Geometrical Constructions of Flock Generalized Quadrangles

J. A. Thas
Department of Pure Mathematics and Computer Algebra, Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium
E-mail: jat@cage.rug.ac.be
Communicated by Francis Buekenhout

Received April 22, 2000
iew metadata, citation and similar papers at core.ac.uk

Abstract

cal construction of $\mathscr{S}(F)$ which works for any q. Here we show how, for q odd, one can derive Knarr's construction from Thas' one. To that end we describe an interesting representation of the point-plane flags of $\operatorname{PG}(3, q)$, which can be generalized to any dimension and which can be useful for other purposes. Applying this representation onto Thas' model of $\mathscr{S}(F)$, another interesting model of $\mathscr{S}(F)$ on a hyperbolic cone in $\operatorname{PG}(6, q)$ is obtained. In a final section we show how subquadrangles and ovoids of $\mathscr{S}(F)$ can be obtained via the description in $\operatorname{PG}(6, q)$. © 2001 Academic Press

1. INTRODUCTION

A (finite) generalized quadrangle (GQ) is an incidence structure $\mathscr{S}=(P, B, \mathrm{I})$ in which P and B are disjoint (nonempty) sets of objects called points and lines respectively, and for which I is a symmetric pointline incidence relation satisfying the following axioms.
(i) Each point is incident with $1+t$ lines $(t \geqslant 1)$ and two distinct points are incident with at most one line.
(ii) Each line is incident with $1+s$ points $(s \geqslant 1)$ and two distinct lines are incident with at most one point.
(iii) If x is a point and L is a line not incident with x, then there is a unique pair $(y, M) \in P \times B$ for which $x \mathrm{I} M \mathrm{I} y \mathrm{I} L$.

Generalized quadrangles were introduced by Tits [18] in his celebrated work on triality.

The integers s and t are the parameters of the generalized quadrangle and \mathscr{S} is said to have order (s, t); if $s=t, \mathscr{S}$ is said to have order s. There is a point-line duality for GQ (of order (s, t)) for which in any definition or theorem the words "point" and "line" are interchanged and the parameters s and t are interchanged. Hence, we assume without further notice that the dual of a given theorem or definition has also been given.

Let $\mathscr{S}=(P, B, \mathrm{I})$ be a (finite) GQ of order (s, t). Then \mathscr{S} has $v=|P|=(1+s)(1+s t)$ points and $b=|B|=(1+t)(1+s t)$ lines; see 1.2.1 of Payne and Thas [11]. Also, $s+t$ divides $s t(1+s)(1+t)$, and, for $s \neq 1 \neq t$, we have $t \leqslant s^{2}$ and, dually, $s \leqslant t^{2}$; see Payne and Thas [11, 1.2.2 and 1.2.3].

2. FLOCKS, BLT-SETS, AND FLOCK GENERALIZED QUADRANGLES

Let F be a flock of the quadratic cone K with vertex x of $\operatorname{PG}(3, q)$, that is, a partition of $K-\{x\}$ into q disjoint irreducible conics. Then, by Thas [13] with F there corresponds a GQ $\mathscr{S}(F)$ of order $\left(q^{2}, q\right)$; in fact it was shown that with F there corresponds a q-clan and then by work of Payne [7, 8] and Kantor [3, 4] with F there corresponds a GQ of order $\left(q^{2}, q\right)$. Also, independently, Walker [19] and Thas discovered that with each flock of an irreducible quadric of $\operatorname{PG}(3, q)$ there corresponds a translation plane of order q^{2}; see also Fisher and Thas [2] and Thas [13].

Let $F=\left\{C_{1}, C_{2}, \ldots, C_{q}\right\}$ be a flock of the quadratic cone K with vertex x of $\operatorname{PG}(3, q)$, with q odd. The plane of C_{i} is denoted by $\pi_{i}, i=1,2, \ldots, q$. Let K be embedded in the nonsingular quadric Q of $\operatorname{PG}(4, q)$. Let the polar line of π_{i} with respect to Q be denoted by L_{i} and let $L_{i} \cap Q=\left\{x, x_{i}\right\}$, $i=1,2, \ldots, q$. If H_{i} is the tangent hyperplane of Q at x_{i}, then put $H_{i} \cap Q=K_{i}, H_{i} \cap H_{j} \cap Q=K_{i} \cap H_{j}=C_{i j}$ and $C_{i i}=C_{i}$, with $i, j=1,2, \ldots, q$ and $i \neq j$. Then Bader, Lunardon and Thas [1] prove that $F_{i}=\left\{C_{i 1}, C_{i 2}\right.$, $\left.\ldots, C_{i q}\right\}$ is a flock of $K_{i}, i=1,2, \ldots, q$. We say that the flocks $F_{1}, F_{2}, \ldots, F_{q}$ are derived from the given flock F. In many cases this process of derivation produces new flocks and new planes, but Payne and Rogers [10] prove that the GQ $\mathscr{S}(F), \mathscr{S}\left(F_{1}\right), \ldots, \mathscr{S}\left(F_{q}\right)$ are always isomorphic.

The main result of Bader et al. [1] amounts to proving that in the GQ $Q(4, q)$ arising from the quadric Q, the set $\mathscr{V}=\left\{x_{0}, x_{1}, \ldots, x_{q}\right\}$, with $x=x_{0}$, has the property that for any three distinct points x_{i}, x_{j}, x_{k} of \mathscr{V} there is no point on $Q(4, q)$ collinear with all of them. Let $W(q)$ be the classical GQ arising from a symplectic polarity of $\mathrm{PG}(3, q)$. Then $W(q)$ is isomorphic to the dual of $Q(4, q)$; see Payne and Thas [11, 3.2.1]. With \mathscr{V} there corresponds a set \mathscr{W} of $q+1$ lines $L_{0}, L_{1}, \ldots, L_{q}$ of $W(q)$, having the property that for any three distinct lines L_{i}, L_{j}, L_{k} of \mathscr{W} there is no line in $W(q)$ concurrent with all of them. Such a set of $q+1$ lines in $W(q), q$ odd,
was called a BLT-set by Kantor [5]. Hence any given flock F defines just one BLT-set, and any BLT-set produces $q+1$ flocks (possibly nonisomorphic) but just one GQ.

3. THE CONSTRUCTION OF KNARR

Start with a symplectic polarity θ of $\operatorname{PG}(5, q), q$ odd. Let $p \in \operatorname{PG}(5, q)$ and let $\operatorname{PG}(3, q)$ be a 3-dimensional subspace of $\operatorname{PG}(5, q)$ for which $p \notin \mathrm{PG}(3, q) \subset p^{\theta}$. In $\mathrm{PG}(3, q) \theta$ induces a symplectic polarity θ^{\prime}, and hence a GQ $W(q)$. Let \mathscr{W} be a BLT-set of the GQ $W(q)$ and construct a geometry $\mathscr{S}=(P, B, \mathrm{I})$ as follows.

Points are of three types:
(i) the q^{5} points of $\operatorname{PG}(5, q)$ not in p^{θ};
(ii) the $q^{3}+q^{2}$ lines of $\operatorname{PG}(5, q)$ not containing p but contained in one of the planes $\pi_{i}=p L_{i}$, with L_{i} a line of the BLT-set \mathscr{W};
(iii) p.

Lines are of two types:
(a) the $q^{4}+q^{3}$ totally isotropic planes of θ not contained in p^{θ} and meeting some π_{i} in a line (not through p);
(b) the $q+1$ planes $\pi_{i}=p L_{i}$, with $L_{i} \in \mathscr{W}$.

The incidence relation I is just the natural incidence inherited from $\operatorname{PG}(5, q)$.

Then Knarr [6] proves that \mathscr{S} is a GQ of order $\left(q^{2}, q\right)$ isomorphic to $\mathscr{S}(F)$, with F any flock arising from the BLT-set \mathscr{W}. We emphasize that in this construction q must be odd.

4. THE CONSTRUCTION OF THAS

Let K be a quadratic cone with vertex x of $\operatorname{PG}(3, q)$. Further, let y be a point of $K-\{x\}$ and let ζ be a plane of $\operatorname{PG}(3, q)$ not containing y. Now we project $K-\{y\}$ from y onto ζ. Let τ be the tangent plane of K at the line $x y$ and let $\tau \cap \zeta=T$. Then with the q^{2} points of $K-x y$ there correspond the q^{2} points of the affine plane $\zeta-T=\zeta^{\prime}$, with any point of $x y-\{y\}$ there corresponds the intersection ∞ of $x y$ and ζ, with the generators of K distinct from $x y$ there correspond the lines of ζ distinct from T containing ∞, with the (nonsingular) conics on K passing through y there
correspond the affine parts of the q^{2} lines of ζ not passing through ∞, and with the (nonsingular) conics on K not passing through y there correspond the $q^{2}(q-1)$ (nonsingular) conics of ζ which are tangent to T at ∞.

Let $F=\left\{C_{1}^{*}, C_{2}^{*}, \ldots, C_{q}^{*}\right\}$ be a flock of the cone K. Now consider the set $\tilde{F}=\left\{C_{1}, C_{2}, \ldots, C_{q-1}, N\right\}$ consisting of the $q-1$ nonsingular conics $C_{1}, C_{2}, \ldots, C_{q-1}$ and the line N of ζ, which is obtained by projecting the elements of F from y onto ζ. So $C_{1}, C_{2}, \ldots, C_{q-1}$ are conics which are mutually tangent at ∞ (with common tangent line T) and N is a line of ζ not containing ∞.

Now we consider planes $\pi_{\infty} \neq \zeta$ and $\mu \neq \zeta$ of $\operatorname{PG}(3, q)$, respectively containing T and N; in μ we consider a point r, with $r \notin \zeta \cup \pi_{\infty}$. Next, let O_{i} be the nonsingular quadric which contains C_{i}, which is tangent to π_{∞} at ∞ and which is tangent to μ at r, with $i=1,2, \ldots, q-1$. As $C_{i} \cap N=\varnothing$, the quadric O_{i} is elliptic, $i=1,2, \ldots, q-1$.

Next, let \mathscr{S} be the following incidence structure.

Points of \mathscr{S}

(a) The $q^{3}(q-1)$ nonsingular elliptic quadrics O containing $O_{i} \cap \pi_{\infty}=L_{\infty}^{(i)} \cup M_{\infty}^{(i)}\left(\right.$ over $\left.\operatorname{GF}\left(q^{2}\right)\right)$ such that the intersection multiplicity of O_{i} and O at ∞ is at least three (that are O_{i}, the nonsingular elliptic quadrics $O \neq O_{i}$ containing $L_{\infty}^{(i)} \cup M_{\infty}^{(i)}\left(\right.$ over $\left.\operatorname{GF}\left(q^{2}\right)\right)$ and intersecting O_{i} over $\operatorname{GF}(q)$ in a nonsingular conic containing ∞, and the nonsingular elliptic quadrics $O \neq O_{i}$ for which $O \cap O_{i}$ over $\operatorname{GF}\left(q^{2}\right)$ is $L_{\infty}^{(i)} \cup M_{\infty}^{(i)}$ counted twice), with $i=1,2, \ldots, q-1$.
(b) The q^{3} points of $\operatorname{PG}(3, q)-\pi_{\infty}$.
(c) The q^{3} planes of $\operatorname{PG}(3, q)$ not containing ∞.
(d) The $q-1$ sets \mathcal{O}_{i}, where \mathcal{O}_{i} consists of the q^{3} quadrics O of type (a) corresponding with $O_{i}, i=1,2, \ldots, q-1$.
(e) The plane π_{∞}.
(f) The point ∞.

Lines of \mathscr{S}

(i) Let (w, γ) be a point-plane flag of $\operatorname{PG}(3, q)$, with $w \notin \pi_{\infty}$ and $\infty \notin \gamma$. Then all quadrics O of type (a) which are tangent to γ at w, together with w and γ, form a line of type (i). Any two distinct quadrics of such a line have exactly two points (∞ and w) in common. The total number of lines of type (i) is q^{5}.
(ii) Let O be a point of type (a) which corresponds to the quadric $O_{i}, i \in\{1,2, \ldots, q-1\}$. If $O \cap \pi_{\infty}=O_{i} \cap \pi_{\infty}=L_{\infty}^{(i)} \cup M_{\infty}^{(i)}$ (over $\operatorname{GF}\left(q^{2}\right)$), then all points O^{\prime} of type (a) for which $O^{\prime} \cap O$ over $\mathrm{GF}\left(q^{2}\right)$ is $L_{\infty}^{(i)} \cup M_{\infty}^{(i)}$ counted twice, together with O and O_{i}, form a line of type (ii). There are $q^{2}(q-1)$ lines of type (ii).
(iii) A set of q parallel planes of $\mathrm{AG}(3, q)=\operatorname{PG}(3, q)-\pi_{\infty}$, where the line at infinity does not contain ∞, together with the plane π_{∞}, is a line of type (iii).
(iv) Lines of type (iv) are the lines of $\operatorname{PG}(3, q)$, not in π_{∞}, containing ∞.
(v) $\left\{\infty, \pi_{\infty}, \mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{q-1}\right\}$ is the unique line of type (v).

Incidence of \mathscr{S}
Incidence is containment.
Then it is proved in Thas [15] that \mathscr{S} is a GQ isomorphic to the pointline dual of the flock GQ $\mathscr{S}(F)$. We emphasize that this construction works for any prime power q.

5. AN INTERESTING REPRESENTATION OF POINT-PLANE FLAGS OF PG($3, q$)

Consider the point-plane flag $\left((0,0,0,1), X_{0}=0\right)$ of $\operatorname{PG}(3, q)$. Now let (w, γ) be any point-plane flag of $\operatorname{PG}(3, q)$, with $(0,0,0,1) \notin \gamma$ and w not in $X_{0}=0$. Let $w(1, x, y, z)$ and $\gamma: a X_{0}+b X_{1}+c X_{2}+X_{3}=0$. Then we put

$$
(w, \gamma)^{\eta}=(x, y, z, a, b, c) \in \mathrm{AG}(6, q) .
$$

All images are points of the quadric Φ of $\operatorname{PG}(6, q)$ with equation

$$
X_{1} X_{5}+X_{2} X_{6}+X_{3} X_{0}+X_{4} X_{0}=0
$$

This quadric Φ is a hyperbolic cone with vertex $s(0,0,0,1,-1,0,0)$. The hyperplane Π with equation $X_{0}=0$ of $\operatorname{PG}(6, q)$ is tangent to Φ along the line joining s to $(0,0,0,0,1,0,0)$. Clearly η is a bijection from the set of all flags (w, γ), with $(0,0,0,1) \notin \gamma$ and w not in $X_{0}=0$, onto $\Phi-\Pi$.

If O is a nonsingular quadric of $\operatorname{PG}(3, q)$ which is tangent to $X_{0}=0$ at $(0,0,0,1)$, then the flags (w, γ), with $w \in O-\{(0,0,0,1)\}$ and γ the tangent plane of O at w are mapped by η onto the points not in $X_{0}=0$ of a nonsingular quadric $O^{\prime} \subset \Phi$, contained in some 3-dimensional subspace δ of $\operatorname{PG}(6, q)$ and having the same character as O. Also, O^{\prime} contains the point $h(0,0,0,1,1,0,0)$ of Φ.

If O has equation

$$
\sum_{\substack{i, j=0 \\ i \leqslant j}}^{3} a_{i j} X_{i} X_{j}=0, \quad \text { with } \quad a_{33}=a_{13}=a_{23}=0
$$

then O is nonsingular if and only if $a_{03} \neq 0 \neq 4 a_{11} a_{22}-a_{12}^{2}$. So we may assume $a_{03}=1$. It is easily checked that the space δ containing O^{\prime} is represented by

$$
\left\{\begin{array}{l}
X_{4}=2 a_{00} X_{0}+a_{01} X_{1}+a_{02} X_{2}+X_{3} \\
X_{5}=a_{01} X_{0}+2 a_{11} X_{1}+a_{12} X_{2} \\
X_{6}=a_{02} X_{0}+2 a_{22} X_{2}+a_{12} X_{1}
\end{array}\right.
$$

Also, if $w(1, x, y, z) \in O$ and if γ is the tangent plane of O at w, then

$$
\begin{aligned}
(w, \gamma)^{\eta}= & \left(1, x, y, z, 2 a_{00}+a_{01} x+a_{02} y+z,\right. \\
& \left.a_{01}+2 a_{11} x+a_{12} y, a_{02}+2 a_{22} y+a_{12} x\right) .
\end{aligned}
$$

Let Φ^{+}be the hyperbolic quadric $X_{3}=X_{1} X_{5}+X_{2} X_{6}+X_{4} X_{0}=0$ (so Φ^{+} is the base of the cone $\Phi)$. If q is odd, then the quadric O^{\prime} is tangent to $\Pi \cap \delta$ at h. Now let q be even. Then $s=h$. In such a case δ belongs to Φ. Hence $\delta \cap \Phi^{+}$is a plane δ^{\prime} of Φ^{+}, and in this way there arise $q^{2}(q-1)$ planes δ^{\prime} of Φ^{+}; the planes δ^{\prime} all belong to a same family \mathscr{A} of generators of Φ^{+}. The space $X_{3}=X_{0}=0$ is tangent to Φ^{+}at $e_{4}(0,0,0,0,1,0,0)$, and as $e_{4} \notin \delta^{\prime}$ the plane δ^{\prime} does not belong to Π. Further, δ^{\prime} has no point in common with the planes $X_{0}=X_{3}=X_{5}=X_{6}=0$ and $X_{0}=X_{3}=X_{1}=X_{2}=0$ of Φ^{+}. Finally, for a fixed δ^{\prime} the q^{3} corresponding quadrics O^{\prime} belong to a common linear 3-dimensional system of quadrics in the 3-dimensional space $s \delta^{\prime}=\delta$.

Assume again that q is odd. Then we consider the projection ξ from h onto the hyperplane $\operatorname{PG}(5, q)$ with equation $X_{3}=0$. We have $(\delta-\{h\})^{\xi}=$ $\tilde{\delta}$, with $\tilde{\delta}$ the plane having equations

$$
\left\{\begin{array}{l}
X_{3}=0, \\
X_{4}=2 a_{00} X_{0}+a_{01} X_{1}+a_{02} X_{2}, \\
X_{5}=a_{01} X_{0}+2 a_{11} X_{1}+a_{12} X_{2}, \\
X_{6}=a_{02} X_{0}+a_{12} X_{1}+2 a_{22} X_{2}
\end{array}\right.
$$

Then

$$
(\tilde{\delta})^{\theta}=\tilde{\delta},
$$

with θ the symplectic polarity of $\operatorname{PG}(5, q)$ represented by the bilinear form

$$
X_{0} Y_{4}-X_{4} Y_{0}+X_{1} Y_{5}-X_{5} Y_{1}+X_{2} Y_{6}-X_{6} Y_{2} .
$$

Hence $\tilde{\delta}$ is a totally isotropic plane of the polarity θ. It is readily checked that $\tilde{\delta} \not \subset \Pi$, that $\tilde{\delta} \cap \Pi=R$ is not a line of the quadric H with equations $X_{3}=X_{0}=X_{1} X_{5}+X_{2} X_{6}=0$ (that is, $H=\Phi^{+} \cap \Pi$), and that R is not tangent to H. The number of totally isotropic planes of θ in Π is equal to $(q+1)\left(q^{2}+1\right)$, the number of totally isotropic planes intersecting Π in a line of H is $(q+3) q^{3}\left((q+1) q^{3}\right.$ of these planes intersect a plane of one system of generators of H, the remaining $2 q^{3}$ planes intersect a plane of the second system of generators of H), and the number of totally isotropic planes intersecting Π in a tangent of H, not contained in H, is equal to $2\left(q^{2}-1\right) q^{3}$. Any of the remaining $q^{5}(q-1)$ totally isotropic planes of θ corresponds to a nonsingular quadric O of $\operatorname{PG}(3, q)$.

6. FROM THE CONSTRUCTION OF THAS TO THE CONSTRUCTION OF KNARR

We start from the construction of Thas of the dual of a flock GQ $\mathscr{S}(F)$ of order $\left(q^{2}, q\right), q$ odd. We will use the notations of Section 4 .

A point of type (a) is an elliptic quadric of $\operatorname{PG}(3, q)$ touching a fixed plane π_{∞} at a fixed point ∞. We identify the point-plane flag $\left(\infty, \pi_{\infty}\right)$ with the point-plane flag $\left((0,0,0,1), X_{0}=0\right)$ of Section 5 . So with O there corresponds an elliptic quadric O^{\prime} on the cone Φ, and a totally isotropic plane $\tilde{\delta}$ of the symplectic polarity θ of $\operatorname{PG}(5, q)$. Suppose that with O_{i} there corresponds the totally isotropic plane $\widetilde{\delta}_{i}$ of θ, and that $\widetilde{\delta}_{i} \cap \Pi=R_{i}$, with $i=1, \ldots, q-1$. One can show that with the $q-1$ nonsingular elliptic quadrics O of $\operatorname{PG}(3, q)$ for which $O \cap O_{i}$ over $\operatorname{GF}\left(q^{2}\right)$ is $L_{\infty}^{(i)} \cup M_{\infty}^{(i)}$ counted twice, there correspond the $q-1$ totally isotropic planes distinct from $\tilde{\delta}_{i}$ and not contained in Π, which contain the line $R_{i}, i \in\{1,2, \ldots, q-1\}$. With the $q^{3}-q$ elliptic quadrics O containing $L_{\infty}^{(i)} \cup M_{\infty}^{(i)}\left(\right.$ over $\left.\operatorname{GF}\left(q^{2}\right)\right)$ and intersecting O_{i} over $\operatorname{GF}(q)$ in a nonsingular conic containing ∞, there correspond the totally isotropic planes not in Π intersecting the totally isotropic plane $e_{4} R_{i}$ in a line distinct from $R_{i}, i \in\{1,2, \ldots, q-1\}$.

Let w be a point of type (b). With the flags (w, γ), $\infty \notin \gamma$, there correspond q^{2} points of a totally isotropic plane of θ, not in Π and containing a line of the totally isotropic plane $X_{0}=X_{1}=X_{2}=X_{3}=0($ on $H)$.

Let γ be a point of type (c). With the flags $(w, \gamma), w \notin \pi_{\infty}$, there correspond q^{2} points of a totally isotropic plane of θ, not in Π and containing a line of the totally isotropic plane $X_{0}=X_{3}=X_{5}=X_{6}=0($ on $H)$.

With the $q-1$ points of type (d) we let correspond the $q-1$ totally isotropic planes $e_{4} R_{i}$ of $\theta, i=1,2, \ldots, q-1$.

With the unique point π_{∞} of type (e) we let correspond the plane $X_{0}=X_{3}=X_{5}=X_{6}=0$, and with the unique point ∞ of type (f) we let correspond the plane $X_{0}=X_{1}=X_{2}=X_{3}=0$.

Consider the line of type (i) defined by the point-plane flag (w, γ) of $\operatorname{PG}(3, q)$, with $w \notin \pi_{\infty}$ and $\infty \notin \gamma$. With this line we let correspond the point $(w, \gamma)^{\eta \xi}$ of $\operatorname{PG}(5, q)\left((w, \gamma)^{\eta \xi} \notin \Pi\right)$.

Now we consider the line of type (ii) defined by the elliptic quadric O, where O corresponds to O_{i}. With O there corresponds a line U of $e_{4} R_{i}$, with $e_{4} \notin U$ (with the point O of type (a) corresponds a totally isotropic plane $\tilde{\delta}$ of θ, and $U=\tilde{\delta} \cap \Pi$). With the given line of type (ii) we let correspond the line U of Π.

A line of type (iii) consists of q parallel planes of $\operatorname{PG}(3, q)-\pi_{\infty}$, where the line at infinity does not contain ∞, together with the plane π_{∞}. With these q parallel planes correspond q totally isotropic planes of θ containing a common line U of $X_{0}=X_{3}=X_{5}=X_{6}=0$. With the given line of type (iii) we let correspond the line U of Π.

A line of type (iv) is a line of $\operatorname{PG}(3, q)$, not in π_{∞}, containing ∞. With the q points not in π_{∞} of that line correspond q totally isotropic planes of θ containing a common line U of $X_{0}=X_{1}=X_{2}=X_{3}=0$. With the given line of type (iv) we let correspond the line U of Π.

With the unique line of type (v) we let correspond the point e_{4}.
Hence in $\operatorname{PG}(5, q)$ we have an incidence structure \mathscr{S}^{\prime} with six types of points and five types of lines. With the natural incidence this structure \mathscr{S}^{\prime} is a GQ isomorphic to the dual of $\mathscr{S}(F)$.

The elliptic quadrics $O_{1}, O_{2}, \ldots, O_{q-1}$ are tangent to the plane μ at the point r, hence the totally isotropic planes $\widetilde{\delta}_{1}, \widetilde{\delta}_{2}, \ldots, \widetilde{\delta}_{q-1}$ have a point g in common, with $g \notin \Pi$. Hence these planes are contained in a 4-dimensional space β. Hence $R_{1}, R_{2}, \ldots, R_{q-1}$ are contained in the 3-dimensional space $\beta \cap \Pi=\alpha \subset e_{4}^{\theta}$, with $e_{4} \notin \alpha$. Let R_{q} be the intersection of α with $X_{0}=X_{1}=$ $X_{2}=X_{3}=0$, and let R_{q+1} be the intersection of α with $X_{0}=X_{3}=X_{5}=$ $X_{6}=0$. Then $R_{1}, R_{2}, \ldots, R_{q+1}$ are totally isotropic for the symplectic polarity θ^{\prime} induced by θ in α, that is, $R_{1}, R_{2}, \ldots, R_{q+1}$ are lines of the GQ $W(q)$ determined by θ^{\prime}.

Consequently, the points of \mathscr{S}^{\prime} are:
(a) the $q^{4}+q^{3}$ totally isotropic planes of θ not contained in e_{4}^{θ} and meeting some plane $e_{4} R_{i}$ in a line (not through p), $i \in\{1,2, \ldots, q+1\}$.
(b) the $q+1$ planes $e_{4} R_{i}, i=1,2, \ldots, q+1$.

The lines of \mathscr{S}^{\prime} are:
(i) ${ }^{\prime}$ the q^{5} points $\operatorname{PG}(5, q)$ not in e_{4}^{θ};
(ii)' the $q^{3}+q^{2}$ lines of $\operatorname{PG}(5, q)$ not containing e_{4} but contained in one of the planes $e_{4} R_{i}, i \in\{1,2, \ldots, q+1\}$.
(iii) e_{4}.

Now we show that no two of the lines $R_{1}, R_{2}, \ldots, R_{q+1}$ are concurrent in $W(q)$. Assume, by way of contradiction, that r^{\prime} is a common point of R_{i} and R_{j} in $W(q), i \neq j$. Then there exist totally isotropic planes δ_{i}^{\prime} and δ_{j}^{\prime} of θ which respectively contain R_{i} and R_{j}, and which intersect in a line not contained in e_{4}^{θ}. It follows that the points δ_{i}^{\prime} and δ_{j}^{\prime} of \mathscr{S}^{\prime} are incident with more than one line of \mathscr{S}^{\prime}, clearly a contradiction. Hence no two of the lines $R_{1}, R_{2}, \ldots, R_{q+1}$ are concurrent in $W(q)$.

Assume, by way of contradiction, that $W(q)$ contains a line R which is concurrent with three distinct lines of $\left\{R_{1}, R_{2}, \ldots, R_{q+1}\right\}=\mathscr{W}^{\prime}$, say with R_{i}, R_{j}, R_{k}. Let r_{l} be the common point of R and R_{l} in $W(q), l=i, j, k$. Further, let ρ be a totally isotropic plane of θ which contains R but is not contained in e_{4}^{θ}, and let R_{k}^{\prime} be a line of $e_{4} R_{k}$ distinct from $e_{4} r_{k}$ and R_{k}. Also, let $\rho \cap R_{i}^{\theta}=R_{i}^{\prime \prime}, \rho \cap R_{j}^{\theta}=R_{j}^{\prime \prime}$ and $\rho \cap R_{k}^{\prime \theta}=R_{k}^{\prime \prime}$. Then clearly $R_{l}^{\prime \prime} \neq R$, $l=i, j, k$, and the lines $R_{i}^{\prime \prime}, R_{j}^{\prime \prime}, R_{k}^{\prime \prime}$ are not concurrent. If we now consider the totally isotropic planes $\delta_{i}^{\prime \prime}=R_{i}^{\prime \prime} R_{i}, \delta_{j}^{\prime \prime}=R_{j}^{\prime \prime} R_{j}, \delta_{k}^{\prime \prime}=R_{k}^{\prime \prime} R_{k}^{\prime}$ of θ, then $\delta_{i}^{\prime \prime}, \delta_{j}^{\prime \prime}$, $\delta_{k}^{\prime \prime}$ are points of \mathscr{S}^{\prime} which form a triangle, a contradiction. Consequently \mathscr{W}^{\prime} has the property that no three of its lines are concurrent with a common line of $W(q)$.

From the preceding it follows that \mathscr{W}^{\prime} is a BLT-set of $W(q)$. The construction of Knarr [6] applied to the BLT-set \mathscr{W}^{\prime} yields the dual of the GQ \mathscr{S}^{\prime}. Let \mathscr{W} be the BLT-set of $W(q)$ defined by the flock F. As \mathscr{S}^{\prime} is isomorphic to the dual of $\mathscr{S}(F)$, then, by the proof of Theorem IV. 1 in Payne and Thas [12], \mathscr{W} and \mathscr{W}^{\prime} are equivalent with respect to the group $P \Gamma S p_{4}(q)$. Now we show that \mathscr{W} and \mathscr{W}^{\prime} are even equivalent with respect to the group $P S p_{4}(q)$.

In the construction of Thas, Let F be the flock of the quadratic cone K with equation $X_{0} X_{1}=X_{2}^{2}$, let the respective planes π_{i} of the elements of F have equation

$$
l_{i} X_{0}+m_{i} X_{1}+n_{i} X_{2}+X_{3}=0, \quad \text { with } i=0,1, \ldots, q-1,
$$

and let $l_{0}=m_{0}=n_{0}=0$. Now we project $K-\{(0,1,0,0)\}$ from ($0,1,0,0$) onto the plane ζ with equation $X_{1}=0$. The plane π_{0} contains $(0,1,0,0)$. The projection from $(0,1,0,0)$ onto ζ of the conic $\pi_{i} \cap K$, with $i \neq 0$, is the conic C_{i} with equations

$$
l_{i} X_{0}^{2}+m_{i} X_{2}^{2}+n_{i} X_{0} X_{2}+X_{0} X_{3}=0=X_{1} .
$$

Also, we have $\pi_{0} \cap \zeta=N: X_{1}=X_{3}=0$. Further, let μ have equation $X_{3}=0$ and let $r(1,1,0,0)$. Then

$$
O_{i}: l_{i} X_{0}^{2}+l_{i} X_{1}^{2}+m_{i} X_{2}^{2}-2 l_{i} X_{0} X_{1}+n_{i} X_{0} X_{2}+X_{0} X_{3}-n_{i} X_{1} X_{2}=0,
$$

with $i=1,2, \ldots, q-1$. With O_{i} there corresponds an elliptic quadric O_{i}^{\prime} on the cone Φ, where O_{i}^{\prime} is contained in the 3 -dimensional space δ_{i} with equations

$$
\begin{aligned}
& X_{4}=2 l_{i} X_{0}-2 l_{i} X_{1}+n_{i} X_{2}+X_{3}, \\
& X_{5}=-2 l_{i} X_{0}+2 l_{i} X_{1}-n_{i} X_{2}, \\
& X_{6}=n_{i} X_{0}-n_{i} X_{1}+2 m_{i} X_{2} .
\end{aligned}
$$

Hence the line R_{i} has equations

$$
\left\{\begin{array}{l}
X_{0}=X_{3}=X_{4}+X_{5}=0, \\
X_{4}=-2 l_{i} X_{1}+n_{i} X_{2}, \\
X_{6}=-n_{i} X_{1}+2 m_{i} X_{2},
\end{array}\right.
$$

with $i=1,2, \ldots, q-1$. Further we have

$$
R_{q}: X_{0}=X_{1}=X_{2}=X_{3}=X_{4}+X_{5}=0,
$$

and

$$
R_{q+1}: X_{0}=X_{3}=X_{4}=X_{5}=X_{6}=0 .
$$

In the space α : $X_{0}=X_{3}=X_{4}+X_{5}=0$ the symplectic polarity θ^{\prime} can be represented by (in Grassmann coordinates)

$$
p_{15}+p_{26}=0 .
$$

As F is a flock, we have that

$$
\left(n_{i}-n_{j}\right)^{2}-4\left(l_{i}-l_{j}\right)\left(m_{i}-m_{j}\right) \text { is a nonsquare, }
$$

for all $i, j \in\{0,1, \ldots, q-1\}$. Now it is easy to check that the BLT-set \mathscr{W} defined by the flock F is equivalent for the group $P S p_{4}(q)$ with the BLT-set $\mathscr{W}^{\prime}=\left\{R_{1}, R_{2}, \ldots, R_{q+1}\right\}$.

We conclude that the above constructed model of the dual of $\mathscr{S}(F)$ in the projective space $\operatorname{PG}(5, q)$, is exactly the model constructed by Knarr starting from the BLT-set \mathscr{W} defined by F.

7. SUBQUADRANGLES AND OVOIDS

7.1. Subquadrangles in the Even Case

Let $\mathscr{S}(F)$ be the GQ of order $\left(q^{2}, q\right)$ arising from the flock F of the quadratic cone K of $\operatorname{PG}(3, q), q$ even. Then $\mathscr{S}(F)$ has at least $q^{3}+q^{2}$ subquadrangles of order q; see Thas [16]. By Payne [8] any of these subquadrangles \mathscr{S}^{\prime} is a $T_{2}(O)$ of Tits, with O an oval of $\operatorname{PG}(2, q)$. Similarly as in the odd case (see Sections 5 and 6) $\mathscr{S}(F)$ can be represented on the hyperbolic cone Φ with vertex s in $\operatorname{PG}(6, q)$. Let φ be a plane on the hyperbolic quadric Φ^{+}such that φ and the planes $X_{0}=X_{3}=X_{5}=X_{6}=0$ and $X_{0}=X_{3}=X_{1}=X_{2}=0$ belong to a common system of generators of Φ^{+}, but with φ not belonging to Π (that is, not containing $e_{4}(0,0,0,0,1,0,0)$). There are exactly $q^{3}+q^{2}$ such planes φ. Consider the 3 -dimensional space $s \varphi=\Delta$. Then with the q^{3} points of Δ not in Π correspond the q^{3} points of a subquadrangle \mathscr{S}^{\prime} of order q of $\mathscr{S}(F)$ which are not collinear with the point ∞ of $\mathscr{P}(F)$. In this way we find all $q^{3}+q^{2}$ subquadrangles \mathscr{L}^{\prime} of order q containing the sets of type $\left\{L, L_{1}, L_{2}\right\}^{\perp} \cup\left\{L, L_{1}, L_{2}\right\}^{\perp \perp}$ with L, L_{1}, L_{2} pairwise nonconcurrent, with $\infty \mathrm{I} L$, and with $\infty \mathrm{I} M$ and $M \in\left\{L, L_{1}, L_{2}\right\}^{\perp}$.

One can also show that with $q^{3}-q^{2}$ lines of \mathscr{S}^{\prime} there correspond $q^{3}-q^{2}$ conics in Δ through s. Each plane ω through s but neither containing the intersection of φ and $X_{0}=X_{3}=X_{5}=X_{6}=0$, nor the intersection of φ and $X_{0}=X_{3}=X_{1}=X_{2}=0$, contains exactly q of these conics. Then q conics are tangent to $\omega \cap \Pi$ at s, and define a partition of $\omega-\Pi$.

7.2. Ovoids in the Odd Case

Consider again $\mathscr{S}(F)$ and its representation on the cone Φ. Assume that q is odd. Let β be a plane of Φ^{+}which is disjoint from the planes $X_{0}=X_{1}=X_{2}=X_{3}=0$ and $X_{0}=X_{3}=X_{5}=X_{6}=0$ such a plane β does not belong to Π. Now we consider the 3 -dimensional space $s \beta=\Delta^{\prime}$, with $s(0,0,0,1,-1,0,0)$. Then it can be shown that the q^{3} points of $\Delta^{\prime}-\Pi$ together with the point $e_{4}(0,0,0,0,1,0,0)$ correspond to the points of an ovoid of $\mathscr{S}(F)$. These ovoids are of the type described in Thas and Payne [17, 6.2].

7.3. Ovoids in the Even Case

Consider again $\mathscr{S}(F)$ and its representation on the cone Φ. Let O^{\prime} be an ovoid of Φ^{+}which contains e_{4}. Then it can be shown that the q^{3} points of $s O^{\prime}-\Pi$ together with the point e_{4} correspond to the points of an ovoid of $\mathscr{S}(F)$. These ovoids are exactly the ovoids described in Thas [14, 7.3 (a)].

ACKNOWLEDGMENT

Part of this work was done while the author was Erskine Fellow of the University of Canterbury at Christchurch, New Zealand.

REFERENCES

1. L. Bader, G. Lunardon, and J. A. Thas, Derivation of flocks of quadratic cones, Forum Math. 2 (1990), 163-174.
2. J. C. Fisher and J. A. Thas, Flocks in PG(3, q), Math. Z. 169 (1979), 1-11.
3. W. M. Kantor, Generalized quadrangles associated with $G_{2}(q)$, J. Combin. Theory Ser. A 29 (1980), 212-219.
4. W. M. Kantor, Some generalized quadrangles with parameters $\left(q^{2}, q\right)$, Math. Z. 192 (1986), 45-50.
5. W. M. Kantor, Note on generalized quadrangles, flocks, and BLT sets, J. Combin. Theory Ser. A 58 (1991), 153-157.
6. N. Knarr, A geometric construction of generalized quadrangles from polar spaces of rank three, Resultate Math. 21 (1992), 332-344.
7. S. E. Payne, Generalized quadrangles as group coset geometries, Congr. Numer. 29 (1980), 717-734.
8. S. E. Payne, A new infinite family of generalized quadrangles, Congr. Numer. 49 (1985).
9. S. E. Payne, An essay on skew translation generalized quadrangles, Geom. Dedicata 32 (1989), 93-118.
10. S. E. Payne and L. Rogers, Local group actions on generalized quadrangles, Simon Stevin 64 (1990), 249-284.
11. S. E. Payne and J. A. Thas, "Finite Generalized Quadrangles," Pitman, London, 1984.
12. S. E. Payne and J. A. Thas, Generalized quadrangles, BLT-sets, and Fisher flocks, Congr. Numer. 84 (1991), 161-192.
13. J. A. Thas, Generalized quadrangles and flocks of cones, European J. Combin. 8 (1987), 441-452.
14. J. A. Thas, 3-Regularity in generalized quadrangles: a survey, recent results and the solution of a longstanding conjecture, Rend. Circ. Mat. Palermo Ser. II Suppl. 53 (1998), 199-218.
15. J. A. Thas, Generalized quadrangles of order $\left(s, s^{2}\right)$, III, J. Combin. Theory Ser. A $\mathbf{8 7}$ (1999), 247-272.
16. J. A. Thas, A result on spreads of the generalized quadrangle $T_{2}(O)$, with O an oval arising from a flock, and applications, European J. Combin., to appear.
17. J. A. Thas and S. E. Payne, Spreads and ovoids in finite generalized quadrangles, Geom. Dedicata 52 (1994), 227-253.
18. J. Tits, Sur la trialité et certains groupes qui s'en déduisent, Inst. Hautes Etudes Sci. Publ. Math. 2 (1959), 13-60.
19. M. Walker. A class of translation planes, Geom. Dedicata 5 (1976), 135-146.
