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Let T be a bounded linear operator on a complex Banach space X. The following
essential spectrum of 7 is introduced:

0, (T)= {/IEC : T— il is not relatively regular or N(T—4/) ¢ ﬂ (T— A" (X)}.

nzl

In this note, for a function f admissible in the analytic calculus, we show that
0, (AT))=f(6,,(T)). © 1993 Academic Press, Inc.

1. TERMINOLOGY AND INTRODUCTION

Let X be a complex Banach space and L(X) the Banach algebra of all
bounded linear operators on X. We denote by N(7T) the kernel and by
T(X) the range of Te L(X). The spectrum of T is denoted by o(7). The
resolvent set p(T) of T is the complement of ¢(7T) in the complex plane C.

In [4, Theorem 3] T. Kato showed that for an operator T e L(X) the set

pu(T)= {}.EC A(T—AI)(X) is closed and N(T— Al < (| (T—Al)" (X)}

nzl1

is an open subset of C. Since p(T) < px(T), it follows that the complement
o (T)=C\px(T) is a compact subset of 6(T). We showed in [7, Satz 2]
that da(T)S ax(T), hence 0,(T)# .

The set of all complex valued functions which are analytic in some
neighbourhood of ¢(T) is denoted by #(T). For fe #(T), the operator
f(T) is defined by the well known analytic calculus.

In [7, Satz6] we proved the following spectral mapping theorem for
ax(T).

THEOREM 1. If Te L(X) and f € #(T) then

ax(f(T))=flox(T)).

315
0022-247X/93 $5.00

Copyright €1 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.



316 CHRISTOPH SCHMOEGER

An operator Te L(X) is called relatively regular, if the equation 787=T7
is satisfied for some operator Se L(X). It is easy to see that if 787 =T,
then the operator S, = STS satisfies the equations

75, T=T and SoTSe= S
It is well known that T is relatively regular if and only if N(T') and T(X)

are closed, complemented subspaces of X [3, Satz 74.2].

DerFmNiTION.  For Te L(X) we denote by p,, (T) the set

e (T)= {/l € C : T— Al s relatively regular

and N(T— )< ) (T—/".I)"(X)}.

nzl
The complement of p,,(T) in C is denoted by a,,(T).

The next theorem shows that the points in p,(7) are in a certain
sens¢ “good” points of T (for a proof see [5, Théoréme2.6] or [8,
Theorem 1.47).

THEOREM 2. Let Te L(X). Then Ay,€p, (T) if and only if there is a
neighbourhood U of iy and a holomorphic function F: U — L(X) such that

(T—AD)FUNT—Al)=T—M  forall jeU.

The aim of this paper is to show that f(s¢,,(T))=0,(f(T)) for all
fe #(T). This is done in Section 3.

2. PRELIMINARY RESULTS

In this section we collect some properties of the sets p(T) and p,, (7).
Notation. The conjugate space of the Banach space X is denoted by X*
and the adjoint of a linear operator T in L(X) by T*
ProroSITION 1. Let Te L(X).
(a) The functions

At O N{(T—4iD)") and A ﬁ (T—AD"(X)

n=1 n=1
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are constant on connected camponents of p(T);
(b)Y px(T)=py(T*),
(¢) p,.(T)is open;
(d) ox(T)co, (T)so(T)and o, (T)# I,
(e) o, (T*)s0o,(T)
Proof. (a) [2, Theorem 3]. (b) It suffices to show that 0e p, (T) if and
only if 0ep,(T*). Let 0ep,(T) and neN. By Theorem 1, Oep, {(T"),

hence T(X) is closed. Therefore (T*)"(X*) is closed [3, Satz 55.7]. Since
N(T)< T"(X), we derive

NUT*Y)=T"(X)" = N(Ty" =T*X*).

Since ne N was arbitrary, we conclude that

U NUT*Yy)< T*(X*).

n=1

Lemma 511 in [4] asserts now that
N(T*)c () (T*) (X*).
n=1

This proves 0€ px(7T*). Similar arguments show that O0e p(7'*) implies
0epx(T). (c) follows from Theorem 2. (d) is clear. (e) Let A,ep, (T).
Then Agep(T) and T — i,/ is relatively regular. (b) shows that
io€px(T*). The relative regularity of T*—A,/*=(T—Ai0)* is
obvious.

The following example shows that in general ¢,(7*)#0, (7T) and
ox(T)#0,(T).

ExaMPLE. Let /™ denote the Banach space of all complex bounded
sequences (x,) with norm ||/(x,)| =sup__, |x,|. The closed subspace of /~
consisting of all sequences (x,) with lim, _ . x,=0 i1s denoted by ¢,. Put
X =cox!™ and consider the linear operator 7: X — X given by

T((xn)s (}’n))= ((0~ Oa Oa '")s (xls ,Vn st Yas ))

T has the following properties (for proofs see [1, p.15]): M(T)= {0},
T(X) is not complemented, and 7T* is relatively regular. This gives

OEU,.,(T), OéoK(T)v and O¢Urr(T*)~

PROPOSITION 2. Let O€p, (T) and TST=T for some Se L(X). Then
Oep, (T") and T"S"T"=T" for all ne N.
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Proof. It is clear that Oe€p (T), thus Oep, (7"} for all neN
(Theorem 1). It remains to show that T"S"T"=T" for all neN. This is
clear for n=1. Now suppose that T"S"T"=T" for some neN. Put
P=T"S" and Q=1I7—ST; then P*=pP, Q*=Q,P(X)=T"X), and
Q(X)= N(T). Since O0€ px(T), we have N(T)< T"(X), thus Q(X)< P(X).
This gives

[-ST=Q=PQ=T"S"~T"S"*'T,

hence T"S"*'T=T"S"— I+ ST. We conclude that
Tn+lsn+1Tn+l___ T(Tnsn_]+ ST)T"
=T(T"S"T")—~T" "'+ TSTT"=T"*",

and the result follows. |
We close this section with two remarks.

1. If X is a Hilbert space, then Te L(X) is relatively regular if and
only if 7(X) is closed [1, p. 12]. Thus 6, (T)=0,(T).

2. Let X be a reflexive Banach space. In this case Proposition 1{e)
shows that o,,(T)=0,(T*).

3. THE SPECTRAL MAPPING THEOREM FOR g, (T)
It reads as follows:

THEOREM 3. If Te L(X) and fe #(T) then

flo, (T))=0,(f(T))

Proof. 1. We first show that o, (f(T)) < f(o,.(T)). Let A4e0, (f(T))
and assume that Ay ¢ f(0,(T)). Then Ay ¢ flox(T)) = o, (f(T))
(Theorem 1). Thus we have

Ao€ px(f(T)). (1)
Define the function g by g(A)= f(1)— 4,. It follows that
g(A)#0 forall ieo, (T), (2)
hence

g(A)#0 forall Aeo (T). (3)
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Case 1. g has no zeros in o(7T). Then g(T)= f(T)— Ao/ is invertible in
L(X), consequently i,ep(f(T))<p, (f(T)), which is impossible, since
A“‘O € arr(f(T))'

Case 2. g has zeros in o(7T). Since (3) holds, [7, Satz 3] asserts now
that g has only a finite number of zeros in o(T). Let u,, .., u, be these
zeros (u;#u; for i#j) and ny, .. n, their respective orders. By (2),
w,ep, {T) for j=1, ..,k Now Proposition 2 can be applied. It shows that
(T —p; I)™ is relatively regular (j=1, .., k). Using the main result in [6],
one obtains the relative regularity of g(T) = f(T)— A,1. From (1) it follows
now that isep,, (f(T)) in contradiction to the hypothesis igea, (f(T)).

Therefore we have o, (f(T)) < f(0,.(T)).

2. We prove the containment f(o,(T))<a, (f(T)). Let A4e f(0,(T)),
ie, Ao=f(1y) for some uy€q, (7). We define the function g by
g(Ay=f(A)— Ay. Since g(uy) =0, there exists he #(T) such that g(i)=
(A— o) h(A). Consequently g(T)=(T—usf)h(T). Let us assume that
4o€ p,.(f(T)). Then

Oep (g(TH=p,(T—pnl) T S px((T—pol) K(T)).
Use [7, Satz 5] to derive 0 € p (T — pof). Therefore
Bo€ px(T). (4)

Since g(7T) is relatively regular, there is an operator Re L(X) with
g(T) Rg(T)=g(T})and Rg(T)R= R. Now we choose a complex number 5
such that

O<inl <(IT—polli 1R (5)
and
h(uo) # 1. (6)

Let UelL(X) be defined by U=n(T—uyl). Then we have, by (5),
(Ul <IiRIl~". Since Ug(T)=g(T)U, it follows that (,., g(T)" (X) is an
invariant subspace of U. Theorem 9 in [1, Sect.5.2] shows now that
g(T)—U is relatively regular. Obviously g(T)— U= (T—puo DM T)—nl)=
@(T) with @(1)=(A—u)(h(i)—n). It follows from (6) that p, is an
isolated, simple zero of ¢. Since ¢(T) is relatively regular, the main result
in [6] implies that T— [ is relatively regular. With the aid of (4) we
derive pg€e p, (T). This contradiction shows that ijea,, (f(T)). Thus we
have indeed f(o,, (T)) < a,, (f(T)).

The proof is now complete. |
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