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Abstract
The self renewal capability of limbal epithelial stem (LEST) cells is fundamental to the maintenance and healing of corneal epithe-
lium. Limbal stem cell deficiency (LSCD), due to dysfunction or loss of LEST cells, therefore presents as persistent epithelial defects,
corneal vascularization, conjunctivalization etc. Stem cell-based therapy, in its simplest form – limbal autograft, has been used suc-
cessfully for more than a decade. For bilateral LSCD, similar approaches with limbal allografts have been unsuccessful largely due
to strong immune rejection. Therefore, as an alternate strategy for treating bilateral LSCD, ex vivo expansion of the remaining
LEST cells or autologous stem cells sourced from other potential sites is being explored. Different culture systems (with and with-
out xenobiotic supplements) using substrates like amniotic membrane or fibrin gels have been used successfully for ex vivo LEST
cell maintenance and reproduction by imitating the stem cell niche. This paper is organized into sections reviewing the LEST cells,
LSCD and various stem cell-based approaches for treating LSCD and discussing future direction and challenges.
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Introduction

The Limbal epithelial stem (LEST) cells have self renewal
capabilities and therefore, allow the corneo-scleral limbus
to serve as a barrier. LEST cells divide and differentiate into
corneal epithelial cells; replacing them completely every
9–12 months. Thus, LEST cells shield the cornea from
encroachment of the conjunctival cells and blood vessels,
maintaining ocular surface integrity and functionality.
Deficiency of LEST cells inhibits ocular surface restoration
and may result in ocular irritation, epiphora, blepharospasm,
photophobia, pain, severe visual impairment and even
corneal blindness.1

Stem cell-based therapy, in its preliminary form, was
brought into clinical use for corneal limbal stem cells defi-
ciency (LSCD) more than a decade ago. This paper is aimed
at reviewing the different strategies, either in use or under
development, for the identification of LEST cells, etiology
and diagnosis of LSCD and stem cell-based approaches for
treating LSCD; analyzing their strengths, limitations, and
challenges; and understanding the direction of future
research.

Corneal limbal epithelial stem cells

LEST niche

Within the corneo-scleral limbus,2 the LEST cell niche is
thought to be located in the palisades of Vogt (PV). Palisades
of Vogt are radially oriented fibrovascular structures located
from limbo-corneal junction to 1–2 mm from it that are prom-
inent in the upper and lower quadrants. Their morphology is
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believed to create an optimal microenvironment filled with
stem cell nutrients and growth factors that not only supports
stem cell growth but also regulates the process of cell divi-
sion.3–5 Different growth factors, such as insulin-like growth
factor, fibrocyte growth factor, epidermal growth factor
etc., have been identified as vital elements of molecular net-
works responsible for the stem cell modulation.6,7 Dickkopf
(DKK) family member, DKK2, mediates repression of the
Wnt/b-catenin signaling pathway and is essential to promote
differentiation and stratification of the corneal epithelial
progenitor cells.8 Further, Takac’s group proposed the role
of the molecule CXC chemokine receptor type 4 (CXCR4)
and DKK4 in the differentiation and maintenance of corneal
epithelial cells by whole human genome expression micro-
arrays.9 Moreover, potential cross talk between the LEST
and the nervous system has been described.10

Multiple findings that led to the understanding that LEST
cells are located in the PV. Early observations of the centrip-
etal migration of pigment from limbus toward the central
cornea led to the understanding that the corneal-scleral
limbus was the source of LEST cells.11 This idea was further
supported by follow-up studies in which the basal epithelial
cells residing in the PV were found to lack the differentiation
related marker K3, but were reactive with the 3H-thymidine
and BrdU which are used to mark the slow cycling
cells.12–14 Other evidence supporting the idea comes from
the description of the limbal epithelial crypt (LEC) in the
PV. LEC are solid cords of epithelial cells appearing to
emerge from the posterior end of the limbal palisades that
stain with Tenascin C and ATP-binding cassette transporter
G2 (ABCG2) transporter protein and extend into the
underlying substantia propria, radially parallel to the pali-
sades or circumferentially along the limbus at right angles
to the palisades.15–17
Identification of LEST cells

A number of studies were undertaken to explore specific
LEST cell markers. Several markers were proposed to be
expressed in the limbal basal cells including: enzymes, like
a-enolase, cytochrome oxidase, carbonic anhydrase; growth
factor receptors such as the epidermal growth factor (EGF)
receptor and transforming growth factor b (TGF- b) receptor
I and II; cell cycle mediators, like cyclins D and E, and ABCG2;
the transcription factor DNp63.18–23 However, there is no
consensus on a specific marker for the LEST cells. Therefore,
expression of putative stem cell markers and lack of differen-
tiation related markers (K3/K12) emerged as an alternative
strategy for the identification of LEST cells.24–31 Other strate-
gies include cell morphology,24 clone formation assay32 and
DNA retention study.12,13
Corneal epithelium regeneration

The LEST cells usually remain in a quiescent state (slow
cycling and G0) in the niche, divide to be the transit amplify-
ing (TA) cells after activation which then move to the superior
layer and migrate across the limbus toward the peripheral
cornea as young TA cells. Meanwhile, the more mature TA
cells with reduced proliferative potential reside in the central
corneal area, finally becoming the terminal cells. This scheme
of stem cell division/differentiation is described as ‘‘stem cell
– transit amplifying (TA) cell – terminal cell’’. In response to
injury, replicative potential of TA cells increases and the cell
cycle length is shortened to increase the replication
efficiency.14,33

Limbal stem cell deficiency

Limbal stem cell deficiency (LSCD) occurs due to loss or
dysfunction of LEST cells, characterized by the failure of epi-
thelium regeneration, and therefore, causing persistent cor-
neal epithelial defects or chronic recurrent corneal erosion,
chronic corneal inflammation, corneal vascularization, con-
junctivalization, corneal graft rejection and secondary
infection.

Etiology

The etiology of LSCD can be classified as– hereditary or
primary and acquired or secondary. Briefly, hereditary causes
include aniridia, keratitis associated with multiple endocrine
deficiency, ectrodactyly-ectodermal dysplasia-clefting syn-
drome, keratitis-ichthyosis-deafness syndrome and dyskera-
tosis congenita. Acquired causes include contact lens wear,
chemical and thermal burns, inflammatory ocular surface dis-
ease (Stevens–Johnson syndrome, toxic epidermal necrolysis,
ocular cicatricial pemphigoid, Mooren’s ulcer, chronic limbi-
tis, neurotrophic keratopathy, chronic bullous keratopathy,
pterygium) and systemic diseases (diabetes, vitamin A defi-
ciency, graft-versus-host disease, rosacea).

Diagnosis

The diagnosis of LSCD is based on the detection of the
goblet cells in the corneal epithelium which implies conjunc-
tival epithelial ingrowth due to the diminished barrier func-
tion of the LEST cells. Impression cytology (IC) is one of the
classic approaches in which Periodic Acid Schiff is used to
highlight the goblet cells. In the new PCR-strip-based diag-
nostic system, the expression of goblet cell specific protein
mucin 5AC is detected at mRNA level using PCR-reverse
dot blot.34 Recently, an application of the confocal micro-
scope was reportedly used to detect LSCD. Compared with
IC, confocal microscopy is considered to be a safer and faster
but more expensive method.35,36

Stem cell based therapy

Stem cell-based therapy has been performed for over a
decade for the LSCD with outstanding outcomes. In its sim-
plest form, conjunctival limbal autograft (CLAU) has been
successfully used in the treatment of unilateral LSCD. How-
ever, there is a concern of inducing LSCD in the donor eye;
therefore leading to its modification involving a smaller
source tissue in conjunction with in vivo expansion. While
these methods have been successful for patients with unilat-
eral LSCD, similar approaches with conjunctival limbal allo-
graft (due to bilateral LSCD) have been largely unsuccessful
due to a high frequency of immune rejection. Therefore,
ex vivo expansion of remaining LEST cells or stem cells
sourced from other potential sites is being explored as a
more viable solution for bilateral LSCD. In this part we review
different stem cell based therapies to treat LSCD.
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Corneal limbal epithelial stem cell transplantation

Autograft transplantation
Conjunctival limbal autograft (CLAU). In CLAU, conjunc-
tival limbal graft from the fellow donor eye is transplanted to
the affected recipient eye. Since the first report in 1989 by
Kenyon and Tseng, CLAU has become a widely accepted
technique in the management of unilateral total LSCD.37

Various studies reported overwhelmingly successful improve-
ments of vision and corneal surface integrity.38–46 In the origi-
nal description of the procedure, two strips were removed
from the contralateral eye, each consisting of 120� limbus
and about 5 mm adjacent to the conjunctiva. This led to a sig-
nificant concern about the risk of inducing LSCD in the donor
eye. How small a size is sufficient to successfully initiate the
corneal surface rebuilding is still unknown. To decrease the
risk, the application of smaller size grafts was reported in
other studies. While Ahmad Kheirkhah reported that one
60� CLAU successfully restored the entire corneal surface in
chemical burn-induced LSCD,41 other studies seemed to indi-
cate that smaller size grafts were associated with a corre-
sponding decrease in the success rate.44,45 Being an
autograft, an obvious advantage of CLAU is that there is no
risk of immune rejection and therefore, no need for any
immunosuppression. However, the risk of inducing LSCD in
the donor eye, particularly in a patient whose fellow eye also
has subclinical LSCD, limits applications of CLAU.47
Simple limbal epithelial transplantation (SLET). A newer
strategy combining CLAU and in vivo expansion utilizing
amniotic membrane transplantation seems to improve the
success rate of smaller grafts.42,48 Amniotic membrane seems
to inhibit inflammation and provide a supportive niche for the
transplanted LEST cells. In 2012, Sanqwan VS51 described a
novel surgical technique termed SLET. The study included 6
patients with chemical burn induced LSCD and follow-up
duration ranging between 7.5 and 12 months. In this proce-
dure, a small 2 � 2 mm strip was removed from the fellow
eye and chopped into pieces. Then the tiny pieces were
seeded on the amniotic membrane (AM) covered cornea.
Complete reconstruction with epithelialized, avascular and
stable corneal surface was observed after 6 weeks in all 6
recipient eyes. Improved vision outcomes were recorded in
4 of the 6 recipient eyes (66.6%). The 6 patients involved in
the study showed physical signs of LSCD including 360�
absence of the PV, dull and irregular corneal epithelium,
superficial corneal vascularization, persistent epithelial
defects or conjunctival overgrowth on the corneal surface;
however, the pathological evidence provided for the LSCD
confirmation was limited. Subsequently, successful applica-
tions of SLET in previously failed pediatric limbal transplanta-
tion for ocular surface burns and a lime injury-induced LSCD
case were reported by Bhalekar49 and Vazirani50 in 2013.
While short term outcomes seem promising, long-term
success rates are yet to be determined.51
Corneal stem cell allograft transplantation
Allograft transplantation is for the patients suffering from

bilateral total LSCD or whose fellow eye is not suitable as a
graft source. Generally, allograft transplantation includes
cadaveric Keratolimbal allograft (KLAL) and living-related
conjunctivallimbal allograft (Lr-CLAL).52–54 Due to high risk
of immune rejection, both the methods offer poor long-term
outcomes when compared with the autograft transplanta-
tion. Severe bilateral LSCD is often accompanied by immune
system diseases like SJS, toxic epidermal necrolysis, or
severe trauma injury, which are typically associated with
immune system hyperactivity resulting in a higher risk of
immune reaction. Therefore, high frequency of immune rejec-
tion of the KLAL is not only due to extensive vascularization
and Langerhans’ cell-enriched areas contained in the grafts
but also to the overactive immune system of the recipient.
Several reports have demonstrated that even under continu-
ous immunosuppressive drug therapy such as Cyclosporin A,
steroid, FK506, mycophenolate mofetil, the failure rate of
KLAL increases dramatically beyond 2–3 years of follow-up.
Cultured limbal epithelial transplantation (CLET)
LEST cell culture strategies. Due to the high risk of rejec-
tion associated with allografts, ex vivo expansion of remain-
ing LEST cells is a theoretically preferable solution for
bilateral LSCD. Based on the elements contained, culture sys-
tems used for the ex vivo expansion can be divided into
either a ‘‘xenobiotic culture system’’ or a ‘‘xenobiotic-free
culture system’’.

Briefly, the xenobiotic elements include murine derived-
3T3 feeder cells, fetal calf serum and various animal-derived
growth factors. A number of studies have shown these ele-
ments to be beneficial for ex vivo LEST cell maintenance
and reproduction by imitating the stem cell niche; however,
safety concerns of potential transmission of contagious
agents, tumorigenesis, or immune rejection has redirected
the focus of research on xenobiotic-free culture systems.
Human dermal fibroblasts have been found to be a promising
replacement for 3T3 feeder layer in LEST cells culture sys-
tem.55,56 Meanwhile, Aboulghassem Shahdadfar and Meeta
Pathak demonstrated the successful use of autologous
human serum to support the expansion of LEST cells in vitro57

and improve clinical outcomes.57,58 Notably, autologous
human serum was the only supplement added into the cul-
ture medium in these two studies. Human cord blood serum
has also been successfully used as limbal stem cell culture
supplement.59 In addition, successful establishment of a tis-
sue-engineered corneal epithelium is highly dependent on
the underlying scaffold. Several materials such as human
amniotic membrane,60 fibrin gels,61–63 collagen, 64–66 keratin
films,67–69 silk fibroin films,70 chitosan hydrogels,71 siloxane-
hydrogel contact lens,72 Polystyrene,68 and nanofiber scaf-
fold73 have been tested as scaffolds. All of these materials
have been found to support the growth of LEST cells
in vivo, but only human amniotic membrane and fibrin gels
have been investigated in clinical studies with positive
outcomes.
Clinical outcomes. A review of the literature reveals that
several studies evaluated the clinical outcomes of CLET in
LSCD. Table 1 summarizes the outcomes of the studies in the
past 13 years (average follow up duration of P12 months).
While there are several studies documenting short-term effec-
tiveness, studies with longer follow up duration, that can reveal
long term prognosis after transplantation, are limited in num-
ber.62,74–82 The data shown in Table 1 provides several
insights: (1) either amniotic membrane or Fibrin has been
approved to be a qualified carrier in CLET, associated with a



Table 1. Literature summary of CLET for LSCD.

Authors Year Case FU (months) Substrate 3T3 Biopsy size Success rate (%)

I R Schwab81 2000 14 6–19 AM Y 2 mm2 71.40
Rama P62 2001 18 27 Fibrin Y 1–2 mm2 77.80
Tsai RI79 2003 6 15 ± 2 AM N 1 � 2 mm2 77.80
Takahiro75 2004 1 19 AM Y 3 mm2 100
Sangwan78 2006 86 18.3 AM N 1 � 2 mm2 73.10
Gisold74 2010 6 24 Fibrin Y 1–2 mm2 82.30
Rama P77 2010 112 up to 10 years Fibrin Y 1–2 mm2 76.70
Giorgio82 2012 16 12–50 Fibrin Y 1–2 mm2 62.64,18.7#

Pathak*76 2012 9 11–28 AM N 1.5 � 2.5 � 0.25 mm3 55.60
Zakaria N*80 2014 18 24 AM N 1 � 2 mm2 67

CLET = cultured limbal epithelial transplantation; FU = follow up; N = no; Y = yes;
* Animal free culture system (human serum is the only supplement in the culture medium).
D Complete success restoration.
# Partial restoration.
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high success rate; (2) 3T3 is widely used to support the limbal
stem cell growth in vitro however xenobiotic free culture sys-
tems without 3T3 feeder layer also obtained fairly high success
rate in CLET; (3) Even though xenobiotic free culture systems
had a lower rate of success in comparison with CLET with the
xenobiotic culture systems, it is still a promising option.
Furthermore, Rama P and co-workers revealed a positive
correlation between the percentage of p63 positive cells in
the grafts and the success rate of CLET. Cultures containing
more than 3% p63 positive stem cells were associated with suc-
cessful transplantation in 78% patients.77 This novel notion
provides a criterion to measure the quality of stem cells
cultured in the grafts which may be useful to increase the
success rate of CLET in future.

Other alternative stem cell sources

In cases of extensive bilateral LSCD, where it may not be
possible to source any limbal epithelium stem cells, alterna-
tive stem cell sources may be helpful.

Mesenchymal stem cells (MSCs)
MSCs, originally isolated from tissues such as bone mar-

row, adipose,83 heart, spleen,84,85 cord blood,86 oral,85 are
well known for their multipotency and plasticity. Numerous
studies have shown that MSCs have the capability to pro-
mote wound healing; the eye is no different from other tis-
sues in this respect. Recently, human corneal limbal stroma-
derived MSCs with the potential for epithelial trans-differen-
tiation have been detected in several studies.87–91 Besides,
successful reconstruction of damaged cornea using bone
marrow derived MSCs, adipose derived MSCs, and umbilical
MSCs by subconjunctival injection, graft transplantation and
intravenous infusion has been observed in animal studies
and lab works. The mechanisms involved were considered
to be associated with the immunomodulatory function and
differentiation.92–101 To the best of our knowledge, few clin-
ical or pre-clinical studies have been reported until now.

Dental pulp immature stem cells (hIDPSCs)
hIDPSCs express various markers including those specific

for MSCs, embryonic stem cells and neural cells. In 2009,
Monteiro and co-workers demonstrated that hIDPSC share
markers similar to corneal limbal epithelial stem cells, such
as ABCG2 and P63.102 One year later, a report regarding
the restoration of corneal epithelium in the mild chemical
burn rabbit model of LSCD using hIDPSCs grafts was pub-
lished and suggested the therapeutic potential of hIDPSC
in the treatment of LSCD in future.103

Embryonic stem cells (ESCs)
ESCs have been widely accepted as a promising cell

source in the tissue engineering based treatment for tissue
regeneration. In vitro, the ESCs in different species such as
humans, rabbits and mice were found to have the capability
to differentiate into corneal epithelial-like cells in the micro-
environment, mimicking the corneal epithelial stem cell
niche.104–107 Recently, Hanson demonstrated that the human
ESCs can be transferred to partially wounded human cornea
in vitro, and grown on the Bowman’s membrane to form cor-
neal epithelial-like cells.108 Furthermore, rapid construction
of embryonic stem cell sheets with or without scaffold has
been described in 2013, which provided greater possibility
for transplantation in future.109,110

Hair follicle bulge cells
Hair follicle bulge is an essential niche for keratinocyte

stem cells (KSCs).111,112 Blazejewska and co-workers reported
successful trans-differentiation of hair follicle stem cells into
corneal epithelial-like cells in 2009.113 After 2 years, the same
group used the transgenic mice as animal model to evaluate
the therapeutic potential of hair follicle bulge in vitro. Iso-
lated autologous hair follicle bulge cells were expanded on
a fibrin carrier in vitro, and then transferred into the mice with
LSCD. The immunostaining results suggested that the hair
follicle bulge cells contribute to the reconstruction of corneal
epithelium by crossing the lineage boundaries and terminally
differentiating into corneal epithelial-like cells.114

Oral mucosal epithelium
In contrast to the alternative stem cells described above,

the safety and efficiency of oral mucosal epithelium based
transplantation has been evaluated clinically. Several groups
from Japan demonstrated that cultured oral mucosal epithe-
lium can be used to reconstruct the corneal epithelium in
animal models as well as patients with LSCD due to chemical
injury and SJS. Nakamura’s study115 included 19 eyes of 17
patients. Follow up duration ranged from 36 to 90 months.
Visual improvement was detected in 95% eyes at 6 months
after surgery. After 30 months, the visual improvement
percentage gradually abated to 53%. Another study with
fewer numbers of patients (7 eyes) reported that just one
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eye developed partial LSCD at the 47th month after trans-
plantation.116 One year later, Burillon’s study involving 26
eyes of 25 patients reported a success rate of 64% at
12 months after surgery.117
Conclusion

LSCD is a well known disease that affects epithelium main-
tenance due to the dysfunction or loss of limbal stem cells.
Stem cell-based treatments are targeted at replacing the
abnormal limbal stem cells with homologous and/or heterol-
ogous stem cells. Compared to other surgical procedures,
more clinical data with CLAU and KLAL have been collected
and analyzed over the past decades. The success rate of
CLAU is higher than KLAL as the autografts, for obvious
reasons, are better than the allografts for transplantation.
The development of tissue engineering techniques led to
the emergence of CLET as a promising therapeutic approach
in clinical ophthalmology. However, limitations in the isola-
tion of autologous limbal stem cells from the patients suffer-
ing from serious bilateral LSCD necessitated the exploration
of alternative autologous stem cell sources. Currently, to
enhance the stem cell expansion and transplantation effi-
ciency, research is being focused on optimizing the culture
conditions; exploring novel scaffolds supporting stem cell
proliferation, maintenance and differentiation; and evaluat-
ing the therapeutic potential of different kinds of autologous
stem cells.

However, several different barriers still remain. The char-
acteristics and anatomical structure of the limbal stem cell
niche are still obscure and the specific markers for limbal
stem cells remain uncertain. Besides, the molecular networks
responsible for modulation of the stem cell bio-behaviors are
unclear. More work needs to be done to address these
important concerns and make stem cell-based therapy for
treating limbal stem cell deficiency more successful.
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