Geometrical Constructions of Flock Generalized Quadrangles

J. A. Thas

Department of Pure Mathematics and Computer Algebra, Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium E-mail: jat@cage.rug.ac.be

Communicated by Francis Buekenhout

Received April 22, 2000

/iew metadata, citation and similar papers at core.ac.uk

cal construction of $\mathscr{S}(F)$ which works for any q. Here we show how, for q odd, one can derive Knarr's construction from Thas' one. To that end we describe an interesting representation of the point-plane flags of PG(3, q), which can be generalized to any dimension and which can be useful for other purposes. Applying this representation onto Thas' model of $\mathscr{S}(F)$, another interesting model of $\mathscr{S}(F)$ on a hyperbolic cone in PG(6, q) is obtained. In a final section we show how subquadrangles and ovoids of $\mathscr{S}(F)$ can be obtained via the description in PG(6, q). © 2001 Academic Press

1. INTRODUCTION

A (finite) generalized quadrangle (GQ) is an incidence structure $\mathscr{S} = (P, B, I)$ in which P and B are disjoint (nonempty) sets of objects called *points* and *lines* respectively, and for which I is a symmetric point-line *incidence relation* satisfying the following axioms.

(i) Each point is incident with 1 + t lines $(t \ge 1)$ and two distinct points are incident with at most one line.

(ii) Each line is incident with 1 + s points ($s \ge 1$) and two distinct lines are incident with at most one point.

(iii) If x is a point and L is a line not incident with x, then there is a unique pair $(y, M) \in P \times B$ for which x I M I y I L.

Generalized quadrangles were introduced by Tits [18] in his celebrated work on triality.

The integers s and t are the *parameters* of the generalized quadrangle and \mathscr{S} is said to have *order* (s, t); if s = t, \mathscr{S} is said to have *order* s. There is a point-line duality for GQ (of order (s, t)) for which in any definition or theorem the words "point" and "line" are interchanged and the parameters s and t are interchanged. Hence, we assume without further notice that the dual of a given theorem or definition has also been given.

Let $\mathscr{S} = (P, B, I)$ be a (finite) GQ of order (s, t). Then \mathscr{S} has v = |P| = (1 + s)(1 + st) points and b = |B| = (1 + t)(1 + st) lines; see 1.2.1 of Payne and Thas [11]. Also, s + t divides st(1 + s)(1 + t), and, for $s \neq 1 \neq t$, we have $t \leq s^2$ and, dually, $s \leq t^2$; see Payne and Thas [11, 1.2.2 and 1.2.3].

2. FLOCKS, BLT-SETS, AND FLOCK GENERALIZED QUADRANGLES

Let *F* be a *flock* of the quadratic cone *K* with vertex *x* of PG(3, *q*), that is, a partition of $K - \{x\}$ into *q* disjoint irreducible conics. Then, by Thas [13] with *F* there corresponds a GQ $\mathscr{S}(F)$ of order (q^2, q) ; in fact it was shown that with *F* there corresponds a *q*-clan and then by work of Payne [7, 8] and Kantor [3, 4] with *F* there corresponds a GQ of order (q^2, q) . Also, independently, Walker [19] and Thas discovered that with each flock of an irreducible quadric of PG(3, *q*) there corresponds a translation plane of order q^2 ; see also Fisher and Thas [2] and Thas [13].

Let $F = \{C_1, C_2, ..., C_q\}$ be a flock of the quadratic cone K with vertex x of PG(3, q), with q odd. The plane of C_i is denoted by π_i , i = 1, 2, ..., q. Let K be embedded in the nonsingular quadric Q of PG(4, q). Let the polar line of π_i with respect to Q be denoted by L_i and let $L_i \cap Q = \{x, x_i\}$, i = 1, 2, ..., q. If H_i is the tangent hyperplane of Q at x_i , then put $H_i \cap Q = K_i$, $H_i \cap H_j \cap Q = K_i \cap H_j = C_{ij}$ and $C_{ii} = C_i$, with i, j = 1, 2, ..., q and $i \neq j$. Then Bader, Lunardon and Thas [1] prove that $F_i = \{C_{i1}, C_{i2}, ..., C_{iq}\}$ is a flock of K_i , i = 1, 2, ..., q. We say that the flocks $F_1, F_2, ..., F_q$ are *derived* from the given flock F. In many cases this process of derivation produces new flocks and new planes, but Payne and Rogers [10] prove that the GQ $\mathscr{S}(F), \mathscr{S}(F_1), ..., \mathscr{S}(F_q)$ are always isomorphic.

The main result of Bader *et al.* [1] amounts to proving that in the GQ Q(4, q) arising from the quadric Q, the set $\mathscr{V} = \{x_0, x_1, ..., x_q\}$, with $x = x_0$, has the property that for any three distinct points x_i, x_j, x_k of \mathscr{V} there is no point on Q(4, q) collinear with all of them. Let W(q) be the classical GQ arising from a symplectic polarity of PG(3, q). Then W(q) is isomorphic to the dual of Q(4, q); see Payne and Thas [11, 3.2.1]. With \mathscr{V} there corresponds a set \mathscr{W} of q + 1 lines $L_0, L_1, ..., L_q$ of W(q), having the property that for any three distinct lines L_i, L_j, L_k of \mathscr{W} there is no line in W(q) concurrent with all of them. Such a set of q + 1 lines in W(q), q odd,

was called a *BLT-set* by Kantor [5]. Hence any given flock F defines just one BLT-set, and any BLT-set produces q+1 flocks (possibly non-isomorphic) but just one GQ.

3. THE CONSTRUCTION OF KNARR

Start with a symplectic polarity θ of PG(5, q), q odd. Let $p \in PG(5, q)$ and let PG(3, q) be a 3-dimensional subspace of PG(5, q) for which $p \notin PG(3, q) \subset p^{\theta}$. In PG(3, q) θ induces a symplectic polarity θ' , and hence a GQ W(q). Let \mathcal{W} be a BLT-set of the GQ W(q) and construct a geometry $\mathcal{S} = (P, B, I)$ as follows.

Points are of three types:

(i) the q^5 points of PG(5, q) not in p^{θ} ;

(ii) the $q^3 + q^2$ lines of PG(5, q) not containing p but contained in one of the planes $\pi_i = pL_i$, with L_i a line of the BLT-set \mathcal{W} ;

(iii) p.

Lines are of two types:

(a) the $q^4 + q^3$ totally isotropic planes of θ not contained in p^{θ} and meeting some π_i in a line (not through p);

(b) the q+1 planes $\pi_i = pL_i$, with $L_i \in \mathcal{W}$.

The incidence relation I is just the natural incidence inherited from PG(5, q).

Then Knarr [6] proves that \mathscr{S} is a GQ of order (q^2, q) isomorphic to $\mathscr{S}(F)$, with F any flock arising from the BLT-set \mathscr{W} . We emphasize that in this construction q must be odd.

4. THE CONSTRUCTION OF THAS

Let K be a quadratic cone with vertex x of PG(3, q). Further, let y be a point of $K - \{x\}$ and let ζ be a plane of PG(3, q) not containing y. Now we project $K - \{y\}$ from y onto ζ . Let τ be the tangent plane of K at the line xy and let $\tau \cap \zeta = T$. Then with the q² points of K - xy there correspond the q² points of the affine plane $\zeta - T = \zeta'$, with any point of $xy - \{y\}$ there corresponds the intersection ∞ of xy and ζ , with the generators of K distinct from xy there correspond the lines of ζ distinct from T containing ∞ , with the (nonsingular) conics on K passing through y there correspond the affine parts of the q^2 lines of ζ not passing through ∞ , and with the (nonsingular) conics on K not passing through y there correspond the $q^2(q-1)$ (nonsingular) conics of ζ which are tangent to T at ∞ .

Let $F = \{C_1^*, C_2^*, ..., C_q^*\}$ be a flock of the cone K. Now consider the set $\tilde{F} = \{C_1, C_2, ..., C_{q-1}, N\}$ consisting of the q-1 nonsingular conics $C_1, C_2, ..., C_{q-1}$ and the line N of ζ , which is obtained by projecting the elements of F from y onto ζ . So $C_1, C_2, ..., C_{q-1}$ are conics which are mutually tangent at ∞ (with common tangent line T) and N is a line of ζ not containing ∞ .

Now we consider planes $\pi_{\infty} \neq \zeta$ and $\mu \neq \zeta$ of PG(3, q), respectively containing T and N; in μ we consider a point r, with $r \notin \zeta \cup \pi_{\infty}$. Next, let O_i be the nonsingular quadric which contains C_i , which is tangent to π_{∞} at ∞ and which is tangent to μ at r, with i = 1, 2, ..., q - 1. As $C_i \cap N = \emptyset$, the quadric O_i is elliptic, i = 1, 2, ..., q - 1.

Next, let \mathcal{S} be the following incidence structure.

Points of S

(a) The $q^3(q-1)$ nonsingular elliptic quadrics O containing $O_i \cap \pi_{\infty} = L_{\infty}^{(i)} \cup M_{\infty}^{(i)}$ (over $GF(q^2)$) such that the intersection multiplicity of O_i and O at ∞ is at least three (that are O_i , the nonsingular elliptic quadrics $O \neq O_i$ containing $L_{\infty}^{(i)} \cup M_{\infty}^{(i)}$ (over $GF(q^2)$) and intersecting O_i over GF(q) in a nonsingular conic containing ∞ , and the nonsingular elliptic quadrics $O \neq O_i$ for which $O \cap O_i$ over $GF(q^2)$ is $L_{\infty}^{(i)} \cup M_{\infty}^{(i)}$ counted twice), with i = 1, 2, ..., q - 1.

(b) The q^3 points of PG(3, q) - π_{∞} .

(c) The q^3 planes of PG(3, q) not containing ∞ .

(d) The q-1 sets \mathcal{O}_i , where \mathcal{O}_i consists of the q^3 quadrics O of type (a) corresponding with O_i , i = 1, 2, ..., q-1.

- (e) The plane π_{∞} .
- (f) The point ∞ .

Lines of $\mathcal S$

(i) Let (w, γ) be a point-plane flag of PG(3, q), with $w \notin \pi_{\infty}$ and $\infty \notin \gamma$. Then all quadrics *O* of type (a) which are tangent to γ at *w*, together with *w* and γ , form a line of type (i). Any two distinct quadrics of such a line have exactly two points (∞ and *w*) in common. The total number of lines of type (i) is q^5 .

(ii) Let *O* be a point of type (a) which corresponds to the quadric O_i , $i \in \{1, 2, ..., q-1\}$. If $O \cap \pi_{\infty} = O_i \cap \pi_{\infty} = L_{\infty}^{(i)} \cup M_{\infty}^{(i)}$ (over GF(q^2)), then all points *O'* of type (a) for which $O' \cap O$ over GF(q^2) is $L_{\infty}^{(i)} \cup M_{\infty}^{(i)}$ counted twice, together with *O* and O_i , form a line of type (ii). There are $q^2(q-1)$ lines of type (ii).

(iii) A set of q parallel planes of AG(3, q) = PG(3, q) - π_{∞} , where the line at infinity does not contain ∞ , together with the plane π_{∞} , is a line of type (iii).

(iv) Lines of type (iv) are the lines of PG(3, q), not in π_{∞} , containing ∞ .

(v) $\{\infty, \pi_{\infty}, \mathcal{O}_1, \mathcal{O}_2, ..., \mathcal{O}_{q-1}\}$ is the unique line of type (v).

Incidence of S

Incidence is containment.

Then it is proved in Thas [15] that \mathscr{S} is a GQ isomorphic to the pointline dual of the flock GQ $\mathscr{S}(F)$. We emphasize that this construction works for any prime power q.

5. AN INTERESTING REPRESENTATION OF POINT-PLANE FLAGS OF PG(3, q)

Consider the point-plane flag ((0, 0, 0, 1), $X_0 = 0$) of PG(3, q). Now let (w, γ) be any point-plane flag of PG(3, q), with $(0, 0, 0, 1) \notin \gamma$ and w not in $X_0 = 0$. Let w(1, x, y, z) and $\gamma: aX_0 + bX_1 + cX_2 + X_3 = 0$. Then we put

$$(w, \gamma)^{\eta} = (x, y, z, a, b, c) \in AG(6, q).$$

All images are points of the quadric Φ of PG(6, q) with equation

$$X_1X_5 + X_2X_6 + X_3X_0 + X_4X_0 = 0.$$

This quadric Φ is a hyperbolic cone with vertex s(0, 0, 0, 1, -1, 0, 0). The hyperplane Π with equation $X_0 = 0$ of PG(6, q) is tangent to Φ along the line joining s to (0, 0, 0, 0, 1, 0, 0). Clearly η is a bijection from the set of all flags (w, γ) , with $(0, 0, 0, 1) \notin \gamma$ and w not in $X_0 = 0$, onto $\Phi - \Pi$.

If O is a nonsingular quadric of PG(3, q) which is tangent to $X_0 = 0$ at (0, 0, 0, 1), then the flags (w, γ) , with $w \in O - \{(0, 0, 0, 1)\}$ and γ the tangent plane of O at w are mapped by η onto the points not in $X_0 = 0$ of a nonsingular quadric $O' \subset \Phi$, contained in some 3-dimensional subspace δ of PG(6, q) and having the same character as O. Also, O' contains the point h(0, 0, 0, 1, 1, 0, 0) of Φ .

If O has equation

$$\sum_{\substack{i, j=0\\i \leq j}}^{3} a_{ij} X_i X_j = 0, \quad \text{with} \quad a_{33} = a_{13} = a_{23} = 0,$$

then *O* is nonsingular if and only if $a_{03} \neq 0 \neq 4a_{11}a_{22} - a_{12}^2$. So we may assume $a_{03} = 1$. It is easily checked that the space δ containing *O'* is represented by

$$\begin{cases} X_4 = 2a_{00}X_0 + a_{01}X_1 + a_{02}X_2 + X_3, \\ X_5 = a_{01}X_0 + 2a_{11}X_1 + a_{12}X_2, \\ X_6 = a_{02}X_0 + 2a_{22}X_2 + a_{12}X_1. \end{cases}$$

Also, if $w(1, x, y, z) \in O$ and if γ is the tangent plane of O at w, then

$$(w, \gamma)^{\eta} = (1, x, y, z, 2a_{00} + a_{01}x + a_{02}y + z,$$
$$a_{01} + 2a_{11}x + a_{12}y, a_{02} + 2a_{22}y + a_{12}x)$$

Let Φ^+ be the hyperbolic quadric $X_3 = X_1X_5 + X_2X_6 + X_4X_0 = 0$ (so Φ^+ is the base of the cone Φ). If q is odd, then the quadric O' is tangent to $\Pi \cap \delta$ at h. Now let q be even. Then s = h. In such a case δ belongs to Φ . Hence $\delta \cap \Phi^+$ is a plane δ' of Φ^+ , and in this way there arise $q^2(q-1)$ planes δ' of Φ^+ ; the planes δ' all belong to a same family \mathscr{A} of generators of Φ^+ . The space $X_3 = X_0 = 0$ is tangent to Φ^+ at $e_4(0, 0, 0, 0, 1, 0, 0)$, and as $e_4 \notin \delta'$ the plane δ' does not belong to Π . Further, δ' has no point in common with the planes $X_0 = X_3 = X_5 = X_6 = 0$ and $X_0 = X_3 = X_1 = X_2 = 0$ of Φ^+ . Finally, for a fixed δ' the q^3 corresponding quadrics O' belong to a common linear 3-dimensional system of quadrics in the 3-dimensional space $s\delta' = \delta$.

Assume again that q is odd. Then we consider the projection ξ from h onto the hyperplane PG(5, q) with equation $X_3 = 0$. We have $(\delta - \{h\})^{\xi} = \delta$, with δ the plane having equations

$$\begin{cases} X_3 = 0, \\ X_4 = 2a_{00}X_0 + a_{01}X_1 + a_{02}X_2, \\ X_5 = a_{01}X_0 + 2a_{11}X_1 + a_{12}X_2, \\ X_6 = a_{02}X_0 + a_{12}X_1 + 2a_{22}X_2. \end{cases}$$

Then

$$(\tilde{\delta})^{\theta} = \tilde{\delta}.$$

with θ the symplectic polarity of PG(5, q) represented by the bilinear form

$$X_0 Y_4 - X_4 Y_0 + X_1 Y_5 - X_5 Y_1 + X_2 Y_6 - X_6 Y_2.$$

Hence $\tilde{\delta}$ is a totally isotropic plane of the polarity θ . It is readily checked that $\tilde{\delta} \neq \Pi$, that $\tilde{\delta} \cap \Pi = R$ is not a line of the quadric H with equations $X_3 = X_0 = X_1 X_5 + X_2 X_6 = 0$ (that is, $H = \Phi^+ \cap \Pi$), and that R is not tangent to H. The number of totally isotropic planes of θ in Π is equal to $(q+1)(q^2+1)$, the number of totally isotropic planes intersecting Π in a line of H is $(q+3)q^3((q+1)q^3)$ of these planes intersect a plane of one system of generators of H, the remaining $2q^3$ planes intersect a plane of the second system of generators of H), and the number of totally isotropic planes intersecting Π in a tangent of H, not contained in H, is equal to $2(q^2-1)q^3$. Any of the remaining $q^5(q-1)$ totally isotropic planes of θ corresponds to a nonsingular quadric O of PG(3, q).

6. FROM THE CONSTRUCTION OF THAS TO THE CONSTRUCTION OF KNARR

We start from the construction of Thas of the dual of a flock GQ $\mathscr{S}(F)$ of order $(q^2, q), q$ odd. We will use the notations of Section 4.

A point of type (a) is an elliptic quadric of PG(3, q) touching a fixed plane π_{∞} at a fixed point ∞ . We identify the point-plane flag (∞, π_{∞}) with the point-plane flag $((0, 0, 0, 1), X_0 = 0)$ of Section 5. So with *O* there corresponds an elliptic quadric *O'* on the cone Φ , and a totally isotropic plane δ of the symplectic polarity θ of PG(5, q). Suppose that with O_i there corresponds the totally isotropic plane δ_i of θ , and that $\delta_i \cap \Pi = R_i$, with i = 1, ..., q - 1. One can show that with the q - 1 nonsingular elliptic quadrics *O* of PG(3, q) for which $O \cap O_i$ over GF(q^2) is $L^{(i)}_{\infty} \cup M^{(i)}_{\infty}$ counted twice, there correspond the q - 1 totally isotropic planes distinct from δ_i and not contained in Π , which contain the line $R_i, i \in \{1, 2, ..., q - 1\}$. With the $q^3 - q$ elliptic quadrics *O* containing $L^{(i)}_{\infty} \cup M^{(i)}_{\infty}$ (over GF(q^2)) and intersecting O_i over GF(q) in a nonsingular conic containing ∞ , there correspond the totally isotropic planes not in Π intersecting the totally isotropic plane e_4R_i in a line distinct from $R_i, i \in \{1, 2, ..., q - 1\}$.

Let w be a point of type (b). With the flags (w, γ) , $\infty \notin \gamma$, there correspond q^2 points of a totally isotropic plane of θ , not in Π and containing a line of the totally isotropic plane $X_0 = X_1 = X_2 = X_3 = 0$ (on H).

Let γ be a point of type (c). With the flags $(w, \gamma), w \notin \pi_{\infty}$, there correspond q^2 points of a totally isotropic plane of θ , not in Π and containing a line of the totally isotropic plane $X_0 = X_3 = X_5 = X_6 = 0$ (on *H*).

With the q-1 points of type (d) we let correspond the q-1 totally isotropic planes e_4R_i of θ , i = 1, 2, ..., q-1.

With the unique point π_{∞} of type (e) we let correspond the plane $X_0 = X_3 = X_5 = X_6 = 0$, and with the unique point ∞ of type (f) we let correspond the plane $X_0 = X_1 = X_2 = X_3 = 0$.

Consider the line of type (i) defined by the point-plane flag (w, γ) of PG(3, q), with $w \notin \pi_{\infty}$ and $\infty \notin \gamma$. With this line we let correspond the point $(w, \gamma)^{\eta \xi}$ of PG(5, q) $((w, \gamma)^{\eta \xi} \notin \Pi)$.

Now we consider the line of type (ii) defined by the elliptic quadric O, where O corresponds to O_i . With O there corresponds a line U of e_4R_i , with $e_4 \notin U$ (with the point O of type (a) corresponds a totally isotropic plane δ of θ , and $U = \delta \cap \Pi$). With the given line of type (ii) we let correspond the line U of Π .

A line of type (iii) consists of q parallel planes of $PG(3, q) - \pi_{\infty}$, where the line at infinity does not contain ∞ , together with the plane π_{∞} . With these q parallel planes correspond q totally isotropic planes of θ containing a common line U of $X_0 = X_3 = X_5 = X_6 = 0$. With the given line of type (iii) we let correspond the line U of Π .

A line of type (iv) is a line of PG(3, q), not in π_{∞} , containing ∞ . With the q points not in π_{∞} of that line correspond q totally isotropic planes of θ containing a common line U of $X_0 = X_1 = X_2 = X_3 = 0$. With the given line of type (iv) we let correspond the line U of Π .

With the unique line of type (v) we let correspond the point e_4 .

Hence in PG(5, q) we have an incidence structure \mathscr{S}' with six types of points and five types of lines. With the natural incidence this structure \mathscr{S}' is a GQ isomorphic to the dual of $\mathscr{S}(F)$.

The elliptic quadrics $O_1, O_2, ..., O_{q-1}$ are tangent to the plane μ at the point r, hence the totally isotropic planes $\tilde{\delta}_1, \tilde{\delta}_2, ..., \tilde{\delta}_{q-1}$ have a point g in common, with $g \notin \Pi$. Hence these planes are contained in a 4-dimensional space β . Hence $R_1, R_2, ..., R_{q-1}$ are contained in the 3-dimensional space $\beta \cap \Pi = \alpha \subset e_4^{\theta}$, with $e_4 \notin \alpha$. Let R_q be the intersection of α with $X_0 = X_1 = X_2 = X_3 = 0$, and let R_{q+1} be the intersection of α with $X_0 = X_3 = X_5 = X_6 = 0$. Then $R_1, R_2, ..., R_{q+1}$ are totally isotropic for the symplectic polarity θ' induced by θ in α , that is, $R_1, R_2, ..., R_{q+1}$ are lines of the GQ W(q) determined by θ' .

Consequently, the points of \mathcal{S}' are:

(a)' the $q^4 + q^3$ totally isotropic planes of θ not contained in e_4^{θ} and meeting some plane $e_4 R_i$ in a line (not through p), $i \in \{1, 2, ..., q+1\}$.

(b)' the q + 1 planes $e_4 R_i$, i = 1, 2, ..., q + 1.

The lines of \mathscr{S}' are:

(i)' the q^5 points PG(5, q) not in e_4^{θ} ;

(ii)' the $q^3 + q^2$ lines of PG(5, q) not containing e_4 but contained in one of the planes $e_4 R_i$, $i \in \{1, 2, ..., q+1\}$.

(iii)' e_4 .

Now we show that no two of the lines $R_1, R_2, ..., R_{q+1}$ are concurrent in W(q). Assume, by way of contradiction, that r' is a common point of R_i and R_j in $W(q), i \neq j$. Then there exist totally isotropic planes δ'_i and δ'_j of θ which respectively contain R_i and R_j , and which intersect in a line not contained in e_4^{θ} . It follows that the points δ'_i and δ'_j of \mathscr{S}' are incident with more than one line of \mathscr{S}' , clearly a contradiction. Hence no two of the lines $R_1, R_2, ..., R_{q+1}$ are concurrent in W(q).

Assume, by way of contradiction, that W(q) contains a line R which is concurrent with three distinct lines of $\{R_1, R_2, ..., R_{q+1}\} = \mathcal{W}'$, say with R_i, R_j, R_k . Let r_l be the common point of R and R_l in W(q), l=i, j, k. Further, let ρ be a totally isotropic plane of θ which contains R but is not contained in e_4^{θ} , and let R'_k be a line of e_4R_k distinct from e_4r_k and R_k . Also, let $\rho \cap R_i^{\theta} = R''_i, \rho \cap R_j^{\theta} = R''_j$ and $\rho \cap R'_k^{\theta} = R''_k$. Then clearly $R''_l \neq R$, l=i, j, k, and the lines R''_i, R''_j, R''_k are not concurrent. If we now consider the totally isotropic planes $\delta''_l = R''_lR_l, \delta''_j = R''_jR_j, \delta''_k = R''_kR'_k$ of θ , then δ''_l, δ''_j , δ''_k are points of \mathcal{S}' which form a triangle, a contradiction. Consequently \mathcal{W}' has the property that no three of its lines are concurrent with a common line of W(q).

From the preceding it follows that \mathscr{W}' is a BLT-set of W(q). The construction of Knarr [6] applied to the BLT-set \mathscr{W}' yields the dual of the GQ \mathscr{S}' . Let \mathscr{W} be the BLT-set of W(q) defined by the flock F. As \mathscr{S}' is isomorphic to the dual of $\mathscr{S}(F)$, then, by the proof of Theorem IV.1 in Payne and Thas [12], \mathscr{W} and \mathscr{W}' are equivalent with respect to the group $P\Gamma Sp_4(q)$. Now we show that \mathscr{W} and \mathscr{W}' are even equivalent with respect to the group $PSp_4(q)$.

In the construction of Thas, Let *F* be the flock of the quadratic cone *K* with equation $X_0X_1 = X_2^2$, let the respective planes π_i of the elements of *F* have equation

$$l_i X_0 + m_i X_1 + n_i X_2 + X_3 = 0$$
, with $i = 0, 1, ..., q - 1$,

and let $l_0 = m_0 = n_0 = 0$. Now we project $K - \{(0, 1, 0, 0)\}$ from (0, 1, 0, 0) onto the plane ζ with equation $X_1 = 0$. The plane π_0 contains (0, 1, 0, 0). The projection from (0, 1, 0, 0) onto ζ of the conic $\pi_i \cap K$, with $i \neq 0$, is the conic C_i with equations

$$l_i X_0^2 + m_i X_2^2 + n_i X_0 X_2 + X_0 X_3 = 0 = X_1.$$

Also, we have $\pi_0 \cap \zeta = N$: $X_1 = X_3 = 0$. Further, let μ have equation $X_3 = 0$ and let r(1, 1, 0, 0). Then

$$O_i: l_i X_0^2 + l_i X_1^2 + m_i X_2^2 - 2l_i X_0 X_1 + n_i X_0 X_2 + X_0 X_3 - n_i X_1 X_2 = 0,$$

with i = 1, 2, ..., q - 1. With O_i there corresponds an elliptic quadric O'_i on the cone Φ , where O'_i is contained in the 3-dimensional space δ_i with equations

$$\begin{split} X_4 &= 2l_i X_0 - 2l_i X_1 + n_i X_2 + X_3, \\ X_5 &= -2l_i X_0 + 2l_i X_1 - n_i X_2, \\ X_6 &= n_i X_0 - n_i X_1 + 2m_i X_2. \end{split}$$

Hence the line R_i has equations

$$\begin{cases} X_0 = X_3 = X_4 + X_5 = 0, \\ X_4 = -2l_iX_1 + n_iX_2, \\ X_6 = -n_iX_1 + 2m_iX_2, \end{cases}$$

with i = 1, 2, ..., q - 1. Further we have

$$R_q: X_0 = X_1 = X_2 = X_3 = X_4 + X_5 = 0,$$

and

$$R_{q+1}$$
: $X_0 = X_3 = X_4 = X_5 = X_6 = 0.$

In the space α : $X_0 = X_3 = X_4 + X_5 = 0$ the symplectic polarity θ' can be represented by (in Grassmann coordinates)

$$p_{15} + p_{26} = 0.$$

As F is a flock, we have that

$$(n_i - n_j)^2 - 4(l_i - l_j)(m_i - m_j)$$
 is a nonsquare,

for all $i, j \in \{0, 1, ..., q-1\}$. Now it is easy to check that the BLT-set \mathcal{W} defined by the flock F is equivalent for the group $PSp_4(q)$ with the BLT-set $\mathcal{W}' = \{R_1, R_2, ..., R_{q+1}\}$.

We conclude that the above constructed model of the dual of $\mathscr{S}(F)$ in the projective space PG(5, q), is exactly the model constructed by Knarr starting from the BLT-set \mathscr{W} defined by F.

7. SUBQUADRANGLES AND OVOIDS

7.1. Subquadrangles in the Even Case

Let $\mathscr{G}(F)$ be the GQ of order (q^2, q) arising from the flock F of the quadratic cone K of PG(3, q), q even. Then $\mathcal{G}(F)$ has at least $q^3 + q^2$ subquadrangles of order q; see Thas [16]. By Payne [8] any of these subquadrangles \mathscr{S}' is a $T_2(O)$ of Tits, with O an oval of PG(2, q). Similarly as in the odd case (see Sections 5 and 6) $\mathcal{G}(F)$ can be represented on the hyperbolic cone Φ with vertex s in PG(6, q). Let φ be a plane on the hyperbolic quadric Φ^+ such that φ and the planes $X_0 = X_3 = X_5 = X_6 = 0$ and $X_0 = X_3 = X_1 = X_2 = 0$ belong to a common system of generators of Φ^+ , but with φ not belonging to Π (that is, not containing $e_4(0, 0, 0, 0, 1, 0, 0)$). There are exactly $q^3 + q^2$ such planes φ . Consider the 3-dimensional space $s\varphi = \Delta$. Then with the q^3 points of Δ not in Π correspond the q^3 points of a subquadrangle \mathscr{S}' of order q of $\mathscr{S}(F)$ which are not collinear with the point ∞ of $\mathscr{S}(F)$. In this way we find all $q^3 + q^2$ subquadrangles \mathscr{S}' of order q containing the sets of type $\{L, L_1, L_2\}^{\perp} \cup \{L, L_1, L_2\}^{\perp \perp}$ with L, L_1, L_2 pairwise nonconcurrent, with $\infty I L$, and with $\infty I M$ and $M \in \{L, L_1, L_2\}^{\perp}$.

One can also show that with $q^3 - q^2$ lines of \mathscr{G}' there correspond $q^3 - q^2$ conics in \varDelta through s. Each plane ω through s but neither containing the intersection of φ and $X_0 = X_3 = X_5 = X_6 = 0$, nor the intersection of φ and $X_0 = X_3 = X_1 = X_2 = 0$, contains exactly q of these conics. Then q conics are tangent to $\omega \cap \Pi$ at s, and define a partition of $\omega - \Pi$.

7.2. Ovoids in the Odd Case

Consider again $\mathscr{S}(F)$ and its representation on the cone Φ . Assume that q is odd. Let β be a plane of Φ^+ which is disjoint from the planes $X_0 = X_1 = X_2 = X_3 = 0$ and $X_0 = X_3 = X_5 = X_6 = 0$; such a plane β does not belong to Π . Now we consider the 3-dimensional space $s\beta = \Delta'$, with s(0, 0, 0, 1, -1, 0, 0). Then it can be shown that the q^3 points of $\Delta' - \Pi$ together with the point $e_4(0, 0, 0, 1, 0, 0)$ correspond to the points of an ovoid of $\mathscr{S}(F)$. These ovoids are of the type described in Thas and Payne [17, 6.2].

7.3. Ovoids in the Even Case

Consider again $\mathscr{S}(F)$ and its representation on the cone Φ . Let O' be an ovoid of Φ^+ which contains e_4 . Then it can be shown that the q^3 points of $sO' - \Pi$ together with the point e_4 correspond to the points of an ovoid of $\mathscr{S}(F)$. These ovoids are exactly the ovoids described in Thas [14, 7.3 (a)].

J. A. THAS

ACKNOWLEDGMENT

Part of this work was done while the author was Erskine Fellow of the University of Canterbury at Christchurch, New Zealand.

REFERENCES

- L. Bader, G. Lunardon, and J. A. Thas, Derivation of flocks of quadratic cones, *Forum Math.* 2 (1990), 163–174.
- 2. J. C. Fisher and J. A. Thas, Flocks in PG(3, q), Math. Z. 169 (1979), 1-11.
- 3. W. M. Kantor, Generalized quadrangles associated with $G_2(q)$, J. Combin. Theory Ser. A **29** (1980), 212–219.
- W. M. Kantor, Some generalized quadrangles with parameters (q², q), Math. Z. 192 (1986), 45–50.
- W. M. Kantor, Note on generalized quadrangles, flocks, and BLT sets, J. Combin. Theory Ser. A 58 (1991), 153–157.
- N. Knarr, A geometric construction of generalized quadrangles from polar spaces of rank three, *Resultate Math.* 21 (1992), 332–344.
- S. E. Payne, Generalized quadrangles as group coset geometries, *Congr. Numer.* 29 (1980), 717–734.
- 8. S. E. Payne, A new infinite family of generalized quadrangles, Congr. Numer. 49 (1985).
- S. E. Payne, An essay on skew translation generalized quadrangles, *Geom. Dedicata* 32 (1989), 93–118.
- S. E. Payne and L. Rogers, Local group actions on generalized quadrangles, *Simon Stevin* 64 (1990), 249–284.
- 11. S. E. Payne and J. A. Thas, "Finite Generalized Quadrangles," Pitman, London, 1984.
- S. E. Payne and J. A. Thas, Generalized quadrangles, BLT-sets, and Fisher flocks, *Congr. Numer.* 84 (1991), 161–192.
- J. A. Thas, Generalized quadrangles and flocks of cones, *European J. Combin.* 8 (1987), 441–452.
- J. A. Thas, 3-Regularity in generalized quadrangles: a survey, recent results and the solution of a longstanding conjecture, *Rend. Circ. Mat. Palermo Ser. II Suppl.* 53 (1998), 199–218.
- J. A. Thas, Generalized quadrangles of order (s, s²), III, J. Combin. Theory Ser. A 87 (1999), 247–272.
- 16. J. A. Thas, A result on spreads of the generalized quadrangle $T_2(O)$, with O an oval arising from a flock, and applications, *European J. Combin.*, to appear.
- J. A. Thas and S. E. Payne, Spreads and ovoids in finite generalized quadrangles, *Geom. Dedicata* 52 (1994), 227–253.
- J. Tits, Sur la trialité et certains groupes qui s'en déduisent, Inst. Hautes Etudes Sci. Publ. Math. 2 (1959), 13–60.
- 19. M. Walker. A class of translation planes, Geom. Dedicata 5 (1976), 135-146.