
Science of Computer Programming 16 (1991) 103-149
Elsevier

103

programmi

language and its
Albert Benveniste, Paul Le Guernic
IRISA/XNRIA, Campus de Rennes Beaulieu, 35042 Rennes Cedex, France

Christian Jacquemot
CNET PAA/OGE/SML, 3 Av. de la Republique, 92131 Issy-les-Moulineaux, France

Communicated by G. Berry
Received February 1989
Revised January 1991

Abstract

Benveniste, A., P. Le Guemic and C. Jacquemot, Synchronous programming with events and
relations: the SIGNAL language and its semantics, Science of Computer Programming 16 (1991)
103- 149.

In this paper, systems which interact permanently with their environment are considered Such
systems are encountered, for instance, in real-time control or signal processing systems, C3-
systems, man-machine interfaces, to mention just a few. The de ‘gn and implementation of such
systems require a concurrent programming language which can be used to verify and synthesize
the synchronization mechanisms, and to perform transformations of the concurrent source code
to match a particular target architecture. Synchronous languages are convenient tqGIs for such a
purpose: they rely on the assumption that: (1) internal actions of synchronous systems are
instantaneous, and (2) communication with the environment is performed via instantaneous flashes
involving some external stimuli. In this paper, we present a synchronous programming language:
SIGNAL. A SIGNAL program specifies dynamical relations between (internal and external)
signal flows. The SIGNAL compiler checks deadlock and determinism of the program, and
produces an intermediate level code equivalent to a nested family of concurrent automata. The
compilation algorithm is supported by: (1) a behavioural semantics of SIGNAL programs in
terms of conditional rewriting rules, (2) the coding of this semantics into the skew product of a
dynamical system over the field of integers module 3 and directed graphs, (3) an algebraic
algorithm to transform the above coding into an equivalent executable one, which provides by
the way an execution semantics of the language. We briefly discuss the implementation aspects,
and explain the capabilities and limitations of the current version of the SIGNAL compiler.

Chapter 1. Introduction

Reactive systems’, i.e. systems which interact permanently with their environment
are considered in this paper. Such systems are encountered, for in: tance, in real-time

’ This name was introduced in [22], and extensively used in [IO].

0167-6423/91/$03.50 @ f991-Elsevier Science Publishers B.V.

104 A. Benveniste et al.

control or signal processing systems, C3-systems, man-machine interfaces, to men-
tion just a few. It is usually recognized that a reliable design of such systems should
be supported by a concurrent programming style. On the other hand, the highly
demanding nature of these applications forces to consider as well the requirement
of highly efficient and reliable implementation, in both cases of sequential or

distributed implementation. Unfortunately, the modular structure of the source
application may be different from the modular structure of the implementation. To
summarize, the design and implementation of reactive systems requires a concurrent
programming language which can be used to verify and synthesize the synchroniz-
ation mechanisms, and to perform transformations of the concurrent source code
to match a particular target architecture.

We shall not discuss here the drawbacks and merits of current tools in program-
ming reactive systems (finite state machines, Petri Nets, concurrent programming
languages such as ADA or OCCAM); the interested reader is referred to the excellent
discussion in [lo] on this subject. We shall merely concentrate on the discussion
of the syncbzous appraach we follow in this paper.

1.1. The basic synchronicity hypotheses

While classical (i.e. asynchronous) concurrent languages do implicitly or explicitly
refer to some external and universal time reference, the notion of ‘time’ is completely
difFerent in svnchronous reactive systems. To be more explicit, synchronous reactive
systems differ from asynchronous ones in the following aspects:

(1) The internal mechanisms oj* the system : every action (computation or internal
communication) is instantaneous, i.e. has a zero duration;

(2) 73e communications with the external world: the set of the possible input
channels is fixed and known in advance, and the flows carried by these channels
are specified through both

@ the values they carry,
@a total ordering of the ‘instants’ at which these values are available at the

external ports.

Of course, this last requirement is the fundamental feature which characterizes
the way synchronous reactive systems communicate with the external world, com-
pared to asynchronous ones. Let us illustrate this point using a simple example.
Consider a reactive system with two inputs:

(1) a data input carrying an ordered file of data named x,
(2) an interrupt input port named s.

Then, the specification of an input history according to the synchronous point of
view must be of the form

Xl x2 x3 I

1
&I s2, -L %, etc.

$?Hc!iFQnOUS programming with events and relations 105

(as usual, _I_ denotes the absence of data), i.e. both the values and their global
interleaving must be specified: the integer index t = 1,2, . . . is used for this purpose.
This index ‘t’ has to be considered as the proner ration of time in synchronous systems.
Another fundamental consequence is that the notion of ti.ne is local to a given
subsystem: there is no universal time reference, as we shall see later when communica-
tions will be studied.

In other words, the essentially non-deterministic character of the communications
with the external world in reactive systems is concentrated inside some (ignored)
external mechanism which decides this global ordering. Hence, the advantage of
the synchronous point of view is that the non-determinism of external communications
is strictly concentrated on this mechanism, and it is not propagated inside the body of
the system itself: This is the fundamental reason of the power of the synchronous
approach, as far as deersprogram transforms is concerned. Among languages relying
on this synchronicity assumption are the imperative language ESTERLL 120, iO],
the declarative and functional language LUSTRE [17,3 11, and the declarative and
relational language SIGNAL we present in this paper; related to the same formalism
is also the approach of statecharts in [21].

1.2. On the semantics of SIGNAL

To support the .+bove program transforms, SIGNAL must rely on a mathematical
abstract model; such a model and the language were developed simultaneously. In
fact, two models of different styles were introduced.

1.2.1. A denotational semantics of SIGNAL

TO our knowledge, the pioneering work relevant to the denotational style of
semantics is the Dynamic Network Processes model introduced in [24]. DNP’s are
functions mapping input histories into output histories; their denotational semantics
has been studied in detail in [16]. Kahn’s model has been used with suitable
extensions and modifications in [31] to cope with the synchronicity assumption.
However, this approach cannot be used for SIGNAL, due to its relational nature.
In [2,4], a denotational relational model has been introduced for the SIGNAL
language. According to this model, processes specify restrictions on the set of all
possible interleavings of the involved signals (or data-flows); such restrictions may
involve values (e.g. in a relation such as x = y + z which means that V t: x, = ~7, + z,),

or synchronization (e.g. in an instruction such as y= x when b). This allows an
elegant definition of the notion of communication within this model; it is shown in
[2] that observatisnal equivalence is a congruence within this model, a surprising
result compared to TT! .,;t n;tdels of concurrent systems [al]. Using t:his model, it is
shown in [2] that SIGNAL is ‘complete’, i.e. provides a set of constructs which is
sufficient to build any reactive system. It is not our purpose to discuss this model
any further, the interested reader is referred to the above mentioned references.

106 A. Benveniste et al.

1.2.2. An operational semantics

Inspired by [!J] we give in this paper a semantics for SIGNAL in terms of
conditional rewriting rules B la Plotkin [32]. Let us first discuss the consequences
of the synchronicity assumption on the kind of process algebra we get; we shall
refer to the classical notations of SCCS [28] for this purpose. We consider transitions
of the form E S E’, where E and E’ range over expressions of the process algebra,

and a ranges over the abelian group of actions (Act, X, 1, a’} where a’ denotes the
inverse of a within the group; the derivation rules of SCCS are given in [28, p. 276,
Table 11. Referring to this table, the sum E + F represents a non-determinate choice
among the actions E or F can perform. The sum is known to be the cause of
non-determinism and other features such as the distinction between observational
equivalence and bisimulation; such a composition operator is not in agreement with
the synchronicity assumption, and will not be used here. We shall only use a
refinement of the product of SCCS we shall outline now. Think of E performing
any one of the following actions: !x, !y, !x !y to be interpreted as the delivery of x
alone, y alone, or x and y simultaneously; on the other hand, consider E’ as
performing ?x?y \d*ead x and y simultaneously) as only action, for instance in order
to compute their sum x + y. Assume that !x = ?x. Then the SCCS product E x E’ is
allowed to perform any one of the actions !x, !y, ?x?y, !x?x?y = ?y, !y?x?y = ?x,
!x!y?x?y = 1, i.e. any product of the original actions of E and E’. The synchronicity
assumption will be reflected in the fact that !x!y?x?y will be the only acceptable
action the composition of E and E’ can perform. in other words, the set of actions
is not an abelian group any more, for the product ab of two actions a and b is not
always defined; c = ab will merely be considered as a relation on actions. An
immediate consequence is that combining expressions via such a modified composi-
tion operator immediately yields actions which have the form of an implicit system
of equations; solving such equations provides equivalent explicit actions which can
be executed. This is exactly the task performed by the compilers of all synchronous
languages (ESTEREL, LUSTRE, SIGNAL). This short disct:ssion enlightens the
difference between models of synchronous languages and others.

1.3. Organization of the paper

Chapter 2 is devoted to an introduction to SIGNAL and its illustration via a
programming example. Our purpose is to show how the relational features of
SIGNAL can be used for a ‘self-proved’ style of programming. The reader interested
in a complete description of SIGNAL is referred to [19,271, and other programming
examples relevant to signal processing can be found in [4]. In Chapter 3, the
mathematical semantics of SIGNAL is presented; an algebra of processes specified
by Plotkin-like transition rules is introduced for this purpose; projecting this algebra
into a smaller one provides us with transition rules which summarize synchronization,
logic, and dependtncies. A coding of this subalgebra is presented, using the field
IF3 of integers modulo 3. Chapter 4 is the core of the paper: the execution semantics

Synchronous programming with events a,rd relations 107

of SIGNAL is presented and it is shown how the compiler can check properties
such as deadlock or determinism. Finally, related results and the current status of
the SIGi\iAL com$er are presented in the tanclusion.

Chapter 2. The SIGNAL programming language; some examples

To be concise, we shall introduce only the primitives of the SIGNAL language,*
and drop any reference to typing and various declarations; the interested reader is
referred to [27].

2.1. SIGNAL-kernel

SIGNAL handles (possibly infinite) sequences of data with time implicit: such
sequences will be referred to as signals. For example, x denotes the infinite sequence

MI= I where the integer time index t is attached to this signal; signals possessing
the same time index are said to have the same cJo& so that clocks are equivalence
classes of simultaneous signals (a formal definition will be discussed later). Instruc-
tions of SIGNAL are intended to relate clocks as well as values of the various
signals involved in a given reactive system. We shali term a system of such relations
program; programs will be used as modules.

A basic principle in SIGNAL is that a single name is assigned to every signal,
so that in the sequel (and unless explicitly stated), identical names refer to identical
signals. The kernel-language SIGNAL possesses 5 instructions, the first of them
being a generic one.

(i) p(x1,. . . , xn)
(ii) y := x$ inif x0

(iii) y := x when b
(iv) y:= u default \I

(4 PIQ

The intuitive meaning of these instructions is as follows:
(i) Direct extension of instantaneous relations into relations acting on flows:

p(x1,. . . ,xn) e W: p(xl,, . . . ,xn,) (2.1)

For example, functions such as z := x + y (VC z, = X, + y,) or statements such as (a

and b) or c:= true (W: (a, and b,) or c, = true). A byproduct of this instruction is
that all referred signals must have the same time index, i.e. they must be present

simultaneously. TIiis is a generic instruction, i.e. we assume a family of relations is
available. If one chooses an instantaneous relation accepting any n-uple, the resulting

SIGNAL instruction only constrains the involved signals to have the same clock:
the so-obtained instruction written synchro x, y, . . . only forces the two signals x, y, . . .
to have the same clock.

’ SIGNAL is a joint trademark of CNET and INRIA.

108 A. Benwniste ef al.

(ii) Shift register:3

y := x$ inif x0 H Vr>l:y,=x,_,,y1=x,.

Again this instruction forces the input and output signals to have the same time
index, i.e. to be present simultaneobzly.

(iii) Condition (b is boolean): y equals x when the signal x and the boolean b
are available and b is true; otherwise, y is not emitted; the result is an event-based
downsampling of signals. Here follows an example of behaviour of this instruction
(as mentioned before, _L denotes the absence of data):

b: J__L$$ttIttL$

x: x1 I I x2 x3 x4 I I x5

When this instruction alone is being observed, _L meaning the absence of data can
be deleted, so that events with triple I are removed by the way:

b: IT $ tt tt If

x: Xl x2 x3 x4 x5

Y: x3

(iv) y merges u and v, with priority to u when both signals are simultaneously
present; this instruction is the key to oversampling as we shall see later. Here follows
an example of behaviour of this instruction:

u: Ul u2 u3 u4

v: VI v2 213 v4 us

y: u1 VI uq u3 213 u4 v5

The instructions (i)-(iv) specify the elementary programs, which we cab generators.

The objects named x, y, u, w, b will be termed signals.

(v) Communication of already defined programs: P and Q communicate through
their signals with common names; for example

y:=zy+al zy := y$ init x0

denotes the system of recurrent equations for f z !

which is equivalent to y, = y,_ I + a,, y. = x0,

’ Time is money.

Synchronous programming with events and relations 109

2.2. The shared track example and its SIGNAL programming

This example is borrowed from [30].

2.2.1. Informal description of the example

Consider a plant which consists of two diesel trains \;c hich share a common section
of railway track. &t the shared track, there is a diesel pump for refueling the trcrins.
There is an automatic mechanism which allows a controller to sample the level of
diesel in the tank of the train, and a facility exists for the contro!ler to command
the pump to deliver any amount of fuel to the train. Since we wish to prevent the
disastrous situation of tv’o krains simultaneously occupying the shared track, two
traffic lights have been installed. Each train is allocated a traffic light at its entrance
to the shared track. A train waits before entering the shared track until it receives
the signal to move. We shall now discuss the SIGNAL programming of this example.

2.2.2. Some macros

To allow for an easy description of complex objects, we shah build a toolbox of
macros to be used later as standard instructions. When presenting the macros, to
avoid the need for explicit typing, we shall use the following generic notations:

e

0

0

u, x, y, 2, l l l
: signal of any type,

a, b, o, . . . : boolean signals,
h, k, I: signals of type event, i.e. boolean signals which take only the value true;
type event is natu. lily embedded into type boolean, this wili be used in the

sequel.

(1) Access to the clock of a signal:

h := euent(x)

stands for

h:= (x=x).

The pure clock h is delivered when x is present (since x = x always holds).

(2) Extraction of the occurrences true of a boolean signal:

h := when(b)

stands for

h := b when b.

110 A. Benoeniste et a?.

(3) Requiring that two events never happen at the same instant:

stands for

I := when((not(h when k)) default h)

sync!m I, tk

Notice that the event I occurs when h occurs but not k. The ‘synchro’ instruction
forces I and h to be simultaneous.

(4) A synchronized memory:

y := x cell b kit y.

stands for

zy := y$ init y.

y := x default zy

synchro y, (x default when(b)).

The output y r<tums either the present value of x (when x is received), or the last
received value of x when b is present and true.

2.2.3. an outline of the complete SIGNAL language

It is not our purpose here to fully present SIGNAL, the interested reader is
referred to [27]. The basic construct in SIGNAL is the PROGRAM; programs are
used as modules or ‘black-boxes’. Here follows the corresponding notation:

NEW-PROGRAM (list of parameters) {list of visible signals)
=

OLD_PROGRAM_1 list of a_I : b-1
. . .

OLD-PROGRAM-n list of a-n : b-n
where

OLD_PROGRAM_l . . .
. . .

OLD-PROGRAM-n . . .

end

In this notation, a-i: b-i means that the signal a-i of OLD,PROGRAM_i is renamed
to b-i; this mechanism is the basis for program interconnection, since visible signals

Synchronous programming wirh events and relations 111

denoted by identical names must be identical. Signals which appear in the body of
the program but are not listed in its interface are local signals, i.e. they are invisible
from outside. To facilitate the reading, it will be useful to mark some of the interfaces
w;th ? or ! to mean that the corresponding signal interfaces are inputs or outputs
respectively; this will be used in the sequel.

2.24. Some basic mechanisms

2.2.4.1. A guard on interleaved signals (‘followed by’)
The event h is emitted when k2 occurs simultaneously with or immediately after

kl when the latler is present alone. IHere follows the program:

FBY {? event kl, k2 ! euent h)

c := (zot k2) default kl
ZC := c$ initfilse
h := k2 when (kl default zc)

end

where we have used the fact that type event is embedded into type bool; the internal
signals CJC are boolean blrilt from events. Here is a picture of the corresponding
temporal behaviour; the internal signals of the SIGNAL program below are also
depicted:

kl:

k2: Ii

c: If tt tt $ $ I?- tt $ IT

zc: $ $” tt tt $ $ $ tt fl

h:

The diagram above shows how the various signals are interleaved; symbols appearing
in the same column are delivered simultaneously. This picture intuitively shows that

should occur exactly when triangles linking occurrences of Cl can be inserted
without intersecting other symbols. Notice that the space between the columns have
no interpretation in terms of some ‘regular’ physical time, this diagram only specifies
the global ip+erleaving of the various signal flows.

2.2-4.2. A guarded decreasing counter with reset

?Yx purpose of this counter is to model the internal consumption of time, or any
other amount of events. Typically, the ‘speed’ of such counters are not visible

112 A. Benwniste et al.

externally.

GUARD-COUNT (integer level) (? euent reset ! bool empty)
=

n := (level when r) default (zn - 1)
zn := n$ init 0
synchs (when(zn = 0)), r
e := when(n = 0) default (not r)

r: reset, 8: empty

end

The parameter iizvel is assumed to be ~0. The first three instructions define a counter
modulo level + 1 with a reset signal. When the event reset is received, the counter
restarts decreasing from level, until the counter reaches 0. The boolean empty
delivers fulse when the counter is reset, and true when the counter gets empty. The
syachn, inst,rction refuses any new reset before the counter gets empty. This is an
example of an active program, i.e. of a program that crcts on the timing of its inputs;
this is a special feature of SIGNAL among all synchronous languages. Notice that
the combination of the two basic constructs, default and $, allows us to generate
internal clocks that are faster than the clocks of the interfaces, namely the clocks
of the counters. This is a very pcwerful data dependent upsampling mechanism
which is a byproduct of the relational style of SIGNAL. This program will be used
repeatedly to represent the consumption of fuel in the tank of the train, or the
delivery of fuel by the pump on the shared track.

2.2.5. fiogtamming the skated track example

in this section, we shall also introduce an outline of SIGNAL modular
programming.

2.2.5.1, T&e shared track acting as G critical section
When free, the track accepts any single train, and delivers the fuel. This program

is a prototype of critical section. Here follows the program.

SHARED-TRACK (kteger level) { ? event enterl, enter2 ! boo1 free}
=

dkjoint enter 1, enter2

enter := enter1 default enter2

GUARD_COUNT(level) reset: enter, empty: free
where

GUARD-COUNT (integer level)
(? event reset ! boo1 empty] %already seen%

errd

where we show an outline of the SIGNAL syntax for modular programmiq. The
critical section is the result of (1) GUARD-COUNT which refuses any new train to

Synchronous programming with events and relations 113

proceed whiPe the track is occupied, (2) the first instruction which prevents two
trains to enter simultaneously. Notice that no particular priority among the two
trains is specified here, so that the resulting program will be non-deterministic; such
a non-determinism could be easily removed by assigning a different priority to each
train. The critical section does not take care of the reques?/ocknorr ledgeperrt mechan-
ism: the latter task will be devoted to each particular train; this choic, .orresponds
to a decentralized style of control.

2.2.5.2. A train passing the shared track
Here we present the request/acknowledgement mechanism which is typical from

critical sections .

TRAIN_QN_TRACK (? boo1 request, free ! euent enter, travelstart)
=

! REO_ACK acknowledge: enter
k2 := when(free)

FBY kl: enter, h: travelstart
where

FBY (? event kl, k2 ! ment h}

end

%already seen%

REQACK (? boo1 reqtiest, free ! er;at- acknowledgej
- -

cr := r when (f cell r init true)

cf := f when (r cell f ifli? f abe)
a := when(cr) default whdcf)

r: request, f: free, a: acknowledge
end

The program REQ_ACK specifies the request/ acknowledgement mechanism:
acknowledgement is given when either a request occurs while the section being free,
or the section gets free while a request has been sent. When allowed, the train
proceeds on the track; then, it leaves ;he track when the pump gets empty; this !ast
action is specified by thz FBY program.

2.2.5.3. A train

TRAIN (integer level) { ? boo1 free ! event enter}
- -

GUARD_COUNT(level) reset: travelstart, empty: request
TRAIN_ON_TRACK

where

GUARD-COUNT (iutegea level)

{ ? event reset ! boo1 empty} ?&alread*; seen%

TRAIN_ON_TRACK { ? boo1 request, free ! euent enter, ?ravelstart} . . .

end

114 A. Benveniste et al.

Here the program GUARD-COUNT figures the fuel consumption during the travel.
The whole life of a particular train is described in this program.

2.2.5.4. The whole program
Here follows the program SNCF.4

SNCF (integer level) { ? %no input% ! %what you want to observe%)
=

SHARED_TRACK(level)
TRAIN(level) enter: enter1

TRAIN(level) enter: enter2
where %etc . . .%

end

The label i (i = 1,2) refers to the particular train. Recall that this program is
non-deterministic, but that it could be easily made deterministic if different priorities
are assigned to each train.

This programming example reveals several interesting features of SIGNAL.

Systems which permanently interact with their environment can be specified.
The programs FRY and REQACT are typical examples of passive programs,
i.e. of programs accepting anything the environment proposes. On the other
hand, the program GUARD-COUNT acts on its environment: inputs are accep-
ted only when some internal condition is satisfied during the running of the
program. Hence the generic word reactive we have used in the introduction
should be accepted in a very wide sense: reactions can involve a complex
mixture of passive and active interactions with the environment.
Closed dynamical systems (i.e. with no input) can be specified as well. For
example, the whole program SNCF simulates the interaction between the shared
track and the trains.
Non-deterministic programs can be composed to yield a deterministic one. For
instance, the program SNCF without priority rule among trains is non-deter-
ministic, while it can be made deterministic via composition with another
program which specifies such a priority rule. Simpler examples of this kind are
very frequently encountered in SIGNAL programming. A short practice of
SIGNAL programming reveals how important such a facility is in providing
user-friendly programming style.
Finally, thanks to the relational nature of the language, constraints on synchroni-
sation and logic can be stated within SIGNAL. Examples were repeatedly
found in the critical section mechanism of the program SHARED-TRACK.

Hence the SIGNAL language can be considered as a step towards direct synthesis
of reactive systems from the+ specifications.

4 SociitC Nationale des Chemins de Fer Fraqais, a trademark from French gnvemment.

Synchronous programming with events and relations 115

0 A limitation of SIGNAL is also revealed here, namely trains cannot be dynami-
cally created, they must be defined statically. This is a feature common to all
synchronous languages, it might be inconvenient in some applications, but this
is the price to pay for getting a language with powerful formal reasoning ability.

All these features characterize SIGNAL compared to the other synchronous
languages ESTEREL and LUSTRE. As a counterpart, compiling SIGNAL programs
will be a hard task for the following reasons:

0 A SIGNAL program specifies relations between signals and their clocks via a
system of equations. Hence two natural questions arise:

(1) Does such a system of equations Oossess a non-trivial solution (i.e. a _
solution allowing events to occur), in other words is the corresponding
program deadlock-free?

(2) Is such a non-trivial solution unique (a question related to non-deter-
minism)?

0 The task of the compiler is to solve this system; of equations in a sense that we
formally discuss later; we could informally stare that this specification has to
be transformed into an effective machine which can produce the desired
behaviours; such a machine should be a function mapping sequences of input
stimuli (input histories) into sequences of output stimuli (output histories).
One of the main steps of the compilation is the synthesis of the global synchroni-
sation of the program from the relations between clocks specified within this
program: this will be the purpose of the clock calculus.

Chapter 3. The mathematical semantics of SIGNAL

We shall first describe the mathematical semantics of SIGNAL using a suitable
algebra of processes specified via transition systems following [32]. Then we shall
introduce a subalgebra where reasoning can be performed about synchronization,
logic, and data dependencies, and we shall present an algebraic coding of this
subalgebra. This will completely define the behavioural semantics of SIGNAL, i.e.
what SIGNAL programs should perform.

3.1. Notations: processes and transition systems

Definition 1. A process is a triple of the form

I-I={~,A,-+} (3.1)

where
E is the set of states: states are programs;
A is the set of events, events are denoted by

xl (x,) . . . xn (x,) (3.2)

116 A. Benveniste et al.

or CY for short; events are functions mapping a given set of ports (here xl, . . . , xn)
into a corresponding set of v&es, (here x1, . . . , x,,) which are said to be carried by

these ports during this event; among the set of values is the distinguished value I
which has to be interpreted as the absence of data. Events where all ports carry the
value J. are said to be trivial. From now on, italic letters such as ‘x, y, . . .’ will refer
to effective values, as opposed to J_ which will be always explicitly mentioned. If
Q! is an event, we shall denote by D((u) its domain (i.e. the set of its ports). It will
be useful to consider the event NIL with empty domain.

The symbol ---, denotes a transition; - is a relation defined on E x A x Z This
transiticn is defined by a set of rules of the form

c
P”- P’

(3.3)

where P, P’ are programs (i.e. states), CI! is the considered event, and

C = statement (P, a, P’) (3.4)

is a statement involving the mentioned arguments; the meaning is “P can perform
CY and yield P’ provided that C holds”.

Hence it is clear that firing a transition generally requires to solve an implicit
equation since the precondition C can depend on the event and on the resulting
new state. The successive firing of a sequence of transitions

p. a0 > p1 a’I > . . . “n-1 , p, . . . (3.5)

where all ai’s are non-trivial, defines a provable run of the program PO.
We shall denote by yiD the restriction of an event y to a subset ZJ of its domain.

Given two events a! and 3 belonging to (possibly) different processes, we introduce
the predicate

arnfl H a/D(a)nD(p) =P/JXa)nD(P) (3.6)

to indicate that the corresponding maps agree on the intersection of their respective
domains (this means that ports with identical names carry the same value). When
this predicate holds, the two events are said to be compatible, and their union is
defined as usually for maps, keeping only a single copy of the common ports in the
resulting notation. Union is denoted by a! u p.

Processes form a commutative monoid endowed with the composition operation
defined b)

n,n,::P~P’; Qh’; cm/3

PlQ= P’lQ (3.7)

Synchronous programming with events and relations 117

The identity element of this semi-group is the process NOTHING characterized by
the property A = NIL. Notice that, when P and Q do not have any ports with common
names, any interleaving of events from P and/or 0 is valid.

3.2. Encoding SIGNAL into processes

The rules of the instruction (i)

Pb %a) l,***,

xl(x,)...xn(x,)
p(x1,. . . , xn) - PM , . . . , xn)

(3.8)

where p(. . .) den&s a relation, cf. (2.1). Mere, the states of the transition are just
the text of the instruction (there is no memory, hence the state is unchanged). The
predicate requires that the values to be presented to the ports satisfy the relation
p; if this holds, then these values can be accepted by the transition, and this
acceptance is the even performed by the transition. For example consider the relation
z := x + y, here the event has to be interpreted as the computation of the sum of the
values carried by the ports x and y and its delivery at the port z. In the case of the
synchro generator, no precondition is required: its only effect is then to force the
clocks of all signals to be identical. For the encoding of the composition, we shall
also need to consider the following trivial rule, which represents the empty event
(in which case the program does not change):

PW
xl(l)...xn(l)

F . . . , xn) - p(x1,. . . , xn) (3.9)

All the instructions (ii)- should also be provided with a corresponding trivial
transition, which will thus be omitted.

The rules of the instruction (ii)

y:= x$ j&u ‘(“) v(u’i y:z x$ if&v (3.10)

where u is the content of the memory: it is delivered at the output y, while the value
v received at the input port x is fed into the memory. Notice that the state has been
modified via the modification of the parameter involved in the program.

The rules of the instruction (iii)

(3 Y :=x when b
x(x) b(L) v(l) +y:=x when b

(ii) Y :=x when b
b(b) x(l) v(l) l y:=x when b

(iii) y := x where b x(x) b(frue) v(x) -y:=x when b

(iv) y := x when b x(x) b(fatse) v(L! y := x when b (3.11)

These four rules exactly encode the intuitive meaning of th.e instruction when. No
change in the state occurs.

118 A. Benveniste et al.

The rules of the insttuction (iv)

(i) y:= u defudt v “(“’ v(u) v(L) > y:= u aefiz& v

(ii) y:= u default v
u(u) v(u) v(u)

l y := u default v

(iii) y := u default v “(“) ‘(‘) “u) l y := u default v (3.12)

‘Fhis is the exact coding of the intuitive meaning of this instruction. Again, no change
in the state occurs, and no precondition is required.

The rules of the instruction (v)
This is the major step, since this instruction is the key to modular construction.

In fact the corresponding coding has already been given in (3.7).

An exumple. We want to encode the program

P(n0) =

I

n := reset defaulf xn

xn :=zn-1

I zn := n$ init n0

The rules of the three instructions, together with the trivial rules (3.9), are as follows:

first instruction:

(i) n:= reset defuuZt xn
reset(u) n(u) xn(l)

p n := reset default xn

(ii) n:= reset default xn
reset(u) xn(u) n(u)

l n := reset default xn

(iii) n := reset default xn
xn(u) n(u) reset(l)

l n := reset default xn

second instruction:

z =w-1 -

xn
zn(w) xn(z) :=zn-l-xn:-=zn-1

third instruction:

zn := n$ i&nOn(x) zn:= n$ inid x

Combining these rules according to (3.7) yields the set of rules to encode the program
P. Combining (i) with the non-trivial transitions of the other instructions requires
the precondition

[reset(u) n(u) xn(l)] n [m(w) m(z)1 n Cn(4 zn(nW

Synchronous programming with events and relations 119

which is never true, since by convention z denotes an effective value #J_. On the
other hand, combining (i) with the trivial rules for the other instructions yields the
precondition

which is

(ii)

(iii)

[reset(u)n(u)xn(_L)]n[zn(l)xn(l)]n[n(l)zn(l)]

also false. Hence rule (i) cannot be used. The only valid rules are

P(nO)
reset(u) xn(nO-1) n(u) zn(n0)

’ P(u)

PbO)
reset(l) xn(nO-1) n(nO-I) rn(n0)

) P(nO- 1)

where allowed substitutions have been performed. The program P(n0) possesses
reset as the only input; on the other hand, the two rules above show that this
program, considered as an input/output transform, is non-deterministic, i.e. different
provable runs can be produced which accept the same input sequence.

We have already shown how the algebra of SIGNAL programs can be mapped
into the semi-group of processes. On the other hand, it should be clear from (3.4)
that performing events requires solving systems of equations: their resolution is needed.

Now, the following problem remains, which is the crux of the theory: transform
any process into a machine which can execute it. This sort of job usually requires a
convenient algebraic calculus to be at hand, and it should be clear that there is no
hope for us to have this sort of algebra, since our model of processes is too general.

Hence we need a reduction technique: use a convenient homomorphism from
the semi-group of processes into itself such that its range is

0 small enough to provide some suitable algebraic calculus,
@ rich enough to still provide us with a convenient solution to our problem.

We address this issue in the following section.

3.3. A calculus of synchronization

3.3.1. The synchronisation rules of processes

As we have shown above, preconditions that arise in rules are in one of the three
following forms:

(1) already defined transitions,
(2) matching events,
(3) constraints on values caused by instructions of type (i).

The latter kind of precondition cannot be handled finitely, and has to be ‘reduced’
in some way as we shall indicate now. Among the constraints on values created by

120 A. Benvenisre et al.

instructions of type (i), we shall distinguish those that arise from boolean relations

(generated by { = , and, or, not) and the constants tnre, false), and we shall call the

rest non-boolean relations.
From now on we shall require that non-boolean relations are functions, generically

denoted by y =f(x, , l l l , x,) in this section. Notice that, according to this definition,
the instruction b := (x < y) (where x, y denote, say, reals) produces a boolean output,
but is considek,ed as a non-boolean function. The function y =x, where y, x are
non-booleans, will be handied via the same procedure, although a value identifier
could have been substituted as well. The only resolution method we shall use for
non-boolean functions is term rewriting. Chains of such rewritings are encoded as
usual via dependence graphs. Within this framework, solving systems of non-boolean
equations is performed by checking whether the associated dependence graph is
circuit-free. We now introduce ths following rules that we term synchronisation rules
since they summarize the properties of the original rules that are relevant to
synchronization, logic, and dependencies.

In the sequel, the notation 7r will denote a (possibly empty) set of ports; such
sets will specify the predecessors of a port in a given dependency relation, so they
will be called predecessors. Synchronisation rules will be obtained from the original
ones by the following maps & and tic, mapping respectively previous events and
preconditions intc) new ones which will define the new synchronisation rules.

The domain of & is the set of events, and this map is defined by

ij& : x(x) ---* X(#, 7r). (3.13)

The domain of ((I, is the set of non-boolean preconditions, and this map is defined
by: if

bcr, : Xi(Xi) -9 Xi(Xi, ri) and Y(Y) ---* Y(Y, ~1 (3.14)

&:Y=f(x1,**., xn) * Ye U (vi U Ixil); r 3 U (ni U ixil)*
ISiGn ISiSn

(3.15)

Hence ports carry pairs of the form (x, rr) where x is a value as before, and VT is a
predecessor. The component x will be useful for preconditions arising from boolean
relations, but wi’li play no role for non-boolean functions. Conversely, the second
component 7~ will be used for non-boolean functions to encode dependencies, but
will have no significance for boolean relations. Both components have to be kept
since boolean signals can be involved in both non-boolean functions and boolean
relations as shown in the example b:= (x < y). Substitution (3.15) expresses that
non-boolean functions are encoded as their dependence graphs, and that such
dependence graphs should be circuit free.

Synchronous programming with events and relations

The synchronisation rule of the instruction (i)
According to (3.13), the synchronisation rules of boolean relations are

P(X %A l,"',

PM , . . . , xn)
xl@,, rr,) a-. xw,,, rr”)

’ p(x1,. . . , xn)

121

(3.16)

Here, the bounds of boolean values are kept, and predecessors are free. Such trivial
modifications of the original rules will not be explicitly mentioned in the sequel,
they will be understood when ‘rule unchanged’ will be written; also by convention,
for (I, rr) to be carried by a port, we must have ?r = 0, i.e. absent values have empty
predecessors.

According to (3.15), the synchronisation rule of a non-boolean function is

ye UtSi<n (vi u (xi}); 97 3 UlSiSn (wi U (Xi))

y: =(x1, _. _ ,xn) X1~X1*~l~"'xn~xf~~qo v(n*f+y:= f(xl, . _ , ,>c.n)

(3.13)

The values y, Xi are not tori-trained. The precondition expresses that at least y is
added to the dependence graph, and that, by doing so, no circuit should be created.

The synchronisation rule of the instruction (ii)
The rule of the boolean delay is unchanged. For the non-boolean case, we get

y:= x$initi
x(x. =I V(Y* r’)

P y: = x$iniP (3.18)

The predecessor of y is unconstrained: shift registers do not create dependencies.
On the other hand, the bound on the value carried by the ports via the memory is
lost: nonboolean delays are just mapped into pure synchronisation instructions. The
memory plays no role any more, so it has been cancelled.

The synchronisation rule of the instruction (iii)
The instruction when with boolean output is unchanged. For the non boolean

case, we get

(i? y:=x when b
x(x. 7rx) ML fl) v(l8)

,y:=x when b

(ii) y:=x when b
~(~81 b(h wh) v(Lti)

3 y:=x when b

(iii)
Yeh u 04); ry = hx u bli

y:=x when b
x(x. T.~) b(me, Th) V(Y, x,)

l y:=x when b

(iv) y:=x when b
x(x, rx) b(false, “,,I v(L 8)

3 y:=x when b (3.19)

Only the rule (iii) modifies the dependence graph: the relation y = x has been
replaced by the corresponding dependency, according to (3.15).

122 A. Benveniste et al.

The synchronisation rule of the instruction (iv)

Again, there is no change for the boolean case;
ave

and for the nonboolean case, ~:e

(ii)
ya7G u w; -y = b” u W)

y: =u default w
U(W q WV* =J Y(Y. =J

l y: =u default v

(iii)
Ye h u W); n;, = b” u {VI)

y: = u default v
u(L@) Mu. Tub V(Y, R.\.’

B y: =u default w

(3.20)

where the relations y = u, y = u are replaced by their respective dependencies.

The synchronisation rule of the instruction (v)

Finally, the image of the instruction (v) has to be defined for the resulting map
on processes to be a semi-group homomorphism; hence, denoting this map by V,
we inductively define

Y(rl)lY(rI’) :: p
9(a) --=+ Ip’; Q+(p? Q’; #(a) n e(p)

(3.21)

PIQ ti(a)u +(fl; pIIQ

where the events +(a) have been defined for the image by q of the generators, and
are defined by induction via the formula (3.21). This definition guarantees that !P
is a semi-group homomorphism, Le.

Y(II 1 II’) = Y(n) 1 Y(W). (3.22)

The range of !P will be called the semi-group of synchro-processes, since they
summarize the logic, synchronization, and dependency structure of the process.

3.3.2. Algebraic representation q f synchro-processes

The purpose of this section is to introduce the coding we shall use for the
compilation. The idea behind this coding is the following. There are two basic tools
for transforming and analysing grograms before execution on a given architecture.
The first tool is the directed graph showing data dependencies; this may be the only
one for very regular algorithms such as encountered in systolic architectures where
retiming is of interest. The second tool is the automaton describing the control of
the program. In the previous section, we have prepared the introduction of a single

Synchronous programming kth events and relations 123

framework to handle both tools simultaneously. In this section, we go further by
presenting an efficient co%g for this purpose: the control of the program will be
encoded into a dynamical system (shown to be equivalent to an automaton), and
we shall show how to handle dynamically evolving data dependence graphs.

3.3.2.1. Dynamical syst’ems over Jinite fields

Synchro-processes are defined via rules involving _L, booleans, and dependencies.
We shall first provide an algebra with a convenient calculus where the pairs
(I, booleans} can be represented. AI1 we need to encode are the following status:
absent, present, true, false. These are encoded onto the finite field IF3 =B/3B of
integers modulo 3 as follows

true; t- 1
false: - 1
absent: 0
present: f 1

where f 1 denotes a non-determinate choice of + 1 or - 1; i.e. we handle labels and
boolean of non-determinate value in the same way. Let us now define how the
control of SIGNAL programs is encoded, namely using the algebra of dynamical

systems over IF;.
A dynamical system over IF; is specified by

(1) a submanifold of the product space IF; x IF 4 ;

(2) an initial condition in IF:.

Indeed, denoting the generic point of IF: by 5, such a submanifold is specified via
a system of polynomial equations

(3.23)

where 6=(x1,..., x,), and the Xi’s are variables in IF 3. Then, the dynamicaI system

A is the subset of the trajectories on IF,” satisfying

where &, equals the given initial condition.

3.3.2.2. Dynamical graphs
A dynamical graph is a triple {A, IT, y} where

0 A is a dynamical system over IF t,
a~ l-’ is a directed graph,

y is a function mapping IF ;’ into the set of the subgraphs of I.

(3.24)

Notice that the map y is equally well defined by specifying for each branch x + y E I’
the subsets of lFz of the points 5 such that ~(5) contains the considered branch.

124 A. Benveniste et al.

This will be denoted by

V:x-+y or x&y (3.25)

where V is the considered subset of lF,“.
Hence dynamical graphs are skew products of dynamical systems and graphs.

The dynamical system is intended to encode the underlying control involved in a
program, while the directed graphs will encode the way dependencies evolve during
an execution: the dependencies at a given event will only depend on the set of
signals that are present in this event.

3.3.2.3. The algebraic representation
Using these notions, the algebraic coding of the synchronisation rules is derived

as follows. First, add the distinguished value I to the domain of the value identifiers

4 Y, ’ = l ¶ and explicitly mention the additional constraints x = I, y # I,. . . whenever
needed in the preconditions. Second, introduce the following map x; the domain
of x is the set of preconditions, and its codomain is the set of dynamical graphs.
This map assigns, to each original constraint involving presence/absence, a dynami-
cal system on IF,” involving the same value identifiers: More precisely, this map is
defined as follows.

(3.25)

where the map encodes the presence/absence of the values carried by ports within
the actions; only squares appear since the value of booleans plays XTQ role here.
Other formulas concern boolean values:

x:b=tme-,b=l,

x:b=false-* b=-1,

x:b=nota+ b=-a,

c=aandb-,c=l-tab-i-a+b). (3.27)

Only the last part needs to be verified by checking all the combinations of *1 values
for a and b. The following formula indicates how dependency constraints are
mapped:

x:xwr,-x-y. (3.28)

In other words, the coding uses a graphic notation to describe predecessors. Checking
that ye ?r, u {x} is then equivalent to verifying whether adding the branch x +y

Synchronous programming with events and relations 125

to the dependence graph does or does not create circuits. This will be always assumed
in the sequel.

Finally, as before, the map x induces a semi-group homomorphism denoted by
X on synchro-processes by proceeding as in (3.21), so that we get

X(II~n’)=x(n)~x(n’>. (3.29)

Let us illustrate how the coding works on the synchronisation rules of the instruction
when in the non boolean case. Starting from the rules (3.19), the new preconditions

are

(i) x’= 1, b2=0, y?=o,

(ii) b*=l, x*=0, y*=O,

(iii) b = 1, x2= 1, y* = 1, X+Y,

(iv) b=-1, x2=1, y*=o. (3.30)

On the other hand, it should be clear that everything relevant is encoded in these

preconditions, i.e. events as well as states of the conditional rewriting rules provide
no further information than just the syntax of the instruction. Hence we shall keep
(3.30) as the only relevant part of the process X[*(y:= x when b)]. On the other
hand, since any one of the rules (i)-(iv) can be applied, these preconditions can be
summarized as the double coding

XpP(y : = x when b)] :: (3.31)

In the second field of this coding ‘y’ :’ is a shorthand to indicate that the dependency
holds exactly when y* = 1. A systematic application of this method yields the
algebraic coding synchro-processes that we present in the next subsection.

3.3.3. Encoding SIGNAL program3

The following notation will be ustd to present this coding:

clock calculus

X(program) : :

i

(3.32)

conditional dependence graph

where

@ program denotes the program to be encoded, and Z =X0 !P is the encodi. $
map, i.e. the composition of the maps q and X;

A. Benwniste et 01. 126

clock calculus denotes the set of algebraic equations encoding the constraints
on synchronisation or logic as we discussed above; these equations define
dynamical systems on IF: ;
conditional dependence graph denotes the set of possibly occurring dltpendencies
together with the clocks where these dependencies are in force.

3.3.3.1. Instruction (i): relation or Junction

Boolean relation
The coding of all boolean relations is easily derived from the coding of the

following instructions and the coding of the communication we shall see below:

E(a := true) ::

b=-a

X(b := not a) ::

0

Iqc := a and b) ::

0

(3.33)

The algebraic equation of the first formula possesses Q = 1, Q = 0 as the only solutions,
which means that Q is either absent or true. The second equation is obvious. To
derive the last one, note that its first component encodes the fact that both signals
a and b must have the same clock (they are either both present or absent, which
is encoded as a2 = 1 or a2 - -0); then it is straightforward to verify that the last
equation maps the pairs (O,O), (1, l), (-1, l), (1, -l), (-1, -1) onto 0, 1, -1, -1,
-1 respectively. Since only booleans are involved, no coding of dependencies is
required hence the symbol 0 in the second field.

Non-boolean function

I;(y:=f(x1,...,x,)):: (3.34)

The first field encodes the constraints on clocks (equality), while the second one
encodes the data dependencies. The second field means “the listed dependencies
hoid when y2 = 1”. Notice that a := (u < v) produces a boolean, but it is a non-
boolean function.

Synchronous programming with ewnts and relations 125

3.3.3.2. Instruction (ii): the register

Boolean register
This is the key case where dynamical systems in IF3 come out.

J’=(I-a2)Q+a; initialcond=u

X(b := a$ init u) ::
b=a2t

(3.35)

0

where 5’ is the current state of the dynamical system, 6 its previous state, and u its
initial condition (*I valued). The corresponding explicit form of this dynamical
system is

6,=(~-aTk-I+a,; &=u,

where t is any time index fast enough to capture every presence of signal. Notice
that the state takes +I or -1 as only values, i.e. states are persistent. The state is
modified when a new input is received, and at the same instant the old state is
delivered at the output. Again no dependence graph is necessary.

Non-boolean register

Y2 =x2

X(y:= x$ init u) :: (i 8

(3.36)

The first field expresses that clocks must be identical; the second field is empty even
if we consider non-boolean types, since the current value of y does not depend on
the current value of X, but on the content of the memory (which has been lost in
the coding via Z).

3.3.3.3. Instruction (iii j: the when

when with boolean orstput

’ c=b(-a-a’)

X(c := b when a) ::

(0

when with non-boolean output

/
y*= x*(-a -a*) \

Z(y := x when a) ::

y2:x-+y

(3.37)

(3.38)

The second field expresses that x influences y when y is produced.

128 A. Benveniste et al.

3.3.3.4. Instruction (iv): the merge

default with bcolean output

c=a+b(l-a’)

WC : = a default b) ::

0

(3.39)

default with non-boolean output

I;(y := u default v) : : (3.40)

The second field expresses the fact that u influences y when it is present, while v
influences y when it is present and u is absent.

3.3.3.5. Instruction (v): the communication

WIQ)=W)I~(Q) (3.41)

where the symbol 1 on the right-hand side simply means that the conjunction of the
clock calculi (resp. conditional dependence graph) ot’ P and Q is taken to produce
the two corresponding fields of Z(P 1 Q).

For general SIGNAL programs, the coding above has the following generic form

E(P(u)) ::

where

5’ = Q(& X); initial cond = u

NX, 6) =0
I (3.42)

e 5’ (resp. 5) is the vector of new (resp. old) boolean memories; the first equation
of the clock calculus summarizes the evolution of the boolean memories; the
vector u summarizes the initial values of the boolean memories;

0 X is the vector of the other variables of the clock calculus; the second equation
of the clock calcuius summarizes the static constraints on clocks;

e the conditional dependence graph is a list of arcs labelled by clocks as written
in the second field.

Conversely, all synchronisation rules of a given program can be recovered from
the coding (3.42) as follows: partition the set I as I = I,, u II and consider the rule

v=Q(u,X); I?(X,u)=O; iE&:h:=O; iEI,:hf=l and xi-vi

P(u)= P(v)
(3.43)

Synchronous programming with events and relations 129

Reject this rule if the dependencies for i E I, create circuits; the remaining rules are
the synchronisation rules of P(U).

3.3.4. Examples

To allow drawing of graphs, conditional dependence graphs will be depicted
using the following notation:

x&y instead of h: x+y

3.3.4.1. The macro disjoint
Recall that, for events h, k,

disjoint h, k
stands for

I I:= when ((not(h when k)) default h)

I synchro I, h.

Using the property h = h* if h is an event, the clock calculus is easily derived:

h=l=~[~hk+(!+hk)h]~[~hk+(1-hk)h]~

which implies
h =-h[l+k]-h*[l+k]‘=h-hk

and yields the desired result, namely hk = 0.

3.3.4.2. The macro cell.

Tnis instruction has been used as a macro in the ‘shared track’ example. Recall
the corresponding program:

Y : = x cell b init y.

stands for

w : = y$ init yG

y:= x default zy

synchro y, (x default when (b))

We shall make a distinction between two cases: x boolean, and x non’joolean.

Encoding the boolean cell into its clock calculus

e’=(l -y’)e+y, init=y,,

ZY =y*5,

y=x+zy(l -x2),

y*=x*+(-b-b*)(l-x2). (3.q

130 A. Benveniste et al.

Eliminating zy yields

t’= (1 -x*)&+x, init=y,,

y=x+(-6-6*)(1-x*)&

which reflects exactly the meaning of the instruction cell: the memory is refreshed
when x is received, and y delivers the current or last value of x when x is received
or b is received and true.

Encoding the non-boolean cell into its clock calculus and conditional dependence graph

Clock calculus :

zy*=y*= x2+(1 -x2)zy2,

y’=x*+(1--x*)(-b-b*)

which yields

zy*=y*= x*+(1--x*)(-b-b*).

Conditional dependence graph :

ZY
yq1-9)

)Y, x&y
where the dynamics has been lost; the clock calculus expresses only how the clocks
of the signals are related.

3.3.4.3. 7%e program GUARD-COUNT
Recall the program:

GUARD-COUNT (integer level) {? even reset ! boo1 empty)

or := (level when r) defazdt (zn - 1)

zn := n$ init 0

synchro (when (zn = 0)), r
e:= when (n = 0) default (not r)

r: reset, e: empty
end

Clock calculus and dependence graph will be written with the short signal names.

Clock calculus :

n*= f-+ zn*(1 - r) = zn*,

e=(-[n =O]-[n =O]*)-r(l+[n =O]+[n =O]*),

-[zn =O]-[zn =O]*=r. (3.45)

Synchronous programming with events and relations 131

Introduce the notations 1= level, (Y = [n = 01, /3 = [zn = Q]. The clock calculus can
be rewritten as

zn2=n2=(y2=p2,

r=-p-p2.

Conditional dependence graph :

IAn, zn (‘-r)n2 bn, n&a.

(3.46)

(3.47)

Discussion (observability). Consider the first two equations of (3.49, which corre-
spond to the first two instructions of the program. They can be rewritten in the
equivalent explicit form

n2=zn2= r2+G2(1--r2)

where Q, is a free variable of IF,; this additional variable, which we shall call a
phantom, reflects the fact that the two first instructions of the program are not

observable by the input reset alone. The clock cf the outputs zn and n of this
subprogram is not entirely constrained by the clock of the input reset, which is a
cause of the non-determinism of this subprogram (see [121 for a discussion of how
non-determinism can result from the interconnect%n of deterministic processes).

HoV,:lever, considering the whole clock calculus yields a different result. This clock
calculus is an algebraic variety which is entirely parametrized by the free parameters
(a, @r2). On the other hand, since the conditional dependence graph has reset as
the only source node (except from the delay output zn), it is expected that the whole
program is observable by the triple (reset, cy, pa’}. A systematic study of this kir,d
of observability notion will be presented later.

3.3.4.4. An example of deadlock
Consider the following example.

I

X := u when (UCV)

I y:= x+v

The meaning of this program is “add u to (v when u -=I v)“; this program should 5e
rejected, since the clocks are inconsistent. VLiting /3 for short instead of (u <v),
the conditional dependence graph of this program is

The clock calculus is

(i) u2= v2=p2,

(ii) x2 = u2(-P - P2),

(iii) y2 = x2 = v2.

132 A. Benveniste et al.

which obviously enforces p = 1. However p is not free, but it is the result of the

evaluation of the inputs u and v; howe.ver neither our clock calculus nor our
conditional dependence graph can reason about non-boolean values, therefore the
actual value (true or false) of /3 cannot be predicted within our calculus, and this
value should not be constrained. This is taken into account by adding to (ii) the
constraint obtained by the symmetry p + a-p, thus resulting in the new constraint

(ii’) 0 = pu*

instead of (ii), rhus yielding finally

any* = 0

i.e. the whole program starvates from the beginning. This illustrates informally how
deadlocks can be detected by taking into account clocks and data dependencies.
Again this will be formalized later.

3.4. Conclusion of the chapter

We have presented a behavioural semantics of the SIGNAL language using
processes encoded via transition systems. We have shown how general processes
can be mapped into the subalgebra of synchro-processes systems. Finally we have
exhibited an algebraic coding of these processes via pairs (clock calculus, conditional
dependence graph}. What remains to be done is to provide an algorithm to solve
such processes, i.e. to compile them into executable machines, and this will be the
goal of the next chapter.

Chapter 4. Execution semantics

In the preceding section, we showed how tile pair {clock calculus, conditional
dependence graph} (referred to as synchro-process in the sequel) can be used to
encode and analyze a SIGNAL program. The purpose of this section is to investigate
the following questions about synchro-processes:

@ what is observability and how to check this property;
l what is deadlock and how to detect and isolate it;
0 construct a machine which can execute synchro-processes.

These questions will be addressed by constructing the execution semantics of
SIGNilL programs. A particular difficulty arises from the relational nature of
SIGNAL, namely: what ~2 inputs, what are outputs in a given process? This is a
key issue, since deadlock and observability (or determinism) are usually defined
with respect to ,j_ prespecified set of input stimuli, Unfortunately, in our case, the
body of SIGNAL programs specifies relations betwieen signals, but does not indicate
completely what the input signals are; for instance. in case of a program involving

Synchronous programming with events and relations 133

only synchronization and logic, no (non-boolean) function takes place, the condi-
tional dependence graph is empty, so that any subset of signals could be seiected
as the desired inputs provided these are free and determine the other signals.
Unfortunately, automatic selection of the input signals by the compiler is hard to
perform since ceveral choices are possible in general, hence the programmer is
expected to play an active role in such a selection. Consequently, we chose to
consider that the declarations of input/output signals given in the interface of a
program provide specijications of the desired inputs, and investigate the above ques-
tions given these input signals.

4.1. Solviug clock calculi: a toolbox

As we have discussed before, producting events in SIGNAL programs requires
solving implicit systems of equations. These implicit systems involve only signals
at a given instan. + For this reason, static cbck calculi that we shall introduce now
play a crucial role in the execution semantics of SIGNAL. Static clock calculi are
clock calculi which do not involve boolean states (or memories), which means that
the following rule has been used to encode the boolean delays instead of the rule
(3.25):

synclr(b:= a$init u) :: (4.1)

hence boolean registers are encoded as the single output equation. Obviously, the
algebraic variety defined by the static clock calculus is just the projection of the
clock calculus (more precisely the projection of the orbits of the dynamical system
defined by the clock calculus) along the time axis. Static clock calculi are of the
generic form

PAX I,..., x,)=0 ,...) PK(Xl,..., x,)=0

where the Xi’s are the variables of the static clock calculus, and the Pk’s sic
polynomials of IF 3[x,, . . . , x,] of degree at most 2 with respect to each variable.

Definitiou 2. A static clock calculus is said to be pre-solved if it is composed of
equations of one of the following forms only:

(i) y=Ax’+Bx+C,

(ii) y’=Ax’+Bx+C
(4.2)

where A, B, C are polynomials which are free from the variable x. Moreover every
variable must be

@ either absent from the left-hand side of all equations,
0 or appearing once at the left-hand side in only one of the two forms (i) and

(ii) above.

134 A. Benveniste et al.

The form (i) means that the value of y is bound, while the form (ii) means that
only the clock of the variable y is bound, on the other hand its actual value (+l or
-1) might be free (this is the case for boolean variables which are produced by
non-boolean functions such as b := (x < y) or for vertices of the conditional depen-
dence graph). Notice that cycles of mutually defined variables can exist in pre-solved
clock calculi: for instance x2 = boy*, y* = x2+ u*(1 -x2) is pre-solved, but u*x*+

u*y*=O is not.
As in computational algebraic geometry [14,151, a pre-solved form is obtained

via elimination techniques. The basic lemma for elimination is

Lemma 1.

ax*+c=o H
{

c(a+c)=O,
x2= @*(l -a*)+c*. (4.3)

ax2+bx+c=0

I
c[(a+c)*-b*]=O,

w

[1
(4.4)

x=@ rnc(l-Yz) -0 -a*)bc+a[b+(l+@*)(b*-ac)].
- 9.

In both equations, @ denotes a phantom, i.e. an additional free variable.

Comment. The first rule is convenient to solve for clocks, while the second one has
to be used for boolean relations. Both rules have the form

equation H
adding constraints on the remaining variables when x is eliminated

defining x or x2 in terms of the other variables.

Proof. The proof relies on the following formulas that are useful and immediate

{p=O and q=O) e {p*+q*=O},

{.p=O*q=O} H {q(l-p2)=O).
(4.5)

We prove only (4.4), since (4.3) is easier and follows the same lines. For the equation
(4.4) to have a solution, the following constraints must be satisfied by the triple

(a. b, c}:

{a=b=O} * {c=O},

(a#O} + {A*=b*-ac#-1).

Notice that A is nothing but the discriminant of the equation. Combining these
constraints using (4.5) yields the constraint in (4.4). Then, the definition of x’ follows
easily as in college algebra. Notice that in this second equation, 1 + Qi* is a writing
of f. The same phantom can be used in the two terms of the definition of x since
at most one of these two terms is different from 0 depending upon the value of a*.

Synchronous programming with events and relations 135

Using Lemma 1 allows us to perform elimination when an ordering of the equations
and variables has been chosen; a detailed algorithm will be presented later. Synchro-
processes with pre-solved clock calculi will be called gre-solved synchro-processes.
In the rest of this chapter, we shall write clock calculus for short to refer to the static
clock calculus.

4.2. The graph of a pre-solved synchs-process

The main difficulty in solving synchro-processes is due to the presence of two
different kinds of ordering, namely

l the ordering of tile variab!es and of the equations required for the elimination
to be performed in the clock calculus,

@ the ordering resulting from the conditional dependence graph.

Both orderings interact. In fact, elimination in the clock calculus must be performed
by taking into account the ~~diiional dependence graph, and moreover it is not
possible to know a clock, which depends on the value of a boolean signal resulting from
a non-boolean function, prior to evaluating this function. On the other hand, evaluating
such functions require the knowledge of their clock. The purpose of this paragraph
is to introduce the main tool to handle this interaction. This tool plays a role similar
to the ‘potentials’ introduced independently by Gonthier [20, lo].

Definition 3. The graph G of a synchro-process is the labelled directed graph
obtained by considering branches of the form

x&y or x-*y (4.6)

where h is a clock encoded by its polynomial expression in ff3, and x and y are
variables of the clock calculus (resp. x and y are vertices of the conditional depen-
dence graph).

The intuitive meaning ;s: “x may influence y when h = 1”. We make use of the

following conventions to simplify graphs: if a label is known to be zero, the
corresponding branch can be removed. On the other hand, labels known to be equal
to 1 are not written.

The graph is built according to the rules below. Here, A denotes the set of the
vertices of the conditional dependence graph, x2 will denote the clock of x, if b is
a boolean output of a non-boolean function its value in the clock calculus is b,
CDG denotes the conditional dependence graph introduced before, G denotes the
graph of the synchro-process we shall build now, and CLOCK denotes the static
clock calculus of the considered process.

136 A. Benveniste et al.

Rule GRAPH-1

WEA

a2

a2+a

(4.~)

To have access to the value of a non-boolean signal, we need to know whether or

not it is present at the considered instant, i.e. we need to know its clock.

Rule GMPH_2

h:x+y

X4Y, h-*y

The first part of the rule is the
second part expresses that to
dependency holds, i.e. we musl

Rule GRAPH-3

(4.8)

exact translation of the contribution of CDG; the
evaluate y, we must know when the considered
know the actual value of h.

y=Ax2+Bx+C
(4.9)

$82 x2A2(l- B2)
x-y, x2-y

x influences y when B # 0, while only x” influences y when B = 0 and A # 0.

Rule GRAPH-4
This rule will be used for synchro-processes which are not pre-solved; for these

processes the rule GRAPH-3 does not cover all the cases. For any clock equation
to which rule GRAPH-3 does not apply (it is not of the form y or y2 = l l 0 , or more
than a single expression is available on the right-hand side of y or y2 = - n 0)

5

Ax’+Bx+C=O, A, B, C free from x

X2B2
(4.10)

x2A2(l- B2)
x------+ any, x2 - any

where any refers to any variable of the considered equation except x.

Notice that, in rules GRAPH-3 and GRAPH,4, branches denote potential
influence between vertices.

Example. The instruction y := x when b in the boolean case.
The rule GRAPH-3 gives

X
x2(--b-4)

+ Y9 g=by.

Synchronous programming with events and relations 137

There is a clear intuitive meaning for this graph: x influences y when b permits to
use x to produce y, and similarly for the other dependency. On the other hand, the
rule GRAPH-4 gives the following additional branches

X
x2(-+42)

b b, b-x, y&x, y&b_

This graph is much larger and more difficult to interpret, but it should be kept in
--Se _,.I’ mind that this is tne ruie to be used if it is not knowtl in abv~rl;t wlkieh signal wil!

be considered as ths input.

Warning. In the following, we shall omit for short the clock of the source node of
any branch.

Example. The program GUARD_COUMT

Using the synchro-process (3.46,3.47) encoding this program, and setting

h = n2,

a*=(1+cM+(r2)2=1+(11+*2,

p*=(1-p-p2)2=1

we get, by rule GRAPH-1

(4.11)

h+cu, h+p, h-n, h--+zn;

by rule GRAPH-2

I+n, zn
(I-r)h

’ n, n-%x;

by rule GRAPH,3, and taking into account (4.11)

a-e, P
u* + e, p-b r.

Important Remark. It should be clear from the rules GRAPH-3 and GRAPH-4 that
the graph of a synchro-process is by no means invariant under transformations of
the clock calculus wh,ich preserve the underlying algebraic variety: two isomorphic
synchro-processes can have different associated graphs. This property will be
exploited in the sequel.

We are now ready to present the algorithm EXEC for the execution of synchro-
processes. This algorithm is used at run-time.

4.3. Synchrif ,process execution: the algorithm EXEC

The purpose of this algorithm is to decompose any transition rule (3.43) into a
chain of elementary transitions that can be explicit!y performed. Such a method (also
used in [20]) guarantees that the execution semantics performs only runs which
meet the specifications of the behavioural semantics.

138 A. Benoeniste et al.

4.3.1. Introducing the notations for EXEC

4.3.1.1. States
STATES of such transition systems will be partitions on the pair {G, CLOCK} =

{graph, static clock calculus}. The static clock calculus is partitioned according to

CLOCK= z=zl(CLOCK) u ?(CLOCK),

i.e. variables which value is known, and the others. Similarly the nodes of G are
partitioned according to

nodeG = uuZ(nodeG) u ?(nodeG)

where uuZ(. . .) refers to nodes which have been evaluated (they may be absent).
The notation

G:ye uul (4.12)

means that the partition on G is modified by transferring the node y into uul(nodeG);
this notation will be modified in obvious ways to cover all possible modifications
of the states of EXEC. The initial condition of algorithm EXEC is exactly the pair
{G, CLOCK} encoding the considered program: initial states of EXEC correspond
to programs in the original tt ansition rules of SIGNAL.

4.3.1.2. Actions
ACTIONS of these transition systems will be elements of the following list

(i) CLOCK: list of “x + uul(x)”

(ii) G: list of “x + uul(x)”

The first rule means that “the algebraic variable x is substituted by its value in
CLOCK”, then all variables of CLOCK which depend upon x are recusively
evaluated. Finally all the so evaluated clock variables are substituted by their values
on the branches and nodes of G. If this actual value is 0, the considered branch is
said to be broken.

The second rule means that “the vertex x is substituted by its value in G”. Notice
that this action concerns the evaluation of non-boolean functions only. Then if x
turns out to be boolean (remember x = (u < v)!)), its value is substituted for the
corresponding variable in CLOCK and in the clock nodes of G. In the forthcoming
rules, we shall omit, for brevity, to mention “CLOCK:” or “G:” in the actions (i)
and (ii): this is understood according to the type of evaluation being performed.

4.3.1.3. Preconditions
PRECONDITIONS of these Lransition systems are of the form:

(i) x E uul(nodeG),

(ii) h E uul(CLOCK), h "0, 1, -1,

(iii) list of x Ay.

Synchronous programming with events and relations 139

(i, ii) have already been defined; (iii) refers to the list of all predecessors of y in
G. When no confusion can occur or when this information is unnecessary, the
mention (nodeG) or (CLOCK) will be omitted in the preconditions (i) and (ii).

4.3.2. The rules of EXEC

It is assumed that the environmentprovides any information (clocks and/or values)
whenever needed, i.e. it matches the synchronisation constraints required by the
program. Notice that this is not a trivial assumption, this point is further discussed
in Section 5.1. The following rules describe the algorithm. The notation (4.12) is
used to indicate the modifications of the states.

Rule EXEC_O

x E source(G)

{G, CLOCK} Ea=+{G, CLOCK: x E vur)

The source nodes of G can be immediately evaluated at the beginning of any instant,
and their values are substituted for the corresponding variables in CLOCK; source
nodes are always elements of CLOCK.

Rule EXEC-I

h--+x and h=l

when

Rules

{G, CLOCK} xcucrlo {G: x E vul, CLOCK}

an input non-bolean signal is known, it can be evaluated.

EXEC,2

{G, CLOCK} = {G: YE val, CLOCK}

(3x: x-!+y) and {xAy + x~vuf(G))

{G, CLOCK} ycwl(y) {G: YE vuf, CLOCK}

If all incoming branches are labelled with a zero clock, then y is known to be absent,
and thus considered as evaluated. If y is such that the origin of every (present)
incoming branch of G has been evaluated, then y can also be evaluated. No change
results in the clock calculus from the use of these rules.

140 A. Benveniste et al.

Rule EXEC-3

XE S&(G) and XE ?(CLOCK)

(G, CLOCK)
CLOCK:m-d(x)

-, (G, CLOCK: x E oar}

When a new boolean has been evaluated as the result of a non boolean function,
then its value is substituted in the clock calculus and all the clocks which can now
be evaiuated are evaluated. This rule does not modify the graph.

Conlments. (1) In the next section we shall give a sufficient condition that guarantees
the correct termination of EXEC, namely with a state satisfying

?(CLOCK) =0, ?(node(i) = 0. (4.13)

(2) The technique of substitutions in the clock calculus and graph we have used
leads to the following result:

Theorem 1. Pm&id that he algorithm terminates correctiy in the sense of (4.13),
then the combination of the transitions of EXEC produces the event a! qf some transition
(c.$ (3.5)) of the considered program.

Hence, provable runs of the original program can be obtained via an infinite loop
of EXEC (provided that values in memory are properly handled). We cannot
guarantee that all provable runs of the original transition system can be realized in
this way. Nevertheless, the method we shall give later to transform any process in
its pre-solved form is expected to allow the realization of the largest possible set of
provable runs.

Example. The program GUARD-COUNT.
Let us show how the algorithm runs on the program GUARD-COUNT.

Step 0. The clock of the counter is known to be the fastest one, therefore we can
assume h = 1; first, rule EXEC_O is applied.

z 2 ZR =.?j =a! 2=p2= 1,

e=(-a- 1)-w+ w - 0,

r=-p-1,

h--*cu, h--V, h+n, h+zn,

I+n,
I-r

zn *n, n-W,

Step 1. Rule EXEC-I yields zn E ual(G).

Synchronous programming with everi ts and rebtiuns 141

Step 2. By the rule EXEC_2, /3 can be evaluated, and we immed’ tely apply EXEC_3

in order to substitute /3 by its value in CLOCK. Finally, for simplibity, we delete
the nodes that will not be used any more. In this example, WC” consider the case
when p = -1.

zn2 =n2=(y2=p2=1,

e=-a -1,

r = 0,

zn+n, n -+ a,

a+ e, P
a-1 + e.

Step 3. In this case, n is ready to be evaluated by the rule EXPC,Z. Again we delete
the branches that will not be used any more.

n2=(y2=p2=1,

e=-a -1,

r = 0,

h---+cr, n + a,

a* e, P
a-l + e.

Step 4. a is ready to be evaluated by the rule EXEC,2. We assume here that Q = 1
and use the rule EXEC,3 in order to replace cy by its value in CLOCK, which
terminates the execution:

e= 1.

4.4. Correct termination of EXEC: fundamental theorems

Two natural questions arise about the preceding algorithm, namely

(1) Is this algorithm deterministic, i.e. does it exhibit a single provable run (cf. (3.5))?

(2) Does this algorithm terminate correctly, i.e. with all nodes and clocks being
evaluated (cf. (4.13))?

These are the questions we want to answer in this section.

4.4.1. Observability and determinism

Referring to (3.23, 3.24), recall that the clock calculus of a program P specifies
a set of trajectories in IF; for some n; the algebraic variety specified by the static
clock calculus is nothing but the projection on IF; of this set of trajectories along
the time axis. We shall denote by

V(P) (4.14)

142 A. Benveniste et al.

the algebraic variety specified by the static clock calculus. Now, consider a program
P, and denote by A the set of the variables involved in its static clock calculus.
Denote by B the subset of A composed by the boolean variables involved in a
non-boolean relation, and by E the set of the (old) boolean memories.

Definition 4. Consider fl c A (0 is intended to refer to a subset of some ‘visible’
ports of P). We shall say that P is observable via a if the following condition is
satisfied by the static clock calculus of P:

every point of V(P) is entirely determined by its components in a u B u 6.

(4.15)

The following theorem holds, which justifies the definition:

Theorem 2. If P is not observable via a, there exist at least two di$erent provable
runs of the synchro-process (3.43) ussociated with P that agree on 52.

Conversely, if P is observable by a, and tf fi contains all the source nodes of the
conditional dependence graph CDG, then there exists at most one provable run of P
according to the original SIGNAL rules (3.8, 3.10, 3.11, 3.12, 3.71, which agree on a
speci$ed trajectory ((O,, Bt))1,O of the components in fi u B of the clock calculus.

The proof is given in the report [Sj. Let us explain this theorem. Roughly speaking,
when Q refers to ‘input ports’, the first assertion means that, if P is not observable
via Q, then the synchro-process associated with P is not deterministic. Unfortunately,
we cannot derive from this property that the program P itself is non-deterministic
since this would require to reason about any data type, which is something we
cannot do. However, in the same situation, the second assertion means that observa-
bility does imply determinism of the original program. To summarize, this theorem
provides a condition for determinism, which is sufficient and almost necessary. This
criterion provides a formal framework to support the kind of argument we mentioned
in the preceding examples for checking non-determinism in the SIGNAL programs.
Checking property (4.15) relies on the presence of phantoms in the elimination
procedure which is used to solve the static clock calculus (cf. the examples above,
and the sketchy presentation of such al 1 climinstion procedure in the next section).

4.4.2. T&e clock of a cycle of G: a tool for deadlock isolation

Consider a node x in the graph G of the considered synchro-process, and assume
that it satisfies the following property:

(h:y--+xjE C.DG and XE B,

referred to as ‘x free boolean’.
(4.16)

In other words, x is a boolean which is the result of the eva!uation of a non-boolean
function (for instance x := (u <v)), hence the name ‘free’ since our clock calculus
cannot compute its actual value. The clock of a cycle of G is defined now.

Synchronous programming with events and relations 143

Step 1. Consider a cycle

of G, and denote by B the (possibly empty) subset of the Xi’s which are free booleans.

Step 2. Each equation hi = 0 defines an algebraic variety Vi. Denote by V;: the
smallest variety containing Vi which is invariant by the group of symmetries
x + --x Vx E B, and denote by hi the polynomial such that hi = 0 defines the
variety Vi*

Step 3. The clock of the considered cycle is defined as

dock(C) = fi hi
i=l

(4.17)

In other words, inside a cycl.: of G, we extend the dependencies to the least frequent
clock which is

1. more frequent than the product of the original clocks of the branches,
2. independent of the actual values of the free booleans which will be evaluated

within the considered cycle.

Obviously, if no free boolean belongs to the nodes of this cycle, we just get the
product of the original clocks.

Important Remark. Since the graph of a synchro-process is not invariant via
isomorphisms, the cycles depend on the particular form of the clock calculus. Hence
it is expected that some cycles can be broken’ via suitable manipulations of the
clock calculus. This idea will be exploited further. Cycles which cannot be broken
by manipulations of the clock calculus will generally cause decrtlocked subprocesses
to appear in the considered process, since the equation cfock(C 3 = 0 must be included
anyway as an additional constraint as the Fundamental Theorem 3 below will show.
Hence the nciion of cycle-clock will be a basic tool to check and isolate deadlocks;
this will be illustrated in the examples below. Of course, deadlocks can also result
from contradictory statements on boolean signals (such as, for instance, b and not
b = true).

4.4.3. The fundamental theorem about correct termination of EXEC

Fundamental Theorem 3. The conditions (i, ii, iii) below ensure that EXEC terminates
correctly for the process P, i.e. that all nodes arzd clocks have either been evaluated or
proved to be absent from the considered instant (condition (4.13)):

(i) The clock calculus is pre-solved.
(ii) P is observable with respect to the observer composed by its source nodes and

free booleans.

’ See the definition of the actions of EXEC.

144 A. Benoeniste et al.

(iii) Ail cycles of its graph G have zero clock
Furthermore, if these conditions are satisfied, for each history of the source nodes of
its graph G, and each sequence of e$ective (i.e. # 1) values of the source nodes of its
conditional dependence graph CDG, there exists exactly one provable run of P, and
this run can be realized by a repeated use of the algorithm EXEC.

In other words, processes which are observable by their inputs as well as cycle
free in the sense of (iii) are deadlock free and deterministic, and their runs can be
realized by the executable code produced by the SIGNAL compiler. The proof of
the first statement is giver. in [4], and the proof of the second one is given in the
report [5].

4.5. Solving static clock calculi

Our purpose here is to investigate how to transform the clock calculus of any
synchro-process to get the form mentioned in the Fundamental Theorem 3, i.e. a
form suitable to a correct termination of -EXEC. To help the resolution, we need
to handle graphs for synchro-processes which are not in the pre-solved form: we
shall use the rule GRAPH-4 for this purpose.

The clock calculus is solved in the following way:

Step 1. Perform all possible substitutions of the left-hand side by the corresponding
expression in the right-hand side of y or yZ = l l l until implicit equations are
encountered. When several equations of the form y 02 y* = l l l are encountered,
select one as the definition equation of the left-hand side and form a constraint by
expressing that the two right-hand sides must be equal (an elementary way of
performing elimination). Definition equations of the form y or y2 = Q(freebool),
where Q is any polynomial and freebool denotes any free boolean, are preferred in
the case of selecting a definition equation among several ones.

Step 2. Build the graph G of the so obtained synchro-process, Define on the set of
the vertices of G the following equivalence relation denoted by x * y: x e x and
x f, y if 9c and y belong to the same strong connectivity class (i.e. there is a gath
from x to y and vice-versa). Then G/H is a circuit-free graph; denote by {Gi)lsisn
the subgraphs of G which are mapped onto vertices of G/o where the index n is
compatible with the partial order on these subgraphs. These subgraphs will be simply
called strong connectiuity classes in the sequel. Denote by

c k, P - - l 3
%

the circuits of the Gi’s which possess at least one branch of one of the forms

x2 -L vxtex (originating from GRAPH, I),

vertex
h

* vertex (originating from GRAPH,2).

Synchronous programming with events and relations 145

Such cycles will be called data-cycles: they cannot be broken6 by transformations
of the clock calculus. Hence, for each data cycle, we must add the following rule
which ensures the condition (iii) of the Fundamental Theorem 3:

C data-cycle

add clock(C) = 0 to the clock calculus
(4.18)

where the clock of C has been defined in (4.17). Notice that (4.18) in general
modifies the graph G, but does not add new data-cycles. After Step 2, data-cycles
are broken.

Step 3. Using the rules for elimination of Lemma 1, the remaining connectivity
classes are broken successively, starting from the least one (according to the partial
order induced by G). This is done as follows. Data-cycles are not modified since
they have aiready been handled. Elimination within a connectivity class terminates
with the variables of the class which are successors of nodes of G which do not
belong to the class (the ‘source nodes of the connectivity class’).

Result. If this procedure terminates with no phantom, the assumptions of the
Fundamental Theorem 3 are satisfied. The procedure we have presented informally
is described in [4] via the technique of transition systems.

Discussion. As will be shown in the examples, this procedure isolates the subset of
the ports that are deadlocked in the considered process. Hence this procedure is a
fundamental tool for programming fault isolation. The resulting graph is also a
convenient starting point to target the considered application on a multiprocessor
architecture, see [18,271.

4.6. Examples

Our purpose in this section is to show how the preceding procedure handles
spurious programs, to detect and isolate deadlocks, or transform a program into an
executable form. Hence some pathological examples will be reviewed.

4.6-l. A wrong synchronization

Recall the following example which has been introduced before:

I x:=u when (u<v)

y:= x+v

Writing, for short, p instead of (u <v) yields the clock calculus

y2=x2=u2=02=p2=h,

x2 = u2(-p - p2)

6 See the definition of the actions of EXEC.

146 A. Benveniste et al.

Due to this clock calculus, the graph of this program exhibits a cycle, namely

C=., -p-p2 ,h

Hence, the clock of this cycle has to be zero. But this clock is equal to

clock(c)=(-p-p2)‘+(p-p2)2=p2.

(Weusedtherule(p=Oandq=O}(J(p2+q2 = O}.) Hence the constraint /3 = 0 must

hold, which means that the process stays in deadlock. In this example, the synchroni-
sation was incorrect.

4.6.2. A data-cycle

The following example is due to G. Gonthier (private communication); its interpre-
tation is

if z>O then z:= a else z:= b.

A program corresponding to this
corresponding SIGNAL program is

informal specification should be rejected. A

synchro a, b
p =(z>O)
x:=a whenp
y := b when not p
z := x default y

The clock calculus is

x2= h(-P-p2),

_y2 = h(P -P2),

P2 = z2=x2+y2(1 -x2) = hp’.

The graph contains in particular the following branches:

X-LX, +-b~ by GRAPH-l

z+p, X&Z, y+z by GRAPH-2

p-2, /+5-J? by GRAPH-3.

Two cycles are exhibited; their clocks are both equal to hp2. Hence, these cycles
add to the clock calculus the constraint p = 0. As a result, this program accepts the

Synchronous programming with events and relations 147

inputs (a, b), but refuses to produce any other signal. The isolated deadlock involves
the signals x, y, z, /3; such an isolation can be used for fault recovery.

Chapter 5. Conclusions

We have presented the kernel of the SIGNAL synchronous programming

language. We illustrated the SIGNAL programming style on a typical example
relevant to real-time control systems. We discussed in a fundamental way the

mathematical semantics and execution schemes of this language. While the useful-
ness of synchronous languages in the area of reactive system is established, we hope
to have shown how SIGNAL can be used to proceed towards automatic synthesis
of executable programs from their specifications. The following key features should
be mentioned:

0 SIGNAL is a block-diagram oriented language. As such, it is Isovided with a
graphical interface for program editing and execution, see [27] for further
information.

0 Since block-diagrams naturally specify constraints or relations between the
involved signals, SIGNAL is a language of equational style. This has several
important consequences we list now:

0 The programmer has only to specify local synchronization constraints
involving few signals; synthesizing the whole synchronization is the task
of the compiler.

0 SIGNAL is its own proof system : desired properties can be expressed as
(possibly non-deterministic) SIGNAL programs, and processed by the
compiler as additional equations. Checking for contradictions in the result-
ing prV-gram is the mechanism for proofs, see [27] for further information.

@ The behavior of a program P in a context C may be easily studied as a
program C 1 P (proofs, simulation, . . .).

@ The conditional dependence graph associated with a program is the universal
tool for proving, distributing, optimizing SIGNAL programs, see [27].

Finally, issues of executing (distributed) SIGNAL programs in an asynchronous
environment are common to all synchronous languages, see [/] for a detailed
discussion of this topic. To summarize, various services such as proof, compilation,
distributed implementation, are all supported by the SIGNAL formal system. This
releases the user from handling different formalisms and associated tools for these
tasks.

SIGNAL is currently available under two different versions that were developed
with different objectives. The INRIA Ii2 SIGNAL system provides a block-diagram
interface presented in [27]. Its compiler implements a subset of the full clock calculus
we have presented here: the reason for this is to provide a fast compilation method,
by avoiding heavily computational steps of the procedure we have presented. A
brief presentation of this implementation of the SIGNAL compiler is given in [27]-

148 A. Benveniste et al.

Sequential FORTRAN code is currently produced. Developments on distributed
implementation are in progress based on this version. Tools for proving dynamical
properties will be integrated in a short time.

The CNET-TN1 V3 version is commercially available. A multiple windowing
system of Macintosh style is provided for both program editing and on-line monitor-
ing and supervision of the execution. Sequential C code is produced. Experiments
have been performed based on this version to produce distributed OCCAM code
for a multi-Transputer system.

The SIGNAL environment has been experimented on significant applications in
the area of signal processing and control: a speech recognition system, a radar
system, a digital watch, a rail road crossing were the major ones.

References

[l] C. Bechon, Thesis, University of Rennes I, 1988.
[2] A. Benveniste and P. Le Guernic, A denotational theory of synchronous communicating systems,

INRIA Res. Rep. No. 685, 1987, to appear in Information and Computation, 1991.
[3] A. Benveniste and P. Le Guernic, Hybrid dynamical systems theory and nonlinear dynamical

systems over finite fields, plot. lP,% IEEE Control and Decision Conference, Austin, TX, 7-9 Dec.
1988.

[43 A. Benveniste, B. Le GofI and F. Le Guemic, Hybrid dynamical systems theory and the language
SIGNAL, INRIA Res. Rep. No. 838, 1988.

[5] A. Benveniste, P. Le G;rerc;c and C. Jacquemot, Synchronous programming with events and
relations: the SIGNAL language and its semantics, IRISA Res. Rep., 1989.

[6] A, Benveniste and P. Le Guernic, Hybrid dynamical systems theory and the SIGNAL language,
IEEE Trans. Automatic Contra! 33 (5) (1990) 535-546.

[7] A. Benveniste and G. Berry, Real-time systems design and programming, to appear in Proc. IEEE,
special section on rea!-time programming, 1991.

[8] J.L. Bergerand, P. Caspi, N. Halbwachs, D. Pilaud and E. Pilaud, Outline of a real-time data-flow
language, in: Real Time Systems Symposium, San Diego, CA, Dec. 1985.

[9] G. Berry and L. Cosserat, The ESTEREL programming language and its mathematical semantics,
INRIA Res. Rep. No. 327, Rocquencourt, France, 1984.

[IO] G. Berry and G. Gonthier, The ESTEREL synchronous programming language: design, semantics,
implementation, CMA Res. Rep., 1988 to appear in Science of Computer Programming.

[111 B. Bloom, S. Istrail and A.R. Meyer, Bisimulation can’t be traced, Proc. POPL’88.
[123 J.D. Brock and W.B. Ackerman, Scenarios, a model of non-determinate computation, ConJ Formal

Dejnition of Programmiry Concepts, Lecture Notes in Computer Science 107 (Springer, Berlin, 1981).
[133 S.D. Brookes, C.A.R. Hoare and A.W. Roscoe, A theory of communicating sequential processes,

J. ACM 31 (3) (1984) 560-599.
1141 B. Buchberger, Ein algorithmisches Kriterium fiir die Liisbarkeit eines algebraisches Gleichungs-

systems, Aequat. Math. 4 (1970) 374-383.
1151 B. Buchberger, A criterion for detecting unnecessary reductions of Groebner bases, Eurosam 79,

Lecture Notes in Computer Science 72 (Springer, Berlin, 1979) 3-21.
1161 A. De Bruin and W. Boehm, The denotational semantics of dynamic network of processes, ACM

Trans. Prog. Lang. Sysr. 7 (4) (1985) 656-679.
[17] P. Caspi, D. Pilaud, N. Halbwachs and J.A. Plaice, LUSTRE: a declarative language for program-

ming synchronous systems, Proc. 14th ACM Symp. Principles of Programming Languages, 1987.
[I81 C. Figueira, T. Gautier, B. Le Goff and P. Le Guernic, Towards multiprocessor implementation of

real-time, data-flow proO,cams, The 1988 International Symposium on LUCID and Intentional Pro-
gramming, Victoria, Cal.ada, April 6-8, 1988.

Synchronous programming with events and relations 149

[19] T. Gautier, P. Le Guernic and L. Besnard, SIGNAL, a declarative language for synchronous
programming of real-time systems, in: G. Kahn, Ed., hoc. third Conference on Functional Program-
ming Languages and Computer Architecture, Lecture Notes in Computer Science 274 (Springer,
Berlin, 1987).

[20] G. Gonthier, Thesis, Univ. de Nice and Ecole des Mines, 1988.
[21] D. Harel, Statecharts: a visual approach to complex systems, Science of Computer Programming 8

(3) (1987) “31-275.
1221 D. Hare1 and A. Pnueli, On the development of reactive systems: logic and models of concurrent

systems, Proc. NATO Advanced Study Institute on Logics and Models for Verification and Specification
of Concurrent Systems, NATO AS1 Series F 13 (Springer, Berlin 1985), 477-498.

[23] C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21 (8) (1978) 666-678.
[24] G. Kahn, The semantics of a simple language for parallel programming, in: J.L. Rosenfeld, Ed.,

Proceedings lFlP 74 (North-Holland, Amsterdam 1974) 471-475.
[25] G. Kahn and D.B. MacQueen, Coroutines and network of parallel processes, in B. Gilchrist, Ed.,

Proceedings IFIP 77 (North-Holland, Amsterdam, 19?7) 993-998.
[26] P. Le Guernic, A. Benveniste, P. Boumai and T. Gautier, SIGNAL: a data-flow oriented language

for signal processing, IEEE Trans. Acoust. Speech Signal Process. 34 (2) (1986) 362-374.
[27] P. Le Guernic, T. Gautier, M. Le Borgne and C. Le Maire, Programming real-tine applications

with SIGNAL, to appear in Proc. IEEE, special section on real-time programming, Sept. 1991.
[28] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science 92 (Springer,

Berlin, 1980.
[29] R. Milner, Calculi for synchronicity and asynchronicity, Theoret. Comput. Sci. 25 (3) (1983) 267-310.
[30] J.S. Ostroff, Real time computer control of discrete systems modelled by extended state machines:

a temporal logic approach, Rep. No. 8618, Systems Control Group, Dept of Elec Eng., Univ of
Toronto, 1986.

[31] J.A. Plaice, Semantique et compilation de LUSTRE, un langage declaratif synchrone, Thesis, Institut
National Polytechnique de Grenoble, 1988.

[32] G.D. Plotkin, A structural approach to operational semantics, Lecture Notes, Aarhus Univ., 1981.

