-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

Journal of the Association of Arab Universities for Basic and Applied Sciences (2016) 20, 61-67

University of Bahrain

Journal of the Association of Arab Universities for
Basic and Applied Sciences

www.elsevier.com/locate/jaaubas
www.sciencedirect.com

07

JAAUBAS

ORIGINAL ARTICLE

Solution of fourth order three-point boundary value () con
problem using ADM and RKM

Ghazala Akram “, Irfan Ahmad Aslam

Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan

Received 1 November 2013; revised 4 May 2014; accepted 31 August 2014

Available online 13 November 2014

KEYWORDS Abstract

Boundary value problems;
Approximate solution;
Gram-Schmidt orthogonali-
zation process;

Adomian decomposition
method;

Reproducing kernel method

In this paper, a computational method is proposed, for solving linear and nonlinear
fourth order three-point boundary value problem (BVP) and the system of nonlinear BVP. This
method is based on the Adomian decomposition method (ADM) and the reproducing kernel
method (RKM). The solution of linear fourth order three-point boundary value problem (BVP)
is determined by the reproducing kernel method, and the solution of nonlinear fourth order
three-point BVP is determined using the combination of Adomian decomposition method and
reproducing kernel method. The approximate solutions are given in the form of series. Numerical
results are shown to illustrate the accuracy of the present method.

© 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Fourth order ordinary differential equations are models for
bending or deformation of elastic beams and therefore have
important applications in engineering and physical sciences.
Two-point and multi-point boundary value problems for
fourth order ordinary differential equations have attracted a
lot of attention. Two-point boundary value problems have
been extensively studied. Multi-point boundary value prob-
lems arise in a variety of Applied Mathematics and Physics.
Many authors have studied the beam equation under various
boundary conditions and by different approaches (Graef
et al., 2003, 2009). Sufficient conditions for the existence and
non-existence of positive solutions for three-point boundary
value problems are established by Graef et al. (2009). Siddiqi
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and Ghazala (2007) determined the solution of a system of
fourth order boundary value problems using cubic non-poly-
nomial spline method. Ghazala and Hamood (2012) used
RKM for the solution of fourth order singularly perturbed
boundary value problem. Ghazala and Hamood (2011) used
RKM for the solution of fifth order boundary value problem.
Adomian decomposition method has been used to solve lin-
ear and nonlinear ordinary differential equations (Abbaoui
and Cherruault, 1995; Biazar and Shafiof, 2007; Mestrovic,
2007). This method provides the solution in a rapid convergent
series with computable terms. However, for the solution of
boundary value problems using ADM, it is necessary to deter-
mine some unknown parameters and therefore, it is required to
solve nonlinear algebraic equations. Geng and Cui (2011) pro-
posed a method for solving nonlinear second order two-point
BVP by the combination of ADM and RKM. The fourth
order three-point BVP described in this paper has been solved
by extending the method developed by Geng and Cui (2011).
The fourth order beam equation can be considered, as
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o (x)u® (x) a1 (x)u) (x)+ar (x)u? (x)+as (x)u) (x)
Fas(¥)u(x) = flx) + g(x,u(x), 0< x < 1 (1.1)
u(0) =7y, u(0) =y, wu(w) =7y, u(l)=y;.
where o € [0, 1] is a constant, ;(x), f(x) € C[0,1],i =0,1,2,3,4
and g(x,u(x)) is infinitely differentiable w.r.t u(x).
The nonhomogeneous boundary conditions

u(0) =75, uV(0) =7y, u(@) =7y u(l) =7
can be reduced to homogeneous boundary conditions, as
u(0)=0, uV(0)=0, u(e)=0, u(l)=0.

The operator form of Eq. (1.1) can be considered, as

{Lu(x) = 1) + glxu(x)), 0 < x <1

u(0) =7y,  uV(0) =y, wu(@) =7y, u(l)=ry;,
sl

where L = ay(x) G + al(x)% + ar(x) ;’7 + a3(x) £+ ay(x).

(12)

The rest of the paper is organized as under:

In Section 2, definition and a derivation of reproducing
kernel spaces are presented. In Section 3, a reproducing ker-
nel satisfying three-point boundary conditions is constructed
and the solution for linear fourth order BVP using repro-
ducing kernel Hilbert space is presented. In Section 4, Ado-
mian decomposition method is discussed and then combined
formula of ADM and RKM is determined for the solution
of nonlinear BVP. In Section 5, four examples are presented
to demonstrate the usefulness of the method.

2. Reproducing kernel spaces

Definition 2.1. Let H be a Hilbert space of functions on a set

X. Let (f,g) be the inner product and || f|| = +/(f,f) be the
norm in H, for f and g € H. The complex valued function

K(x,y) of x and y in X is called a reproducing kernel of H if the
following are satisfied:

(i) Foreveryx, K,(v)=K(x,y) asafunction of y belongs to H.
(if) The reproducing property: for every x € X and every

feH, f(x) = {f,Ky).
2.1. Reproducing kernel space W3[0, 1]

The reproducing kernel space W;[0,1] is defined by

W300,1] = {u(x)|u(x),i=0,1,2,3,4 are absolutely con-
tinuous real valued functions in [0,1],u®(x) € L?[0,1],
u(0) = 0,41 (0) = 0,u(1) = 0}.

The inner product and norm in Wg[O, 1] are defined respec-
tively, as

()30} = > O00) + [ ) ),

u(x), v(x) € W3[0, 1].

(u(x), u(x)),

A
9
[N

b=

[Jull = u(x) € w3l0,1].

2.2. Reproducing kernel space Wi[0, 1]

The reproducing kernel space W3[0, 1] is defined by

WA[0,1]= {u(x)|u(x) is absolutely continuous real valued
function in [0, 1],uV(x) € L*[0,1]}.

Also the inner product and norm are defined respectively,
as

u(x), v(x) € W0, 1]. (2.3)
(u(x),u(x)), u(x) € wio,1]. (2.4)

W; [0, 1] is reproducing kernel Hilbert space, and its reproduc-
ing kernel is

ﬁx(y):{H—x,

1+,

[Jull =

X<y,
x>y

Theorem 2.1. The space Wg [0, 1] is a reproducing kernel Hilbert
space i.e. for all u(y) € W3[0,1] and each fixed x,y € [0,1],
there exists Ry(y) € W3[0,1] such that {u(y), Rc(y)) = u(x),
and Ry (y) is called the reproducing kernel function of space
W3[0,1]. The reproducing kernel function R.(y) is given by

9

k(x,y) =Y ay', y<x,
i=0

R.(y) = Y

k(yu 'X) = Zbiyi7 Y > X,
i=0

where

(x, ) = =L [ (—90720(— 1 + x)x*(10780
+x(700 + x(70 4+ x(—56 + x(28 + (-8 + x)x)))))
~10080(—1 + x)x*(—90720
+x(700 4+ x(70 + x(—56 + x(28 + (=8 + x)x)))))»
—630(—1 + x)x*(~90720 + x(—100800
+x(70 + x(—=56 + x(28 + (=8 + x)x))))))»?
Z126(—1 + x)x(—90720 + x(—100800
+x(70 + x(—=56 + x(28 + (=8 + x)x))))))*
+84(—1 + x)x2(—90720 + x(700 + x(70 + x(—56
+x(28 + (=8 +x)x)))) )"
—36(—1 4 x)x*(10780 + x(700 + x(70 + x(—56
+x(28 + (—8 + x)x)))))»* + 9(—1 + x)x(101500
+x(10780 + x(700 + x(70
(=56 + x(28 + (=8 + x)x))))))y°
—(~101500 + x2(90720 + x(10080 + x(630
+x(126 + x(—84 + x(36 + (=9 + x)x)))))))»")]-

Proof. Since R,(y) € W3[0, 1], so

R.(0)=0, RW(©0)=0, R, (1)=0, (2.5)

using the inner product of space W30, 1]
1
(u(y), R(y)) = > _u (0)RV(0) + / WO RO (v)dy.  (2.6)
i=0 0

Integrating Eq. (2.6), gives
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RO - [ a)RT . @7)

then Eq. (2.7) implies that

W) RGN = [ (Dul) R ()

For all x € [0,1], if R,(p) also satisfies

(=DRIO(y) = d(y — x), (2.9)
then

(), Re(»)) = u(x).

When y # x characteristic equation of Eq. (2.9) is given by
21 =0, then the characteristic values 4 can be determined
whose multiplicity is 10. The RK R,(y) can be defined as

9
Zaiyi7 y < X,
i=0

(2.10)

R(y) =14 " (2.11)
Zb,-y", y> X
i=0

Also let R, (y) satisfy

RO(x+0)=R¥W(x-0), k=0,1,2,...,8 (2.12)

and integrate Eq. (2.9) from x — ¢ to x + ¢ with respect to y
and ¢ — 0. Using jump degree of R (y) at y = x, gives
R®) (x —

¢ 0) — RY(x+0)=1. (2.13)

The coefficients a;s and b;s(i =0,1,2,3,...,9) can be deter-
mined from Egs. (2.5), (2.8), (2.12) and (2.13) hence reproduc-
ing kernel obtained at y < x is

k(x, ) = w5 [2(—90720(— 1 + x)x*(10780 + x(700
+x(70 + x(—56 + x(28 + (=8 + x)x)))))
—10080(—1 + x)x*(—90720 + x(700
+x(70 + x(—56 + x(28 + (=8 + x)x)))))y
—630(—1 + x)x*(~90720 + x(— 100800
4x(70 + x(—56 + x(28 + (=8 + X)x))))?
Z126(—1 + x)x%(=90720 + x(—100800
+x(70 + x(—56 + x(28 + (=8 + x)x)))))»?
+84(—1 + x)x*(—90720 + x(700
4X(70 + (=56 + x(28 + (=8 + X))
—36(—1 + x)x2(10780 + x(700
+x(70 + x(—56 + x(28 + (=8 + x)x))))))’
£9(—1 4 x)x(101500 + x(10780
(700 + x(70 + x(—56 + x(28
+(=8 4+ x)x))))))y°* — (=101500
2790720 + x(10080 + x(630 + x(126
(=84 + (36 + (=9 + X))

and for x < y, reproducing kernel k(y, x) is given by
k(y,x) =k(x,y). O

3. RK method for three-point BVP

3.1. Construction of RK satisfying three-point boundary
conditions

RKM cannot be used directly to solve fourth order three-point
boundary value problems (BVPs), since there is no method of
obtaining reproducing kernel (RK) satisfying three-point
boundary conditions, so the aim of this work is to fill this
gap. A method for obtaining RK satisfying three-point bound-
ary conditions is proposed so that RKM can be used to solve
fourth order three-point BVPs.

3.1.1. Reproducing kernel space W3[0,1]

A reproducing kernel space W3[0,1] is constructed in which
every function satisfies, u(0) = 0,1 (0) = 0,u(x) =0,
u(1) = 0, where o €]0, 1[. W3[0,1] is defined as,

W3[0,1] = {u(x) u(x) € W3[0, 1], u(«) = 0}.

RK of W3[0,1] can be determined using the following
Theorem

Theorem 3.1. The reproducing kernel K,(x,y) of W3[0,1] is
given as

Ko(v) = Ry () - R0 ()

Proof. Clearly, not all elements of W3[0, 1] vanish at «. This
implies that R,(o) is not zero. It is easy to see that
K,(x,%) = K,(2,y) =0, and therefore, K,(x,y) € W3[0, 1].
For all u(y) € W2[0,1],u(2) = 0. It follows that

R () Ry(y)
R, () >

KR
R

=
K

(), Kol )} = <u<y>,Rx<y> -

= (u(y), Re(y)) = u(x).

Hence K, (x, y) satisfies reproducing property. Thus, K, (x,y) is
the reproducing kernel of W3[0,1] and the proof is
complete. [

3.2. Application of RKM

The linear fourth order three-point boundary value problem
can be considered, as

ap(X)u® (x)+a; (x)u® (x)+az (x)u® (x)+az (x)uV(x)
+ag(x)u(x) = h(x), 0 < x < 1 (3.2)
u0) =79, u(0) =y, ul@) =9y u(l)=7;

Let bounded linear operator L : W3[0, 1] — W3[0, 1] be defined
as
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L = ay(x ) +a1(x)d¥+a2( )d‘c+a3( )4 +ay(x), then
Eq. (3.2) can be transformed into equivalent operator equa-
tion, as

{Lu( x) =h(x), 0
u(0) = 7,, u(')(O) =7, u(@) =75, u(l) =7

The inverse operator L' can be determined using RKM pre-
sented by Cui and Geng (2007), Geng and Cui (2007) and Cui
and Lin (2009).

Let ¢;(y) = K(x1,¥),i € N, where K(x;,y) € W3[0, 1] is the
reproducing kernel of W3[0,1], and w,(x) = L*¢,(x),i € N,
where L* is the adjoint operator of L. To orthonormalize the
sequence {,(x)}>,, in the reproducing kernel space W3[0, 1],
Gram Schmidt orthogonalization process can be used as
follows

= Zﬁikl//k(x)v
k=1

where f3; is orthogonal coefficient.

<x<1,
(3.3)

i=1,2,3,... (3.4)

Theorem 3.2.1. y;(x) = L, K,(x, )]

y=xi*

Proof. As

Vi(x) = L'g,(x) = (L7 ¢;(v), Ku(x, ) =
= (K(x,-,y), L)V'Kac(xvy» = L}’Ka(x7

(@:(»), Ly Ky(x, 1))
y)‘y:x," D

Theorem 3.2.2. If {x;}°, is dense in [0, 1], then {\(x)};", is the
complete system of W3[0, 1].

Proof. Consider < (u(x),y;(x) >= 0 which implies

(u(x), L' ¢;(x)) = 0 = (Lu(x), ¢;(x)) = 0 = (Lu(x),
K(xi,x)) =0 = Lu(x;) = 0.

Since {x;};, is dense in [0, 1], so Lu(x) = 0, which implies that
L' Lu(x) = 0 and u(x) = 0 from the existence of L™'. O

Theorem 3.2.3. If {x;}°, is dense in [0, 1], and the solution of
Eq. (3.2) is unique, Yu(x) € W3[0,1], the series is convergent
in the norm of ||HW5 If u(x) is the exact solution of Eq. (3.2),
then it has the form:

u(x) = L) = S5 B (i)
i=1 k=1

Proof. Since u(x) € W3[0, 1], so it can be expanded in the form
of Fourier series about normal orthogonal system {y;(x)};-, as

= 3 ) () ).

i=1

(3.5)

Since the space W?3[0,1] is Hilbert space, so the series

S {u(x), Yi(x))ri(x) is convergent in the norm of ||| . It
can be written as

If u(x) is the exact solution of Eq. (3.2) and Lu(x)

ZZﬁzk

i=1 k=

= h(x), then
)s @i () >!/;t(x)

By applying reproducing property, it can be written as
X) =Y > Bah(x)i(x)
i=1 k=1

which completes the proof. The approximate solution u(x) is
given by

ZZB,,‘h vc/‘ O

i=1 k=

(3.6)

Theorem 3.2.4. For each u(x) € W3[0,1] and &, is the error
between the approximate solution u,(x) and exact solution
u(x). Let & = |ju(x) — u,(x)|, then sequence {&,} is monotone
decreasing and ¢, — 0 (n — o00).

Proof. Given

= ) — 1) = || 3 @) B )
= 3 ()’
2 = ) = 2 (I =[S B )

Clearly ¢, > &,, consequently {e,} is monotone decreasing in
the sense of ||.||,;s and it is noted that the series is convergent in
the norm of .|| ;s. Hence &, — 0 (n — o0). O

4. Adomian decomposition method

The Adomian decomposition method was proposed by

Adomian (1992, 1994) and Adomian and Rach (1994) for
obtaining series solutions of algebraic, ordinary and partial
differential equations, integral equations, integro-differential
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equations, etc. Such method has received a great deal of atten-
tion and has been applied to numerous problems. To solve
non-linear fourth order three-point boundary value problem,
the following decomposition method can be used as:

Lu(x) = f(x) + glx, u(x)), (“.1)
u(x) = L7 (x) + L™ g(x,u(x)). (4.2)

The ADM introduces the solution u(x) and the nonlinear func-
tion g(x,u) by infinite series, as

u(x) = iui(x) (4.3)
i=0
and ‘
gl u(x) =Y Ai(x), (4.4)
i=0

where A; is called Adomian polynomial and is defined by
Adomian and Rach (1994) as

1| d =
Ai= il {Eg (x7 :‘ZO:/L “t(’d)} ;,:0. )

Substituting Egs. (4.3) and (4.4) into Eq. (4.2), yields
D ui(x) = L7f(x) + LY " Aul(x). (4.6)
= =

According to the ADM, the components u;(x) can be deter-
mined as

up(x) = L™ f(x),
{u,-ﬂ(x) =L "4,(x), i=0. (47)

By combining Adomian decomposition method and reproduc-
ing kernel method, Eq. (4.7) turns out to be

uo(x) = ZBO/II;/-(X),
":; (4.8)
ui+1(x) = ZB(Hl)jlp/(x)»i = 0,
=

where By = Y Buf(xk), By =D BuAim1(xk),i = 1. From
Eq. (4.8), the components of u#;(x) can be determined and
hence the series solution u(x) in Eq. (4.3) can be immediately
obtained. For numerical purposes, the n-term approximation

U,(x) = i:u,(x) (4.9)
=0

can be used to approximate the exact solution. Furthermore,
the approximate solution UY(x) can be obtained by the N-term
intercept of the exact solutions #;(x) and given by

UY(x) = isz’i‘/?;(x)

i=0 j=1

(4.10)

5. Numerical examples

In order to test the utility of the proposed method, four exam-
ples are considered in this section. All computations are per-
formed using Mathematica 5.2.

Example 1. The singular linear fourth order three-point
boundary value problem can be considered as

X1 = x)u®(x) + %um (x) + 2¢¥ sin /xu? (x)
+2uM (x) 4 xu(x) = f(x), 0<x<1,
u(1) =sinh(1), u(3) =sinh (3),
(5.1)

where f(x) = x*(1 — x) sinh(x) % cosh(x) + 2¢* sin /x sinh(x)
+2cosh(x) + xsinh(x). The exact solution of the problem
(5.1) is u(x) = sinh(x). The numerical results are summarized
in Table 1 and Figs. 1-3. From Figs. 1-3, it can easily be seen
that the approximate solutions are in good agreement with
exact solutions.

u(0) =0, u(0) =1,

Example 2. Consider the following nonlinear fourth order
three-point boundary value problem:

(5.2)

S

{Mwmevﬂm:&0<x<h
u(0)=1, u0) =1, u(l)=ec, uff)=¢

The exact solution of the problem (5.2) is u(x) = ¢*. The com-
bination of ADM and RKM is used to solve problem (5.2).
The numerical results are summarized in Table 2 and Figs.
4-6. It can easily be seen from the Table 2 and Figs. 4-6 that
the approximate solutions are in good agreement with exact
solutions.

Example 3 (Mohyud-Din and Noor (2007)). Consider the fol-
lowing nonlinear fourth order three-point boundary value
problem:

2

{Mm+ww»

= sinx +sin*(x), 0<x<1,
u(0) =0, u(0)=1

, u(l) =sinl,
(5.3)

The exact solution of the problem (5.3) is u(x) = sinx. The
combination of ADM and RKM is used to solve the problem
(5.3). The numerical results are summarized in Table 3. The
results of the problem are also compared with the method
developed by Mohyud-Din and Noor (2007) in Table 3, which
show that the present method is better.

Example 4. The nonlinear system of fourth order three-point
boundary value problem can be considered, as :

Table 1 The numerical results when (n = 6, 11, 51).
X Exact Relative Relative Relative
Solution error error error

(n=16) (n=11) (n=151)
0.0 0 0.0000 0.0000 0.0000
0.1 0.100167 4.73618E—06 4.35168E—07 4.27605E—10
0.2 0.201336 4.71631E—06 2.00644E—07 1.67976E—09
0.3 0.30452 2.3172E—06  4.40391E—08 2.77475E—09
0.4 0.410752 2.66477E—07 9.07671E—08 3.74118E—09
0.5 0.521095 9.27431E—07 1.88505E—07 4.65825E—09
0.6 0.636654 1.26386E—06 2.10614E—07 5.01064E—09
0.7 0.758584 5.7333E—07  1.0404E—07  2.77591E—09
0.8 0.888106 5.44023E—07 1.20919E—07 3.75365E—09
0.9 1.02652 1.05769E—06 2.7753E—07  1.01353E—08
1.0 1.1752 3.77883E—16 3.77883E—16 3.77883E—16
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8-10"
6-10"

4-10°

2-10°

1-10°

Figure 2 |u — uy|.

8-10"
6-10"

4-10°

0.2 0.4 0.6 0.8 1

Figure 3 |u — us|.

Table 2 The numerical results when (n = 3).

X Exact Relative Relative Relative
solution error error error
(N =06) (N =11) (N = 51)
0.0 1 0.0000 0.0000 0.0000
0.1 1.10517 8.15367E—07 1.99301E—07 2.77828E—09
0.2 1.2214 2.30099E—06 6.18826E—07 3.23336E—09
0.3 1.34986 3.48073E—06 1.02349E—06 6.28379E—09
0.4 1.49182 3.85679E—06 1.23197E—06 2.89845E—08
0.5 1.64872 3.33694E—06 1.13206E—06 6.48551 E—08
0.6 1.82212 2.0949E—06  6.98202E—07 1.1154E—07
0.7 2.01375 5.42832E—07 1.09139E—08 1.6489E—07
0.8 2.22554 7.968E—07 7.22904E—07 2.19326E—07
0.9 2.4596 1.2893E—06  1.14967E—06 2.68284E—07
1.0 2.71828 4.5880E—16  3.3675E—16  6.6498E—16
u(x), 0<x<d, I<x<l,
u® (x) = <x <3, (5.4)

The exact solution of the problem (5.4) is
a1 x? + a> x> + sinx, <
ax? +agx* + (1 +x), <x<3,
—l4asx’ +agx’ +e°, 3<x<1,

u(x) =

5.10°°
4-107°
3-10°°
2-10°°
1-107°
0.2 0.4 0.6 0.8 1
. 6
Figure 4 |U - U3|.
1.4-10°¢
1.2-10°°
1-10°¢
g-107"
6-1077
4-1077
2-1077
0.2 0.4 0.6 0.8 1
. 1
Figure 5 |U - U;|.
2.5-107
2-1077
1.5-107
1-1077
5.107°
0.2 0.4 0.6 0.8 1
. 51
Figure 6 |U— Uy'|.

Table 3 The comparison between absolute error of the
method developed and the method developed by Mohyud-
Din and Noor (2007).

X Absolute error in  Absolute Absolute error
Mohyud-Din error for for (N =30,n = 3)
and Noor (2007) (N=20,n=3)

0.0  9.592369E—14 0.0000 0.0000

0.1 7.7856E—8 4.248E—08 4.135E—09

0.2  2.723E-7 76.949E—08 5.783E—09

0.3  5.2489E-7 1.344E—-08 3,956E—09

04  7.7730E-7 3.687E—08 2.843E—09

0.5 9.7145E-7 2.389E—-08 7.933 E-09

0.6 1.0502E—6 7.133E—08 7.278E—09

0.7  9.6286E—7 8.677E—08 8.447E—09

0.8  6.8407E—7 2.355E—-08 4.749E—09

0.9  2.7069E—7 2.678E—08 6.265E—09

1.0 1.5676E—13 0 0

where a; = 37.6692, a, = —38.5107, a; = 37.1802, a4 =
—38.8985, as = 38.1373, as = —38.8305 and fix) =
—6(1 + x)4 — (38.1373x% — 38.8305x + Ln(l + x))z. The com-
bination of ADM and RKM is used to solve problem 4. The
numerical results are summarized in Table 4. It is evident from
Table 4 that the results are encouraging.
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Table 4 The numerical results when (n = 3).

X Absolute error (N = 30) Absolute error (N = 50)
0.0 0 0.0000
0.1 4.46E—07 5.74E—08
0.2 2.74E—07 3.92E-08
0.3 8.24E—06 2.88E—07
0.4 9.95E—06 6.09E—07
0.5 3.22E-06 4.87E—-07
0.6 2.86E—06 3.77E—07
0.7 1.37E—06 5.68E—07
0.8 9.57E—07 2.55E—08
0.9 5.69E—07 6.68E—08
1.0 0 0

6. Conclusion

Fourth order three point BVP (linear and nonlinear) and the
system of fourth order three point BVP are determined using
ADM and RKM. For the solution of linear fourth order three
point boundary value problem reproducing kernel method is
proposed and obtained encouraging results. The solution of
non-linear fourth order three-point boundary value problem
can be determined using standard Adomian decomposition
method but this method has long calculation and complicated
procedure to determine some unknown parameters. Due to
this drawback a new computational method for the solution
of non-linear fourth order three-point boundary value problem
is proposed. This computational method is the combination of
Adomian decomposition method and reproducing kernel
method. Combination of these methods reduces the calcula-
tion and avoids the additional computation work in determin-
ing the unknown parameters, and this reduction has no effect
in the accuracy of results. The comparison of the present
method with the method Mohyud-Din and Noor (2007) avail-
able in literature also shows the efficiency of the method.
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