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Inflammation in Atherosclerosis
From Pathophysiology to Practice
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for the Leducq Transatlantic Network on Atherothrombosis
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Until recently, most envisaged atherosclerosis as a bland arterial collection of cholesterol, complicated by smooth
muscle cell accumulation. According to that concept, endothelial denuding injury led to platelet aggregation and re-
lease of platelet factors which would trigger the proliferation of smooth muscle cells in the arterial intima. These cells
would then elaborate an extracellular matrix that would entrap lipoproteins, forming the nidus of the atherosclerotic
plaque. Beyond the vascular smooth muscle cells long recognized in atherosclerotic lesions, subsequent investiga-
tions identified immune cells and mediators at work in atheromata, implicating inflammation in this disease. Multiple
independent pathways of evidence now pinpoint inflammation as a key regulatory process that links multiple risk
factors for atherosclerosis and its complications with altered arterial biology. Knowledge has burgeoned regarding the
operation of both innate and adaptive arms of immunity in atherogenesis, their interplay, and the balance of stimula-
tory and inhibitory pathways that regulate their participation in atheroma formation and complication. This revolution
in our thinking about the pathophysiology of atherosclerosis has now begun to provide clinical insight and practical
tools that may aid patient management. This review provides an update of the role of inflammation in atherogenesis
and highlights how translation of these advances in basic science promises to change clinical practice. (J Am Coll
Cardiol 2009;54:2129–38) © 2009 by the American College of Cardiology Foundation
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ust 3 decades ago the prevailing viewpoint envisaged athero-
clerosis as a bland proliferative process (1). According to that
oncept, endothelial denuding injury led to platelet aggregation
nd release of platelet-derived growth factor that would trigger
he proliferation of smooth muscle cells in the arterial intima,
nd form the nidus of the atherosclerotic plaque. This cellular
odel of atherosclerosis updated Virchow’s concepts of ath-

rosclerosis as a response to injury formulated in the mid-19th
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entury. The advent of the cell biological era of atherosclerosis
upplanted the simplistic concept of the atheroma as a passive
eposition of lipid debris on the artery wall. Beyond the
ascular smooth muscle cells long recognized in atherosclerotic
esions, subsequent work identified immune cells and media-
ors at work in atheromata, implicating inflammatory mecha-
isms in disease development (2). The advent of gene-
argeting technology enabled the testing of the roles of specific
olecules in the development of experimental atherosclerosis

n mice. Such data demonstrated a critical role for hypercho-
esterolemia and also supported the participation of immune

echanisms in the pathogenesis of atherosclerosis (3).
Multiple independent pathways of evidence now pinpoint

nflammation as a key regulatory process that links multiple
isk factors for atherosclerosis and its complications with
ltered arterial biology. This revolution in our thinking about
he pathophysiology of atherosclerosis has begun to provide
linical insight and practical tools that may aid patient man-
gement. This review provides an update of the role of
nflammation in atherogenesis and highlights how translation
f these advances in basic science promises to change clinical
ractice.

nnate and Adaptive Immunity: Twin Arms of the
mmune Response Involved in Atherosclerosis

hrough evolution, the inflammatory response has grown in

omplexity and has provided host defenses against infection
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and injury. Moreover, inflamma-
tory mechanisms also participate
in the repair of injured tissues.
The primitive arm of inflamma-
tion, known as innate immunity,
echoes in mammals pathways ex-
tant in early eukaryotes (4).
Primitive phagocytic cells, evolu-
tionary precursors of the mam-
malian monocyte/macrophage
(Fig. 1), exist in marine inverte-
brates as recognized by Metchni-
koff in the 19th century (5). The
innate immune response mounts
rapidly and combats perceived
foreign invaders, often with pre-
formed mediators. “Natural anti-

odies,” certain complement proteins, and families of cell

Abbreviations
and Acronyms

CRP � C-reactive protein

GWAS � genome-wide
association screen

hsCRP � high-sensitivity
C-reactive protein

LDL � low-density
lipoprotein

LDL-C � low-density
lipoprotein cholesterol

NNT � number needed to
treat

TLR � Toll-like receptor

Treg � regulatory T cell

Figure 1 Elements Involved in Innate Immunity

This figure summarizes some of the functions ascribed to various cellular participa
dysregulated. Mononuclear phagocytes represent the bulwark of the innate immun
intima form foam cells, the hallmark of the arterial fatty streak. Recent work has f
matory subset distinct from a less inflammatory population of monocytes. The infla
GR-1) in the mouse. These inflammatory monocytes express higher levels of Toll-li
els of the cytokines tumor necrosis factor (TNF) and interleukin (IL)-1. The less infl
(TGF)-beta, the scavenger receptors CD36 and scavenger receptor A (SR-A), and a
express human leukocyte antigen (HLA) molecules among the other indicated stru
Mast cells elaborate many mediators as shown. Recent data support a causal role
nity. When activated, platelets exteriorize CD40 ligand (CD40L or CD154) and rele
related protein (MRP)-8/14, platelet-derived growth factor (PDGF), and TGF-beta.
urface receptors recognize microbial products that can elicit
n immediate response without requiring “education” of the
mmune system. The receptors involved in these primordial
ost defense responses include several families of macro-
hage scavenger receptors, also implicated in uptake of
odified lipoproteins, and a family of Toll-like receptors

TLR) (Fig. 2). The TLRs, named after Drosophila genes,
elong to the family of pattern-recognition receptors that
ecognize microbial structures and products. These recep-
ors trigger a complex intracellular signaling cascade that
timulates the production of proinflammatory cytokines and
ther inflammatory mediators. The innate immune re-
ponse, characterized as “fast and blunt,” recognizes a
imited diversity of structures on the order of hundreds.

The adaptive immune response has arisen more recently
n evolution (Fig. 3). This arm of host defenses, in contrast
o the innate immune response, requires “education” of the
mmune system. Common clinical experience illustrates the

atherosclerosis that may participate in the disease and its complication when
nses in mammals. Monocytes give rise to macrophages, which in the arterial

on heterogeneity of mononuclear phagocytes. We now recognize a proinflam-
ory subset expresses high levels of the cell-surface marker Ly6C (also known as
eptors (TLR), and the other functions indicated, including elaboration of high lev-
tory subset of monocytes express higher levels of transforming growth factor
nic mediators including vascular endothelial growth factor (VEGF). Dendritic cells
. Dendritic cells present antigens to T cells, linking innate to adaptive immunity.
ast cells in mouse atherosclerosis. Platelets also participate in adaptive immu-
ediators including RANTES (regulated and T-cell expressed secreted), myeloid
nts in
e defe
ocused
mmat

ke rec
amma
ngioge
ctures

for m
ase m
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ag time in developing an adaptive immune response. For
xample, an antibody response or a cellular immune re-
ponse requires weeks to months following vaccination with
n antigen. Also in contrast with the innate immune
esponse, the adaptive arm displays exquisite specificity.
nstead of recognizing mere hundreds of molecular patterns,
he repertoire of antibodies and T cell receptors can recog-
ize many millions of specific structures.
The inflammatory response in atherosclerosis involves

lements of both the innate and adaptive limbs of
mmunity.
nnate immunity in atherosclerosis. Considerable evi-
ence supports the early involvement of the monocyte/
acrophage, the most prominent cellular component of the

nnate immune response, during atherogenesis. Observa-
ions in human arterial specimens and many experimental
odels of atherosclerosis have identified monocyte recruit-
ent as an early event in atherogenesis. The recruitment of
ononuclear phagocytes involves attachment to activated

ndothelial cells by leukocyte adhesion molecules. Several
rotein mediators, specialized cytokines known as chemo-
ines, direct cell migration of monocytes into the intima.
aturation of monocytes into macrophages, their multipli-

ation, and production of many mediators ensues. Previous
eviews recount the details of these now well-understood
olecular mechanisms that we will not repeat here (6,7).
Since last reviewed, several new findings regarding mono-

yte recruitment to atherosclerosis have come to light. First,
xamination of the kinetics of monocyte recruitment to
ouse atherosclerotic lesions suggests that monocyte entry

Figure 2 Cells Involved in Atherosclerosis Express Pattern-Rec

With the cooperation of CD14, Toll-like receptor (TLR) 4 binds bacterial lipopolysac
sclerosis including heat shock proteins (hsp). TLR2 usually exists as a heterodime
addition, apolipoprotein CIII (Apo CIII). Scavenger receptor A binds modified low-de
advanced glycation endproducts (RAGE) also decorates many cells involved in athe
ccurs not just during the initial stages of lesion formation, o
ut continues even in established lesions (8). This observa-
ion has implications for targeting monocyte recruitment for
therosclerosis treatment.

Another recent recognition revolves around monocyte
eterogeneity in atherosclerosis (9). Evidence from mouse
xperiments and in humans suggests a disease-relevant
imorphism of monocytes (10–12). Hyperlipidemia elicits a
rofound enrichment of a proinflammatory subset of mono-
ytes in the mouse. These proinflammatory monocytes,
ecognized by high levels of a marker known as Ly6C, or
r-1, may correspond to a human monocyte subset marked

y the presence of P-selectin glycoprotein ligand (PSGL)
13). These proinflammatory monocytes home to athero-
clerotic lesions, where they propagate the innate immune
esponse by expressing high levels of proinflammatory
ytokines and other macrophage mediators, including ma-
rix metalloproteinases (Fig. 1, left).

Recent evidence has also highlighted the potential par-
icipation of mast cells in atherosclerosis. Long identified as

minority leukocyte population in the arterial adventitia
nd atherosclerotic intima, mast cells exhibit numerous
unctions implicated in atherogenesis (14,15). For example,
ast cells release vasoactive small molecules such as hista-
ine and leukotrienes, certain serine proteinases, and hep-

rin, a cofactor in growth factor action and angiogenesis.
ecent pharmacologic and genetic studies have provided
rm evidence for mast cell participation in atherogenesis in
ice (16,17). As established pharmacologic agents can
odulate mast cell functions in humans, these recent

ion Receptors Involved in Innate Immunity

es (LPS) and a variety of other potential instigators of inflammation and athero-
TLR1 or TLR6. TLR2 complexes can bind microbial products as shown and, in

ipoproteins (LDL). CD36 binds oxidatively modified LDL. The receptor for
rosis and may function in inflammatory signaling.
ognit

charid
r with
nsity l
roscle
bservations also have therapeutic implications. The exten-
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ion of these mouse experiments to humans requires further
esearch.

Many links exist between lipoproteins and innate immu-
ity. Modified lipoproteins interact with scavenger receptors
Fig. 2), and may thus send proinflammatory signals.
xidized phospholipids derived from modified lipoproteins
ay also drive inflammation. A lipoprotein-associated

hospholipase A2 (Lp-PLA2) currently targeted in clinical
rials, may generate pro-inflammatory derivatives of oxida-
ively modified lipoproteins (18). Recent data show that
polipoprotein CIII, a constituent of certain triglyceride-
ich lipoproteins associated with poor clinical outcomes,
ncites inflammation by binding to TLR2 (Fig. 2) (19).

Another area of recent advance in relation to innate immu-
ity in atherosclerosis regards the links between thrombosis
nd inflammation. Previously considered independent path-
ays in host defense, current evidence supports considerable

rosstalk (20). For example, prostaglandins produced through
he cyclooxygenase pathway control inflammation as well as
hrombosis. Therefore, anti-inflammatory cyclooxygenase-2

Figure 3 Cells Involved in Adaptive Immunity

The text describes the functional roles of the 5 classes of lymphocytes depicted in
cells) elaborate primarily immunoglobulin M antibodies, including natural antibodie
panel of this figure portrays diagrammatically the effect of the various cell types o
lesion formation. Down arrows indicate reduction in lesion formation. This diagram
the basis of experiments in mice. In some cases, this figure necessarily oversimp
bodies elaborated by B cells may mitigate atherogenesis. CTL � cytolytic T lympho
tory T cells; other abbreviations as in Figure 1.
nhibitors may heighten thrombotic risk. A major protein i
ediator of coagulation, thrombin, can elicit the expression of
roinflammatory cytokines from vascular endothelial and
mooth muscle cells. Platelets, when activated, can secrete
reformed proinflammatory cytokines and exteriorize and shed

multipotent proinflammatory stimulus, CD40-ligand
CD154). Platelets can also release a proinflammatory media-
or known as myeloid-related protein (MRP)-8/14 (21). This
eterodimeric molecule serves as a biomarker for adverse
ardiovascular events in both apparently well populations, and
urvivors of acute coronary syndromes (22). Current investiga-
ions are expanding our knowledge of the inflammatory actions
f MRP-8/14. For example MRP-8/14 can bind TLR4,
ctivating innate immunity through this pattern-recognition
eceptor (23) (Fig. 2). This ligand can also promote endothelial
ell apoptosis, a process implicated in plaque thrombosis (24).
hese recent observations tighten the link between inflamma-

ion and thrombosis, suggesting an intimate interlacing of
hese 2 convergent pathways in atherosclerosis.

daptive immunity in atherosclerosis. Accumulating ev-
dence supports a key regulatory role for adaptive immunity

osclerosis. B cells elaborate antibodies (Ab). A specialized subset of B cells (B1
recognize constituents of oxidized low-density lipoprotein (oxLDL). The bottom
ns, based mostly on experiments in mice. Up arrows indicate aggravation of
arizes the “net” effect attributed to the cell type on atherosclerosis primarily on
e complexity of the data. For example, not all TH2 cell functions and not all anti-
IFN � interferon; hsp � heat shock protein; Th � T helper cells; TReg � regula-
ather
s that
n lesio

summ
lifies th
cytes;
n atherosclerosis and its complications. The subject of
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everal recent reviews, this section will highlight recent
dvances in this area (3,25,26). Interacting with a special
ubset of mononuclear phagocytes specialized in antigen
resentation known as dendritic cells (Fig. 1), T lympho-
ytes encounter antigens and mount a cellular immune
esponse (Fig. 3). The dendritic cells populate atheroscle-
otic plaques and regional draining lymph nodes where they
an present antigens to T cells with costimulatory molecules
hat incite this key afferent limb of adaptive immunity.
utative antigens that stimulate T cells in the context of
therosclerosis include certain heat shock proteins, compo-
ents of plasma lipoproteins, and potentially, microbial
tructures as well. The clone of T cells that recognizes
ntigen in this context will proliferate to amplify the
mmune response. Upon renewed exposure to the specific
ntigen, these T cells produce cytokines and trigger inflam-
ation, and some T cells have mechanisms specialized for

illing cells (Fig. 3). This amplification accounts for the
elay in the typical adaptive immune response that is slower
nd much more structurally specific than the “fast and
lunt” innate immune response described above.
Various functionally distinct classes of T cells exist.
elper T cells spearhead antigen recognition, and fall into
major functional subtypes known as Th1 and Th2 (Fig. 3,

eft). Th1 responses generally amplify proinflammatory
athways by secretion of cytokines such as interferon-
amma. The Th1 response appears to aggravate atheroscle-
osis. A more recently recognized T cell subset, Th17 cells,
ay also exert particularly proinflammatory actions. Th2

ells elaborate cytokines that may modulate inflammation
uch as interleukin-4 that can promote humoral immunity
see the following text), whereas the role of Th2 in athero-
clerosis is controversial (27–30). Some, but not all, evi-
ence suggests that Th2-slanted responses may drive aneu-
ysm formation (31–33). Humans may have less accentuated
olarization of Th1 versus Th2 cells than inbred mice.
Another T cell subtype, known as regulatory T cells, or Treg

or short, appears to play an intriguing modulatory role in
therosclerosis. Treg can dampen inflammatory responses. Ge-
etic manipulations that interfere with Treg functions, medi-
ted by transforming growth factor (TGF)-beta, augment
therogenesis in mice, yield lesions with signs of heightened
nflammation, and even trigger thrombosis (34,35). Thus, Treg

ells and Th2 versus Th1 and Th17 cells can counterbalance
he proatherogenic effects of Th1 cells illustrating the yin and
ang complexity of cellular immunity.

The types of T cells just described express the surface
arker CD4 and recognize antigen presented by dendritic

ells and macrophages. One-third of all T cells in human
esions are of a different type that carries the CD8 marker
nd recognizes antigens bound to HLA molecules on many
ifferent cell types, typically viral antigens on infected cells
Fig. 3). When activated, CD8 T cells kill neighbor cells via
ell–cell contact. Several mediators produced in lesions can

ecruit CD8 T cells capable of killing smooth muscle cells p
nd macrophages, processes linked to lesion growth and
omplication (36).

CD4 and CD8 T cells share the capacity to recognize
rotein antigens bound to HLA molecules on cell surfaces.
he NKT cell, in contrast, reacts toward lipid antigens
resented by CD1 molecules on antigen-presenting cells.
nce activated, the NKT cell produces proinflammatory

ytokines that promote atherosclerosis (37).
umoral immunity in atherosclerosis. B lymphocytes

ecrete antibodies that like T cells, can recognize many
illions if not billions of diverse structures. Convergent

ines of experimental evidence suggest that humoral immu-
ity can attenuate rather than promote atherogenesis. For
xample, splenectomy, ablating an important B cell com-
artment, aggravates atherosclerosis (38). Hypercholester-
lemic mice develop a strong humoral response directed
gainst epitopes characteristic of oxidatively modified low-
ensity lipoprotein (LDL) (39,40). Immunization of rabbits
r mice with oxidized LDL attenuates atherosclerosis.
nterestingly, the antibodies elicited in mice in response to
xidized LDL also recognize a pneumococcal antigen (41).
his finding underscores the view that host defenses against

nfectious agents can overlap with inflammatory pathways
nvolved in atherogenesis. The observation that humoral
mmunity against oxidized LDL might protect against
therosclerosis has inspired therapeutic explorations of vac-
ination against oxidized LDL to mitigate this disease.

linical Translation of Inflammation Biology:
he Role of Biomarkers

ollowing on the ferment in the basic science laboratory
egarding inflammation in atherosclerosis, we have now
ntered an era of translation of inflammation biology to the
linic. The description of inflammatory pathways above
dentified several new potential therapeutic avenues. Many
xisting systemic anti-inflammatory strategies such as glu-
ocorticoids, nonsteroidal anti-inflammatory drugs, or anti-
ytokine agents exert unwanted actions that render them
ess than ideal candidates for evaluation as long-term
herapeutics for modulation of atherosclerosis. Of many
romising more specific anti-inflammatory agents in devel-
pment for atherosclerosis, none appear sufficiently vali-
ated for clinical use at present. In contrast, the use of
nflammatory biomarkers to predict risk, monitor treat-

ents, and guide therapy has shown substantial potential
or clinical applicability.
iomarkers of inflammation in risk prediction. The con-

emporary literature now contains numerous reports of the
elationship between various biomarkers of inflammation
nd prospective cardiovascular risk, in apparently well indi-
iduals as well as in patients with coronary heart disease or
eart failure. The clinical utility of a biomarker for risk
rediction depends on practicability, ease, cost, and repro-
ucibility of the measurement, and the ability to add to the

redictability of existing biomarkers such as those incorpo-
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ated in the Framingham algorithm. Many reviews have
ighlighted this fast-moving field (42). Among the many
iomarkers of inflammation proposed for diagnostic use,
yeloperoxidase, Lp-PLA2, pentraxin-3, cytokines such as

L-6, proteases such as matrix metalloproteinase-9, and
-reactive protein (CRP) measured by a highly sensitive

ssay (hsCRP) have generated considerable attention. For a
ariety of reasons, CRP has emerged as a leading biomarker
f inflammation for clinical application. In well individuals
ithout acute infections or inflammatory diseases (e.g.,

heumatoid arthritis), levels of hsCRP remain stable over
ong periods of time with a year-to-year and decade-to-
ecade variability comparable to that of cholesterol (43,44).
RP has considerable chemical stability, requires no special
recautions for sampling, and has a relatively long half-life
ithout the diurnal variation that plagues certain other
iomarkers.
More than a dozen large-scale prospective cohort studies

ndicate that hsCRP predicts incident myocardial infarc-
ion, stroke, and cardiovascular death even after full adjust-
ent for the traditional Framingham covariates (45). Un-

iased computational approaches have identified hsCRP as
marker that, along with parental history, sharpens the

redictive ability of the traditional Framingham algorithm
n women and in men (46,47). As demonstrated by the
eynolds Risk Scores, consideration of hsCRP along with
arental history can correctly reclassify many individuals
ategorized as having intermediate risk according to the
raditional Framingham criteria, a risk stratum that ac-
ounts for the majority of cardiovascular events. hsCRP may
hus serve as a useful adjunct to the Framingham index as a
ool to identify individuals at heightened risk for cardiovas-
ular events.
sCRP as a potential therapeutic goal. Practitioners rou-
inely follow certain biomarkers as a way of monitoring the
osing of cardiovascular therapeutics. We measure low-
ensity lipoprotein cholesterol (LDL-C) serially when pre-
cribing lipid-lowering agents, blood pressure in antihyper-
ensive therapy, and heart rate when titrating beta-
drenergic blocking agents. Given the body of evidence
mplicating inflammation in atherosclerosis, could an in-
ammatory biomarker such as hsCRP be used to monitor
herapy in a way that would improve clinical effectiveness? A
re-specified analysis of the PROVE IT–TIMI 22 (Prava-
tatin or Atorvastatin Evaluation and Infection Therapy–
hrombolysis In Myocardial Infarction 22) study, previ-
usly discussed in these pages, suggested dual mechanisms
f benefit of statin therapy, LDL-lowering, and a direct
nti-inflammatory effect independent of LDL-lowering,
eflected by reduction of hsCRP (48,49). Specifically, within
he PROVE IT–TIMI 22 trial, clinical outcomes were best
mong statin-treated participants who not only achieved
DL-C levels below 70 mg/dl, but who also achieved
sCRP levels below 2 mg/l (50). A post-hoc analysis of the
to Z (Aggrastat-to-Zocor) trial affirmed this “dual target”
oncept in survivors of acute coronary syndromes by show- m
ng greater benefit following statin initiation among those
ho achieved lower levels of both LDL-C and hsCRP (51).
lthough these 2 datasets support the concept of monitor-

ng hsCRP to gauge the intensity of statin therapy, existing
uidelines do not currently recommend this practice.
argeting therapy using hsCRP. Can the application of
iomarkers of inflammation identify individuals that do not
eet established treatment criteria who might nonetheless

enefit from therapeutic intervention? A post hoc analysis of
he AFCAPS/TexCAPS (Air Force/Texas Coronary Ath-
rosclerosis Prevention Study) proved hypothesis-generating in
his regard (52). Stratification of this population of individ-
als with no established cardiovascular disease into 4 cells
efined by above- and below-median LDL-C, and above-
nd below-median hsCRP showed that both groups with
igh LDL-C benefited from therapy as indicated by a
umber needed to treat (NNT) below 60. Individuals with
DL-C and hsCRP below median did not benefit from

herapy, yielding a NNT of approximately 1,000 to prevent
cardiovascular event. The provocative cell in this analysis,

he 25% of the individuals in this cohort with below-median
DL-C, but above-median hsCRP, indicated clinical
enefit indistinguishable from the 2 high LDL groups. This
bservation suggested that well individuals with average
evels of LDL-C, currently below treatment thresholds,

ight nonetheless benefit from statin therapy if they had
oncomitant elevations of hsCRP.

The recently reported JUPITER (Justification for the Use
f Statins in Prevention: an Intervention Trial Evaluating
osuvastatin) trial tested this hypothesis prospectively (53).
he JUPITER trial enrolled 17,802 individuals without
anifest cardiovascular disease, with LDL-C levels below

30 mg/dl, but with hsCRP levels �2 mg/l; all study
articipants were randomly allocated to rosuvastatin 20 mg
aily or to placebo and were then followed for incident
ascular events. On the advice of its independent data
onitoring board, the JUPITER trial was stopped early due

o a 44% reduction in the trial primary end point of all
ascular events (p � 0.00001), a 54% reduction in myocar-
ial infarction (p � 0.0002), a 48% reduction in stroke (p �
.002), a 46% reduction in the need for arterial revascular-
zation (p � 0.0001), and a 20% reduction in all-cause

ortality (Fig. 4). All pre-specified subgroups within the
rial significantly benefitted from rosuvastatin, including
hose groups traditionally considered to be at low risk such
s those with Framingham Risk Scores �10%, those with-
ut metabolic syndrome, women, and those with elevated
evels of hsCRP but no other major Adult Treatment
anel-III risk factor (Fig. 5).
The treated group in JUPITER enjoyed substantive

eductions in both absolute and relative risk. Despite ex-
luding all individuals with hyperlipidemia (LDL �130
g/dl, the actual median LDL at entry was 108 mg/dl), the

lacebo event rate in JUPITER exceeded that of AFCAPS/
exCAPS, indicating that those with a heightened inflam-

atory burden disclosed by elevated hsCRP have high
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ascular risk even when cholesterol levels lie within a range
onsidered acceptable by current guidelines. With regard to
ost-effectiveness, the commonly accepted metric of NNT
t 5 years is 25 in JUPITER for the primary study end point
nd 32 for the “hard end point” of myocardial infarction,
troke, or death (54). These NNT values compare favorably
o the 5-yr NNT values of 50 that have been reported in
rior primary prevention trials of statin therapy in the
etting of overt hyperlipidemia. They also compare very
avorably to the treatment of hypertension (5-yr NNT: 80 to
60) or to aspirin prophylaxis (5-yr NNT: 250 to 300).
re-specified analyses within the JUPITER database affirm

Figure 4 Cumulative Incidence of Cardiovascular Events in the

A shows the cumulative incidence of the primary end point (nonfatal myocardial in
or confirmed death from a cardiovascular cause). B shows the cumulative incidenc
vascular cause. C shows cumulative incidence for arterial revascularization or hos
cause. Adapted, with permission, from Ridker et al. (53).
hat maximum treatment benefit occurs with reduction of s
oth LDL-C and hsCRP (Fig. 6) (55). This finding has
linical relevance since, in JUPITER, the median on-
reatment LDL-C was only 55 mg/dl (and 25% of the trial
articipants had LDL-C �45 mg/dl), yet optimum benefits
ccrue not only when LDL-C levels reached these very low
argets, but also when hsCRP levels fell greatly.

he Future of Inflammation in Atherosclerosis

argeting inflammation in atherosclerosis: beyond statins.
s described above, a growing body of evidence supports the
se of statins as an anti-inflammatory intervention in athero-

TER Trial, According to the JUPITER Study Group

n, nonfatal stroke, arterial revascularization, hospitalization for unstable angina,
onfatal myocardial infarction, nonfatal stroke, or confirmed death from a cardio-
tion for unstable angina. D shows the cumulative incidence of death from any
JUPI

farctio
e of n
pitaliza
clerosis due to both LDL-lowering and direct anti-
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nflammatory actions. Progress in understanding the basic
iology of inflammation in atherosclerosis has identified po-
ential novel strategies for modulating inflammation in athero-
clerosis. No large-scale clinical trial has yet established that an
nti-inflammatory intervention that does not alter lipid levels

Figure 5
Effects of Rosuvastatin on the Primary Trial End
Point, According to Baseline Characteristics of the
JUPITER Cohort

Adapted, with permission, from Ridker et al. (53). ATP � Adult Treatment
Panel; BMI � body mass index; CHD � coronary heart disease; HX � history.

Placebo
LDL≥70mg/dL,hsCRP≥2 mg/L
LDL<70mg/dL,hsCRP≥2 mg/L
LDL≥70mg/dL,hsCRP<2 mg/L
LDL<70mg/dL,hsCRP<2 mg/L

7832
N Rate

1.11
1384 1.11
2921 0.62

2685 0.38
726 0.54

Figure 6 Hazard Ratios for Incident Cardiovascular Events in th
to Achieved Concentrations of LDL Cholesterol and hs

Data were adjusted for age, baseline low-density lipoprotein (LDL) and high-density
sure, sex, body mass index, smoking status, and parental history of premature co
permission, from Ridker et al. (55).
an improve cardiovascular outcomes. Although certain estab-
ished systemic anti-inflammatory therapies such as corticoste-
oids or nonsteroidal anti-inflammatory agents do not appear
romising as antiatherosclerotic interventions, other agents
arrant consideration in this regard. Clinical trials currently
nderway are exploring the potential of inhibiting lipoprotein-
ssociated phospholipase A2 as an anti-inflammatory therapy,
lthough the first hypothesis-testing trial for this agent failed to
eet either of its pre-specified primary end points (56).
arious protein therapeutic strategies such as anti-integrin or

nticytokine therapies have received consideration for thera-
eutic application. Therapeutic vaccination with lipoprotein
eptides is also being considered for clinical evaluation (57). All
f these potential direct anti-inflammatory modalities will
equire extensive clinical evaluation and direct testing in ran-
omized trials before adoption and practice.
maging of inflammation in atherosclerosis. Traditional
ardiovascular imaging has focused on anatomy. Magnetic
esonance and nuclear imaging techniques can approach as-
ects of cardiac function such as perfusion and viability. The
dentification of molecular mediators of inflammation that
perate during atherogenesis has generated considerable inter-
st in harnessing them as targets for imaging. Examples of
empting targets in this regard include adhesion molecules such
s vascular cell adhesion molecule (VCAM)-1, monocyte/
acrophage functions such as phagocytosis tracked with mi-

roparticulate markers, glucose uptake as monitored by fluoro-
eoxyglucose, microvessels identified by integrin-directed
gents, modified LDL accumulating in lesions, and proteinases
mplicated in vascular remodeling and plaque destabilization
58–61). A growing experimental literature has demonstrated
he feasibility of many of these targeted imaging strategies.
ew, if any, of these modalities appear near ready for
linical application, however. Even those currently avail-
ble, such as 18F-fluorodeoxyglucose imaging, will require
onsiderable clinical validation before adoption in clinical
ractice (62,63).
enetics of inflammation in atherosclerosis. Progress in

enetics and genomics, and enormous technical strides in

osuvastatin better

0.25 0.5 1.0 2.0 4.0 

Rosuvastatin worse

PITER Trial According
After Initiation of Rosuvastatin Therapy

otein cholesterol, baseline high-sensitivity C-reactive protein (hsCRP), blood pres-
heart disease. Event rates are per 100 person-years. p � 0.001. Adapted, with
R

e JU
CRP

lipopr
ronary
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enotyping have heightened interest in defining genetic
iomarkers of cardiovascular risk that may open new per-
pectives in personalized medicine in the future. The com-
utational analysis of various biomarkers alluded to previ-
usly identified family history of cardiovascular disease in a
arent at age �60 years along with hsCRP added to the
raditional Framingham variables in predicting cardiovascu-
ar risk (46,47). This observation suggests the importance of
enetic factors as contributors to cardiovascular risk predic-
ion not completely captured by the Framingham algorithm.

An initial wave of enthusiasm stimulated multiple studies
f individual single nucleotide polymorphisms (SNPs) or, in
more sophisticated approach, haplotypes (64). The advent
f genome-wide association screens (GWAS) has proven
uite fruitful (65,66). The concordant identification of a
egion on Chromosome 9 as associated with cardiovascular
isease in several large, independent genetic studies has
einforced future potential of genetics in identifying risk
redictors and potential therapeutic targets (65). Identifica-
ion by GWAS of “sentinel” members of pathways known
o participate in atherosclerosis enhances confidence in the
alidity of this approach, yet many questions remain unan-
wered (67). The functional genomic work required to
nravel the biological pathways revealed by GWAS will
equire considerable investigative effort in years to come.
he pursuit of genetic factors identified by GWAS should

dentify participants in inflammatory pathways that will
roaden our understanding and mastery of inflammation in
therosclerosis.

onclusions

ince our last reviews on these topics, evidence for the
nvolvement of the immune and inflammatory responses in
therogenesis has only intensified. This review has focused on
ecent advances in this area. We stand on the threshold of an
ra when clinical inflammation of inflammation biology will
rove clinically useful and transformative of clinical practice.
his example of translational medicine indicates how clinical

hallenges have inspired laboratory research that revolutionized
ur concepts of the pathogenesis of atherosclerosis over the last
decades. The rapid clinical application of these advances in

asic science to clinical cardiovascular medicine promises to
rovide important new tools for diagnosis, monitoring, and
anagement of patients with or at risk for cardiovascular

isease in the near future.
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