
Journal of Combinatorial Theory, Series A 94, 51�62 (2001)

Geometrical Constructions of Flock Generalized
Quadrangles

J. A. Thas

Department of Pure Mathematics and Computer Algebra, Ghent University,
Krijgslaan 281, B-9000 Ghent, Belgium

E-mail: jat�cage.rug.ac.be

Communicated by Francis Buekenhout

Received April 22, 2000

With any flock F of the quadratic cone K of PG(3, q) there corresponds a
generalized quadrangle S(F ) of order (q2, q). For q odd Knarr gave a pure
geometrical construction of S(F ) starting from F. Recently, Thas found a geometri-
cal construction of S(F ) which works for any q. Here we show how, for q odd, one
can derive Knarr's construction from Thas' one. To that end we describe an inter-
esting representation of the point-plane flags of PG(3, q), which can be generalized
to any dimension and which can be useful for other purposes. Applying this
representation onto Thas' model of S(F ), another interesting model of S(F ) on a
hyperbolic cone in PG(6, q) is obtained. In a final section we show how sub-
quadrangles and ovoids of S(F) can be obtained via the description in PG(6, q).
� 2001 Academic Press

1. INTRODUCTION

A (finite) generalized quadrangle (GQ) is an incidence structure
S=(P, B, I) in which P and B are disjoint (nonempty) sets of objects
called points and lines respectively, and for which I is a symmetric point-
line incidence relation satisfying the following axioms.

(i) Each point is incident with 1+t lines (t�1) and two distinct
points are incident with at most one line.

(ii) Each line is incident with 1+s points (s�1) and two distinct
lines are incident with at most one point.

(iii) If x is a point and L is a line not incident with x, then there is
a unique pair ( y, M) # P_B for which x I M I y I L.

Generalized quadrangles were introduced by Tits [18] in his celebrated
work on triality.
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The integers s and t are the parameters of the generalized quadrangle and
S is said to have order (s, t); if s=t, S is said to have order s. There is a
point-line duality for GQ (of order (s, t)) for which in any definition or
theorem the words ``point'' and ``line'' are interchanged and the parameters
s and t are interchanged. Hence, we assume without further notice that the
dual of a given theorem or definition has also been given.

Let S=(P, B, I) be a (finite) GQ of order (s, t). Then S has
v=|P|=(1+s)(1+st) points and b=|B|=(1+t)(1+st) lines; see 1.2.1 of
Payne and Thas [11]. Also, s+t divides st(1+s)(1+t), and, for s{1{t,
we have t�s2 and, dually, s�t2; see Payne and Thas [11, 1.2.2 and 1.2.3].

2. FLOCKS, BLT-SETS, AND FLOCK GENERALIZED
QUADRANGLES

Let F be a flock of the quadratic cone K with vertex x of PG(3, q), that
is, a partition of K&[x] into q disjoint irreducible conics. Then, by Thas
[13] with F there corresponds a GQ S(F ) of order (q2, q); in fact it was
shown that with F there corresponds a q-clan and then by work of Payne
[7, 8] and Kantor [3, 4] with F there corresponds a GQ of order (q2, q).
Also, independently, Walker [19] and Thas discovered that with each
flock of an irreducible quadric of PG(3, q) there corresponds a translation
plane of order q2; see also Fisher and Thas [2] and Thas [13].

Let F=[C1 , C2 , ..., Cq] be a flock of the quadratic cone K with vertex
x of PG(3, q), with q odd. The plane of Ci is denoted by ?i , i=1, 2, ..., q.
Let K be embedded in the nonsingular quadric Q of PG(4, q). Let the polar
line of ?i with respect to Q be denoted by Li and let Li & Q=[x, xi],
i=1, 2, ..., q. If Hi is the tangent hyperplane of Q at xi , then put
Hi & Q=Ki , Hi & Hj & Q=Ki & Hj=Cij and Cii=Ci , with i, j=1, 2, ..., q
and i{ j. Then Bader, Lunardon and Thas [1] prove that Fi=[Ci1 , C i2 ,
..., Ciq] is a flock of Ki , i=1, 2, ..., q. We say that the flocks F1 , F2 , ..., Fq

are derived from the given flock F. In many cases this process of derivation
produces new flocks and new planes, but Payne and Rogers [10] prove
that the GQ S(F ), S(F1), ..., S(Fq) are always isomorphic.

The main result of Bader et al. [1] amounts to proving that in the GQ
Q(4, q) arising from the quadric Q, the set V=[x0 , x1 , ..., xq], with
x=x0 , has the property that for any three distinct points x i , xj , xk of V

there is no point on Q(4, q) collinear with all of them. Let W(q) be the
classical GQ arising from a symplectic polarity of PG(3, q). Then W(q) is
isomorphic to the dual of Q(4, q); see Payne and Thas [11, 3.2.1]. With V

there corresponds a set W of q+1 lines L0 , L1 , ..., Lq of W(q), having the
property that for any three distinct lines Li , Lj , Lk of W there is no line in
W(q) concurrent with all of them. Such a set of q+1 lines in W(q), q odd,
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was called a BLT-set by Kantor [5]. Hence any given flock F defines just
one BLT-set, and any BLT-set produces q+1 flocks (possibly non-
isomorphic) but just one GQ.

3. THE CONSTRUCTION OF KNARR

Start with a symplectic polarity % of PG(5, q), q odd. Let p # PG(5, q)
and let PG(3, q) be a 3-dimensional subspace of PG(5, q) for which
p � PG(3, q)/p%. In PG(3, q) % induces a symplectic polarity %$, and hence
a GQ W(q). Let W be a BLT-set of the GQ W(q) and construct a
geometry S=(P, B, I) as follows.

Points are of three types:

(i) the q5 points of PG(5, q) not in p%;

(ii) the q3+q2 lines of PG(5, q) not containing p but contained in
one of the planes ?i= pLi , with Li a line of the BLT-set W;

(iii) p.

Lines are of two types:

(a) the q4+q3 totally isotropic planes of % not contained in p% and
meeting some ?i in a line (not through p);

(b) the q+1 planes ?i= pL i , with Li # W.

The incidence relation I is just the natural incidence inherited from
PG(5, q).

Then Knarr [6] proves that S is a GQ of order (q2, q) isomorphic to
S(F), with F any flock arising from the BLT-set W. We emphasize that in
this construction q must be odd.

4. THE CONSTRUCTION OF THAS

Let K be a quadratic cone with vertex x of PG(3, q). Further, let y be
a point of K&[x] and let ` be a plane of PG(3, q) not containing y. Now
we project K&[ y] from y onto `. Let { be the tangent plane of K at the
line xy and let { & `=T. Then with the q2 points of K&xy there
correspond the q2 points of the affine plane `&T=`$, with any point of
xy&[ y] there corresponds the intersection � of xy and `, with the gener-
ators of K distinct from xy there correspond the lines of ` distinct from T
containing �, with the (nonsingular) conics on K passing through y there
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correspond the affine parts of the q2 lines of ` not passing through �, and
with the (nonsingular) conics on K not passing through y there correspond
the q2(q&1) (nonsingular) conics of ` which are tangent to T at �.

Let F=[C 1* , C2* , ..., C q*] be a flock of the cone K. Now consider the set
F� =[C1 , C2 , ..., Cq&1 , N] consisting of the q&1 nonsingular conics
C1 , C2 , ..., Cq&1 and the line N of `, which is obtained by projecting the
elements of F from y onto `. So C1 , C2 , ..., Cq&1 are conics which are
mutually tangent at � (with common tangent line T ) and N is a line of
` not containing �.

Now we consider planes ?� {` and +{` of PG(3, q), respectively con-
taining T and N; in + we consider a point r, with r � ` _ ?� . Next, let Oi

be the nonsingular quadric which contains Ci , which is tangent to ?� at
� and which is tangent to + at r, with i=1, 2, ..., q&1. As Ci & N=<, the
quadric Oi is elliptic, i=1, 2, ..., q&1.

Next, let S be the following incidence structure.

Points of S

(a) The q3(q&1) nonsingular elliptic quadrics O containing
Oi & ?�=L (i)

� _ M (i)
� (over GF(q2)) such that the intersection multiplicity

of Oi and O at � is at least three (that are Oi , the nonsingular elliptic
quadrics O{Oi containing L(i)

� _ M (i)
� (over GF(q2)) and intersecting O i

over GF(q) in a nonsingular conic containing �, and the nonsingular
elliptic quadrics O{Oi for which O & Oi over GF(q2) is L (i)

� _ M (i)
�

counted twice), with i=1, 2, ..., q&1.

(b) The q3 points of PG(3, q)&?� .

(c) The q3 planes of PG(3, q) not containing �.

(d) The q&1 sets Oi , where Oi consists of the q3 quadrics O of type
(a) corresponding with Oi , i=1, 2, ..., q&1.

(e) The plane ?� .

(f) The point �.

Lines of S

(i) Let (w, #) be a point-plane flag of PG(3, q), with w � ?� and
� � #. Then all quadrics O of type (a) which are tangent to # at w, together
with w and #, form a line of type (i). Any two distinct quadrics of such a
line have exactly two points (� and w) in common. The total number of
lines of type (i) is q5.
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(ii) Let O be a point of type (a) which corresponds to the quadric
Oi , i # [1, 2, ..., q&1]. If O & ?�=O i & ?�=L (i)

� _ M (i)
� (over GF(q2)),

then all points O$ of type (a) for which O$ & O over GF(q2) is L (i)
� _ M (i)

�

counted twice, together with O and Oi , form a line of type (ii). There are
q2(q&1) lines of type (ii).

(iii) A set of q parallel planes of AG(3, q)=PG(3, q)&?� , where
the line at infinity does not contain �, together with the plane ?� , is a line
of type (iii).

(iv) Lines of type (iv) are the lines of PG(3, q), not in ?� , con-
taining �.

(v) [�, ?� , O1 , O2 , ..., Oq&1] is the unique line of type (v).

Incidence of S

Incidence is containment.

Then it is proved in Thas [15] that S is a GQ isomorphic to the point-
line dual of the flock GQ S(F ). We emphasize that this construction works
for any prime power q.

5. AN INTERESTING REPRESENTATION OF POINT-PLANE
FLAGS OF PG(3, q)

Consider the point-plane flag ((0, 0, 0, 1), X0=0) of PG(3, q). Now let
(w, #) be any point-plane flag of PG(3, q), with (0, 0, 0, 1) � # and w not in
X0=0. Let w(1, x, y, z) and #: aX0+bX1+cX2+X3=0. Then we put

(w, #)'=(x, y, z, a, b, c) # AG(6, q).

All images are points of the quadric 8 of PG(6, q) with equation

X1X5+X2X6+X3X0+X4X0=0.

This quadric 8 is a hyperbolic cone with vertex s(0, 0, 0, 1, &1, 0, 0). The
hyperplane 6 with equation X0=0 of PG(6, q) is tangent to 8 along the
line joining s to (0, 0, 0, 0, 1, 0, 0). Clearly ' is a bijection from the set of
all flags (w, #), with (0, 0, 0, 1) � # and w not in X0=0, onto 8&6.

If O is a nonsingular quadric of PG(3, q) which is tangent to X0=0 at
(0, 0, 0, 1), then the flags (w, #), with w # O&[(0, 0, 0, 1)] and # the
tangent plane of O at w are mapped by ' onto the points not in X0=0 of
a nonsingular quadric O$/8, contained in some 3-dimensional subspace $
of PG(6, q) and having the same character as O. Also, O$ contains the
point h(0, 0, 0, 1, 1, 0, 0) of 8.
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If O has equation

:
3

i, j=0
i� j

aij Xi Xj=0, with a33=a13=a23=0,

then O is nonsingular if and only if a03{0{4a11a22&a2
12 . So we may

assume a03=1. It is easily checked that the space $ containing O$ is
represented by

X4=2a00X0+a01X1+a02X2+X3 ,

{X5=a01X0+2a11X1+a12X2 ,

X6=a02X0+2a22X2+a12X1 .

Also, if w(1, x, y, z) # O and if # is the tangent plane of O at w, then

(w, #)'=(1, x, y, z, 2a00+a01x+a02 y+z,

a01+2a11x+a12 y, a02+2a22 y+a12x).

Let 8+ be the hyperbolic quadric X3=X1 X5+X2X6+X4X0=0 (so 8+

is the base of the cone 8). If q is odd, then the quadric O$ is tangent to
6 & $ at h. Now let q be even. Then s=h. In such a case $ belongs to 8.
Hence $ & 8+ is a plane $$ of 8+, and in this way there arise q2(q&1)
planes $$ of 8+; the planes $$ all belong to a same family A of generators
of 8+. The space X3=X0=0 is tangent to 8+ at e4(0, 0, 0, 0, 1, 0, 0), and
as e4 � $$ the plane $$ does not belong to 6. Further, $$ has no point in
common with the planes X0=X3=X5=X6=0 and X0=X3=X1=X2=0
of 8+. Finally, for a fixed $$ the q3 corresponding quadrics O$ belong to
a common linear 3-dimensional system of quadrics in the 3-dimensional
space s$$=$.

Assume again that q is odd. Then we consider the projection ! from h
onto the hyperplane PG(5, q) with equation X3=0. We have ($&[h])!=
$� , with $� the plane having equations

{
X3=0,
X4=2a00 X0+a01X1+a02 X2 ,
X5=a01X0+2a11X1+a12X2 ,
X6=a02X0+a12X1+2a22X2 .
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Then

($� )%=$� ,

with % the symplectic polarity of PG(5, q) represented by the bilinear form

X0Y4&X4Y0+X1Y5&X5Y1+X2Y6&X6Y2 .

Hence $� is a totally isotropic plane of the polarity %. It is readily checked
that $� /3 6, that $� & 6=R is not a line of the quadric H with equations
X3=X0=X1X5+X2X6=0 (that is, H=8+ & 6), and that R is not
tangent to H. The number of totally isotropic planes of % in 6 is equal to
(q+1)(q2+1), the number of totally isotropic planes intersecting 6 in a
line of H is (q+3)q3 ((q+1)q3 of these planes intersect a plane of one
system of generators of H, the remaining 2q3 planes intersect a plane of the
second system of generators of H), and the number of totally isotropic
planes intersecting 6 in a tangent of H, not contained in H, is equal to
2(q2&1)q3. Any of the remaining q5(q&1) totally isotropic planes of %
corresponds to a nonsingular quadric O of PG(3, q).

6. FROM THE CONSTRUCTION OF THAS TO
THE CONSTRUCTION OF KNARR

We start from the construction of Thas of the dual of a flock GQ S(F )
of order (q2, q), q odd. We will use the notations of Section 4.

A point of type (a) is an elliptic quadric of PG(3, q) touching a fixed
plane ?� at a fixed point �. We identify the point-plane flag (�, ?�) with
the point-plane flag ((0, 0, 0, 1), X0=0) of Section 5. So with O there
corresponds an elliptic quadric O$ on the cone 8, and a totally isotropic
plane $� of the symplectic polarity % of PG(5, q). Suppose that with Oi there
corresponds the totally isotropic plane $� i of %, and that $� i & 6=Ri , with
i=1, ..., q&1. One can show that with the q&1 nonsingular elliptic quad-
rics O of PG(3, q) for which O & Oi over GF(q2) is L (i)

� _ M (i)
� counted

twice, there correspond the q&1 totally isotropic planes distinct from $� i

and not contained in 6, which contain the line Ri , i # [1, 2, ..., q&1]. With
the q3&q elliptic quadrics O containing L (i)

� _ M (i)
� (over GF(q2)) and

intersecting Oi over GF(q) in a nonsingular conic containing �, there
correspond the totally isotropic planes not in 6 intersecting the totally
isotropic plane e4Ri in a line distinct from Ri , i # [1, 2, ..., q&1].

Let w be a point of type (b). With the flags (w, #), � � #, there
correspond q2 points of a totally isotropic plane of %, not in 6 and contain-
ing a line of the totally isotropic plane X0=X1=X2=X3=0 (on H).
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Let # be a point of type (c). With the flags (w, #), w � ?� , there
correspond q2 points of a totally isotropic plane of %, not in 6 and contain-
ing a line of the totally isotropic plane X0=X3=X5=X6=0 (on H).

With the q&1 points of type (d) we let correspond the q&1 totally
isotropic planes e4Ri of %, i=1, 2, ..., q&1.

With the unique point ?� of type (e) we let correspond the plane
X0=X3=X5=X6=0, and with the unique point � of type (f) we let
correspond the plane X0=X1=X2=X3=0.

Consider the line of type (i) defined by the point-plane flag (w, #) of
PG(3, q), with w � ?� and � � #. With this line we let correspond the point
(w, #)'! of PG(5, q) ((w, #)'! � 6).

Now we consider the line of type (ii) defined by the elliptic quadric O,
where O corresponds to Oi . With O there corresponds a line U of e4Ri ,
with e4 � U (with the point O of type (a) corresponds a totally isotropic
plane $� of %, and U=$� & 6). With the given line of type (ii) we let
correspond the line U of 6.

A line of type (iii) consists of q parallel planes of PG(3, q)&?� , where
the line at infinity does not contain �, together with the plane ?� . With
these q parallel planes correspond q totally isotropic planes of % containing
a common line U of X0=X3=X5=X6=0. With the given line of type (iii)
we let correspond the line U of 6.

A line of type (iv) is a line of PG(3, q), not in ?� , containing �. With
the q points not in ?� of that line correspond q totally isotropic planes of
% containing a common line U of X0=X1=X2=X3=0. With the given
line of type (iv) we let correspond the line U of 6.

With the unique line of type (v) we let correspond the point e4 .
Hence in PG(5, q) we have an incidence structure S$ with six types of

points and five types of lines. With the natural incidence this structure S$
is a GQ isomorphic to the dual of S(F ).

The elliptic quadrics O1 , O2 , ..., Oq&1 are tangent to the plane + at the
point r, hence the totally isotropic planes $� 1 , $� 2 , ..., $� q&1have a point g in
common, with g � 6. Hence these planes are contained in a 4-dimensional
space ;. Hence R1 , R2 , ..., Rq&1 are contained in the 3-dimensional space
; & 6=:/e%

4 , with e4 � :. Let Rq be the intersection of : with X0=X1=
X2=X3=0, and let Rq+1 be the intersection of : with X0=X3=X5=
X6=0. Then R1 , R2 , ..., Rq+1 are totally isotropic for the symplectic
polarity %$ induced by % in :, that is, R1 , R2 , ..., Rq+1 are lines of the GQ
W(q) determined by %$.

Consequently, the points of S$ are:

(a)$ the q4+q3 totally isotropic planes of % not contained in e%
4 and

meeting some plane e4Ri in a line (not through p), i # [1, 2, ..., q+1].

(b)$ the q+1 planes e4Ri , i=1, 2, ..., q+1.
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The lines of S$ are:

(i)$ the q5 points PG(5, q) not in e%
4 ;

(ii)$ the q3+q2 lines of PG(5, q) not containing e4 but contained in
one of the planes e4Ri , i # [1, 2, ..., q+1].

(iii)$ e4 .

Now we show that no two of the lines R1 , R2 , ..., Rq+1 are concurrent in
W(q). Assume, by way of contradiction, that r$ is a common point of Ri

and Rj in W(q), i{ j. Then there exist totally isotropic planes $$i and $$j of
% which respectively contain Ri and Rj , and which intersect in a line not
contained in e%

4 . It follows that the points $$i and $$j of S$ are incident with
more than one line of S$, clearly a contradiction. Hence no two of the lines
R1 , R2 , ..., Rq+1 are concurrent in W(q).

Assume, by way of contradiction, that W(q) contains a line R which is
concurrent with three distinct lines of [R1 , R2 , ..., Rq+1]=W$, say with
Ri , Rj , Rk . Let rl be the common point of R and Rl in W(q), l=i, j, k.
Further, let \ be a totally isotropic plane of % which contains R but is not
contained in e%

4 , and let R$k be a line of e4Rk distinct from e4rk and Rk .
Also, let \ & R%

i =R"i , \ & R%
j =R"j and \ & R$%

k =R"k . Then clearly R"l {R,
l=i, j, k, and the lines R"i , R"j , R"k are not concurrent. If we now consider
the totally isotropic planes $"i=R"iRi , $"j=R"jRj , $"k=R"kR$k of %, then $"i , $"j ,
$"k are points of S$ which form a triangle, a contradiction. Consequently
W$ has the property that no three of its lines are concurrent with a com-
mon line of W(q).

From the preceding it follows that W$ is a BLT-set of W(q). The con-
struction of Knarr [6] applied to the BLT-set W$ yields the dual of the
GQ S$. Let W be the BLT-set of W(q) defined by the flock F. As S$ is
isomorphic to the dual of S(F ), then, by the proof of Theorem IV.1 in
Payne and Thas [12], W and W$ are equivalent with respect to the group
P1Sp4(q). Now we show that W and W$ are even equivalent with respect
to the group PSp4(q).

In the construction of Thas, Let F be the flock of the quadratic cone K
with equation X0X1=X 2

2 , let the respective planes ?i of the elements of F
have equation

liX0+miX1+ni X2+X3=0, with i=0, 1, ..., q&1,

and let l0=m0=n0=0. Now we project K&[(0, 1, 0, 0)] from (0, 1, 0, 0)
onto the plane ` with equation X1=0. The plane ?0 contains (0, 1, 0, 0).
The projection from (0, 1, 0, 0) onto ` of the conic ?i & K, with i{0, is the
conic Ci with equations

liX 2
0+m iX 2

2+niX0 X2+X0 X3=0=X1 .
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Also, we have ?0 & `=N : X1=X3=0. Further, let + have equation X3=0
and let r(1, 1, 0, 0). Then

Oi : li X 2
0+l iX 2

1+miX 2
2&2l iX0X1+niX0X2+X0X3&niX1 X2=0,

with i=1, 2, ..., q&1. With Oi there corresponds an elliptic quadric O$i on
the cone 8, where O$i is contained in the 3-dimensional space $i with
equations

X4=2l iX0&2liX1+n iX2+X3 ,

X5=&2li X0+2liX1&n iX2 ,

X6=n iX0&niX1+2miX2 .

Hence the line Ri has equations

X0=X3=X4+X5=0,

{X4=&2liX1+ni X2 ,

X6=&niX1+2mi X2 ,

with i=1, 2, ..., q&1. Further we have

Rq : X0=X1=X2=X3=X4+X5=0,

and

Rq+1 : X0=X3=X4=X5=X6=0.

In the space :: X0=X3=X4+X5=0 the symplectic polarity %$ can be
represented by (in Grassmann coordinates)

p15+ p26=0.

As F is a flock, we have that

(ni&nj)
2&4(li&l j)(m i&mj) is a nonsquare,

for all i, j # [0, 1, ..., q&1]. Now it is easy to check that the BLT-set W

defined by the flock F is equivalent for the group PSp4(q) with the BLT-set
W$=[R1 , R2 , ..., Rq+1].

We conclude that the above constructed model of the dual of S(F ) in
the projective space PG(5, q), is exactly the model constructed by Knarr
starting from the BLT-set W defined by F.
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7. SUBQUADRANGLES AND OVOIDS

7.1. Subquadrangles in the Even Case

Let S(F ) be the GQ of order (q2, q) arising from the flock F of the
quadratic cone K of PG(3, q), q even. Then S(F ) has at least q3+q2 sub-
quadrangles of order q; see Thas [16]. By Payne [8] any of these sub-
quadrangles S$ is a T2(O) of Tits, with O an oval of PG(2, q). Similarly
as in the odd case (see Sections 5 and 6) S(F ) can be represented on the
hyperbolic cone 8 with vertex s in PG(6, q). Let . be a plane on the hyper-
bolic quadric 8+ such that . and the planes X0=X3=X5=X6=0 and
X0=X3=X1=X2=0 belong to a common system of generators of 8+,
but with . not belonging to 6 (that is, not containing e4(0, 0, 0, 0, 1, 0, 0)).
There are exactly q3+q2 such planes .. Consider the 3-dimensional space
s.=2. Then with the q3 points of 2 not in 6 correspond the q3 points of
a subquadrangle S$ of order q of S(F ) which are not collinear with the
point � of S(F ). In this way we find all q3+q2 subquadrangles S$ of
order q containing the sets of type [L, L1 , L2]= _ [L, L1 , L2]== with
L, L1 , L2 pairwise nonconcurrent, with � I L, and with � I M and
M # [L, L1 , L2]=.

One can also show that with q3&q2 lines of S$ there correspond q3&q2

conics in 2 through s. Each plane | through s but neither containing the
intersection of . and X0=X3=X5=X6=0, nor the intersection of . and
X0=X3=X1=X2=0, contains exactly q of these conics. Then q conics are
tangent to | & 6 at s, and define a partition of |&6.

7.2. Ovoids in the Odd Case

Consider again S(F ) and its representation on the cone 8. Assume that
q is odd. Let ; be a plane of 8+ which is disjoint from the planes
X0=X1=X2=X3=0 and X0=X3=X5=X6=0; such a plane ; does not
belong to 6. Now we consider the 3-dimensional space s;=2$, with
s(0, 0, 0, 1, &1, 0, 0). Then it can be shown that the q3 points of 2$&6
together with the point e4(0, 0, 0, 0, 1, 0, 0) correspond to the points of an
ovoid of S(F ). These ovoids are of the type described in Thas and Payne
[17, 6.2].

7.3. Ovoids in the Even Case

Consider again S(F ) and its representation on the cone 8. Let O$ be an
ovoid of 8+ which contains e4 . Then it can be shown that the q3 points
of sO$&6 together with the point e4 correspond to the points of an ovoid
of S(F ). These ovoids are exactly the ovoids described in Thas [14, 7.3
(a)].
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