Relatively Regular Operators and a Spectral Mapping Theorem

CHRISTOPH SCHMOEGER

Mathematisches Institut I, Universität Karlsruhe, D-7500 Karlsruhe 1, Germany

Submitted by Ky Fan

Received August 28, 1991

Let T be a bounded linear operator on a complex Banach space X. The following essential spectrum of T is introduced:

$$\sigma_{rr}(T) = \left\{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not relatively regular or } N(T - \lambda I) \nsubseteq \bigcap_{n \geqslant 1} (T - \lambda I)^n (X) \right\}.$$

In this note, for a function f admissible in the analytic calculus, we show that $\sigma_{rr}(f(T)) = f(\sigma_{rr}(T))$. © 1993 Academic Press, Inc.

1. TERMINOLOGY AND INTRODUCTION

Let X be a complex Banach space and L(X) the Banach algebra of all bounded linear operators on X. We denote by N(T) the kernel and by T(X) the range of $T \in L(X)$. The spectrum of T is denoted by $\sigma(T)$. The resolvent set $\rho(T)$ of T is the complement of $\sigma(T)$ in the complex plane \mathbb{C} . In [4, Theorem 3] T. Kato showed that for an operator $T \in L(X)$ the set

$$\rho_K(T) = \left\{ \lambda \in \mathbb{C} : (T - \lambda I)(X) \text{ is closed and } N(T - \lambda I) \subseteq \bigcap_{n \ge 1} (T - \lambda I)^n (X) \right\}$$

is an open subset of \mathbb{C} . Since $\rho(T) \subseteq \rho_K(T)$, it follows that the complement $\sigma_K(T) = \mathbb{C} \setminus \rho_K(T)$ is a compact subset of $\sigma(T)$. We showed in [7, Satz 2] that $\partial \sigma(T) \subseteq \sigma_K(T)$, hence $\sigma_K(T) \neq \emptyset$.

The set of all complex valued functions which are analytic in some neighbourhood of $\sigma(T)$ is denoted by $\mathcal{H}(T)$. For $f \in \mathcal{H}(T)$, the operator f(T) is defined by the well known analytic calculus.

In [7, Satz 6] we proved the following spectral mapping theorem for $\sigma_K(T)$.

THEOREM 1. If $T \in L(X)$ and $f \in \mathcal{H}(T)$ then

$$\sigma_K(f(T)) = f(\sigma_K(T)).$$
315

0022-247X/93 \$5.00

Copyright (c) 1993 by Academic Press, Inc. All rights of reproduction in any form reserved.

An operator $T \in L(X)$ is called relatively regular, if the equation TST = T is satisfied for some operator $S \in L(X)$. It is easy to see that if TST = T, then the operator $S_0 = STS$ satisfies the equations

$$TS_0 T = T$$
 and $S_0 TS_0 = S_0$.

It is well known that T is relatively regular if and only if N(T) and T(X) are closed, complemented subspaces of X [3, Satz 74.2].

DEFINITION. For $T \in L(X)$ we denote by $\rho_{rr}(T)$ the set

$$\rho_{rr}(T) = \left\{ \lambda \in \mathbb{C} : T - \lambda I \text{ is relatively regular} \right.$$

and
$$N(T-\lambda I) \subseteq \bigcap_{n\geq 1} (T-\lambda I)^n(X)$$
.

The complement of $\rho_{rr}(T)$ in \mathbb{C} is denoted by $\sigma_{rr}(T)$.

The next theorem shows that the points in $\rho_{rr}(T)$ are in a certain sense "good" points of T (for a proof see [5, Théorème 2.6] or [8, Theorem 1.4]).

THEOREM 2. Let $T \in L(X)$. Then $\lambda_0 \in \rho_{rr}(T)$ if and only if there is a neighbourhood U of λ_0 and a holomorphic function $F: U \to L(X)$ such that

$$(T - \lambda I) F(\lambda)(T - \lambda I) = T - \lambda I$$
 for all $\lambda \in U$.

The aim of this paper is to show that $f(\sigma_{rr}(T)) = \sigma_{rr}(f(T))$ for all $f \in \mathcal{H}(T)$. This is done in Section 3.

2. PRELIMINARY RESULTS

In this section we collect some properties of the sets $\rho_K(T)$ and $\rho_{rr}(T)$.

Notation. The conjugate space of the Banach space X is denoted by X^* and the adjoint of a linear operator T in L(X) by T^* .

Proposition 1. Let $T \in L(X)$.

(a) The functions

$$\lambda \mapsto \bigcup_{n=1}^{\infty} N((T-\lambda I)^n) \quad and \quad \lambda \mapsto \bigcap_{n=1}^{\infty} (T-\lambda I)^n(X)$$

are constant on connected components of $\rho_K(T)$;

- (b) $\rho_{K}(T) = \rho_{K}(T^{*});$
- (c) $\rho_{rr}(T)$ is open;
- (d) $\sigma_K(T) \subseteq \sigma_{rr}(T) \subseteq \sigma(T)$ and $\sigma_{rr}(T) \neq \emptyset$;
- (e) $\sigma_{rr}(T^*) \subseteq \sigma_{rr}(T)$.

Proof. (a) [2, Theorem 3]. (b) It suffices to show that $0 \in \rho_K(T)$ if and only if $0 \in \rho_K(T^*)$. Let $0 \in \rho_K(T)$ and $n \in \mathbb{N}$. By Theorem 1, $0 \in \rho_K(T^n)$, hence $T^n(X)$ is closed. Therefore $(T^*)^n(X^*)$ is closed [3, Satz 55.7]. Since $N(T) \subseteq T^n(X)$, we derive

$$N((T^*)^n) = T^n(X)^{\perp} \subseteq N(T)^{\perp} = T^*(X^*).$$

Since $n \in \mathbb{N}$ was arbitrary, we conclude that

$$\bigcup_{n=1}^{\infty} N((T^*)^n) \subseteq T^*(X^*).$$

Lemma 511 in [4] asserts now that

$$N(T^*) \subseteq \bigcap_{n=1}^{\infty} (T^*)^n (X^*).$$

This proves $0 \in \rho_K(T^*)$. Similar arguments show that $0 \in \rho_K(T^*)$ implies $0 \in \rho_K(T)$. (c) follows from Theorem 2. (d) is clear. (e) Let $\lambda_0 \in \rho_{rr}(T)$. Then $\lambda_0 \in \rho_K(T)$ and $T - \lambda_0 I$ is relatively regular. (b) shows that $\lambda_0 \in \rho_K(T^*)$. The relative regularity of $T^* - \lambda_0 I^* = (T - \lambda_0 I)^*$ is obvious.

The following example shows that in general $\sigma_{rr}(T^*) \neq \sigma_{rr}(T)$ and $\sigma_K(T) \neq \sigma_{rr}(T)$.

EXAMPLE. Let l^{∞} denote the Banach space of all complex bounded sequences (x_n) with norm $\|(x_n)\| = \sup_{n=1}^{\infty} |x_n|$. The closed subspace of l^{∞} consisting of all sequences (x_n) with $\lim_{n\to\infty} x_n = 0$ is denoted by c_0 . Put $X = c_0 \times l^{\infty}$ and consider the linear operator $T: X \to X$ given by

$$T((x_n), (y_n)) = ((0, 0, 0, ...), (x_1, y_1, x_2, y_2, ...)).$$

T has the following properties (for proofs see [1, p. 15]): $N(T) = \{0\}$, T(X) is not complemented, and T^* is relatively regular. This gives

$$0 \in \sigma_{rr}(T)$$
, $0 \notin \sigma_{K}(T)$, and $0 \notin \sigma_{rr}(T^*)$.

PROPOSITION 2. Let $0 \in \rho_{rr}(T)$ and TST = T for some $S \in L(X)$. Then $0 \in \rho_{rr}(T^n)$ and $T^nS^nT^n = T^n$ for all $n \in \mathbb{N}$.

Proof. It is clear that $0 \in \rho_K(T)$, thus $0 \in \rho_K(T^n)$ for all $n \in \mathbb{N}$. (Theorem 1). It remains to show that $T^nS^nT^n = T^n$ for all $n \in \mathbb{N}$. This is clear for n = 1. Now suppose that $T^nS^nT^n = T^n$ for some $n \in \mathbb{N}$. Put $P = T^nS^n$ and Q = I - ST; then $P^2 = P$, $Q^2 = Q$, $P(X) = T^n(X)$, and Q(X) = N(T). Since $0 \in \rho_K(T)$, we have $N(T) \subseteq T^n(X)$, thus $Q(X) \subseteq P(X)$. This gives

$$I - ST = Q = PQ = T^n S^n - T^n S^{n+1} T$$

hence $T^n S^{n+1} T = T^n S^n - I + ST$. We conclude that

$$T^{n+1}S^{n+1}T^{n+1} = T(T^{n}S^{n} - I + ST)T^{n}$$

$$= T(T^{n}S^{n}T^{n}) - T^{n+1} + TSTT^{n} = T^{n+1},$$

and the result follows.

We close this section with two remarks.

- 1. If X is a Hilbert space, then $T \in L(X)$ is relatively regular if and only if T(X) is closed [1, p. 12]. Thus $\sigma_K(T) = \sigma_{rr}(T)$.
- 2. Let X be a reflexive Banach space. In this case Proposition 1(e) shows that $\sigma_{rr}(T) = \sigma_{rr}(T^*)$.

3. The Spectral Mapping Theorem for $\sigma_{rr}(T)$

It reads as follows:

THEOREM 3. If $T \in L(X)$ and $f \in \mathcal{H}(T)$ then

$$f(\sigma_{rr}(T)) = \sigma_{rr}(f(T)).$$

Proof. 1. We first show that $\sigma_{rr}(f(T)) \subseteq f(\sigma_{rr}(T))$. Let $\lambda_0 \in \sigma_{rr}(f(T))$ and assume that $\lambda_0 \notin f(\sigma_{rr}(T))$. Then $\lambda_0 \notin f(\sigma_K(T)) = \sigma_K(f(T))$ (Theorem 1). Thus we have

$$\lambda_0 \in \rho_K(f(T)). \tag{1}$$

Define the function g by $g(\lambda) = f(\lambda) - \lambda_0$. It follows that

$$g(\lambda) \neq 0$$
 for all $\lambda \in \sigma_{rr}(T)$, (2)

hence

$$g(\lambda) \neq 0$$
 for all $\lambda \in \sigma_K(T)$. (3)

Case 1. g has no zeros in $\sigma(T)$. Then $g(T) = f(T) - \lambda_0 I$ is invertible in L(X), consequently $\lambda_0 \in \rho(f(T)) \subseteq \rho_{rr}(f(T))$, which is impossible, since $\lambda_0 \in \sigma_{rr}(f(T))$.

Case 2. g has zeros in $\sigma(T)$. Since (3) holds, [7, Satz 3] asserts now that g has only a finite number of zeros in $\sigma(T)$. Let $\mu_1, ..., \mu_k$ be these zeros $(\mu_i \neq \mu_j \text{ for } i \neq j)$ and $n_1, ..., n_k$ their respective orders. By (2), $\mu_j \in \rho_{rr}(T)$ for j = 1, ..., k. Now Proposition 2 can be applied. It shows that $(T - \mu_j I)^{n_j}$ is relatively regular (j = 1, ..., k). Using the main result in [6], one obtains the relative regularity of $g(T) = f(T) - \lambda_0 I$. From (1) it follows now that $\lambda_0 \in \rho_{rr}(f(T))$ in contradiction to the hypothesis $\lambda_0 \in \sigma_{rr}(f(T))$.

Therefore we have $\sigma_{rr}(f(T)) \subseteq f(\sigma_{rr}(T))$.

2. We prove the containment $f(\sigma_{rr}(T)) \subseteq \sigma_{rr}(f(T))$. Let $\lambda_0 \in f(\sigma_{rr}(T))$, i.e., $\lambda_0 = f(\mu_0)$ for some $\mu_0 \in \sigma_{rr}(T)$. We define the function g by $g(\lambda) = f(\lambda) - \lambda_0$. Since $g(\mu_0) = 0$, there exists $h \in \mathcal{H}(T)$ such that $g(\lambda) = (\lambda - \mu_0) h(\lambda)$. Consequently $g(T) = (T - \mu_0 I) h(T)$. Let us assume that $\lambda_0 \in \rho_{rr}(f(T))$. Then

$$0 \in \rho_{rr}(g(T)) = \rho_{rr}((T - \mu_0 I) h(T)) \subseteq \rho_K((T - \mu_0 I) h(T)).$$

Use [7, Satz 5] to derive $0 \in \rho_K(T - \mu_0 I)$. Therefore

$$\mu_0 \in \rho_K(T). \tag{4}$$

Since g(T) is relatively regular, there is an operator $R \in L(X)$ with g(T) Rg(T) = g(T) and Rg(T)R = R. Now we choose a complex number η such that

$$0 < |\eta| < (\|T - \mu_0 I\| \|R\|)^{-1} \tag{5}$$

and

$$h(\mu_0) \neq \eta. \tag{6}$$

Let $U \in L(X)$ be defined by $U = \eta(T - \mu_0 I)$. Then we have, by (5), $||U|| < ||R||^{-1}$. Since Ug(T) = g(T)U, it follows that $\bigcap_{n \ge 1} g(T)^n(X)$ is an invariant subspace of U. Theorem 9 in [1, Sect. 5.2] shows now that g(T) - U is relatively regular. Obviously $g(T) - U = (T - \mu_0 I)(h(T) - \eta I) = \varphi(T)$ with $\varphi(\lambda) = (\lambda - \mu_0)(h(\lambda) - \eta)$. It follows from (6) that μ_0 is an isolated, simple zero of φ . Since $\varphi(T)$ is relatively regular, the main result in [6] implies that $T - \mu_0 I$ is relatively regular. With the aid of (4) we derive $\mu_0 \in \rho_{rr}(T)$. This contradiction shows that $\lambda_0 \in \sigma_{rr}(f(T))$. Thus we have indeed $f(\sigma_{rr}(T)) \subseteq \sigma_{rr}(f(T))$.

The proof is now complete.

REFERENCES

- S. R. CARADUS, Generalized inverses and operator theory, in "Queen's Papers in Pure and Applied Mathematics," No. 50, Queen's University, Kingston, Ontario, 1978.
- 2. K. H. FÖRSTER, Über die Invarianz einiger Räume, die zum Operator $T \lambda A$ gehören, Arch. Math. 17 (1966), 56-64.
- 3. H. HEUSER, "Funktionalanalysis," 2nd ed., Teubner, Stuttgart, 1986.
- 4. T. KATO, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322.
- M. MBEKTHA, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175.
- M. GONZALEZ AND V. M. ONIEVA, On functions of relatively regular and normally solvable operators, J. Math. Anal. Appl. 133 (1988), 209-213.
- 7. C. SCHMOEGER, Ein Spektralabbildungssatz, Arch. Math. 55 (1990), 484-489.
- 8. C. SCHMOEGER, The punctured neighbourhood theorem in Banach algebras, *Proc. Roy. Irish Acad.* 91A, No. 2 (1991), 205-218.