125

Strain and strain rate for evaluating of right ventricular functional profile in patients with COPD and metabolic syndrome

Silviu Stanciu (1), Silviu Dumitrescu (2), Cyril Cohen (3), Mihai Muresan (1), Gerald Haquin (3), Mihai Muresan (1)

Introduction: Cardiac MRI is the current gold standard for diagnosis of acute myocarditis (AM) but is often not available in the emergency setting. Ultrasound imaging using new imaging modalities such as STE is a potential alternative.

Objective: Our aim was to test whether speckle tracking echocardiography (STE) can assist in the diagnosis of AM. We report here our experience with these patients in using a composite index of CS value ≥ 9 % or time-to-peak of CS > 30 ° in at least two segments identified patients with AM with a specificity of 90%, a sensitivity of 100% and an accuracy of 95%.

Background: The association between COPD and metabolic syndrome (MS) are frequently seen in daily clinical practice, but the cardiac impact on right ventricular (RV) functional profile using strain and strain rate of free wall is poorly studied in this group of patients.

Methods: Thirty-two patients with COPD (FEV1 = 48.9 ± 0.4; sPAP = 32.8 ± 0.4; 6-MWD = 391.9 ± 3.9) was compared with thirty-one patients with COPD and MS (FEV1 = 42.8 ± 0.8; sPAP = 32.9 ± 0.4; 6-MWD = 385.1 ± 3.9) regarding strain and strain rate in all segments of RV lateral wall.

Results: Mean CS and time-to-peak were higher in patients with AM as compared to control patients (≤ -9 % or time-to-peak of CS > 30 ° in at least two segments identified patients with AM with a specificity of 90%, a sensitivity of 100% and an accuracy of 95%).

Conclusion: This pilot study suggests that STE may be useful in the diagnosis of AM, particularly when using a composite index of CS value ≥ 9 % or time-to-peak of CS > 30 ° in at least two segments.

127

Evaluation of Coronary CT scans radiation dose and image quality using different scanning protocol on a 256-slice CT scanner

Patrick Dupouy, Ahmed Fareed, Ramon Labbe, Maher Hakim, Patrick Dupouy, Ahmed Fareed, Ramon Labbe, Maher Hakim

Introduction: Cardiac CT scan is a new, performing, non invasive and accurate coronary imaging method to detect the presence or absence of coronary lesions in symptomatic or asymptomatic patients. It has been hardly critized about the patients radiation dose. New acquisition protocols has been developed to decrease the delivered radiation dose.

Objective: To evaluate the estimated radiation dose and image quality difference of prospective ECG-gating (step-and-shoot) mode and retrospective ECG-gating (helical) coronary computed tomography angiography (CTCA) on a 256-slice scanner.

Methods: Radiation doses were estimated for 373 patients routinely scanned with either prospective or retrospective ECG-gating. Only patients with heart rate less than 65 bpm were scanned using step-and-shoot technique. All examinations were performed on the same computed tomography scanner using the standard injection protocol. Image quality was assessed objectively using the signal-to-noise ratio on axial coronary images and subjectively by coronary segment quality scoring into a 3 grade score.

Results: It was found that radiation doses associated with prospective ECG-gating were highly significantly lower than retrospective ECG-gating (3.5 ± 1.4 mSv versus 15.4 ± 4.6 mSv respectively, p < 0.0001). No statistically significant differences in image quality were observed between the two scanning protocols for objective quality assessments but the image quality was highly statistical significant better in prospective ECG-gating in comparison to retrospective ECG-gating (p < 0.0001) for subjective scanning evaluation.

Conclusion: prospective ECG-gating using a ‘step-and-shoot’ protocol effectively reduces radiation doses in 256-slice CT coronary angiography with better image quality. This is a definite answer cardiac CT over irradiation. When applicable this should be the standard acquisition protocol.

128

Comparison between non invasive coronary flow reserve and fractional flow reserve in the setting of left anterior descending artery stenosis of intermediate severity

Patrick Meimoun, Smain Sayah, Anne Luycx-Bore, Luc Doutrelan, Tahar Benali, Jacques Boulanger, Hamdane Zemir

Introduction: Cardiac MRI is a new, performing, non invasive and accurate coronary imaging method to detect the presence or absence of coronary lesions in symptomatic or asymptomatic patients. It has been hardly critized about the patients radiation dose. New acquisition protocols has been developed to decrease the delivered radiation dose.

Objective: To evaluate the estimated radiation dose and image quality difference of prospective ECG-gating (step-and-shoot) mode and retrospective ECG-gating (helical) coronary computed tomography angiography (CTCA) on a 256-slice scanner.

Methods: Radiation doses were estimated for 373 patients routinely scanned with either prospective or retrospective ECG-gating. Only patients with heart rate less than 65 bpm were scanned using step-and-shoot technique. All examinations were performed on the same computed tomography scanner using the standard injection protocol. Image quality was assessed objectively using the signal-to-noise ratio on axial coronary images and subjectively by coronary segment quality scoring into a 3 grade score.

Results: It was found that radiation doses associated with prospective ECG-gating were highly significantly lower than retrospective ECG-gating (3.5 ± 1.4 mSv versus 15.4 ± 4.6 mSv respectively, p < 0.0001). No statistically significant differences in image quality were observed between the two scanning protocols for objective quality assessments but the image quality was highly statistical significant better in prospective ECG-gating in comparison to retrospective ECG-gating (p < 0.0001) for subjective scanning evaluation.

Conclusion: prospective ECG-gating using a ‘step-and-shoot’ protocol effectively reduces radiation doses in 256-slice CT coronary angiography with better image quality. This is a definite answer cardiac CT over irradiation. When applicable this should be the standard acquisition protocol.

Background: The functional significance of left anterior descending artery (LAD) stenosis of angiographic intermediate severity (IS) (50-70% diameter stenosis) is challenging.

Objective: To compare the value of non-invasive coronary flow reserve (CFR) to the invasive fractional flow reserve (FFR) in patients (pts) with LAD stenosis of IS.

Methods: 46 consecutive pts (mean age 63 ± 13 years,11 females, mean LVEF 63 ± 8 % with various risk factors (diabetes 17%, hypertension 52%, smoking 28%, dyslipidemia 74%), no previous anterior myocardial infarction, and with an LAD stenosis of IS (55 ± 5% diameter stenosis, QCA) were prospectively studied. They underwent FFR with intracoronary bolus adenosine (150 μg), 3 cms distal to the stenosis, and CFR using intravascular adenosine (140 μg/kg/min over 2 min), in the distal part of the LAD, the same day in nearly all cases. CFR was defined as hyperemic peak diastolic LAD flow divided by baseline flow velocity (normal value ≥ 2) and FFR was