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Abstract

Letting the mass depend on the spin-field coupling asM2 = m2 − (eg/2c2)FαβSαβ , we propose a new set of relativist
planar equations of motion for spinning anyons. Our model can accommodate any gyromagnetic ratiog and provides us with
a novel version of the Bargmann–Michel–Telegdi equations in 2+ 1 dimensions. The system becomes singular when the
takes a critical value, and, forg �= 2, the only allowed motions are those which satisfy the Hall law. For eachg �= 2,0 a secondary
Hall effect arises also for another critical value of the field. The nonrelativistic limit of our equations yields new models
generalize our previous “exotic” model, associated withthe two-fold central extension of the planar Galilei group.
 2004 Elsevier B.V.Open access under CC BY license.
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1. Introduction

Most theoreticians argue that the gyromagnetic
tio of anyons must beg = 2 [1–3]. Their statement is
however, contradicted by experimentalists, who fou
that in a GaAs semiconductorg can be−0.44 [4]; in
the fractional Hall effect, it can be close to zero[4,5].

In this Letter we present a classical anyon mo
with arbitrary gyromagnetic ratiog. Our clue is
that requiring proportionality between momentum an
velocity isnot mandatory, but a mereassumptionthat
can be relaxed in a perfectly consistent manner[6,7].

Our model, consistent with first principles, is d
rived in two, independent ways. Firstly, we formula
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it within Souriau’s version of symplectic mechanic
equivalent to both the Lagrangian and Hamilton
formalisms[8]. Letting the mass depend on the co
pling of spin to the electromagnetic field provides
with a model valid for anyg; momentum and veloc
ity are only parallel forg = 2. Our second approac
follows Souriau’sPrincipe de Covariance Général,
where the equations of motion of a particle arise fr
the requirement of covariance w.r.t. gauge transfor
tions[7].

For the ordinary valueg = 2 previous results[1,3]
are recovered; new physics arises forg �= 2, though.
The most interesting physical application of anyo
concerns indeed the Hall effect[4,9], which is also the
main application of our model. Firstly, for a certa
critical value of the field,(3.1) below, our system
becomes singular andthe only allowed motionsare

http://www.elsevier.com/locate/physletb
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those whichfollow the Hall law. A secondary Hall
effect arises for another critical value of the fiel
cf. (3.6). Let us insist that, in both cases, the Hall effe
becomesmandatory.

Similar behaviour has been observed before
an “exotic” particle [10], associated with the two
fold central extension of the planar Galilei gro
[11] and related to noncommutative mechanics[12,
13]. The free exotic model was rederived by Jack
and Nair (JN) as a subtle nonrelativistic (NR) lim
of the anyon[14]. Their clue is to relate the secon
extension invariantκ to relativistic spin,s, by the
“magic Ansatz”[14,15]

(1.1)s/c2 = κ.

Below, we extend these results to models interac
with an electromagnetic field, and present a gene
ized nonrelativistic “exotic” particle with anyg. For
g = 0, it reduces to our previous model in[10]. Both
types of Hall effects are retained in the NR limit.

2. Anomalous anyons: a model with any g

Now we present a whole family of equations va
for any value of the gyromagnetic ratiog.1 We first
recall Souriau’s group theoretical construction for
classical model which underlies geometric quanti
tion which yields in turn the quantum representat
[8]. Let us consider the neutral component of Poinc
group in 2+1 dimensions parametrized by the(2+1)-
dimensional Minkowski space vectorxα , augmented
by the three Lorentz vectorsUα , Iα , J α such that
the only nonvanishing scalar products areUαUα = c2,
IαIα = JαJ α = −1. The group has two Casimirs,m

ands, and a free massive spinning particle is descri
by the Cartan 1-form[8]

(2.1)α0 = mUα dxα + sIα dJ α.

Then the classical motions are the projections o
Minkowski space of characteristic curves of the ker
of σ0 = dα0. Minimal coupling to an external electro
magnetic field amounts to adding (e times) the elec-

1 Greek indicesα,β, etc., range from 0 to 2 unless otherwi
specified. Latin indicesi, j range from 1 to 2. We use the metr
diag(c2,−1,−1).
tromagnetic two-formF = 1
2Fαβ dxα ∧ dxβ to σ0,

σ = d
(
mUα dxα + sIα dJ α

)
(2.2)+ 1

2
eFαβ dxα ∧ dxβ.

• The spin tensorSαβ = s(IαJ β − IβJ α) satisfies
the relationSαβSαβ = 2s2 and the constraintSαβUβ =
0. Therefore,Sαβ = sεαβγ Uγ . Introducing the short
handF ·S = −FαβSαβ, our clue is toreplace the (con-
stant) bare massm in (2.2) by a massM which de-
pends on the electromagnetic field[7], namely, as

(2.3)M2 = m2 + g

2

eF · S
c2

providedM2 � 0. We emphasize that our procedu
is consistent with the general principles of Ham
tonian mechanics, as the two-form(2.2) is closed.
Our approach is therefore equivalent to having a
grangian or, alternatively, a Hamiltonian framework
Let us also note that our mass formula(2.3)also yields
the Bargmann–Michel–Telegdi (BMT)[16] equations
in 3+ 1 dimensions[7]. See alsoSection 4.

Introducing the momentum2 pα = MUα and hence
the spin tensorSαβ = (sc/

√
p2 )εαβγ pγ yields the

Poisson brackets

(2.4)
{
xα, xβ

} = − 1

(p2)3/2D
Sαβ,

(2.5)
{
pα,xβ

} = δβ
α − e

p2D
Fαγ Sγβ,

(2.6)
{
pα,pβ

} = − e

D
Fαβ,

where we putD = 1 + eF · S/2p2. Our system is
regular providedD �= 0.

• The two-formσ lives indeed on the unit-tange
bundle,UαUα = c2, of (2+ 1)-dimensional Minkow-
ski space. The momenta are coordinates on this
dle, which can be viewed hence as the 5-dimensio
surface sitting in 6-dimensional phase space defi
by the constraint

(2.7)p2 = M2c2

with the massM given in (2.3). Assuming, for
simplicity, that the electromagnetic field is consta

2 We stress that ourUα is the (normalized)momentumandnot
the velocity, see below.
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a straightforward calculation shows that our restric
two-form reads

σ = dpα ∧ dxα + (s/c2)

2M3
εαβγ pα dpβ ∧ dpγ

(2.8)+ 1

2
eFαβ dxα ∧ dxβ.

Working with the Hamiltonian system given b
the Poisson brackets(2.4)–(2.6)and the Hamiltonian
H = p2 − M2c2 is equivalent to finding the kernel o
the closed two-formσ in (2.8). Generically, i.e., when

(2.9)D = 1+ eF · S
2M2c2

does not vanish, the kernel is 1-dimensional, span
by δxα andδpα such that3

Dδxα = pβδxβ

Mc2

[
G

pα

M
− es

2M2

(
1− g

2

)
εαβγ Fβγ

]
,

δpα = eFα
βδxβ,

where

(2.10)G = 1+ g

2

eF · S
2M2c2 .

Let us first assume that neither of the fact
D and G vanishes. The integral curves of ker(σ )

are conveniently parametrized byτ such thatδτ =
pαδxα/Mc2 and identified with time. Then, we en
up with

(2.11)D
dxα

dτ
= G

pα

M
+ (g − 2)

es

4M2
εαβγ Fβγ ,

(2.12)
dpα

dτ
= eFα

β
dxβ

dτ
.

These are the new equations of motion we prop
for a relativistic particle with spin and magnet
moment (we identify with anomalous anyons), mov
in the plane in a constant external electromagn
field. The Lorentz equation retains its usual form a
it is only the relation between the velocity and t
momentum,(2.11), which is modified. In general, th
motion depends also on the spin.

Let us analyse our equations(2.11)–(2.12)in some
detail.

3 The complicated form of the coefficients here, and also in(5.2)
of Section 5, is due to the particular form of the mass relation(2.3),
seeEq. (8.1)in Section 8.
• In the absence of an external field, our constr
tion reduces to that of Souriau[8], and we recover th
free spinning anyon[2].

• Contracting(2.11) by the field Fαβ and using
the Lorentz equation(2.12)yields furthermore that th
spin-field dependent mass,M in (2.3), is aconstant of
the motion,

(2.13)
dM

dτ
= 0.

• For g = 2 the term proportional tog − 2 in
(2.11)drops out, leaving us with the spin-independ
equation

(2.14)
dxα

dτ
= pα

M
.

It follows that our parameterτ is now proper time,
since(dx/dτ)2 = c2. Redefining time4 according to
λ = (m/M)τ transforms our equations into the for
posited by Chou et al.[1],

(2.15)
dxα

dλ
= pα

m
,

dpα

dλ
= e

m
Fα

βpβ.

These equations are associated with the two-f
(2.8), where M is our (2.3) with g = 2, and the
Hamiltonian

H = 1

2m

(
p2 − m2c2) − e

2m
F · S

(2.16)= 1

2m

(
p2 − M2c2).

This latter is chosen so as to cancel the effect of
spin term in the two-form and to enforce the relati
(2.15)posited betweenpα andxα/dλ.

• The new feature of our equations(2.11)–(2.12)is
that for g �= 2 momentum and velocity are no long
parallel. It follows that our spin constraint is in gene
different from Sαβ dxβ/dτ = 0, which is also used
sometimes.

• The general equations of motion(2.11)–(2.12)
are highly nonlinear in the field strengthF . Lineariz-
ing up to higher-order terms in the quantityeF ·S

m2c2 � 1,

we haveM ∼= m where∼= means “up to higher orde

4 Time redefinition changes the gyromagnetic factor, confirm
thatg = 2 can be viewed as a gauge condition[17], namely, that of
world line reparametrization.
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terms in the fieldF ”. We end up with the novel rela
tivistic planar BMT-type anyon equations

dxα

dτ
∼= pα

m
− es

2m2

(
1− g

2

)
εαβγ Fβγ ,

(2.17)
dpα

dτ
= eFα

β
dxβ

dτ
.

Forg = 2 we recover the equations(2.15).

3. Relativistic Hall effects

Returning to the general case the system beco
singular when the factorD in (2.9)vanishes,

(3.1)
eF · S
2M2c2 = −1.

Then comparison with(2.3) shows that the critica
massM ′ is given by

(3.2)
(
M ′)2 = m2

1+ g
.

Hence (M ′)2 > 0 wheneverg > −1 that we shall
henceforth require. Then the velocity is eliminat
from the l.h.s. of(2.11)leaving us with

(3.3)

(
1− g

2

)(
pα − es

2M ′ ε
αβγ Fβγ

)
= 0.

• In the “normal” case,g = 2, the equation is
identically satisfied. ThenD = G �= 0 drops out from
(2.11)before taking theD → 0 limit, and(2.15)holds
true therefore even whenD = G → 0, despite the fac
that the closed two-formσ becomes singular.

• In the anomalous caseg �= 2, however, (3.3)
allows us to infer that

(3.4)pα = es

2M ′ ε
αβγ Fβγ .

Note thatG = 1 − g/2 �= 0. Hencep0 = (es/M ′c2)B

and pi = εij (es/M ′c2)Ej . Then (3.4) implies that
ṗα = 0 since the field is constant. Hence, by(2.12)
and detF = 0, we readily obtainẋα = dxα/dτ ∝
εαβγ Fβγ ∝ pα . The velocity vi = pi/p0 satisfies
therefore the Hall law

(3.5)vi = εij Ej

B
.

Remarkably, asecondary Hall effectcan also arise
Let us indeed require that the coefficient of t
momentum on the r.h.s. of(2.11)vanishes,G = 0, i.e.,

(3.6)
eF · S
2M2c2

= −2

g
.

ThenD = 1− 2/g �= 0 and the system is regular. Th
squared mass,

(3.7)
(
M ′′)2 = 1

3
m2,

is always positive. The velocity will be again dete
mined by the electromagnetic field alone, namely,
cording to

(3.8)ẋα = 3g

4

es

m2 εαβγ Fβγ .

Then vi = ẋi/ẋ0 satisfies once again the Hall la
(3.5)! Let us observe that the momentum has b
decoupled, and can be determined by solving(2.12).

Note for further reference that both critical cond
tions (3.1) and(3.6) link the fields and the spin, se
Section 6.

4. The origin of the mass formula (2.3)

Our generalized model relies on the mass form
(2.3). Its origin can be explained from a rather d
ferent viewpoint. Some time ago[6] a set of equa
tions of motion for a general relativistic spinning pa
ticle in a gravitational and electromagnetic field h
been proposed. These latter, called the Mathiss
Weyssenhoff–Papapetrou equations, read

(4.1)ṗα = eFα
βẋβ − 1

2
R(S)αβẋβ + 1

2
Mβγ ∇αFβγ ,

(4.2)Ṡαβ = pαẋβ − pβẋα − Mα
γ Fγβ + Mβ

γ Fγα,

supplemented by the conservation lawė = 0. Here
∇ is the Levi-Civita connection of the metric an
R(S)αβ = Rα

µνβSµν , whereRα
µνβ is the Riemann cur

vature. (We use the convention(∇µ∇ν − ∇ν∇µ)vα =
Rα

µνβvβ .) The quantitiespα , Sαβ , e and Mαβ here
are interpreted as the linear momentum, the (sk
symmetric) spin tensor, the electric charge, and
electromagnetic dipole moment, respectively. In t
Letter we only consider the flat case.

Equations (4.1)–(4.2) can be derived from th
requirement of gauge invariance (Souriau’s “Principe
de covariance générale”) of the theory alone[7]. They
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are universal in that they hold independently of
relation between momentum and velocity. To ge
deterministic system, this latter has to be specified
supplementary constraints[7].

Firstly, to guarantee the localizability of the par
cle, we requireSαβpβ = 0. Our particle should, more
over, carry no electric dipole moment; this is expres
asMαβ = χSαβ whereχ is some function, identified
as the scalar magnetic moment. These conditions
tually make the system deterministic. Let us show t
they also yield some unexpected result related to
magnetization energy,(4.3)below.

It is straightforward to prove that the scalar spins,
defined bys2 = 1

2SαβSαβ is a constant of the motion
ṡ = 0. In the sequel we promotes to a constant of the
system. One thus finds thatṗαṠαβpβ = 0; then(4.2)
yields

pαṗαpβẋβ − pαpαṗβ ẋβ − χṗαSαβFβγ pγ = 0

and(4.1)enables us to write the latter equation as

1

2

(
p2)˙pβẋβ − 1

2
p2MαβḞαβ + χpαṠαβFβγ pγ = 0.

Some more work allows us to show that

(
p2)˙pβẋβ − χp2SαβḞαβ + 2χp2ẋαF αβpβ = 0.

Since Fαβ Ṡαβ = −2ẋαF αβpβ , we end up with
(p2)˙pβẋβ = χp2(FαβSαβ) .̇ The latter equation is
consistent with the mass being given by an otherw
arbitrary function of the spin-field coupling, viz.

p2 = M2c2 whereM = M(φ),

(4.3)and φ = eF · S.

Let us insist that all these results hold true for a
dimension of spacetime. In 3+ 1 dimensions, a sim
ilar procedure would yield the original BMT equ
tions [16], supplemented with a modified velocity
momentum relation[7].

• Further justification of our key formula(2.3) is
obtained for spin 1/2 field with g = 2 by considering
the Dirac equation

(4.4)
(
iDαγ α − mc

)
Ψ = 0,

whereDα = ∂α − ieAα is the gauge-covariant deriva
tive. Then applying the conjugate operator on the l.
yields(
DαDα + M2c2)Ψ = 0,

(4.5)M2 = m2 + eF · S
c2

,

which is clearly consistent with(2.7) and (2.3) with
g = 2. Extension to anyg is considered in the third
reference of[7].

5. The nonrelativistic limit

Let us consider, at last, the nonrelativistic limit
the general system(2.11), (2.12). We shall use

F · S = 2s

mc2

(−εijpiEj − p0B
) ≈ −2sB,

where ≈ stands for “up to higher order terms
c−2 ”, along with the generalized Jackiw–Nair-typ
ansatz[14,15]

(5.1)s = θm2c2 + s0.

In the NR limit

M2 ≈ M2
NR = m2(1− gθeB),

D ≈ DNR = 1− (g + 1)θeB

1− gθeB
,

(5.2)G ≈ GNR = 1− (3g/2)θeB

1− gθeB

providedgθeB �= 1. Usingp0 ≈ M, the time compo-
nent of(2.11)yieldsẋ0 ≈ 1 so thatτ becomes nonrela
tivistic time. The equations of motion reduce theref
to(
1− (g + 1)θeB

)
ẋi

(5.3)=
(

1− 3g

2
θeB

)
pi

MNR
−

(
1− g

2

)
eθεijEj ,

(5.4)ṗi = eEi + eBεij ẋj ,

where the dot means now derivation w.r.t. nonrelativ
tic time. ForgθeB → 1 the system would blow up.

• For g = 0 we recover those equations written
Ref. [10].

• Forg = 2 both coefficientsDNR = GNR drop out
as long asθeB �= 1/3 (for which it would reduces to
0 = 0). Then velocity and momentum become para

(5.5)mẋi = 1√ pi
1− 2θeB
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(θeB �= 1/2). Note that(5.5) is also the NR limit
of (2.14). WhenθeB → 1/2, (2.14)has no NR limit
sinceM2 → 0.

Let us observe that the two relativistic invarian
m and s, interpreted as relativistic mass and sp
respectively, give rise, in the NR limit, totwo pairs
of nonrelativistic invariants, namely, nonrelativistic
mass and internal energy, and nonrelativistic spin
exotic structure, respectively.Eq. (5.1)actually defines
the noncommutative parameterθ = κ/m2, and s0 is
interpreted as nonrelativistic spin[15].

6. Nonrelativistic Hall effects

Let us now consider the critical cases in the N
limit for g �= 2.

• The coefficientDNR of ẋ on the l.h.s. of(5.3)
vanishes when

(6.1)B ′ = 1

1+ g

1

eθ

(which is just the NR limit of the first critical condi
tion (3.1)). Then the Hall law,(3.5)is satisfied. (Alter-
natively, the NR limit of(3.4) is pi = e(κ/M ′)εijEj

andp0 = e(κ/M ′)B.) Eq. (6.1)generalizes the resu
found in[10].

The second critical caseGNR = 0 (which is also the
NR limit of (3.6)) requires

(6.2)B ′′ = 2

3g

1

eθ
,

as long asg �= 0. Insertion into(5.3) yields again
the Hall law (3.5). Alternatively, the NR limit of
equation(3.8)provides us with the same conclusion

Wheng = 2 no Hall effect arises, sinceθeB → 1/2
is inconsistent, andθeB → 1/3 is already regular.

7. NR equations in the weak-field limit

Further insight is gained by studying the weak-fie
limit of the equations(5.3), (5.4). If both gθeB � 1
and θeB � 1, we can neglect higher-order terms
the field and readily obtainMNR ∼= m(1− (g/2)θeB).
When 1− gθeB �= 0, the weak field limit of our
equations(5.3), (5.4)retains the form

m�ẋi ∼= pi −
(

1− g

2

)
mθεij eEj ,

(7.1)ṗi ∼= eEi + eBεij ẋj .

where

(7.2)m� = m(1− θeB)

is the effective mass introduced in[10]. These are
our new, nonrelativistic, “exotic BMT” equations val
in a weak electromagnetic field for anyg. They can
also be obtained taking the NR limit of the weak-fie
relativistic equations(2.17).

• Forg = 2 we find

(7.3)m�ẋi ∼= pi

supplemented with the Lorentz equationṗi ∼= eEi +
eBεij ẋj , which is in fact the NR limit of the sys
tem(2.15). To find this limit one has to usep2 = M2c2

instead of the naive conditionp2 = m2c2, which in-
consistent with the model. This is the only case wh
velocity and momentum are parallel.

• When the gyromagnetic ratiovanishes, viz. g =
0, equations(7.1) reduce to the “exotic” equations o
motion discovered in[10]. The latter are hencenot the
NR limit of the model in[1], cf. [14].

• For a generic gyromagnetic factor,g, equations
(7.1) describe the motions of charged nonrelativis
particles in the plane, endowed with both anomal
magnetic moment and “exotic” structure, given by t
noncommutative parameterθ (alias Galilei-invariant
κ). A look at (7.1) shows that the gyromagnetic rat
can only be detected ifθ �= 0. This is not a surprise
if we remember that by(1.1) the “exotic” structure
is a “nonrelativistic shadow” of relativistic spin. Th
equations(7.1)are Hamiltonian, with

ω = dpi ∧ dxi + eB

2
εij dxi ∧ dxj

+ Θ

2
εij dpi ∧ dpj ,

(7.4)h = �p2

2m̃
+ eV,

whereV is the electric potential, and

m̃ = m

(
1− g

2
θeB

)
,

(7.5)Θ = 1− g/2

1− (g/2)θeB
θ
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provided 1− (g/2)θeB �= 0. For any g �= 2, we re-
cover hence our previously introduced “exotic” sy
tem in[10] with redefined parameters̃m andΘ. Inter-
estingly, the effective mass remains unchanged,m̃� =
m̃(1− eΘB) = m�. The Poisson brackets of the coo
dinates associated with the (singular) symplectic st
ture in(7.4),

(7.6){xi, xj } = m̃

m�
Θεij =

(
1− g

2

)
m

m�
θεij ,

are nonvanishing except forg = 2, when the sys
tem becomes commutativeand reduces to the usu
“nonexotic” particle in an electromagnetic field.

• Our weak-field approximation would again a
commodate both types of Hall effects, with some m
ified critical field values. These are, however,notphys-
ical since the critical values arenot weak, but rather
fixed by the conditions(6.1) and(6.2). But for these
values our weak-field derivation given for(7.1) be-
comes inconsistent.

8. Conclusion and outlook

Our generalized anyon model with any gyroma
netic ratiog relies on the mass formula(2.3), which
for g �= 2 lifts the conventional requirement that v
locity and momentum should be parallel. A justi
cation comes the Mathisson–Weyssenhoff–Papape
equations, also derived from Souriau’scovariance
générale[6,7]. It is worth mentioning that our mas
formula (2.3) is just one possibility, convenient i
a weak electromagnetic field. Other choices h
also been considered[7,18]. A general mass functio
M(φ), see(4.3), would generalize(2.11)to(

1+ eF · S
2M2c2

)
dxα

dτ

(8.1)

=
(

1+ eF · S
M

dM

dφ

)
pα

M
− es

2M2

(
1− g

2

)
εαβγ Fβγ

with gyromagnetic factor defined asg = 4c2M ×
dM/dφ. Again, when the system becomes sing
lar, cf. (3.1), or when the momentum is decouple
cf. (3.6), all motions obey the Hall law, providedg �=
2.

The “Jackiw–Nair” limit of our model provides u
with a nonrelativistic model,(7.1) for any g. In the
ordinary caseg = 2 one gets a commutative theo
For g �= 2 the NR limits of(3.1) and(3.6) yield two
types of critical values,(6.1)and(6.2), respectively.

What is the physical interpretation our two typ
of Hall effects? We do not have a definitive answer
yet. A hint may come from the weak-field, NR pictur
though. Since for allg �= 2 the system can be broug
into the same form, namely that of[10], it follows
that quantization of the primary critical case yields
Laughlin description of the FQHE[9]. In particular, all
wave functions belong to the lowest Landau level[10,
13]. The first type of effect generalizes the one in[10]
to any g. The second type effect is new, and is s
somewhat mysterious; it is related to a spontane
decoupling of momentum.

But is g �= 2 possible at all? The strategy of[1],
for example, to prove thatg = 2, is to posit that
anyons in an external electromagnetic field sat
the usual Lorentz equations,(2.15). The latter are
only consistent with the(3 + 1)-dimensional BMT
equations[16] when g = 2. The same stateme
remains true for us: consistency of our general pla
model with either the original[16], or the suitably
modified[7] BMT system requiresg = 2.

Other physical instances of singling outg = 2, in-
cluding unitarity in (3 + 1)-dimensional gauge the
ory, string theory, as well as some extra gauge s
metry [17] or supersymmetry[19], are known. Do
these arguments force us to discard our equat
(2.11), (2.12)for g �= 2? We argue thatno: consis-
tency of the planar and the spatial systems maynot be
mandatory—just like it is impossible to deduce fra
tional spin from a(3 + 1)-dimensional model with
half-integer spin! These are the peculiar proper
of planar physics that allow for anomalous anyo
Hence, there is no reason to discard our theory with
arbitraryg, as long as we consider 2+1 dimensions as
physical. Similarly, while supersymmmetry may be
useful property, it cannot be viewed as a fundame
physical requirement.

What is the experimental situation? Band effe
in a semiconductor renormalize the electron m
and gyromagnetic factor. The band mass in GaAs
for example, considerably smaller (typically a fe
percent) than the electron mass. Similarly, it is
gued that the gyromagnetic factor in a semicond
tor is determined by the spin–orbit coupling[4,5].
These facts appears to be, at least, not inconsis
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with our ideas expressed here: the small mass
minds one of our vanishing effective mass con
tion, m� = 0 in [10]. The latter model hasg = 0 as
in the experiments described in[5], and correspond
to our field-dependent mass equal to the bare m
M = m, which is Souriau’s minimal coupling pre
scription,(2.2)! The minimally coupled value ofg is
hencezeroand not 2!

Anyons have long been thought to play a fund
mental role to explain the (fractional) quantum H
effect; to our knowledge, this is in fact the only phy
ical instance where anyons have experimentally b
detected[20]. We believe, therefore, that the Hall e
fect(s), becomingmandatoryfor some critical value(s
of our parameters, provide us with a strong argum
in favor of the physical reality of anomalous anyons
general, and for our theory in particular.

At last, in 3+ 1 dimensions, similar ideas we
put forward by Dixon [6] and developed in th
seventies[7,18]. Previous work of Skagerstam an
Stern [19] espouses, in a Lagrangian framewo
a viewpoint similar to ours here. Forg = 2, our
commutation relations(2.4)–(2.6)can be seen, whe
taking into account our mass-shell condition(2.3),
to agree with those, Eq. (26), in[1]. The difference
comes precisely from our choosing(2.3), while the
authors of [1] posit the simple, spin-independe
Lorentz equations (2.15) (that implyg = 2).

The elaboration of the planar case and its appl
tion to the Hall effect are, to our knowledge, new.
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