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Let X= X, v ,I’?, X, n X2 = 0 be a partition of an n-element set. Suppose that the 

family % of some subsets of X satisfy the following condition: if there is an 
inclusion F, G Fz (F,, Fz E 5”) in %, the difference F, - F, cannot be a subset of 

X, or ,I’>. Kleitman (Math. Z. 90 (1965), 251-259) and Katona (Sfudia Sci. Math. 
Hungar. 1 (1966) 59-63) proved 20 years ago that 1% 1 is at most n choose Ln/2j. 

We determine all families giving equality in this theorem. :(’ 1986 Academic Press, Inc. 

1. INTRODUCTION 

Let us start with a classic theorem of Sperner [9]: 

If 9 c 2x is a family of distinct subsets of an n-element set X sucht that 
F, & F2 holds for all F, , Fz E 9 then 

Kleitman [6] and Katona [S] independently discovered that the con- 
dition of this theorem can be weakened while its statement remains true: 

Let X=X, uX,, X, nX, =@ be a partition ofX (1x1 =n). Suppose 
that the family 9 E 2x satisfies the following condition: 

F,cF,,F,,F,~8implyF,-F, d X1andF,-F, &X,. (1) 
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Then 

IF-16 Ln;2, . ( 1 
The families satisfying (1) are called 2-part Sperner families. The main 

aim of the present paper is to determine all maximum 2-part Sperner 
families, that is, the ones with equality in (2). It is worth mentioning that 
all of them have the following homogenity property: if FE 9 then 
IFnX,I=IGnX,), (FnXzI=IGnX,I imply GEM. This is not true 
for more than 2 parts. (See [4] for analogous questions.) 

The proof is based on a theorem of [2]. We state it to make the paper 
self-contained. 

Let 9 be a 2-part Sperner family, and let pji denote the number of mem- 
bers FEN such that )FnX,I=i, IFnX?.I=j (O<i<n,=(X,), 
0 d j< n, = I X1 I). The profile-matrix P(g) is defined by the entries pii. It 
can be considered as a point of the (n, + l)(n, f 1)-dimensional space. 
Consider the set p of all such points. The extreme points of /J are the ones 
which cannot be expressed as convex linear combinations of other points of 
p. The next statement determines all extreme points of p. 

THEOREM A Particular case of Theorem 2.1 of [2]). The extreme points 
of the set of profile-matrices of all 2-part Sperner families are the (n, + 1) x 
(nz + 1) matrices having either 0 or (:A)(?) as the ijth entry but having at 
most one non-zero entry in each row or column. 

For interested readers we also suggest the recent survey paper [3] on 
more-part Sperner theorems. 

2. DETAILS 

I@ I = C;iO C;20 p,, is a linear function of the variables pi,. It follows 
that 19 I will be maximum for some extreme points described in 
Theorem A and may be for some convex linear combinations of these 
maximum extreme points. 

At first we determine the extreme points maximizing 19 I = 
C;‘O Cy=, pi,. The non-zero entries of the extreme points (matrices) are in 
different rows and in different columns. The partial transversals are defined 
accordingly: Ic {O ,..., n, } x { 0 ,..., n2} is a partial transversal iff (ii, ji), 
(i2,j2)EI, (i,,j,)#(h, j,) imply i, # i2, j, #j,. So we have to maximize 

(3) 

for partial transversals I. 
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It is intuitively clear that (3) is maximum if the great numbers (;J) are 
paired with great (7)‘s and the little ones with little ones. Some easy lem- 
mas leading in this direction are: 

LEMMA 1. Let a, ,..., a, and b, ,..., 6, be integers and I a partial transver- 
sal. Suppose that (i,, j2), (i2, j,)E I and ai, >a;,, b,, > 6, hold and define 
~=(I-((i,,j,), (iz,jl)l)u{(il,j,), (b,jd}. Then 

c a,b, < 1 aibj. (4) 
(i.jl.5 I (i.I)Ef’ 

Proof: We have CCi,,)Er aib,-C,;,j)E, a,bj=ailbj, +aizbj2 -ai,b,z - 
ar2b,, = (q, -aiz)(bj, -bj,)>O, proving (4). I 

LEMMA 2. Let a, > a2 3a3 3 ... aa,, >O and 6, >b2 3b, 3 ... 3 
6, > 0 be integers. If I is a partial transversal maximizing 

c ajbi 
(LIltI 

(5) 

then (1, ~)EZ. 

Proof: Suppose, on the contrary, that (1, 1) $ I. We will find contradic- 
tions distinguishing several cases. If there is no other pair with component 
1 in Z then any element (i, j) can be replaced by ( 1, 1) and this is a con- 
tradiction by a,bj < a, b, and the maximality of I. 

If (i, 1) E Z (i # 1) but ( 1, j) $ Z for any j then (i, 1) can be replaced by 
(1, 1). This is a contradiction by a, bj < a, b, . The case when (1, j) E Z 
(j # 1) but (i, 1) E Z holds for no i can be settled in the same way. 

Finally suppose that (i, 1) E Z and ( 1, j) E Z (i # 1 # j). Then (i, j) $ Z, 
because Z is a partial transversal. Replacing (i, 1) and (1, j) by ( 1, 1) and 
(i, j), Lemma 1 gives the contradiction. 1 

LEMMA 3. Let a, > a, 3 a3 3 ... aa, >O and b, =b, >b, 3 ... 2 
6, > 0 be integers. If I is a partial transversal maximizing (5) then either 
(1, 1)EZor (1,2)~Zholds. 

Proof. Suppose, on the contrary, that none of them holds. The proof of 
Lemma 2 can be repeated, since it does not lead here to a contradiction 
only if (1, 2) is involved. However, it is not in Z by the indirect 
assumption. 1 

LEMMA 4. Let a, = a, > a3 3 . . . 2 a, > 0 and 6, = h, > b, > . . . > 
b, > 0 be integers. If I is a partial transversal maximizing (5) then either 
(1, l), (2, 2)~Zor (1,2), (2, ~)EZ hold. 
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Proof: Suppose that none of ( 1, 1 ), (2,2), ( 1,2), (2, 1) is in I. Then the 
proof of Lemma 1 leads to a contradiction, since (2, 2), (1, 2), and (2, 1) 
are not involved in the changes. Hence at least one of (1, 1) (2, 2), (1, 2), 
and (2, l), say (j, j), is in I. Delete ai and bj from the numbers. The remain- 
ing numbers satisfy the conditions of Lemma 2, thus (3 - i, 3 - j) E Z. 1 

Now we are able to determine all partial transversals Z maximizing (3); 
however, we have to distinguish cases according to the parity of n, and n,. 

LEMMA 5. If n, and nz are both even then Z is a partial transversal (3) iff 

nl n2 
( 1 -- 

2’ 2 
EZ (6) 

and exactly one of the following two rows hold for each 
k= 1, 2 ,..., min {y, ~1: 

(7) 

Proof: We use first Lemma 2 with the numbers (z),,.., (;;) and 
(T),..., (z;) ordered decreasingly, respectively. This proves (6). Delete .(.;;,2) 
and (,;;,) from the numbers. The remaining numbers satisfy the condttrons 
of Lemma 4, therefore either (7) or (8) holds with k = 1. The proof of the 
necessity of (6)-(S) can be completed by induction. 

Fl 

;1-1 

;1+1 

;1-2 

;1+2 

FIGURE 1 
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FIGURE 2 

On the other hand, it is easy to see that all such I’s give the same value 
for (3), maximizing it. m 

This result can be better visualized if the rows and the columns of the 
matrix are ordered according to the decreasing order .of the binomial coef- 
ficients (Fig. 1). I has to contain two oppositive corners of each 2 x 2 
shaded block and the 1 x 1 shaded one. 

The proof of the next lemma is analogous. 

LEMMA 6. If n, and n2 are both odd then I is a partial transversal 
minimizing (3) iff exactly one of the following two rows holds for each k = 
0, l,..., min{Ln,/2J, LnJ2j) (Fig. 2): 

The proof of the remaining case, when the parities are different, is again 
analogous. However the formulation of the statement is less convenient. 

LEMMA 7. If n, is even and n2 is odd, then I is a partial transversal 
maximizing (3) iff I contains exactly one element of the following sets for 
each k: 
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i(~-k,i~~-k+l),(~-k,l~j+k-I), 

(~+k,l~]-k+~),(3-+k,~~1+k-l)}, 

k=l,2 ,..., rnin{$,[T]], 

{(:-k, j+k, (?-k, [Tl+k), 

(?+k,L$]-k),(?+k#j+k)] 

k=l,2 ,..., min{;,LT]}. 

The statement is visualized in Fig. 3. I has to contain exactly one element 
of each shaded block (1 x 2 or 2 x 2). And it has to be a partial transversal, 
of course. A typical example is shown in Fig. 4. The case when n, is odd 
and n2 is even can be formulated and proved analogously. 

“I 
2 

“I T -1 

nl+, 
T 

“I T -2 

“1+2 
T 

"1 
T -3 

“I+3 
T  

FIGURE 3 

582.1/43/1-S 
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FIGURE 4 

By this we have finished the first part of our work; the extreme points 
maximizing 1 91 are determined. In the rest of the paper we show that 
there are no other 2-part Sperner families with equality in (2). 

The following lemma is a part of the folklore, a sharpening of the 
so-called LYM-inequality ([7, 8, lo]) (which was proved independently by 
Bollobas [ 1 ] in a more general form). 

LEMMA 8. Let 2 be a Sperner family on an n-element set. The number 
of i-element members is pi. Then 

with equality only when pj = (r) for some 0 < j < n. 

The next lemma is a similar statement for 2-part Sperner families. 

LEMMA 9. Let B be a 2-part Sperner family on X = X, v X, 
(X, nJf2 =M, Ix, I =n,, n2 = 1 X, I), and let pij denote the number of its 
members F such that I Fn X, ) = i, 1 F n X, I = j. Suppose that the following 
conditions hold for some indices u, u (0 < u d n,, 0 G v ,< nz): 

PU” > 0, (9) 

2 pui = 1, 
j-0 4 n2 

( >( u j > 

f n1pion2 = 1. 
i=O 

( >( > i V 

(10) 

(11) 
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Then 

PU” = 
4 n2 

( )C 1 u v . 
(12) 

Proof. Introduce the following notations: 

FJA)={F:FcX,,AuFEF} (AcX,), 

F2(B)={F:FcX,,FuBcF} (BCXf), 

P,(A)=l(F:lFl=j,FE~(A)}l, 

q,(B) = / {F: 1 F\ = i, FE F2(B)} 1. 

Observe that the above families are Sperner families for each A c Xi, 
B c X,. Therefore 

(13) 

holds for any A c X,. Summing up for all sets A c X, with 1 A 1 = u we 
obtain 

Jx fop’! qy). 
,A;=: 0 i 

(14) 

As CA cX,,IA, =u p,(A) = P,,~, (14) is equivalent to 

By (10) we have equality here and in (14), consequently (13) hold with 
equality for all A c Xi, 1 A I = u. By Lemma 8, one of the numbers pi(A), 
say pi,,,(A), is equal to (j$,), the other ones are zero. 
ILX,.,A,=U P”(A)= PU” and (9) imply the existence of an A* c XI, 
I A* I = u such that p,(A*) >O. This means that j(A*)= v for this A*: 
po(A*) = (“:). 

All sets F satisfying F n X, = A*, 1 F n X2 ( = u are in 9. Choose one of 
them, its intersection with X2 will be denoted- by B*. Therefore B* c X2, 
IB*I=u, A*uB*E~, A*EF~(B*), and 

qu(B*) > 0 (15) 
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all hold. &(B) is a Spencer family; it satisfies 

(16) 

The sum of these inequalities for all B c A’, , 1 B ( = u leads to 

2 pion < 1 i=iJ nl 
( I( i .i > 

because Ce c XZ,,rcI =u qi(B) = pi”. The equality in (11) implies that we must 
have equality in (16) for all B c X2, 1 B ( = u, including B*. By Lemma 8, 
exactly one of qi(B*) is non-zero, and by (15) this is qJB*)= (“,‘). 
Therefore all sets A c A’, , 1 A ( = u are in 9JB*), that is, A u B* E 9 holds 
for them. But this holds for all B* c A’,, ( B* ) = II, therefore 9 includes all 
setsAuB,whereAcX,,BcX,,JAI=u,)B(=u.Hencep,,=(”:)(“:). 1 

THEOREM. Let X=X,uX,, X,nX,=@, )X,l=n,, lXz/=n2. The 
maximally sized 2-part Sperner families are of the form 

9= (F: IFnX, (=i, IFnXz I= j, (i, j)EZ) 

where I is a partial transversal described in Lemmas 5-7 (Figs. l-4.). 

Proof: Lemmas 5-7 determined the extreme points maximizing 19 I for 
the 2-part Sperner families. To prove the theorem we only have to show 
that no proper convex linear combination of these maximum extreme 
points can be the profile matrix of a 2-part Sperner family. 

Suppose that A4 is the profile matrix of a 2-part Sperner family and A4 is 
a convex linear combination of extreme points described in Lemmas 557: 

M(mij) = 2 &S(I,) 
( 

AI)..., 1, 20, 2 & = 1 
> 

) (17) 
k=l k=I 

where S(Zk) is the extreme point determined by the partial transversal Zk: 

if (i j),zk, 

I 0 otherwise. 
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Consider first the case when n, and n2 are of equal parity. By symmetry 
we may suppose that n 1 < n2. It is obvious from Lemmas 5 and 6 that all of 
these S(Z,)‘s contain exactly one non-zero entry in each row and each 
column with index j such that (n2 - n,)/2 6 j< (n2 + n,)/2 (the first n, + 1 
columns in the ordering of the figures). Hence we have 

2 

St 

( >( ) 

= 1, (O<i<n,) 
j-0 4 n2 

i j 

and 

2 s;j 
i=. nl 

n2 ~1, (~<j<!$Z.!). 

( >( > i j 

These inequalities imply 

and 

fJ 
mij 

i=. n1 

n2 =1 (y<j<!?$-!-!). 

( >( > i j 

(18) 

(19) 

(21) 

On the other hand, all entries mij with j< (n2 -n,)/2 or (n, + n,)/2 < j are 
0. Therefore, for any u (Odu<n,) there is a u ((n2 -n,)/2du6 
(n, + nl)/2) satisfying mu” > 0. The entries m, satisfy conditions (9)-( 11) of 
Lemma 9 by (20) and (21). We obtain mu0 = (;)(:). So, in each row i of 
M there is an entry such that mi,oci) = (YJ)( D;:)). By (20) u(i) are distinct, that 
is, M is equal to S(I) for some partial transversal 1, having exactly one 
non-zero value in each row and each column between (n2 - n,)/2 and 
(n2 +n1)/2. So M=S(Ik) for some k (1 <k<m). 
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The situation is somewhat different if ni and n2 have different parities. 
Suppose first that n, is even, n2 is odd, and n, < n2. The other cases can be 
treated analogously. 

In this case (as it is easy to see by Lemma 7) S(l,)‘s again contain 
exactly one non-zero entry in each row. It is also true for the columns j 
such that (n2 - n, + 1)/2 < j 6 (n2 + n, - 1)/2. However, columns 
(nz -n, - 1)/2 and (nz + n, + 1)/2 are exceptional. Exactly one of them 
contains a non-zero entry of S(Z,). Therefore (18) remains valid, but (19) 
holds only from (n2 - n, + 1)/2 to (n2 + n, - 1)/2. The same can be said 
about (20) and (21). 

For any (0 ,< u dn,) there is a u = u(u) satisfying mu” > 0. If 
l<u,<n,-1 then (n,-n,+I)/2dv(u)<(n,+n,-1)/2 must hold 
because no S(Z,) has a non-zero entry with indices 1 6 u d n, - 1 and u < 
(nz -n, + 1)/2 or (n2 f n, - 1)/2 < v, by Lemma 7. Lemma 9 can be applied 
for mu.L+4 if 1 <u<n, - 1: 

A particular case of (20) is the following equality: 

(22) 

Here m,j is the number of members FEY such that Fn X, = a, 
1 Fn X, 1 = j. Using the notations of the proof of Lemma 9, m,, = pi(@). 
Since $(a) is a Sperner family, (22) and Lemma 8 lead to moj = (z)(y) 
for some j= u(0). The existence of a u(n,) such that mn,,+,) = (;;)($,,) can 
be proved similarly. (21) implies that u(O), u(l),..., u(ni) are all distinct. 
Therefore M= S(Z) for some partial transversal I. It must be one of the 
Ik’S. 1 
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