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a b s t r a c t

Bases of generators of motifs consisting of strings in which some positions can be occupied
by a don’t care provide a useful conceptual tool for their description and a way to reduce
the time and space involved in the discovery process.

In the last few years, a few algorithms have been proposed for the extraction of a basis,
building in large part on combinatorial properties of strings and their autocorrelations.
Currently, the most efficient techniques for binary alphabets and quorum q = 2 require
time quadratic in the length of the host string.

The present paper explores properties of motif bases for quorum q ≥ 2, both with
binary and general alphabets, by also showing that important results holding for quorum
q = 2 cannot be extended to this, more general, case. Furthermore, the extraction ofmotifs
in which a bound is set on the maximum allowed number of don’t cares is addressed, and
suitable algorithms are proposed whose computational complexity depends on the fixed
bound.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The extraction of motif patterns made of intermixed solid and don’t care characters has been shown to play a relevant
role in molecular biology, data compression and other domains (cf., [6,1,13]). Usually, string patterns are considered to be
interesting if they occur a number of times at least equal to the quorum, that is, a given threshold fixed a priori.

One of the most challenging problems in such a discovery process is that the number of candidate motifs grows
exponentially with the size of the input string. Pioneered by Parida et al. [12,14], the notion of string motif basis, based
on maximal saturation and irredundancy, has been introduced in order to alleviate such a growth. Motif bases are special
classes of motifs with high informative content. They provide a useful conceptual tool for the description and generation of
all the othermotifs occurring in the input string sw.r.t. a given quorum, yet growing linearlywith the size of s [2,10,16,18,19].
Most techniques proposed to extract motif bases exploit combinatorial properties of strings and their autocorrelations. The
most efficient algorithms work for alphabets of finite size and require time at least quadratic in the length of the host string
[4,5]. Such approaches apply only for quorum q = 2 and they do not allow for any control about the number of don’t cares in
the extracted motifs. Furthermore, their computational complexity depends on the size of the alphabet characterizing the
input string, that is impractical for alphabets with large size (i.e., in the case of discretized time series or digital images).

Inmany applications such as, for example, time series and computational biology, most interestingmotifs to be extracted
are those featuring high frequencies [15,6]. Unfortunately, motif bases with quorum q′ > 2 cannot be obtained from a basis
B computed for quorum q = 2 on the same input string, by simply discarding from B those motifs occurring less than q′

times. Indeed, this would alter the strict dependency among the irredundant motifs composing the basis.

∗ Correspondence to: Institute for High Performance Computing and Networking (ICAR), National Research Council of Italy (CNR), Rende (CS), Italy.
Tel.: +39 0984 494774.

E-mail address: srombo@deis.unical.it.

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.06.021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82752542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2012.06.021
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:srombo@deis.unical.it
http://dx.doi.org/10.1016/j.tcs.2012.06.021


S.E. Rombo / Theoretical Computer Science 460 (2012) 94–103 95

In this work, we study the problem of extracting string motif basis when the quorum is greater than two. In particular,
we prove that results leading to optimal algorithms for quorum q = 2 cannot be extended for quorum q′ > 2, and we also
present several properties holding for any quorum. Previous work showed that the number of motifs in the basis increases
with the quorum value (sse, e.g., [2,10]). This is because the number of don’t cares in the motifs of the basis is, in general,
larger for higher quorums. However, motifs with don’t cares are characterized by some indeterminacy that increases when
the number of don’t cares is larger, with the chance of losing important informative content. To avoid such a situation, we
propose suitable algorithms where a bound can be assumed on the total number of don’t cares admitted in any element
of the basis, by following the directions addressed for other classes of motifs [8,9]. A basis obtained this way includes only
those maximal motifs containing a limited number of don’t cares and that are irredundant each other. The algorithms we
propose present the important peculiarity that their computational complexities depend also on the maximum number of
don’t cares admitted in each motif of the basis, and a more efficient extraction of motifs with low indeterminacy can be
obtained. Finally and interestingly, such algorithms do not depend on the size of the alphabet of the input string.

2. Preliminaries

Let s be a string of n characters over a finite alphabet Σ . We denote by s[j] the j-th character of s, if 1 is the first position
of s. We also use prefi(x) and sufi(x) to denote, respectively, the i-th prefix (i.e., the first i characters) and the i-th suffix (i.e.,
the one that starts at position i) of the string x. We exploit the compact notation prefi and sufi when referring to the string
s. In addition to the solid characters from Σ , we also admit a special don’t care character denoted by ‘‘◦’’ and matching any
other character in Σ+

= Σ ∪ {◦}. For characters σ1 and σ2, the relation σ1 ≼ σ2 holds when σ1 is a don’t care or σ1 = σ2.
The following definitions are recaptured to deal with the problem of string motif extraction. In some cases, they match

or extend the corresponding ones in, e.g., [2,4,10,19].
The operator ⊕ is defined on any pair of characters σ1 and σ2 in Σ+ as:

σ1 ⊕ σ2 =


σ1, if σ1 = σ2
◦, if σ1 ≠ σ2.

Definition 1 (Consensus, Meet). Let m1 and m2 be two strings on Σ+. The consensus between m1 and m2 is the string
m = m1 ⊕m2 such thatm[i] = m1[i] ⊕m2[i], for 1 ≤ i ≤ min{|m1|, |m2|}. Deleting all leading and trailing don’t cares from
m1 ⊕ m2 yields a (possibly empty) string on Σ+ that is themeet betweenm1 and m2, denoted by [m1 ⊕ m2].

The operator ⊕, as well as the induced notions of consensus and meet, extends naturally to more than two characters or
strings.

The following definitions make implicit reference to a subject string s of n characters on Σ .

Definition 2 (Occurrence). Let m be a string on Σ+ such that |m| ≤ n. A position h of s (h ≤ n − |m|) is an occurrence of m
if and only ifm[i] ≼ s[i + h], 1 ≤ i ≤ |m|. In this case, we call occurrence ofm also pref|m|(sufh).

We are interested in the discovery of patterns that occur in s at least q times, where q ≤ n is a positive integer called the
quorum.

Definition 3 (q-Motif). A q-motif of s is a pair (m, Lm), where: (i) m is a string onΣ+ such that |m| ≥ 1 andm[1] andm[|m|]

are solid characters, and (ii) Lm = {l1, l2, . . . , lp}, with p ≥ q, is the exhaustive list of all the occurrences ofm in s.

When the value of the quorum is clear from the context, we refer to q-motifs simply asmotifs.

Definition 4 (q-Autocorrelation). Let I = {i1, i2, . . . , iq−1} be a set of positions of s (q ≤ n). The meet [s ⊕ sufi1 ⊕ sufi2 ⊕

· · · ⊕ sufiq−1 ] is a q-autocorrelation of s.

Note that a q-autocorrelation m, if not empty, is necessarily a q-motif. Indeed, the first condition of Definition 3 is
automatically satisfied by the definition of meet (Definition 1). The second condition is satisfied as well since, if m is not
empty, there are at least q positions in s where it occurs, corresponding to the q suffixes (one of them possibly coinciding
with s) whose meet generates m. Furthermore, it is worth pointing out that a q-autocorrelation does not necessarily occur
at the first position of s, as pointed out by the following example.

Example 1. Let s = aaabcdbcdbccdbdd be the input string and q = 3 be the quorum. Then, to obtain the 3-autocorrelation
generated by s, s4 and s11, three leading don’t cares need to be deleted from the corresponding consensus, and the resulting
meet ism = b ◦ dwith Lm = {4, 7, 14}.

Definition 5 (Submotif). Given twomotifsm1 andm2 with |m1| ≤ |m2|,m1 ≼ m2 holds if and only if there exists an integer
0 ≤ h ≤ (|m2| − |m1|) such that m1[i + h] ≼ m2[i], 1 ≤ i ≤ |m1|. In this case, m1 is a submotif of m2, and m2 implies or
extends m1.

Definition 6 (Maximal Motif). A motif m is maximal if and only if there is no other motif m′ such that m is a submotif of m′

and |Lm| = |Lm′ |.
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Definition 7 (q-Motif Basis). A maximal motif m is redundant if and only if there exist r motifs in s such that Lm =r
i=1(Lmi + hi), where: (i) m ≼ mi, for each mi (1 ≤ i ≤ r); (ii) each hi is a positive integer (1 ≤ i ≤ r); (iii) Lmi +

hi = {l1 + hi, l2 + hi, . . . , lp + hi}.
If a motif is not redundant, it is called irredundant. The set of all the irredundant q-motifs of s is called q-basis of s and it is
unique (as proved in [3]).

3. General properties

In the following,we consider in our analysis only non-trivialmotifsm such that |m| > 1.Weuse k to denote themaximum
number of present/allowed don’t cares in a motif, and denote by d(m) the number of don’t cares in a motifm. Furthermore,
let P and pos(m) be the list of the don’t care positions and the sum of the numerical values of positions of don’t cares in a
motifm, respectively. As an example, ifm = a◦◦bcdaaa◦add◦b, thenP = {2, 3, 10, 14} and pos(m) = 2+3+10+14 = 29.
Let I = {i1, i2, . . . , ih} be a set of positions of s (h ≤ n). The meet [sufi1 ⊕ sufi2 ⊕· · ·⊕ sufih ] is denoted by [⊕sufI ]. In general,
for a motif m that is the meet of h suffixes there may be more than one way to choose h suffixes that produce m as their
meet. Here wemake the convention that we always choose h suffixes whose consensus has no leading don’t cares. Thus, for
example, for s = abccaacabccabc , I = {2, 5, 9} and m = [suf2 ⊕ suf5 ⊕ suf9] = ca ◦ c , we use suf4, suf7 and suf11 to indicate
the generation ofm and thuswritem = [suf4⊕suf7⊕suf11]. Note that, by referring to such a convention, a q-autocorrelation
can always be expressed as the meet among q suffixes of s, where the first of such suffixes coincides with the whole s only
if no leading don’t cares have been deleted from the corresponding consensus. The following results hold.

Lemma 1. Let m be a maximal q-motif such that Lm = {i1, . . . , ih} (h ≥ q). Then m = [sufi1 ⊕ · · · ⊕ sufih ].

Proof. Suppose that there exists a motif m′
= [⊕sufI ] s.t. I = {i1, i2, . . . , ih} with m ≠ m′. Then, one between m ≼ m′

and m′
≼ m necessarily holds. If m ≼ m′, the condition of maximality for m would be contradicted, since |Lm| = |Lm′ |. If

m′
≼ m, then there exists at least a position j of the consensus among sufi1 , . . . , sufih that is a don’t care, whilem[j] is a solid

symbol. Let sufik and sufil be two suffixes s.t. ik, il ∈ I and sufik [j] ≠ sufil [j]. This would lead, again, to a contradiction, since
m occurs at both ik and il, andm[j] is solid. �

Theorem 1. Each q-autocorrelation of s is a maximal q-motif.

Proof. Letm = [sufi1 ⊕· · ·⊕ sufiq ] be amotif inA and suppose thatm is not maximal. Then, according to Definition 6, there
exists a motif m′ such that m ≼ m′ and |Lm| = |Lm′ |. Suppose that m′ is maximal (otherwise consider the maximal motif
extending bothm andm′). Sincem ≼ m′, each occurrence ij ofm is covered by an occurrence i′j ofm

′ s.t. i′j ≤ ij. Furthermore,
by Lemma 1, m′

= [sufi′1 ⊕ · · · ⊕ sufi′h ], where Lm′ = {i′1, . . . , i
′

h} and h ≥ q. Since m is the meet among s and q − 1 of its
suffixes, none of its occurrences at i1, . . . , iq can be covered by any occurrence of m′, thus i1 = i′1, . . . , iq = i′q. Since the
meet [sufi1 ⊕ · · · ⊕ sufiq ] cannot be a submotif of [sufi1 ⊕ · · · ⊕ sufiq ⊕ sufi′q+1

⊕ · · · ⊕ sufi′h ], then necessarily m ≡ m′. �

Lemma 2. Let m be a maximal q-motif such that m /∈ A, if A is the set of q-autocorrelations of s. Then m is a q′-autocorrelation
with q′ > q.

Proof. If m /∈ A and m is maximal, then there exists at least one motif mi ∈ A such that m ≼ mi but |Lm| > |Lmi |. This
means that |Lm| > q thus, by Lemma 1 and by the definition of maximality, the claim is proved. �

Lemma 3. Let I = {i1, i2, . . . , ih} be a set of positions of s (h ≤ n), and let d(m) be the number of don’t cares in the meet
m = [⊕sufI ]. Consider the h meets that can be formed by taking suffixes in the set {sufi1 , sufi2 , . . . , sufih} h − 1 at a time. Let mj
be the |m| − th prefix of the j − th such meet (1 ≤ j ≤ h). Then, the following hold:

h
j=1

d(mj) ≤ h · d(m) (1)

m ≼ mj, j = 1, . . . , h. (2)

Proof. For any ij ∈ I , consider the set of positions Ij = I/{ij}, and let mj be the |m|-th prefix of the meet [⊕sufIj ]. Then, m
may be viewed as:

m = [mj ⊕ sufij ].

If the |m|-th prefix of sufij is an occurrence ofmj, then d(m) = d(mj). Otherwise, there is at least one position wheremj and
pref|m|(sufij) have a different solid symbol. Such a mismatch would imply that:

m ≼ mj (3)
d(mj) ≤ d(m). (4)

Adding up both sides of the inequality (4) over all the hmeets yields the claim. �
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Agreeing with the results already obtained for quorum q = 2 [3–5], the following theorem holds.

Theorem 2. Let A be the set of q-autocorrelations and B be the q-basis of s. Then B ⊆ A.

Proof. Let m be a motif in B and suppose that m is not a q-autocorrelation. By Lemma 2, m is a q′-autocorrelation with
q′ > q. Let M the set of meets among the suffixes generating m, taken q at a time. By Lemma 3 m ≼ mi, for each mi ∈ M.
Furthermore, Lm = ∪iLmi (mi ∈ M). But this would lead to a contradiction sincemwas supposed to be irredundant. �

A q-basis extraction paradigm for all alphabet sizes unfolds along the following three main steps: (1) extract the set A of
all the (non-empty) distinct q-autocorrelations of the input string; (2) compute the occurrence list of each q-autocorrelation;
(3) discard from A the redundant motifs, obtaining the q-basis in A.

When the quorum is q = 2, it is not difficult to implement Steps 1 and 3 in O(n2) time (cf. [2,16,18]). For a generic
quorum q, each q-autocorrelation is the meet among s and q − 1 of its suffixes. Thus there are

n−1
q−1


meets to be computed,

each computing requiring O(n) time. The resulting number of autocorrelations is bounded by O


nq−1

q!


, and Step 1 can be

solved in O


nq
q!


time. For what concerns Step 3, consider the collection of the location lists of all the motifs in A. For each

of such list Lm, if Lm = Lm1


Lm2 · · ·


Lmh up to some offsets, withm1, . . . ,mh ∈ A andmi ≠ m (i = 1, 2, . . . , h), then

m is redundant. Otherwise, m is irredundant and can be added to the final output basis. Such a test can be afforded in O(n)
time for each of the O


nq−1

q!


lists, by testing whether all occurrences in Lm falls into the ‘‘footprints’’ of some occurrence of

a subgroup of the other motifs (cf., e.g., [10]). Thus, also Step 3 can be performed in O


nq
q!


time.

The bottleneck that influences the overall cost is Step 2. The occurrence list of a generic autocorrelationm can be obtained
by checking, for each position i of s, if i is an occurrence of m. Thus Step 2 can be performed in time O(n|A|µ), where |A| is
the number of autocorrelations and µ is the overall time necessary for the check.

In [10,17] algorithms have been proposed for quorum q = 2 such that the overall time bounds are O(n2 log n log |Σ |)
and O(|Σ |n2 log2 n log n log log n), respectively. However, the algorithms in [10,17] exploit the landmark string searching
algorithm by Fischer and Paterson [7], based on the FFT, which is indirect and admittedly impractical in many cases. With
binary alphabets, an implementation of Step 2 in O(n2) time is presented in [4,5], leading to an optimal algorithm since
Θ(n2) space is necessary to store all the autocorrelations. Unfortunately, such an approach cannot be adopted for quorum
q > 2, as will be explained later in this paper. Furthermore, the computational complexity of all the approaches [4,5,10,17]
depends on the size of the alphabet of the input string, and this can be ineffective for some applications where it can reach
high values, such as discretized time series or digital images.
When Σ is a binary alphabet, the two following lemmas hold.

Lemma 4. Let i, j and h be three positions of s and consider the meets m = [sufi ⊕ sufj ⊕ sufh], mij = pref|m|([sufi ⊕ sufj]),
mjh = pref|m|([sufj ⊕ sufh]) and mih = pref|m|([sufi ⊕ sufh]). Then,

d(mij) + d(mjh) + d(mih) = 2d(m). (5)

Proof. Let p be the position of a don’t care in mij. Since the alphabet is binary, then the symbol in position p of pref|m|(sufh)
necessarily agrees with one of the two symbols in position p of pref|m|(sufi) and pref|m|(sufj). Thus, for each don’t care inmij,
there is a don’t care in the same position in one betweenmjh andmih, and a solid symbol in the other one. Note thatmmay
also be obtained as the meet among mij, mjh and mih. Thus, each don’t care of m in position p corresponds to a don’t care in
the same position in two of the generating prefixes, and to a solid symbol in the remaining one. �

Lemma 4, that can also be viewed as a specialization of (1) in Lemma 3, supports an alternative proof of a lemma at the
core of the basis extraction approaches for quorum q = 2 and binary alphabets presented in [4,5], as shown below.

Lemma 5. Let i, j and h be three positions of s and consider the meets mij = [sufi ⊕ sufj], mih = pref|mij|([sufi ⊕ sufh]) and
mjh = pref|mij|([sufj ⊕ sufh]). Then: h ∈ Lmij ⇔ d(mij) = d(mih) + d(mjh).

Proof. If pref|mij|(sufh) is an occurrence ofmij, then mij = [sufi ⊕ sufj ⊕ sufh], thus d(mij) = d(m) and, from Lemma 4:

d(mij) + d(mih) + d(mjh) = 2d(mij) ⇒ d(mih) + d(mjh) = d(mij).

On the other hand, if d(mij) = d(mih)+d(mjh) holds, then substituting in (5) the term d(mih)+d(mjh)with d(mij), we obtain
that d(mij) = d(m). This means that the two meets mij = [sufi ⊕ sufj] and m = [sufi ⊕ sufj ⊕ sufh] are equal, and then h is
an occurrence ofmij. �

Assume that the number of don’t cares in every prefix of every meet between two suffixes of s has been computed and
stored. Then, given any such meet, Lemma 5 may be used to check whether or not it occurs at any assigned position of s, in
constant time. This gives a handle in the extraction of 2-motif bases, leading to an optimal algorithm for binary alphabets
and q = 2 [5]. For general alphabets and any quorum, the following two lemmas hold.
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sufi a b b a b
sufj a b a a b
sufh a a b b b

mijh a · · · b

sufi a b b a b
sufj a b a a b
sufg a b b b b

mijg a b · · b

sufi a b b a b
sufh a a b b b
sufg a b b b b

mihg a · b · b

sufj a b a a b
sufh a a b b b
sufg a b b b b

mjhg a · · · b

Fig. 1. Lemma 5 cannot be extended to q = 3.

Lemma 6. Let I = {i1, i2, . . . , ih} be a set of positions of s (h ≤ n) such that m = [⊕sufI ]. Consider the set M of |m|-th prefixes
of the h − 1 meets that can be formed by the suffixes in the set {sufi1 , sufi2 , . . . , sufih}, taken h − 1 at a time. Let g be a position
of s such that g ≠ i1, i2, . . . , ih. If pref|m|(sufg) is an occurrence of a motif mj ∈ M, then it is also an occurrence of m.

Proof. Immediate from the fact that, by Equation (3) in Lemma 3,m ≼ mj, for eachmj ∈ M. �

Lemma 7. Let I = {i1, i2, . . . , ih} be a set of positions of s (h ≤ n) such that m = [⊕sufI ]. Let g be a position of s such that
g ≠ i1, i2, . . . , ih. Let M′ be the set of |m|-th prefixes of the h − 1 meets among sufg and the suffixes in {sufi1 , sufi2 , . . . , sufih},
taken h − 1 at a time. Then, pref|m|(sufg) is not an occurrence of m if at least one of the following two conditions is satisfied:

1. d(mf ) > d(m), for each mf ∈ M′,
2. d(mf ) = d(m) and pos(mf ) ≠ pos(m), for each mf ∈ M′.

Proof. Condition 1 implies that pref|m|(sufg) cannot be an occurrence of m, since there is a don’t care in correspondence to
the same solid character occurring in the same position of the |m|-th prefixes of sufi1 , . . . , sufih . Similarly, this happens also
when the second condition holds, since if the number of don’t cares is the same but the sum of positions is not, then there
is some don’t care in the wrong position, that is, in correspondence to some solid symbol ofm. �

Lemmas 6 and 7 enable us to test whether or not the prefix of a suffix is an occurrence of a given maximal q-motif
under general alphabets, although in particular cases. This paves the way for identifying suitable cut-off rules allowing to
make more efficient the selection of those positions of s candidate to be occurrences of a specific autocorrelation, as will be
discussed in Section 5.

4. Methods

Step 2 of the general paradigm for basis extraction can be performed as explained below. Let A be the set of q-
autocorrelations extracted from s. Then the list of occurrences of the elements in A can be obtained by checking, for each
autocorrelationm in A and for each position i in s, if i is an occurrence ofm.

In general, the number of autocorrelations is bounded by O( nq−1

q! ) and the number of positions in s to consider for each

m in A is n − |m|. However, we will discuss later in this paper that the resulting O( nq
q! ) bound can be improved by suitable

artifices.
What influences most the overall cost of Step 2 is checking if a position of s is an occurrence of a given autocorrelation.

As already recalled in the previous section, for binary alphabets and q = 2 Lemma 5 allows to perform this task in constant
time. We seek here balancing properties similar to that of Lemma 5 for a quorum greater than 2. The following example
shows that, even when the alphabet is binary, that lemma cannot be brutally extended even to q = 3.

Example 2. As displayed in Fig. 1, although g is an occurrence ofmijh, the sum of the number of don’t cares inmijg ,mihg and
mjhg is not equal to the number of don’t cares inmijh.

This opens the quest for possible alternative properties relating maximal 3-motifs to their occurrences. One possibility
consists in exploiting the inequality (1) of Lemma 3 in order to relate the number of don’t cares in the meets of triplets of
suffixes. For instance, letm1 = [sufi⊕sufj⊕sufh],m2 = [sufi⊕sufj⊕sufg ],m3 = [sufi⊕sufh⊕sufg ],m4 = [sufj⊕sufh⊕sufg ]
and m′

= [sufi ⊕ sufj ⊕ sufh ⊕ sufg ]. If pref|m1|(sufg) of s is an occurrence of m1, then d(m1) = d(m′) and the inequality (1)
becomes:

d(m2) + d(m3) + d(m4) ≤ 3d(m1). (6)

Unfortunately, this inequality can be satisfied alsowhen g is not an occurrence ofm1, as shown by the following example.

Example 3. Let sufi = ababcdab, sufj = abaccadb and sufh = aaaccddb. Then,m1 = a ◦ a ◦ c ◦ ◦b. Let sufg = abacbddb. Then,
m2 = aba ◦ ◦ ◦ ◦b, m3 = a ◦ a ◦ ◦d ◦ b and m4 = a ◦ ac ◦ ◦db. Although d(m2) + d(m3) + d(m4) = 11, which is less than
3d(m1) = 12, g is not an occurrence ofm1.
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sufi a b a b b a a b b
sufj a a b b b a b a b
sufh a b a a b a b a b

m a · · · b a · · b

s1 a b a b b a a b b
s2 a a b a b a b a b

m a · · · b a · · b

sufg a a b a b a b b b
s1 a b a b b a a b b

⊕ a · · · b a · b b

sufg a a b a b a b b b
s2 a a b a b a b a b

⊕ a a b a b a b · b

sufg′ a b a b b b b a b
s1 a b a b b a a b b

⊕ a b a b b · · · b

sufg′ a b a b b b b a b
s2 a a b a b a b a b

⊕ a · · · b · b a b

Fig. 2. g is an occurrence ofm, whereas g ′ is not.

In the following, we describe suitable strategies to solve the aforementioned problem first for binary and then for general
alphabets.

4.1. Binary alphabets

Lemma 8. Let m = [sufi ⊕ sufj ⊕ sufh], and s1 and s2 be any two strings of size |m| on Σ = {a, b} obtained by arbitrarily re-
placing each don’t care of m by an a in s1 and a b in s2, or vice versa. Then m = [s1 ⊕ s2].

Proof. Immediate. �

Lemma 9. Let m = [sufi ⊕ sufj ⊕ sufh], and s1 and s2 be two strings of size |m| on Σ = {a, b} obtained from m as in Lemma 8.
Let m′

= pref|m|([sufg ⊕ s1]) and m′′
= pref|m|([sufg ⊕ s2]). Then g ∈ Lm ⇔ d(m) = d(m′) + d(m′′).

Proof. We first prove that if g ∈ Lm, then d(m) = d(m′) + d(m′′). From Lemma 8,m = [s1 ⊕ s2]. If g ∈ Lm, then:

1. each solid symbol ofm appears also at the corresponding position of pref|m|(sufg);
2. in correspondence with every don’t care ofm, pref|m|(sufg) agrees with only one between s1 and s2.

The first condition implies that bothm′ andm′′ have solid symbols in correspondence with solid symbols ofm. From the
second condition, it follows that for each don’t care of m there is a don’t care in one of m′ and m′′, and a solid symbol in the
other. This establishes the direct implication.

Next, we prove by contradiction that if d(m) = d(m′) + d(m′′) then g ∈ Lm. In fact, assuming that under this condition
g is not in Lm, then there must exist some position i at which m has a solid character that differs from the one occupying
the same position in pref|m|(sufg). This implies that bothm′ andm′′ have a don’t care in position i, agreeing with the fact that
g is not an occurrence of m. Now, consider the positions of m corresponding to don’t cares. Let i′ be one such position. Two
cases are possible:

1. m[i′] = s1[i′]. In this case,m′ has a solid symbol andm′′ has a don’t care at i′;
2. m[i′] = s2[i′]. Hence, m′′ has a solid symbol and m′ has a don’t care at i′.

Then, in correspondence with any don’t care ofm, only one between ofm′ andm′′ may have a don’t care. This means that
the number of don’t cares of m is covered by d(m′) + d(m′′); but there are also don’t cares at position i of both m′ and m′′,
whence d(m′) + d(m′′) > d(m), a contradiction. �

Example 4. Fig. 2 shows the balance of don’t cares expressed in Lemma 9. Specifically, the figure displays two positions g
and g ′ of the input string s such that g is an occurrence of m and g ′ is not.

Corollary 1. Let m = [sufi ⊕ sufj ⊕ sufh], let s1 be the string of size |m| on Σ = {a, b} obtained by replacing each don’t care
in position l of m by an a if the symbol in position l of sufi is a b, and by a b otherwise. Let m′

= pref|m|([sufg ⊕ s1]) and
m′′

= pref|m|([sufg ⊕ sufi]), respectively. Then:

g ∈ Lm ⇔ d(m) = d(m′) + d(m′′).

Proof. Immediate from Lemma 9, by substituting sufi to s2. �

We note that the term d(m′′) in Corollary 1 is known once the don’t cares in every prefix of every 2-autocorrelation of s
have been pre-computed as done for the case q = 2 [4], which requires O(n2) time.

We next discuss how d(m′) can be computed. As will be clear later, this represents the crucial step in our approach. We
call the term s1 in Corollary 1 the complement of sufi w.r.t.m. Consider the special case in which pref|m|(sufi) is an occurrence
of pref|m|([sufj ⊕ sufh]).
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Property 1. Let i be an occurrence of pref|m|([sufj ⊕ sufh]). Let n
j
gi be the number of positions l′ such that pref|m|(sufg)[l′] ⊕

pref|m|(sufi)[l′] is a solid symbol while pref|m|(sufg)[l′]⊕ pref|m|(sufj)[l′] is a don’t care, and nh
gi be the number of positions l′′ such

that pref|m|(sufg)[l′′] ⊕ pref|m|(sufi)[l′′] is a solid symbol while pref|m|(sufg)[l′′] ⊕ pref|m|(sufh)[l′′] is a don’t care.1 Then:

d(m′) = nj
gi + nh

gi.

Proof. Suppose that d(m′) ≠ nj
gi + nh

gi. This can be due to two different cases, to be analyzed separately:

1. d(m′) > nj
gi + nh

gi,

2. d(m′) < nj
gi + nh

gi.

A don’t care in position l of the meet m′ means that pref|m|(sufg) has a different character than the complement of sufi in l.
Since |Σ | = 2, then pref|m|(sufg) and pref|m|(sufi) have the same character at position l.

If Case 1 holds, then there exists at least one position f such that m′
[f ] is a don’t care and pref|m|(sufi)[f ] = pref|m|

(sufj)[f ] = pref|m|(sufh)[f ] = pref|m|(sufg)[f ] = σ ∈ Σ . Then, s1[f ]would be different from all of pref|m|(sufi)[f ], pref|m|(sufj)
[f ], and pref|m|(sufh)[f ], but this is a contradiction since s1 is, by construction, equal to at least one of them at each position.

Let us now turn to Case 2, and assume that a position f exists such that:

• pref|m|(sufg)[f ] = pref|m|(sufi)[f ] = σ ∈ Σ ,
• pref|m|(sufj)[f ] = σ ′

≠ σ , σ ′
∈ Σ ,

• m′
[f ] = σ ′′

∈ Σ .

Since the alphabet is binary, then one between σ ′′
= σ and σ ′′

= σ ′ necessarily holds. If σ ′′
= σ , then f would correspond

to a solid symbol of m; but pref|m|(sufj)[f ] = σ ′, thus this would lead to a contradiction. If σ ′′
= σ ′, then m′

[f ] would be a
don’t care, since pref|m|(sufg)[f ] = σ , which is, again, a contradiction. �

Theorem 3. If pref|m|(sufi) is an occurrence of pref|m|([sufj ⊕ sufh]), then Lm can be computed in O(n) time.

Proof. For each 3-autocorrelation, we store four integer values representing the number of don’t cares and the number of
times that twomatching suffixes do not match the third one. Such values can be computed as part of the extraction without
penalty. By Property 1, checking if a occurs at a specific position of the input string takes constant time, thus O(n) time
overall. �

When none among pref|m|(sufi), pref|m|(sufj), pref|m|(sufh) is an occurrence of the meet of the other two suffixes, it is still
possible to identify and store some positions, that will be called anchors, such that between two anchors such a condition
is satisfied for one of the three strings (we take also the first and the last character of the meet as anchors). Depending on
how the first anchor is chosen, the overall number of anchors in the meet can be different. We always refer to the anchors
configuration such that the overall number of anchors is minimum. The following theorem holds.

Theorem 4. Let m = [sufi ⊕ sufj ⊕ sufh], let k be the number of don’t cares in m. The list of occurrences Lm can be computed in
O(nk) time.

Proof. Let f and g be two positions of m corresponding to two consecutive anchors, and suppose that between f and g we
have that pref|m|(sufi) is an occurrence of pref|m|(sufj⊕sufh). Letmfg = m[f ]m[f +1] . . .m[g−1]m[g], and apply Theorem 3
on mfg . Note that both the number of don’t cares and the number of times that two agreeing suffixes do not agree with the
third one between positions f and g can be obtained in constant time by subtraction from those stored for the corresponding
3-autocorrelation. Since this process has to be repeated for each pair of consecutive anchors, then the overall cost is O(nk′),
where k′ is the number of anchors in m. In the worst case, the number of anchors equals the number k of don’t cares in the
3-meet, which proves the claim. �

Thus, the overall cost of this approach isO(n3k). For a general quorum q, it is easy to see that Step 2 of the general paradigm
for basis extraction can be computed analogously in O( nq

q! k) time by storing, for each q-meet, the numbers of times that two
matching suffixes do not match the q − 2 remaining ones.

4.2. General alphabets

For ease of exposition, we consider at first the case q = 2 and then generalize it for higher quorums.
Let k be the number of don’t cares of the autocorrelation (or autocorrelations) containing the maximum number of don’t

cares.

1 Note that such numbers may be computed in constant time during the extraction of the corresponding 3-meet.
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Lemma 10. Let m = [sufi ⊕ sufj] and Pij be the list of the don’t care positions in m. Furthermore, let Pih and Pjh be the lists of the
don’t care positions pref|m|([sufi ⊕ sufh]) and pref|m|([sufj ⊕ sufh]), respectively.

Then for any given position h of s:

h ∈ Lm ⇔ Pih ∪ Pjh = Pij.

Proof. Assume h ∈ Lm and Pih ∪ Pjh ≠ Pij. Then, there exists at least one homologous don’t care in [sufi ⊕ sufh] and
[sufj ⊕ sufh] the position f of which is not in Pij. Since f is not in Pij, then sufi[f ] = sufj[f ] = σ ∈ Σ . At the same time,
sufh[f ] = σ ′

∈ Σ, σ ′
≠ σ , andm[f ] = σ . Therefore, h cannot be an occurrence ofm, a contradiction.

For the second part of the proof, ifPih∪Pjh = Pij, then themeet between the |m|-th prefixes of [sufi⊕sufh] and [sufh⊕sufj]
generatesm, which proves the claim. �

Corollary 2. Under the conditions of Lemma 10, verifying if h is an occurrence of m takes time O(k).

Proof. This is the time required to compute the union of the two sets Pih and Pjh of size O(k) as well as to perform the
comparison with Pij. �

The following theorem holds.

Theorem 5. The basis of irredundant 2-motifs containing at most k don’t cares each for a string s of n characters over a general
alphabet Σ can be computed in O(kn2) time.

Proof. Extracting the n autocorrelations and discarding the redundant motifs takes O(n2) time. For each position j of s,
verifying if j is an occurrence of the autocorrelationm is done in O(k) time by Corollary 2. �

Lemma 10 and Theorem 5 can be generalized as follows.

Lemma 11. Let h be a position in s and m be a q-autocorrelation of s generated by the suffixes sufi1 , sufi2 , . . . , sufiq . Let P be the
list of the don’t care positions in m. Furthermore, let P1, P2, . . . , Pq be the lists of the don’t care positions in the |m|-th prefixes
m1,m2, . . . ,mq of the q meets that can be formed between sufh and the q suffixes sufi1 , sufi2 , . . . , sufiq , taken q − 1 at the time.
Then:

h ∈ Lm ⇔ P1 ∪ P2 ∪ · · · Pq = P .

Proof. Let h ∈ Lm and assume that P1 ∪ P2 ∪ · · · Pq ≠ P . Then, there exists at least one don’t care in m1,m2, . . . ,mq
whose position is not in P . Let f be the position of such a don’t care. Since f is not in P , then sufi1 [f ] = sufi2 [f ] = · · · =

sufiq [f ] = σ ∈ Σ . At the same time, sufh[f ] = σ ′
∈ Σ, σ ′

≠ σ , and m[f ] = σ . Thus, h cannot be an occurrence of m, a
contradiction.

Conversely, if P1 ∪ P2 ∪ · · · Pq = P , then the meet between the |m|-th prefixes ofm1,m2, . . . ,mq generates m. �

Theorem 6. The basis of irredundant q-motifs containing at most k don’t cares each for a string s of n characters over a general
alphabet Σ can be computed in O


knq q

(q−1)!


time.

Proof. Extracting all the q-autocorrelations and discarding the redundant motifs takes O


nq
q!


time. For each position j of

s, verifying if j is an occurrence of the autocorrelation m is done in O(kq2) time by performing the union of q sets of size
O(k). �

Theorems 4 and 6 pave the way for designing a technique to extract bases made of motifs with an a priori bounded
number of don’t cares. As already discussed in the Introduction, fixing such a bound can be useful to avoid situations where
the motifs in the basis have too poor informative content for large quorums.

Let us assume a bound on the total number k of don’t cares admitted in any element of the basis. This requirement may
be enforced by neglecting autocorrelations that exceed the bound in the first place, and then keeping only those ones that
are irredundant with respect to the set of autocorrelations generated this way. Of course, there is no guarantee that such a
basis can generate all the possible motifs occurring in the input string, differently from the basis where no bounds are fixed
a-priori. On the other hand, such a bounded-basis can be viewed as a set of motifs satisfying a specific constraint (on the
number of don’t cares) together with the property to be irredundant each other. Notice that this is one case of a general, yet
largely unexplored, problem consisting in defining motif bases constrained to feature specific characteristics.

Since each autocorrelation corresponds to amutual shift between two identical copies of s, it is trivial to infer the number
of leading don’t cares in every consensus of the form s ⊕ sufi: just sweep over s comparing s[j] with s[j + i] looking for the
position of the earliestmatch. For eachmutual displacement, thisway it takes thus a linear number of character comparisons
to identify the first matching pair, hence this is doable for all displacements in O(n2) overall. Once this is known, testing
whether the rest of a consensus converts in an autocorrelationwith nomore than k don’t cares is accomplished inO(k) steps
by resort to a known application of lowest common ancestors on subword trees (see, e.g., [11]). In conclusion, the at most
(n− 1) 2-autocorrelations abiding by the k don’t care bound can be extracted in O(kn) overall time. For a general quorum q,
this cost switches to O


k nq−1

q!


. Thus, the overall cost for basis extraction is O


knq q

(q−1)!


from the previous theorems, that

becomes O

nq q

(q−1)!


in this case, since k is a constant to be fixed a-priori.
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5. Conclusive remarks

In the previous sections we showed useful approaches for basis extraction holding for any quorumwith both binary and
general alphabets. In particular, the technique based on anchors for binary alphabets requires O( nq

q! k) time, where k is the
maximum number of don’t cares in any q-autocorrelation. The approach for general alphabets based on efficiently checking
if a position of s is an occurrence of a given autocorrelation takes O


knq q

(q−1)!


time. Both computational complexities turn

out to be impractical when k, q ≃ n. However, in practical applications, motifs with a high number of don’t cares are
meaningless and, as specified before, imposing that k is fixed a-priori such that k ≪ n is in practice a sensible choice. This
has important consequences on the speed of the proposed algorithms, since the number of q-autocorrelations with at most
k don’t cares obviously decreases when the quorum increases and such a number crucially influences the efficiency of all
the presented approaches.

Furthermore, in many application contexts, such as for example computational biology or time series analysis, the
quorum q is greater than two but not so large to have values close to n. In these cases, the contributions provided by this
work are evenmore significant since, first of all, important properties previous approaches are based onwork only for q = 2,
as shown in the first part of this paper. Then, if k, q ≪ n the computational complexities become affordable in practice and,
at the best of our knowledge, this is the first attempt to control the speed of the algorithms through the allowed level of
indeterminacy.

We finally sketch how Step 2 of the basis extraction paradigm can be further optimized, when we deal with general
alphabets. Let us partition the set A of q-autocorrelations into two subsets A′ and A′′ such that: A′ includes those
autocorrelations m = [sufi1 ⊕ sufi2 ⊕ · · · ⊕ sufiq ] where at least one sufij ∈ {sufi1 , . . . , sufiq} is an occurrence of the meet
yielding from the remaining suffixes that generate m; A′′ includes all the other autocorrelations. Let m′

∈ A′ and suppose
that sufij is an occurrence of themeetm′′ among the other q−1 suffixes generatingm′. Then, a position h of s is an occurrence
ofm′ if the q-autocorrelationm′′′

= sufh ⊕m′′ coincides withm′. Since bothm′ andm′′′ are computed during Step 1, and all
autocorrelations can be checked for duplicate that time, this test can be performed in constant time for each autocorrelation
in A′. Thus, the only autocorrelations whose occurrence lists computation concurs to the overall cost are those in A′′. For
each m ∈ A′′, the number of positions of s to be checked can be pre-computed by exploiting Lemma 7 in order to discard
those positions of s that of course are not occurrences ofm. Both the number of autocorrelations and the number of positions
of s to be checked to perform Step 2 can be reduced this way. Note that, the more a string is repetitive, the more the size
of A′′ is smaller than |A′

|. The suggested optimization is thus particularly suitable in those contexts characterized by high
repetitiveness.

Several challenges remain still open. Notably, among them, the study of other kinds of bases, whose irredundant motifs
are made for example of several solid blocks that occur at a variable distance in the input string. Another interesting topic
is the design of data structures suitable to make the discovery process more efficient.
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