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Abstract

A multivariate dispersion ordering based on quantiles more widely separated is defined.

This new multivariate dispersion ordering is a generalization of the classic univariate version.

If we vary the ordering of the components in the multivariate random variable then the

comparison could not be possible. We provide a characterization using a multivariate

expansion function. The relationship among various multivariate orderings is also considered.

Finally, several examples illustrate the method of this paper.
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1. Introduction

Lewis and Thompson [8] introduced a concept of dispersion based on quantiles
more widely separated for univariate random variables. That is, X is said to be less
dispersed than Y in the Lewis–Thompson (LT) sense, denoted as X!DispY ; if any

pair of quantiles of Y are at least more widely separated as corresponding quantiles
of X : Let u be a real value in ð0; 1Þ; we use the definition of univariate quantile as
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follows:

QX ðuÞ ¼ F�
X ðuÞ ¼ inffx : FX ðxÞXug:

Then X!DispY is defined as QX ðvÞ � QX ðuÞpQY ðvÞ � QY ðuÞ for all 0ouovo1:
Shaked [10] characterized the univariate dispersive ordering using an expansion

function for absolutely continuous distributions (see [10, Theorem 2.3]). Let F and G

be two strictly increasing and absolutely continuous distribution functions, then
X!DispY or F!DispG; if and only if there exists a function f : SF-SG (where SF

and SG are the support of F and G; respectively) such that Y ¼st fðX Þ and f0ðxÞX1
for all x in SF : Note that f verifies that fðxÞ � fðx0ÞXx � x0; for all x4x0: Hence,
the dispersion ordering in the LT sense is based on the existence of a function which
depends on the corresponding distribution functions. Furthermore, in this case
fðxÞ ¼ QY ðFX ðxÞÞ for all x in SF :
Giovagnoli and Wynn [5] extended the concept of dispersion ordering for

multivariate distributions in a weak and strong version. Let X and Y be random
vectors in Rn with distribution functions F and G; respectively. From now on, we
denote !st as the classical stochastic ordering for univariate and multivariate
distributions and we denote as F ¼st G when FðxÞ ¼ GðxÞ for all x in Rn: The weak

dispersion ordering, denoted as X!DY; is equivalent to jjX� X0jj2!stjjY� Y0jj2;
where jj 	 jj2 corresponds to the Euclidean norm and X0 and Y0 are two independent
values for each one, X and Y; respectively. For instance, this weak dispersion
ordering implies that TrðSXÞpTrðSYÞ; where SX and SY are the covariance matrices
for X and Y; respectively.
Giovagnoli and Wynn [5] defined the strong ordering if and only if exists a

function kð	Þ such that X ¼st kðYÞ and kð	Þ is a contraction function of Rn; namely

jjkðyÞ � kðxÞjj2pjjy� xjj2 8x; yARn:

A contraction function is characterized through the Loewner ordering for its
Jacobian matrix (see [5, Theorem 2]). That is, let kð	Þ be a continuously differentiable
function. Then kð	Þ is a contraction function if and only if

JkðxÞt
JkðxÞ!LIn 8xARn;

where Jk ¼ f@ki

@xj
g is the Jacobian matrix of kð	Þ; In is the identity matrix of order n

and!L is the Loewner ordering of matrices such that A!LB if and only if B � A is
nonnegative definite.
Giovagnoli and Wynn [5] concluded that the most direct generalization of the one-

dimensional case is by taking kð	Þ a 1–1 function. Thus, the function g ¼ k�1 can be
termed as ‘‘expansion’’. Then it holds that jjgðyÞ � gðxÞjj2Xjjy� xjj2 for all x; y in Rn

and the above characterization is replaced by

In!LJgðxÞt
JgðxÞ 8xARn: ð1Þ

To summarize, the strong dispersion ordering generalizes the LT ordering for
univariate random variables but it is not so easy, in general, to find out the
expression of kð	Þ and in addition this function has not to be unique.
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In Section 2, we introduce a multivariate dispersion ordering based on the strong
dispersion ordering which has an interpretation through the quantiles more widely
separated. In Section 3, we characterize it using an expansion function for
continuous distributions verifying special regularity conditions. We also study the
relationship with several classical orderings in dispersion. Finally, we apply this
concept to compare various multivariate distributions.
Now, we give some notation and definitions that we will be used later on. Let x be

a vector in Rn and let I ¼ fi1;y; ikgDf1;y; ng; then we denote xI ¼ ðxi1 ;y; xikÞ:
For a random vector X that takes on values in Rn; the interpretation of XI is similar.
From now on, we denote xDðk1;y;knÞy when xiDki

yi for i ¼ 1;y; n where ki is in

f0; 1g; D0 ¼
defp and D1 ¼

def
X: For example, ðx1; x2ÞDð0;1Þðy1; y2Þ means that x1py1

and x2Xy2: Also, we denote Pn as the set of all permutations of the elements in
f1;y; ng: That is, pi1;y;in ¼ ði1;y; inÞ is in Pn:

2. Definition and properties

Let X be a random vector in Rn and u ¼ ðu1;y; unÞ in ½0; 1�n: The multivariate u-
quantile for X; denoted as #xðuÞ; is defined as follows:

x̂1ðu1Þ ¼ QX1
ðu1Þ;

^

x̂nðunÞ ¼ QXnjTn�1
j¼1

Xj¼x̂j ðuj Þ
ðunÞ:

This known construction is widely used in simulation theory, and it is named the
standard construction. The following result, whose proof can be seen in [11], will be
used later on:

#xðUÞ ¼st X; ð2Þ

where U is a random vector with n independent uniform components in ½0; 1�:
Obviously, this standard construction depends on the choice of the ordering of the

marginal distributions. Firstly, we obtain the marginal distribution X1 and we
construct x̂1ðu1Þ and conditioned on every such possible realization x̂1ðu1Þ we next
construct x̂2: We thus have constructed so far ðx̂1; x̂2Þ: Therefore, conditioned on
every such possible realization ðx̂1ðu1Þ; x̂2ðu2ÞÞ we next construct x̂3: Continuing this
procedure, we finally arrive at random vector #xðuÞ: We can also consider any other
permutation of the components of X: For each permutation p ¼ pi1;y;in in Pn; we
can use the well-known orthogonal matrix Ap in Mnn; defined by ajij ¼ 1 for j ¼
1;y; n and zero for the rest of components. Consequently, it is trivial to show that

Xt
p ¼ ðXi1 ;y;XinÞ ¼ ApX: In general, it does not hold Xp ¼st X: Thus, we have to
define #xpðuÞ as the standard construction for Xp: Obviously, in light of result (2),
#xpðUÞ ¼st Xp: Hence, if #xðu; pÞ ¼ At

p #xpðuÞ then #xðU; pÞ ¼st X: Note that #xðu;pÞ and
#xðuÞ have different interpretations, they provide different points in Rn: Hereafter, we
will only use the permutation p ¼ p1;y;n but similar results for Xp can be established.
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The definition of the multivariate u-quantile for X; lead us to define the

multivariate x-rate vector, denoted x
%ðxÞ; as

x%
1ðx1Þ ¼ PðX1px1Þ;

^

x%
nðxnÞ ¼ PðXnpxnjTn�1

j¼1 Xj¼xj
Þ:

From now on, we establish the regularity conditions such as the distribution function
is a continuous function and the corresponding conditional distributions in each
component are continuous and strictly increasing functions.
It is easy to show that if the regularity conditions are satisfied then

ðx̂i3 x
%

iÞðxiÞ ¼ xi 8i ¼ 1;y; n: ð3Þ

Theorem 2.1. Let X be a random vector in Rn verifying the regularity conditions and U

is a random vector with n independent uniform ½0; 1� components. Then x
%ðXÞ ¼st U:

Proof. Let U ¼ ðU1;y;UnÞ be the multivariate X-rate vector, that is,

U1 ¼ x
%
1ðX1Þ;y;Un ¼ x

%
nðXnÞ:

According to result (3), the density function for the U random variable is

f
x
%ðXÞ

ðu1;y; unÞ ¼ fXðx̂1ðu1Þ;y; x̂nðunÞÞ  jDetðJÞj;

where the determinant of the Jacobian matrix is

DetðJÞ ¼

@x̂1

@u1
0 ? 0

@x̂2

@u1

@x̂2

@u2
? 0

@x̂n

@u1

@x̂n

@u2
?

@x̂n

@un

������������

������������
¼

Yn

i¼1

@x̂iðuiÞ
@ui

:

Now, in light of the well-known inverse function theorem we have thatYn

i¼1

@x̂iðuiÞ
@ui

¼ 1

fX1
ðx̂1ðu1ÞÞ

 1

fX2jX1¼x̂1ðu1Þ
ðx̂2ðu2ÞÞ

? 1

fXnjTn�1
j¼1

Xj¼x̂jðujÞðx̂nðunÞÞ

¼ 1

fXðx̂1ðu1Þ;y; x̂nðunÞÞ
40;

thus

f
x
%ðXÞ

ðu1;y; unÞ ¼ fXðx̂1ðu1Þ;y; x̂nðunÞÞjDetðJÞj ¼ 1;

where #xðuÞ is in the support of X and each value ui is given by a transformation of a
distribution function for conditioned variables. Hence ui is in ð0; 1Þ for i ¼ 1;y; n:
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Consequently, x
%ðXÞ is in ð0; 1Þn and the components of the x

%ðXÞ vector are

independent. Thus, x
%ðXÞ ¼st U; where U is a random vector with n independent

uniform ð0; 1Þ components. &

If the distribution function is strictly increasing and continuous then there exists
only one real value for each u in ð0; 1Þ; denoted as QX ðuÞ; such that FðQX ðuÞÞ ¼ u:

Obviously, it is also verified that %FðQX ðuÞÞ ¼ 1� u where %F ¼ 1� F : Therefore, each
univariate quantile under the above conditions is also characterized by the survival
function. This property is not so trivial to generalize for multivariate distributions.

Note that, for example, if x ¼ ðx1; x2Þ is a point in R2 then it will divide the plane in
four orthants. It is trivial that for the bidimensional random variables, there does not

exist only one point in R2 such that Fðx1; x2Þ ¼ u with u in ð0; 1Þ: The solution to the
equation Fðx1; x2Þ ¼ u can be expressed as a function, that is x2 ¼ hðx1Þ: From
a stochastic point of view, the ðx1; hðx1ÞÞ points could be different. Suppose
that Fðx1; x2Þ ¼ u and Fðz1; z2Þ ¼ u: However it may be possible that
PðX1Xx1;X2Xx2ÞaPðX1Xz1;X2Xz2Þ: Therefore, we are interested in points in
R2 such that they have the same probabilities in each orthant. This idea lead us to
define the corrected orthant concept at points in Rn:
Let X be a random vector in Rn with distribution function F and z ¼ ðz1;y; znÞ a

point in Rn: The Dðk1;y;knÞ-corrected orthant in z; denoted as RXðz;Dðk1;y;knÞÞ; is
defined as

RXðz;Dðk1;y;knÞÞ ¼ fxARn : x1Dk1QX1
ðx
%
1ðz1ÞÞ;y;

xnDkn
QXnjTn�1

j¼1
Xj¼xj

ðx
%

nðznÞÞg:

It is easy to show that if X is a random vector with independent components then
the Dðk1;y;knÞ-corrected orthant in z is the corresponding classic orthant in z for each

ðk1;y; knÞ:

Proposition 2.1. Let X be a random vector in Rn with distribution function F verifying

the regularity conditions, then

PfXARXð #xðuÞ;Dðk1;y;knÞÞg ¼
Yn

i¼1
½ðuiÞ1�kið1� uiÞki �: ð4Þ

Proof. The proof is by mathematical induction. The theorem is clearly true for
n ¼ 1:
Suppose now that, i ¼ k � 1 (where 2pkpnÞ; equality holds and to complete the

induction argument, we must show that (4) holds for i ¼ n: For this purpose, we
denote I ¼ f1;y; n � 1g and

X ¼ ðX1;y;Xn�1;XnÞ ¼ ðXI ;XnÞ
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and

#xðuÞ ¼ ðx̂1ðu1Þ;y; x̂n�1ðun�1Þ; x̂nðunÞÞ ¼ ð #xIðuI Þ; x̂nðunÞÞ:

Also, let Bðn � 1Þ ¼ fxIARn�1 : xI is in RXI
ð #xI ðuIÞ;Dðk1;y;kn�1ÞÞg be a subset in

Rn�1: Thus, by supposition,

%
PfXARXð #xðuÞ;Dðk1;y;knÞÞg ¼

Z
Bðn�1Þ

Z
½xnDkn QXn jXI ¼xI

ðunÞ�
dFXnjXI ¼xI

ðxnÞ
" #

dFXI
ðxI Þ:

¼
Yn�1
i¼1

ððuiÞ1�kið1� uiÞkiÞ
( )

½ðunÞ1�knð1� unÞkn �

¼
Yn

i¼1
½ðuiÞ1�kið1� uiÞki �: &

The Dðk1;y;knÞ-corrected orthants in the corresponding multivariate u-quantile

accumulate the same probability for two random vectors with distribution functions
under the regularity conditions. These considerations lead us to define a new
dispersive ordering based on conditional quantiles more widely separated.

Definition 2.1. Let X and Y be two random vectors in Rn:We say that X is less than
Y in dispersion sense, denoted as X!DispY; if

jj #xðvÞ � #xðuÞjj2pjj#yðvÞ � #yðuÞjj2;

for all u and v in ð0; 1Þn:

It is easy to prove that this ordering is a generalization of dispersive ordering in the
LT sense for any two random variables.
Note that this new ordering depends on the chosen permutation. If X!DispY; then

it could not be held that ApX!DispApY for any p ¼ pi1;y;in in Pn: We provide a

counter-example in Section 4 in this sense (see Remark 4.1). Thus we define that X is
less than Y in dispersion sense, under a permutation p ¼ pi1;y;in in Pn; if
ApX!DispApY: All considerations for the rate vector and for the corrected orthants

are possible for the dispersion ordering under a permutation no more to take a
permutation of the components.
We finish this section introducing two lemmas which we will be used in the next

results.

Lemma 2.1. Let AAMnn be a lower triangular matrix, such that AtA � Idnxn

is nonnegative definite. Then the diagonal elements verify that a2iiX1; for i ¼ 1;y; n:

Proof. By hypothesis xtAtAxXxtx for all x: Let ui be the normalized eigenvector
associated to the eigenvalue aii for A: Then, ut

iA
tAuiXut

iui: Consequently, it holds

a2iiX1: &
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Lemma 2.2. Let X and Y be any two random vectors in Rn: If X!stY then XI!stYI

for each ICf1;y; ng:

Proof. See [11, Theorem 4.B.10(c)]. &

3. The main theorem

Theorem 3.1. Let F and G be distribution functions under the regularity conditions.

Assume that the supports SF and SG are intervals in Rn: Let X and Y be random

variables distributed, respectively, according to F and G. Then X!DispY; if and only if

there exists a function F : SF-SG such that

FðXÞ ¼st Y with ½FðxÞ�i ¼ Fiðx1;y; xiÞ ði ¼ 1;y; nÞ ð5Þ

and the Jacobian matrix of F satisfies

In!LJFðxÞt
JFðxÞ for all xARn ð6Þ

and

@Fiðx1;y; xiÞ
@xi

X0: ð7Þ

Moreover, if this is the case then

Fiðx1;y; xiÞ ¼ ðŷi3 x
%

iÞðxiÞ ði ¼ 1;y; nÞ: ð8Þ

Proof. Firstly, we will show that the only one function which verifies conditions (5)–
(7) is the function given by (8). The proof is by mathematical induction. If Y ¼st

FðXÞ; according to Lemma 2.2 then Y1 ¼st F1ðX1Þ: On the other hand, in light of
conditions (6), (7) and Lemma 2.1, then @F1=@x1X1: Thus, it follows from Theorem

2.3 in [10] that F1ðx1Þ ¼ ðŷ13 x
%
1Þðx1Þ: Now, assume that (8) is verified for i ¼

1;y; n � 1: Now, we must show that condition (8) holds for i ¼ n: Using Lemma
2.2, we obtain that Yn ¼st FnðX1;y;XnÞ and ðF1ðX1Þ;y;Fn�1ðX1;y;Xn�1ÞÞ ¼st

YI : Consequently, for a given vector yI ¼ ðy1;y; yn�1Þ it holds
YnjYI¼yI

¼st FnðX1;y;XnÞjðF1ðX1Þ¼y1;y;Fn�1ðXI Þ¼yn�1Þ:

By the induction hypothesis, we know that the system

F1ðx1Þ ¼ y1;

F2ðx1; x2Þ ¼ y2;

^

Fn�1ðx1;y; xn�1Þ ¼ yn�1

has a only one solution in a vector xI ¼ ðx1;y; xn�1Þ for each yI : Therefore,

FnðX1;y;XnÞjðF1ðX1Þ¼y1;y;Fn�1ðX1;y;Xn�1Þ¼yn�1Þ ¼st FnðxI ;XnjXI¼xI
Þ:
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Thus we have that there exists a transformation which maps XnjXI¼xI
to YnjYI¼yI

:

Using (6), (7) and Lemma 2.1, it holds that @Fn

@xn
X1: Hence, according to Theorem 2.3

in [10] for a fixed vector xI we obtain

FnðxI ; xnÞ ¼ QYnjYI¼yI
ðFXnjXI ¼xI

ðxnÞÞ ¼ ðŷn3 x
%

nÞðxnÞ:

We conclude the induction argument with this last result. Now, we will show that
X!DispY is a necessary condition for (5)–(7). In light of expression of F in (8), it is

easy to show that this function maps conditional quantiles for X to conditional
quantiles for Y:Making use of condition (6) it holds that F is an expansion function,
(see condition (1)). Consequently,

jj #xðvÞ � #xðuÞjj2p jjFð #xðvÞÞ � Fð #xðuÞÞjj2
¼ jj#yðvÞ � #yðuÞjj2

for all u; v in ð0; 1Þn; then X!DispY:
Now, we will show that X!DispY is a sufficient condition for (5)–(7). According to

Theorem 2.1 and result (2) we find that FðXÞ ¼ ð#y3 x
%ÞðXÞ ¼st Y:

We have only to prove (6) and (7). Since condition (1), we must show that F is an
expansion function. From the definition of dispersive ordering it holds

jjFðx1Þ � Fðx2Þjj2 ¼ jjð#y3 x
%Þðx1Þ � ð#y3 x

%Þðx2Þjj2

X jjð #x3 x
%Þðx1Þ � ð #x3 x

%Þðx2Þjj2 ¼ jjx1 � x2jj2 8x1; x2ARn:

Thus, F is an expansion function and making use of condition (1) we obtain (5).
Finally, @Fi=@xi can be regarded as the ordinary derivative of the function of one
variable obtained from Fiðx1;y; xiÞ by fixing ðx1;y; xi�1Þ at xi: If bXa then

x
%

iðbÞX x
%

iðaÞ: Thus,

Fiðx1;y; xi�1; bÞ � Fiðx1;y; xi�1; aÞ ¼ ðŷi3 x
%

iÞðbÞ � ðŷi x
%

iÞðaÞX0;

because the quantile function is an increasing function. Therefore, we have that (7)
holds. &

Note that the jacobian matrix of F is a lower triangular matrix. If we are interested
to study the dispersion ordering under the permutation pii ;y;in in Pn then we have to

compare in dispersion ApX versus ApY: If ApX!DispApY then there exists an

expansion function which maps ApX to ApY: That is FðApXÞ ¼st ApY: Considering
the function U ¼ At

p3F3Ap we observe that UðXÞ ¼st Y: Since Ap is orthogonal, it is
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easy to show that U is also an expansion function. Obviously, the Jt
FJF � In and

Jt
UJU � In matrices have the same eigenvalues. To summarize, if X and Y are

ordered in dispersion under a permutation pii ;y;in in Pn; then there exists

an unique expansion function based on the permutation pi1;y;in which maps

X to Y:

Corollary 3.1. Let X and Y be two random vectors in Rn: If X!DispY; then

XjjXI¼ #xI ðuI Þ!DispYjjYI¼#yI ðuI Þ; ð9Þ

where I ¼ ð1;y; j � 1Þ; uI ¼ ðu1;y; uj�1Þ in ð0; 1Þj�1
and j ¼ 2;y; n:

Proof. Suppose that X!DispY: Then according to Theorem 3.1 we find that

Fjð #xI ðuIÞ;XjjXI¼ #xI ðuI ÞÞ ¼st Yj jYI¼#yI ðuI Þ;

with @Fj=@xjX1: Consequently there exists an expansion function which maps

Xj jXI¼ #xI ðuI Þ to Yj jYI¼#yI ðuI Þ; for j ¼ 2;y; n: It follows from Theorem 2.3 in [10] that the

result holds. &

The multivariate dispersive ordering implies the univariate dispersive ordering
for conditional distributions. However, it is not always true in the other
direction. Further on, we will show a counter-example in Section 4,
(see Remark 4.3).
Theorem 3.1 has the following implication.

Corollary 3.2. Let X and Y be two random vectors in Rn: Let fX and fY their

density functions, respectively. If X!DispY; then

fXð #xðuÞÞXfYð#yðuÞÞ 8uAð0; 1Þn:

In the special case of independent components, we obtain the following
corollaries

Corollary 3.3. Let X and Y be two random vectors with independent components.

Then

X!DispY if and only if Xi!DispYi for i ¼ 1;y; n:

Corollary 3.4. Let X1 and Y1 be two random vectors in Rn1 and let X2 and Y2 in Rn2 ;
where X1;X2 are independent and Y1;Y2 are too independent. If X1!DispY1 and

X2!DispY2 then

ðX t
1;X t

2Þ
t
!DispðY t

1;Y
t
2Þ

t:
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3.1. The ordering !Disp compared to other multivariate orderings

It is easy to show that the dispersive ordering implies the strong dispersion
ordering (see [5]). We can say that the multivariate dispersion ordering is a
case of the strong ordering where the expression of the expansion function is
known and it has an interpretation under the corrected orthants more widely
separated. Oja [9] interpreted the Jacobian matrix of the expansion in terms of
local volume elements.

Definition 3.1. Let X and Y two random vectors in Rn: We say that Y is more
scattered than X; denoted!D; if there is a function g : Rn/Rn such that gðXÞBstY

and for all fx1;y; xnþ1gCRn it holds that

Dðgðx1Þ;y; gðxnþ1ÞÞXDðx1;y; xnþ1Þ;

where Dðx1;y; xnþ1Þ is the volume of the ‘‘simplex’’ with vertices at x1;y; xnþ1:

From Lemma 3 in [5] we obtain that if X!DispY then X!DY:

Block and Sampson [3] introduced the concept of conditionally more dispersed.
Fixed 1pipn; denote IðiÞ ¼ f1;y; i � 1; i þ 1;y; ng: Let denote the number of
sign changes of a function a as S�ðaðxÞÞ:

Definition 3.2. Let X and Y be two random vectors in Rn with distribution functions
F and G; respectively. Fixed 1pipn; and suppose the following conditions are
satisfied:

1. FXIðiÞ ðtÞ ¼ GYIðiÞ ðtÞ for all t:
2. EðXijXIðiÞ¼tÞ ¼ EðYijYIðiÞ¼tÞ for all t:
3. For all t; both conditional distributions are degenerated, or

(i) SðFðxijXIðiÞ¼tÞ � GðxijYIðiÞ¼tÞÞ ¼ 1; and

(ii) the sign sequence is �; þ:

Then X is said to be conditionally less i-dispersed than Y; denoted as Y -
DðiÞ

X:

Condition 3 in Definition 3.2 is known as the criterion of Karlin–Novikoff
for univariate variables. Conditions given in Definition 3.2 are interpreted as
the conditional distribution XijXIðiÞ¼t is less in residual life than YijYIðiÞ¼t for all t

(see [12]).
Let X and Y be two random vectors in Rn: Assume conditions 1 and 2 in

Definition 3.2, if X!DispY then

XnjXIðnÞ¼t!DispYnjYIðnÞ¼t;
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for all t: Condition 1 in Definition 3.3 implies that XIðnÞ and YIðnÞ have the same

distribution. Therefore it is easy to show that #xIðnÞ ¼ #yIðnÞ:Moreover, the ordering in

LT sense implies the convex ordering, (see [10,12]). Therefore, according to
Corollary 3.1, we have that

XnjXIðnÞ¼t!cYnjYIðnÞ¼t;

where we denote!c as the convex ordering. It is not always true that!c implies the
criterion of Karlin–Novikoff. Under symmetry conditions, both orderings are
equivalent (see [2]).
On the other hand, Block and Sampson [3] interpreted the conditionally dispersive

ordering under the convexity in the one relevant component for all other values of
the remaining component. The concept of conditionally more dispersed ordering has
not sense when there are more than one relevant components.

4. Examples

Example 4.1. Let X*Nnðm1;S1Þ and Y*Nnðm2;S2Þ be two multivariate normal
distributions. In this case, it is easy to show by mathematical induction that the
function F defined in (8) satisfies JF ¼ AB where A and B are two lower triangular

matrices with AAt ¼ S2 and BtB ¼ S�1
1 : Furthermore, according to Theorem 14.5.11

in [6], we have that

At ¼ D
1=2
A U; B ¼ D

�1=2
B ðV�1Þt and S1 ¼ VtDBV;

with U be the unique unit upper triangular matrix and DA ¼ fdig be the unique
diagonal matrix such that

S2 ¼ UtDAU and D
1=2
A ¼ f

ffiffiffiffi
di

p
g:

Similarly for the B matrix. The U and V matrices can be calculated using the
Cholesky decomposition (see [6]). Consequently, in light of Theorem 3.1, X!DispY if

and only if In%LðABÞt
AB:

Now, we show an example in the bidimensional case. We will attend to the well-
known expression for the density function in [7]. Let Z*NðmZ;SZÞ be a normal
distribution in R2: The density function is given by

fZðz1; z2Þ ¼ ð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2ZÞ

q
Þ�1exp �1

2ð1� r2ZÞ
z1 � m1Z

s1Z

� 2"(

� 2rZ

z1 � m1Z
s1Z

� 
z2 � m2Z

s2Z

� 
þ z2 � m2Z

s2Z

� 2#)
;

where rZ is the linear correlation coefficient between Z1 and Z2:
It is widely known that the conditional distributions for multivariate normal

distribution are also normal distributions. Then, the distribution of Z2 conditioned
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to Z1 is given by

Z2jZ1¼z1
*N m2Z þ ðz1 � m1ZÞ

s12Z
s21Z

; s2Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2ZÞ

q� 
:

Let X*NðmX;SYÞ and Y*NðmY;SYÞ be normal distributions. The expression of F
is given by

F1ðx1Þ ¼ s1Y
x1 � m1X

s1X

� 
þ m1Y;

F2ðx1; x2Þ ¼ s2Y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2YÞ

q x2 � ½m2X þ ðx1 � m1XÞs12Xs2
1X

�

s2X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2XÞ

q
8><
>:

9>=
>;

þ m2Y þ x1 � m1X
s1X

� 
s12Y
s1Y

;

where F1ðx1Þ ¼ QY1
ðFX1

ðx1ÞÞ and F2ðx1; x2Þ ¼ QY2jY1¼F1ðx1Þ
ðFX2=X1¼x1ðx2ÞÞ:

The Jacobian matrix of F is given by:

JF ¼

s1Y
s1X

0

s2Y
s1X

rY � rX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2YÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2XÞ

q
0
B@

1
CA s2Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2YÞ

q
s2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2XÞ

q

0
BBBBB@

1
CCCCCA:

As a particular case, if rX ¼ rY; s1YXs1X and s2YXs2X then X!DispY:

Remark 4.1. Let X and Y be as the above example. If X!DispY then it could not be

held ApX!DispApY for any p in Pn: Let s1Y ¼ 8; s2Y ¼ 2; rY ¼ 0; s1X ¼ 1; s2X ¼ 3

and r2X ¼ 0; 75; then it holds X!DispY: However, since s2X4s2Y; it does not hold
the ordering ðX2;X1Þ!DispðY2;Y1Þ: In addition, it does not hold either the ordering
given by Eaton and Pearlmon [4] which expresses concentration in the following way
S1%LS2:

Remark 4.2. The expansion function F is not always a linear function. For example,
let ðX1;X2Þ be a bidimensional random variable with normal distribution and
independent components and let ðU1;U2Þ be a bidimensional random variable with

uniform distribution and independent components in ð0; 1Þ2: It is easy to show that
Ui!DispXi for i ¼ 1; 2: Then, according to Corollary 3.3, we have that

ðU1;U2Þ!DispðX1;X2Þ: Consequently, #xðUÞ ¼st X with #x is an expansion function

and obviously it is not a linear function.

Example 4.2. Let S1*Wnðv;S1Þ and S2*Wnðv;S2Þ be two Wishart distributions
defined through v normal distributions Nð0;S1Þ and Nð0;S2Þ; respectively. Let

J.M. Fernandez-Ponce, A. Suarez-Llorens / Journal of Multivariate Analysis 85 (2003) 40–53 51



consider FðS1Þ ¼ ABS1ðABÞt where AAt ¼ S2 and BtB ¼ S�1
1 as the previous

example. Anderson [1] showed that FðS1Þ ¼st S2:
Furthermore, according to Theorem 16.2.1 in [6], we have that

FðvecðS1ÞÞ ¼ ½ðABÞ#ðABÞ�vecðS1Þ:

Consequently, Wnðv;S1Þ!DispWnðv;S2Þ if and only if

In2%L½ðABÞ#ðABÞ�t½ðABÞ#ðABÞ�;

that is (in light of [6, Theorem 16.1.2])

In2%L½ðABÞtðABÞ�#½ðABÞtðABÞ�:

Therefore, if Nð0;S1Þ!DispNð0;S2Þ; (since In%LðABÞtðABÞ) then

Wnðv;S1Þ!DispWnðv;S2Þ:

Example 4.3. We introduce an extension of the exponential multivariate of Freund
(see [7]). Suppose that a system has m identical components, and times to failure
X1;y;Xm: All components come from an exponential distribution

fX ðxÞ ¼ y�10 expð�x=y0Þ; x40; y040:

If k components have failed and they have not been replaced, then the conditional
joint distribution of the lifetimes of the remaining ðm � kÞ components is easily
obtained. The joint density of the ordered variables X 0

1p?pX 0
m is

f ðx1;y; xmÞ ¼ m!
Ym�1

j¼0
½y�1j expf�ðm � jÞy�1j ðxjþ1 � xjÞg�; ð10Þ

where x0 ¼ 0 and x1px2p?pxm:
Let X and Y two random vectors with density function according to (10), with

parameter vectors y ¼ ðy0;y; ym�1Þ and y0 ¼ ðy00;y; y0m�1Þ respectively. The

dispersive ordering let us choose a permutation. Because of the nature of this
exponential distribution, it is especially interesting p1;y;m: Then

F1ðx1Þ ¼
y00
y0

x1;

^

Fjðx1;y; xjÞ ¼
y0j�1
yj�1

ðxj � xj�1Þ þ Fj�1ðx1;y; xj�1Þ;

for j ¼ 1;y;m:

Let AðyÞ be a lower triangular matrix such that aij ¼ yj�1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m � j þ 1

p
; ipj and

zero for the rest of components. Similarly for Aðy0Þ: It is easy to show that

AðyÞAtðyÞ ¼ SX; Aðy0ÞAtðy0Þ ¼ SY: From this one, the Jacobian matrix of F is
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expressible as

JFðx1;y; xmÞ ¼

y00
y0

0 0 ? 0

y00
y0

� y01
y1

y01
y1

0 ? 0

^ ^ & ? ^

y00
y0

� y01
y1

y01
y1

� y02
y2

y02
y2

� y03
y3

?
y0m�1
ym�1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

where JF ¼ Aðy0ÞA�1ðyÞ:
If y0i=yi ¼ a41; for i ¼ 0;y;m � 1 then X!DispY:

Remark 4.3. We provide a counter-example for the result obtained in Corollary 3.1.

Assume that m ¼ 2; y00=y0 ¼ 1:1 and y01=y1 ¼ 1:9 in Example 4.3. It is easy to show

that one eigenvalue of the Jt
FJF matrix is lower than 1. Thus, XEDispY: However, it

holds that

X1!DispY1 and X2jX1¼x̂1ðu1Þ!DispY2jY1¼ŷ1ðu1Þ:
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