is 
Caratheodory. 

Let F be the multifunction given by (2.1). We say that F satisfies (H’) if: 

(Hi) for each t E Z the multifunction x + F(t, x) is continuous on X, 
and for each x E X the multifunction t + F(t, x) is measurable on Z, 

(H;) the set A = F(lx is compact in E, 
(Hi) 0 < h - a < r/M, where M > h(A, 0). 

Let F satisfy (H’), and let AtF, J?‘~,, F, J%‘~, and .Af be defined accord- 
ingly. The set Jp is nonempty and compact in C(Z, E). Hence JY~, 
endowed with the metric of uniform convergence, is complete. 

A selection f of F is said to be a Carathiodory selection of F if for each 
t E I the function x --) f (t, x) is continuous on X, and for each x E X the 
function t -+f(t, x) is Bochner measurable on I. For F satisfying (H’) we 
set 

Y> = {f: Z x X -+ E 1 f is a Caratheodory selection of F}. 

By virtue of the theorems of Scorza Dragoni [19] and Michael [23], the 
set Y> is nonempty. 

Remark 5.1. If F satisfies (H’), then the properties (i), (ii), (iv), (v) in 
Proposition 2.1 are satisfied. 

The following Lemma 5.1 can be proved as Lemma 4.1. 

LEMMA 5.1. Let F satisfy (H’). Then for every 9 > 0 the set A& is open 
in AF. 

LEMMA 5.2. Let F satisfy (H'). LetfEY>., and let %>0 and 6 >O. Then 
there exists a function g E 9’; such that, for every x E Jf, we have 

s d,(t, 4th At, x(t))) dt < 9, (5.1) I 
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and 

Cgb, x(s)) -f-b, x(~))l ds 
il 
< 6. (5.2) 

ProoJ: Let f~ Yk-, (3 > 0, 6 > 0. By Scorza Dragoni’s theorem [19], 
there exists a nonempty compact set J c I, with m(Z\J) < 
min{8/(2M2), 6/(8M)}, such that F and f restricted to the set Jx X are 
continuous. By a continuous extension theorem for multifunctions [%], 
there exists a continuous compact multifunction i? Ix X+ g(E), with 
values contained in iZ6 A, such that p( t, X) = F( t, x) for every (t, x) E J x X. 
By Michael’s theorem [23], there exists a continuous selectionTof P such 
that r( t, x) =f( t, X) for every (t, x) E J x X. Clearly J$ c N. 

As P satisfies (H) and f~ Yp, by Lemma 4.2 there exists g E 9~ such that 
for every x E JV we have 

s ddt, x(t), i?(t, x(t))) dt < ;, (5.3) 
I 

and 

Since g E Y$, and &t, x) = F(t, x) for every (t, X) E J x X, there exists a 
Caratheodory selection g of F such that g(t, x) = g(t, x) for every 
(t, x) E Jx X. As gE Y”;, to complete the proof it remains to show that for 
this g, and for x E JV arbitrary, (5.1) and (5.2) are satisfied. 

Indeed, let x E N. For every t E J we have F(t, x(t)) = p( t, x(t)) and 
g(t, x(t)) = g(t, x(t)). In view of these relations, of (5.3) and of Proposi- 
tion 2.1 (i), we have 

j dAt, x(t), g(t, x(t))) dt 6 1 dF(t, x(t), s(t> x(t))) dt 
I I 

+ j IdAt, -4th dt, x(t))) - ddt, x(t), ,i?(t, x(t)))1 dt 
f\J 

for m(Z\ J) < 13/(2M*). Hence (5.1) is satisfied. To prove (5.2), observe that 
g(t, x(t)) = f(t, x(t)) and f(t, x(t)) =f(t, x(t)), for every t E J. In view of 
these equalities and of (5.4) we have 
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’ iIds> x(s)) -fb x(s))1 ds <sup j’ CS( 111 ;( 
rEI u 

s, x(s)) -f(st x(s))1 ds )( 

+J‘,;, [IlId 3, x(s)) -& x(s))11 + Il.%, x(s)) -fk -+))IlI dy 

for m(Z\J) < 6/(8M), and so also (5.2) is satisfied. As x E .N is arbitrary, 
the proof is complete. 

The following Lemma 5.3 and Lemma 5.4 can be proved as Lemma 4.3 
and Lemma 4.4, respectively. 

LEMMA 5.3. Let F satisfy (H’). Let fEY>, and let E >O. ‘Then there 
exists 6 = c!~~(E) >0 such that, for XE A%?~ any, the implication (4.27) is 
satisfied. 

LEMMA 5.4. Let F satisfy (H’). Let ,f E Y>, and let E > 0 and 8 > 0. Then 
there exists a function g E 9’; such that P, c AZ0 r\ B,k,,(P,, E). 

By virtue of Lemma 5.4, Lemma 5.1, using the same argument of 
Theorem 4.1, one can prove the following Theorem 5.1. 

THEOREM 5.1. Let F satisfy (H’). Let feP'> and E > 0. Then 
AeXt.n B,,(Pf, E) #qS and, in particular, the Cauchy problem (2.3) has 
solutions. 

We say that the multifunction F, given by (2.1), satisfies (K) if: 

(K,) F is continuous on Ix X, 
(K2) the set A = F(Zx X) is bounded, that is h(A, 0) <M, and there 

exists a constant L > 0 such that a(F(Z x Y)) < La(Y) for every Y c X, 
(K3) O<b-a<min{r/M, l/L}. 

Suppose that F satisfies (K), and let JZF, J&‘~,, F, yF be defined accordingly. 
It is routine to see that J+?~- is nonempty and compact in C(I, E). Hence 
AF, endowed with the metric of uniform convergence, is complete. 
Moreover for each f E Y;-, Pr is a nonempty compact subset of &ZF. As F 
satisfies (K), there exists a set C E g(E), Cc X, such that, for every x E JZF 
and t E Z, we have x(t) E C. With this choice of C, let M be given by (3.2). 

Remark 5.2. Lemmas 4.1, 4.2, 4.3, and 4.4 remain valid with assumption 
(K) in the place of(H). 
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By virtue of Remark 5.2, using the same argument of Theorem 4.1, one 
can prove the following Theorem 5.2. 

THEOREM 5.2. Let F satisfy (K). Let SE& and E ~0. Then 
=,%,I F 0 B.&F (Pf, E) f 9 and, in particular, the Cauchy problem (2.3) has 
solutions. 

6. SOME APPLICATIONS 

In this Section, as applications of the previous results, we present an 
existence theorem for a boundary value problem and two characterizations 
of convex valued multifunctions. 

Let F be given by (2.1). For u E X0 and t E Z, we set dF(u; t) = 
(x(t)Jx:Z-+E is a solution of (2.2)) and J&,~-(u; t)= (x(t)/x:Z+E is a 
soluton of (2.3)). 

THEOREM 6.1. Let F satisfy (H’). If there exists a,, with a < a, 6 b, such 
that dF( u; a, ) c X0 for every u E X0, then the boundary value problem 

i E ext F( t, x), x(a) = x(al) (6.1) 

has at least one solution. 
Proof: Let f E YL.. We show first that the boundary value problem 

i=f(t, XL x(a)=x(a,) (6.2) 

has solutions. Indeed, by Scorza Dragoni’s theorem [ 191, there is a 
sequence {Zn} of nonempty compact sets Z, c Z, I,, c I,,, , , n E N, with 
m(Z\Z,,) +O as n -+ + co, such that the restriction of f to I,, x X is 
continuous. For each n EN, let v,, : Ix X+ E be a locally Lipschitzean 
function, with values contained in m A, such that 

(, .;l;'p,, llcpn(t, x) -f(t, x)ll <i. 3 n 
By adapting an argument from Cellina [7], it can be proved that, for each 
E >O, there exists an ~,EN such that &JX,; a,) c B,(X,, E) for every 
n 2 n,. Using this, one can construct a subsequence { cp,,) of { cp,, j such that 
,Oe,,,(X,; a,) c BE(X,,, l/k), k~ N. By the theorem of Kakutani [21] and 
Fan [16] for each k E N the multifunction u + B,(&Ju; a,), l/k) n X0, 
from X0 to the nonempty compact convex subsets of X,,, has a fixed point 
uk, say. Hence, for each k E N, there exists a solution xk of the Cauchy 
problem A? = q,,(t, x), xk(a) = uk, such that Ilxk(a) - xk(a,)jl d l/k. Since 
{xk} c A&‘~ is compact, a subsequence, say {xk ), converges uniformly to 

4,9,157.‘2-13 
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some x E A&. Clearly x(a) = x(ai) E X0. Moreover, x is a solution of (6.2), 
because for every t E I we have 

X(t) - X(Q) - /‘fb X(S)) ds 
L1 

iif(h X(S)) - 4’,& xk(s))I/ & 

(6.3) 

where ck = supt E ] 11x(t) - xk(t)ll + 11x(a) - xk(a)il, and the right-hand side 
of the inequality (6.3) vanishes as k -+ + co. 

By virtue of Lemma 5.4, Lemma 5.1, using the same argument of 
Theorem 4.1, one can construct a decreasing sequence of nonempty 
compact subsets B,,,(Pgn, q,) of A%‘~, with g, E P’4p; and 0 < ye,, < 0, = l/n, 
satisfying 

For each HEN, let x, be a solution of the boundary value problem 
i = g,(t, x), x(a) = x(ai). Since {xn} is compact, a subsequence converges 
uniformly to some x E A%‘~. Clearly, x(a) = x(a, ). Moreover x E A& F, 
because x lies in each set Jz’~,, n EN. Hence x is a solution of the boundary 
value problem (6.1). This completes the proof. 

Remark 6.1. The set &e,t fi (u; a, ) is, in general, neither closed nor 
convex. Nevertheless, by Theorem 6.1, the multifunction u --) s4,,, F( u; a, ), 
from X,, to the nonempty subsets of X0, has at least one fixed point. For 
the multifunction u -+ s$(u; a,), where F is continuous (or, more generally, 
upper semicontinuous) with values in V(E), the existence of a fixed point 
has been proved by Cellina [7] by an approximation method which is not 
applicable under the assumptions of Theorem 6.1. It is worth noting that 
Theorem 6.1 is no longer true if in (H’) the assumption (H’, ) is replaced by 
“I; is upper semicontinuous on Ix X.” 

Given a multifunction G: I x X + x(E), where I = [a, h] and 
X = &(u, r), u E E, r > 0, consider the Cauchy problem 

2 E G( t, x), x(u)=u. (6.4) 

We set A?& = (x: Z -+ Elx is a solution of (6.4)}, and A&(u; t) = 
(x(t)Jx:Z-*E is a solution of (6.4)}, 2~1. By %G:ZxX*V(E) we 
denote the multifunction defined by (E G)( t, x) = z G(t, x), (t, x) E Ix X. 

Remark 6.2. If G satisfies (H’), then AextEG c J&. Indeed, since i% G 
satisfies (H’), by Theorem 5.1 the set A?e,tWG is nonempty. Moreover, by 
Mil’man’s theorem [24], for each (t, x) E Z x X we have ext= G(t, x) c 
G(t, x), and so k!,xtmc c A&. 
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THEOREM 6.2. Let G: Ix X-+ X(E) satisfy (H’). Then the following 
statements are equivalent: 

(i) JZ& is closed in C(I, E), 
(ii) there exists a measurable set I, c I, with m(I\I,) = 0, such that on 

the set 2 = {(t, x) I t E I,, x E s&(u; t)} the multifunction G is convex valued. 

Proof. It suffices to show that (i) implies (ii), the reverse implication 
being known. So let G: Ix X+ X(E) satisfy (H’), and suppose that J?‘~ is 
closed in C(I, E). By Scorza Dragoni’s theorem [19], there exists a 
sequence {In} of nonempty pairwise disjoint measurable sets I, satisfying 
the properties: (j) I,, c ]a, b[; (jj) m(I\lJ, I,,) = 0; (jjj) each point of I,, is a 
density point; (jv) the multifunction G restricted to I,, x X is continuous. Set 
IO = UJ,,. 

We claim that, with such I, in (ii), the multifunction G is convex valued 
on Z. Indeed, suppose the contrary. Then there exist VEN, ~EI,, and 
~EJ&(u; t) such that G(z, 0 is not convex. Let DE (Co G(z, <))\G(z, 5). 
Let G,, denote the restriction of G to I,, x X. By Michael’s theorem [23], 
there exists a continuous selection g,: I, x X+ E of Co G, such that 
g,,(r, t)= v. Since d(g,,(z, t), G,.(r, <))>O, and g,,, G,, are continuous at 
(5, 0, there exists a z’ E I,,, t’ > z, such that 

d(g,.(t,z), G,,(t,z))>O,foreach tEJandzE&& (r’-T)M), (6.5) 

where J”= I,, n J and J= [r, z’]. Denote by G, the restriction of G to Jx X, 
and let g,: J x X+ E be a Caratheodory selection of Co G, such that 
g,(t, z) = g,(t, z) for every (t, z) E Jx X. Furthermore, denote by && 
(resp. PR,) the set of all solutions z: J+ E of the Cauchy problem 
1 E G,(t, z), Z(T) = 4 (resp. i =gJ(t, z), Z(T) = 5). Clearly, J?&, and PXI are 
nonempty. Let ZE PgJ be any. Since for each t ET we have 
g(t, z(t)) =g,,(t, z(t)), G.At, z(t)) = G,(t, z(t)), and Ilz(t) - 511 G CT’ - TIM, 
from (6.5) we have 

1 J 44th GAt, z(t))) dt 2 j” dk,(t, z(t))> G,(t, z(t))) dt 7 

= I 7 d(g,,(t, z(t)), G,.(t, z(t))) dt > 0, 

for 3 has measure m(j) > 0. As z E P,, is arbitrary, it follows that 

(6.6) 
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On the other hand, by virtue of Theorem 5.1 and Remark 6.2, one can 
construct a sequence {z,, 1 c ~8’~~ such that 

As {zn} is compact, there exists a subsequence, say {z,, >, which converges 
uniformly to some z E P,. From (6.6), one has z 4 J&/. Now 5 E J&(u; T), 

thus there exists a ~EJ& such that Y(T) = t. For every n EN, define 
x,: I-+E by 

Y(t)> tE [a, 71 
x,(t) = z,,(t), t E [T, T'] 

w,(t)9 t E CT’, bl, 

where w,: [T', b] -+ E is any solution of the Cauchy problem w’ E G(t, w), 
w(T') =z~(T'). Clearly {xn} c J.%$. As {xn} is compact, there is a sub- 
sequence, say {x,1, which converges uniformly to a function x E J%‘~~. 
Since x(t) = z(t) for every t EJ, it follows that x $ J&. Hence ~8’~ is not 
closed in C(Z, E), a contradiction. This completes the proof. 

Let I= [a, b[, a < 6, and let X= B,(I), Y), where D is a nonempty subset 
of E, and Y > 0. Let G: Ix X + X(E) be given. For T E I and 5 E D, consider 
the Cauchy problem 

.i E G( t, x), X(T) = i’. (6.7) 

Remark 6.3. Let G satisfy (H’). Then it is easy to see that for each T E I 
there exists a 6, > 0 such that for every 5 ED the Cauchy problem (6.7) has 
solutions x: I, -+ E defined on Z, = [T, T + S,]. 

For (7, [)EIxD, set A;‘= {x: I, -+ El x is a solution of (6.7)) and 
observe that, if G satisfies (H’), then J&‘;< is a nonempty subset of C(I,, E). 

The following theorem, of the type obtained by Tolstonogov 1321 and 
Cellina and Ornelas [9], can be proved as Theorem 6.2. 

THEOREM 6.3. Let G satisfy (H’), with I and X as above. Then the 
following statements are equivalent: 

(i) there exists a measurable set J, c I, with m(Z\J,) = 0, such that 
for every (T, 0 E J, x D the set A?2c is closed in C(Z,, E); 

(ii) there exists a measurable set I, c I, with m(Z\I,) = 0, such that on 
the set I, x D the multifunction G is convex valued. 
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