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Melanoma is one of the deadliest human cancers, responsible for approximately 80% of skin cancer mortalities.
The aggressiveness of melanoma is due to its capacity to proliferate and rapidly invade surrounding tissues,
leading to metastases. A recent model suggests melanoma progresses by reversibly switching between
proliferation and invasion transcriptional signatures. Recent studies show that cancer cells are more sensitive
to microRNA (miRNA) perturbation than are non-cancer cells; however, the roles of miRNAs in melanoma
plasticity remain unexplored. Here, we use the gene expression profiles of melanoma and normal melanocytes to
characterize the transcription factor–miRNA relationship that modulates the proliferative and invasive programs
of melanoma. We identified two sets of miRNAs that likely regulate these programs. Interestingly, one of the
miRNAs involved in melanoma invasion is miR-211, a known target of the master regulator microphthalmia-
associated transcription factor (MITF). We demonstrate that miR-211 contributes to melanoma adhesion by
directly targeting a gene, NUAK1. Inhibition of miR-211 increases NUAK1 expression and decreases melanoma
adhesion, whereas upregulation of miR-211 restores adhesion through NUAK1 repression. This study defines the
MITF/miR-211 axis that inhibits the invasive program by blocking adhesion. Furthermore, we have identified
NUAK1 as a potential target for the treatment of metastatic melanoma.
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INTRODUCTION
Clinical and experimental studies have shown that as
cancers progress, they sequentially acquire new traits that
enable them to disseminate to and proliferate in distant
organs. Detachment from the host stroma requires loss of

cell–cell and cell–matrix adhesive contacts, enabling the
escape of cells from the primary tumor. In addition to
surviving in the circulation, such disseminated cells must
regain their adherent capacity to enable them to colonize in
distant organs (Fidler, 2003).

Cancer types vary greatly in the kinetics of their dissemi-
nation. Malignant cutaneous melanoma is characterized by a
short relapse phase. It has been proposed that the rapid
acquisition of aggressive capabilities by these cells is related
to the inherent potential of neural-crest cells to survive
migration through different environments and tissues (Gupta
et al., 2005). Early acquisition of metastatic potential and the
increased treatment resistance of melanomas might also be the
consequence of dynamic transitions between transcriptional
programs (Pinner et al., 2009; Quintana et al., 2010),
comparable to the epithelial–mesenchymal transition
and its reverse process, mesenchymal–epithelial transition
(Scheel and Weinberg, 2011). A recent model for melanoma
progression, the ‘‘state switching’’ model, suggests that
melanoma cells have the potential to switch between
invasive and proliferative transcription signatures in response
to cellular stress and variations in the tumor microenvironment
(Hoek and Goding, 2010). This model of melanoma plasticity
can also explain clonal heterogeneity and resistance to
treatment. Still, the roles of microRNAs (miRNAs) in these
transcription signatures are largely unknown.
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miRNAs have unique roles in post-transcriptional regulation
of gene expression and are important for maintaining home-
ostasis in normal cells. Numerous studies have linked dysre-
gulated miRNA expression with tumor growth and progression
(Croce, 2009). Interestingly, cancer cells are more sensitive
to miRNA perturbations compared with normal cells. This
enhanced sensitivity is likely a result of endogenous cellular
stress and reciprocal crosstalk with the tumor microenviron-
ment (Inui et al., 2010; Mendell and Olson, 2012). As a single
miRNA can target multiple signaling pathways (Friedman
et al., 2009), perturbation of miRNA expression can lead to
substantial phenotypic outcomes, particularly in cancer cells.

To investigate the roles of miRNAs in melanoma transcrip-
tional programs, we analyzed the microarray gene expression
data of melanomas and normal human melanocytes. We
applied the hierarchical clustering algorithm and identified
two inversely correlated gene clusters: one was significantly
enriched in genes associated with melanoma invasion, and
the other was significantly enriched in genes associated with
melanoma proliferation (Hoek et al., 2008a; Widmer et al.,
2012). Gene Ontology (GO) analysis revealed that these
clusters are significantly enriched with genes involved in bio-
logical adhesion and melanocyte differentiation processes. We
identified two sets of miRNAs, each preferentially regulating
one subcluster. One of the miRNAs identified as potentially
regulating the invasive gene cluster is a lineage-specific
miRNA, miR-211. We and others have previously esta-
blished the involvement of miR-211 in inhibition of mela-
noma invasion and migration (Levy et al., 2010; Mazar et al.,
2010; Boyle et al., 2011). As the mechanism of cancer cell
invasion and dissemination involves loss of adhesive contacts
with neighboring cells, we examined the role of miR-211 in
mediating melanoma invasion through disruption of cellular
adhesion. We identified a miR-211 target, NUAK1, and
showed that miR-211 inhibits loss of adhesion via direct
regulation of this target gene. Moreover, our data suggest
that miR-211 has a key role in the microphthalmia-associated
transcription factor (MITF)-mediated phenotypic plasticity of
melanoma.

RESULTS
Identification of two inversely correlated gene clusters
corresponding to melanoma invasive and proliferative programs

Hierarchical clustering (Eisen et al., 1998) of normalized
and filtered microarray gene expression data of melanomas
(N¼ 88) (Lin et al., 2008) enabled identification of three gene
‘‘master clusters’’ (marked 1–3, Figure 1a), three melanoma
clusters (horizontal bar, top, Figure 1a) and two subclusters of
highly correlated genes (numbered 20 and 30, marked green
and red, respectively, Figure 1a). To examine further the two
subclusters, we performed an enrichment analysis of GO
annotations within these subclusters and found that biological
adhesion and melanin/pigmentation processes were the most
highly enriched (Supplementary Table S1 online). In order
to examine whether these subclusters have roles in mela-
noma progression, we computed their enrichment with inva-
sive and proliferative genes (Widmer et al., 2012) using the
hypergeometric test (Figure 1b). Interestingly, we found that

subcluster 30 (marked red, Figure 1b) was enriched with
invasive genes (P¼2.3� 10�13) but had no proliferation
genes (P¼ 1.2�10�2). In contrast, subcluster 20 (marked
green, Figure 1b) was enriched with proliferation genes
(P¼ 4.2�10�30) but had no invasive genes (P¼ 1.5�10�2)
(Figure 1b and c). We note that the data sets used to deduce
the invasive and proliferative signatures (Widmer et al., 2012)
contain largely different melanoma expression profiles than
those used in this analysis. Our data suggest that the identified
subclusters represent proliferative and invasive transcription
signatures. As a consequence, we refer to subcluster 20 as
‘‘PROL’’ for proliferation, and subcluster 30 as ‘‘INV’’ for
invasion. Next, we performed a differential expression analysis
of the ‘‘INV’’ and ‘‘PROL’’ clusters by comparing each of the
melanoma clusters (horizontal bar, Figure 1a) with normal
melanocytes (Lin et al., 2008). This analysis revealed a
reversal of the differential expression pattern between
different subsets of melanomas (Supplementary Figure S1
online). One of the ‘‘PROL’’ genes that is differentially
expressed is MITF, the ‘‘master regulator’’ of the melanocyte
lineage (Levy et al., 2006).

Melanoma transcription signatures dictate distinct sets of
miRNAs

Contrasting results suggest that MITF can act as an oncogene
in a subset of melanoma samples (Garraway et al., 2005b) or
as a suppressor of melanoma invasion and metastasis (Pinner
et al., 2009; Levy et al., 2010; Shah et al., 2010; Cheli et al.,
2011; Thurber et al., 2011). Studies show that decreased levels
of MITF are correlated with increased proliferation (Garraway
et al., 2005a, b; Carreira et al., 2006; Hoek et al., 2008a),
whereas high invasiveness is associated with reduced MITF
levels and increased expression levels of numerous
transcription factors, including ATF2 (Shah et al., 2010),
GLI2 (Alexaki et al., 2010; Javelaud et al., 2011), DEC1
(Feige et al., 2011), POU3F2/BRN2 (Pinner et al., 2009; Boyle
et al., 2011; Thurber et al., 2011), and TCF4 (Eichhoff et al.,
2011). We suggest that another way to interpret the ‘‘state
switching’’ model of melanoma progression (Hoek et al.,
2008a) is that it is a result of a double-negative feedback
loop (Alon, 2006), which can be induced by transcription
factors and/or by miRNAs (Figure 2a).

A single miRNA can potentially affect hundreds of genes,
amplifying pathways and cellular programs as well as increas-
ing tumor plasticity (Friedman et al., 2009; Inui et al., 2010;
Mendell and Olson, 2012). In order to examine the roles of
miRNAs with respect to melanoma’s transcription signatures,
we matched the gene expression profiles of melanoma
samples (Lin et al., 2008) with miRNA expression levels (see
Supplementary Information online). It has been shown that
paired miRNA–messenger RNA (mRNA) expression profiles
can be used to improve target prediction (Huang et al., 2007;
Nunez-Iglesias et al., 2010). To improve the predictions of
biologically relevant miRNA–target relations, we calculated
Pearson’s correlations between miRNAs and genes belonging
to the ‘‘INV’’ and ‘‘PROL’’ clusters (Figure 2). Our analysis
identified two distinct sets of miRNAs that may have important
roles in regulating these subclusters (Supplementary Table S2
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online). We recently generated a literature-curated list of
miRNAs that exhibit dysregulated expression in melanoma
(Bell and Levy, 2011). Intriguingly, we found that many of the
miRNAs potentially regulating the ‘‘INV’’ or ‘‘PROL’’ clusters
appear in our literature-based list. For example, copy number
loss was shown for miR-302b and miR-302c (Zhang et al.,
2006), miR-125b and miR-30e-3p are dysregulated (Leidinger
et al., 2010), miR-214, miR-218, and miR-31 are found to be
significantly associated with acral melanoma (Chan et al.,
2011), and circulating miR-221 is a marker of metastatic
melanoma (Kanemaru et al., 2011). One of the miRNAs we
identified was miR-211 (Figure 2d), which is frequently
dysregulated in melanomas (Bell and Levy, 2011), is a direct
target of MITF, and has been established as an inhibitor of
melanoma migration and invasion (Levy et al., 2010; Mazar

et al., 2010; Boyle et al., 2011). For this reason, we continued
our analysis by focusing on miR-211 and examined its
potential targets within the ‘‘INV’’ cluster, corresponding to
the invasive phenotype.

Prediction of miR-211 involvement in melanoma adhesion

In order to seek potential targets of miR-211 that may be
involved in mediating the invasive program, we examined
which of the miR-211 predicted targets were significantly
inversely correlated with miR-211 (Po0.05, false discovery
rate-corrected). We selected those that fulfill these require-
ments and belong to the ‘‘INV’’ cluster, identifying five genes:
BDNF, EFEMP2, FBN2, NUAK1, and TRAM2 (Figure 3a). One
of the cancer-related (Hanahan and Weinberg, 2011) GO
annotations pertaining to this group was ‘‘cell adhesion’’.
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Figure 1. Gene clustering identifies melanoma transcription signatures. (a) Hierarchical clustering of gene expression data of 88 melanomas (published in

Lin et al., 2008) enabled identification of gene clusters (rows, numbered 1 to 3), melanoma clusters (columns, horizontal bars), and closely related subclusters

(marked 20 and 30, green and red, respectively). (b) Relative enrichment of invasion and proliferation transcription signatures genes. Subclusters 20 and 30

(henceforth ‘‘PROL’’ and ‘‘INV’’ clusters, respectively) were tested for enrichment with invasive and proliferative genes (Widmer et al., 2012), and compared

to the background gene set. (c) Venn diagram of overlaps of invasive genes (yellow) with ‘‘INV’’ (red), and proliferative genes (cyan) with ‘‘PROL’’ (green).

No overlap exists between invasion genes and ‘‘PROL’’, nor between proliferation genes and ‘‘INV’’.
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As disruption of adhesive contacts contributes to cancer cell
motility and invasion (Fidler, 2003), we proceeded to examine
the role of miR-211 in modulation of cellular adhesion.

miR-211 modulates adhesion ability of melanomas

We previously described two types of melanoma cell lines
differing in their invasive potential and miR-211 expression
levels (Levy et al., 2010). We observed an in vitro correlation
between invasive potential and adhesion. Cell lines with
high miR-211 levels formed dense and confluent two-
dimensional monolayers that adhered to the culture plates,
whereas cell lines with lower miR-211 levels were less
adhesive (Figure 3b). To test the effects of miR-211 on
melanoma adhesion, melanoma cells with high (WM3682)
or low (WM1716) miR-211 levels were transfected either with
miR-211-specific anti-miRs (Krutzfeldt et al., 2005) or with
miR-211 mimics. Next, cells were seeded, and the amount of
adherent cells was calculated as a function of time. Inhibition
of miR-211 reduced adhesion compared with a scrambled
control (Figure 3b, left panel), whereas transfection of a miR-
211 mimic increased adhesion (Figure 3b, right panel). These

data (and Supplementary Figure S2 online) indicate that reduc-
tion in miR-211 levels diminishes melanoma adhesiveness.

miR-211 modulates NUAK1 levels

miRNAs typically repress protein-coding genes by binding to
their 30 untranslated regions (UTRs) (Bartel, 2009). We
measured the mRNA levels of potential miR-211 targets after
modulating miR-211 levels (Supplementary Figure S3a online).
One of the potential targets that was most affected by miR-211
was NUAK1. NUAK1 (also named ARK5) is an AMP-activated
protein kinase-related kinase directly phosphorylated by LKB1
downstream of the AKT pathway (Shaw et al., 2004; Suzuki
et al., 2004). It has three binding sites for miR-211 in its 30UTR
(Figure 4a). Functional studies revealed its involvement in
induction of senescence (Humbert et al., 2010), regulation of
proliferation through p53 phosphorylation (Hou et al., 2011),
promotion of cell survival (Suzuki et al., 2003), invasion and
metastasis (Suzuki et al., 2004; Chang et al., 2012), and loss of
cellular adhesion (Zagorska et al., 2010). Although NUAK1 is
overexpressed in several cancers (Chang et al., 2012), little is
known about its role in melanoma.
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In order to understand the roles of MITF, NUAK1, and
miR-211 in melanoma progression, we performed an expres-
sion analysis of normal melanocytes and melanoma tumor
samples at different phases of the disease (Smith et al., 2005).
The expression levels of MITF were assumed to be indicative
of miR-211 expression, as miR-211 is directly targeted by
MITF and is highly correlated with MITF (see Supplementary
information online). We found that MITF and NUAK1 are
inversely correlated (rho¼ � 0.55) and exhibit differential
expression across different phases of melanoma progression
(Supplementary Figure S4a online). Next, we used an in situ
approach to examine the correlation between the expression
of NUAK1 and miR-211 using 100 tumor samples at various
stages of melanomagenesis (Figure 4b, and Supplementary
Figure S4b and Supplementary Table S3 online). In situ
hybridization was used to detect miR-211 expression, and
immunohistochemistry was used to detect NUAK1 expression.
Double-blind analysis of miR-211 and NUAK1 signal inten-
sities across the tissue samples (Supplementary Table S3

and Figure S4b online) revealed an inverse correlation (P¼ 3.0
� 10�3), suggesting an inhibitory relationship.

To determine whether NUAK1 is biologically regulated by
miR-211, we modulated miR-211 levels in melanomas with
high (WM3682, WM3526, and 451LU) or low (WM1745 and
WM1716) miR-211 levels and examined the effects on
NUAK1 protein (Figure 4c) and mRNA levels (Supplemen-
tary Figure S4c online). Transfection of miR-211 mimic led to
a two- to fourfold decrease in NUAK1 protein levels in all cell
lines, indicating that miR-211 can modulate NUAK1 levels.
Transfection of WM3526, WM3682, and 451LU with miR-
211-specific anti-miRs led to a robust reduction in miR-211
levels, yet only a modest increase in NUAK1 protein levels.
These findings indicate that additional factors and mechan-
isms may be involved in regulating NUAK1 protein levels.
Nonetheless, we found that miR-211 expression had a strong
effect on cellular NUAK1 levels.

To determine whether NUAK1 is a direct target of miR-211,
we transfected luciferase-expressing constructs containing
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Figure 3. Prediction of miR-211 involvement in melanoma adhesion. (a) A Venn diagram depicting the process of predicting miR-211 involvement in

adhesion. We derived a list of five potential targets from the overlap of (i) miR-211 predicted targets (http://www.targetscan.org), (ii) the ‘‘INV’’ cluster, and

(iii) genes significantly inversely correlated with miR-211 calculated from the paired microRNA (miRNA)-messenger RNA (mRNA) expression profiles (Figure 2c).

Gene Ontology (GO) annotations (Ashburner et al., 2000) of these targets reveal ‘‘cell adhesion’’ as one of the cancer-promoting phenotypes (Hanahan

and Weinberg, 2011). (b) miR-211 mediates melanoma adhesion capacity. Melanoma cells with low miR-211 expression (WM1716) or with high miR-211

levels (WM3682) were transfected as indicated. Forty-eight hours post transfection, cells were subjected to cell detachment analysis. Graphs represent

mean±SD of three replicates of adhering cells over time. Ctrl, control.
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NUAK1 30UTR with the wild-type or seed mutant predicted
miR-211 binding site into HeLa cells (which lack endogenous
miR-211) with or without a miR-211 mimic. Our data
demonstrate that NUAK1 is a direct target of miR-211
(Figure 4d). Finally, we examined whether miR-211 can target
NUAK1 in the endogenous context of the MITF signaling
pathway. Cells with high (WM3682 and 451LU) or low
(WM1716 and WM3314) endogenous MITF levels were
transfected with an MITF-specific siRNA or a cDNA construct
overexpressing MITF, respectively (Figure 4e). MITF knock-
down decreased miR-211 levels and increased NUAK1 levels.
MITF overexpression increased miR-211 levels and decreased
NUAK1 levels. Our data suggest that NUAK1 is a downstream
target of MITF via miR-211.

miR-211 modulates melanoma cellular adhesion by directly
targeting NUAK1

To date, no established role of NUAK1 in melanomagenesis
has been described. We show that miR-211 perturbation

affects melanoma adhesion (Figure 3). GO annotations of
miR-211 targets (Figure 3a) reveal their involvement in cell
adhesion. The extent of melanoma adhesion following modu-
lation of miR-211 or NUAK1 levels (Figure 5 and Supplemen-
tary Figure S5 online) and treatment with EDTA-containing
buffer was evaluated. We modulated miR-211 and NUAK1
levels in EDTA-treated melanoma cell lines and measured the
relative change in cell area using real-time video microscopy
(Figure 5a, and Supplementary Figure S5a and Movies
online). Cell area shrinkage was attributed to loss of adhesive
contacts with the surface. Melanoma cells were transfected
with NUAK1 cDNA, NUAK1 siRNA, miR-211-specific
anti-miR, miR-211 mimic, or appropriate controls (Renilla
luciferase cDNA, control siRNA, scrambled anti-miR, or
scrambled miRNA), followed by EDTA treatment. Significant
changes in cell area were observed (Figure 5a). NUAK1
overexpression and miR-211 downregulation resulted in signi-
ficant cell area shrinkage (left panel, WM3682). Knock-
down of NUAK1 and miR-211 overexpression resulted in a
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significant suppression of cell area shrinkage (right panel,
WM3314). Our data show that downregulation of NUAK1
enhances adhesiveness, while NUAK1 overexpression
reduces cell adhesion, indicating disruption of adhesive
contacts (Figure 5a, and Supplementary Figure S5a and
Movies online).

In order to confirm a direct link between MITF, miR-211,
and NUAK1 in regulating melanoma adhesion, we performed
a number of rescue experiments (Figure 5c and d). In
WM3682 melanoma cell lines, MITF knockdown decreased
the number of adherent cells, which was reversed upon
overexpression of miR-211 (Figure 5c). These experiments
demonstrate that the modification of melanoma adhesion by
MITF is dependent on miR-211 regulation. We then verified
that the effect of miR-211 on adhesion was mainly due to the
regulation of NUAK1. Towards this aim, miR-211 was
inhibited using an anti-miR in WM3682 melanoma cells.
Under these conditions, adhesion was decreased significantly
compared with control, which was rescued upon NUAK1
knockdown (Figure 5d). These experiments demonstrate that
the modification of melanoma adhesion by miR-211 is depen-
dent on NUAK1 regulation.

To study further the effect of NUAK1 and miR-211 on mela-
noma adhesion, we examined the response of the acto-
myosin cytoskeleton during detachment. Three days after
modulation of miR-211 or NUAK1 levels, melanoma cells

treated with EDTA showed morphological changes from
an elongated to a rounded structure. Loss of stress fibers
and the formation of an actomyosin ‘‘contractile ring’’ at
the cell periphery containing polymerized actin were also
observed (Figure 5b). Reduction in NUAK1 levels suppressed
formation of the rounded cells. Increased NUAK1 levels
induced formation of round cells, indicating decreased
adhesiveness. miR-211 overexpression increased cell adhe-
sion, indicated by an increase in phalloidin-stained F-actin
stress fibers. We and others previously established the role of
miR-211 in inhibition of melanoma migration and invasion
(Levy et al., 2010; Mazar et al., 2010; Boyle et al., 2011). Here
we provide evidence that miR-211 regulates melanoma
adhesion by directly targeting NUAK1. We also show that
melanoma invasion is inhibited upon reduction of NUAK1
levels (Supplementary Figure S5c and d online). Our study
thus places miR-211 as a central regulator of melanoma
invasion.

BX795 is a potent protein kinase inhibitor that has been
shown to inhibit the PDK1/Akt pathway (Feldman et al.,
2005), TBK1 and IKKepsilon (Clark et al., 2009), and the
LKB1/NUAK1 pathway (Zagorska et al., 2010). Consistent
with the inhibitory effect of BX795 on NUAK1, we treated
melanoma cells with low miR-211 levels (WM1716 and
WM3314) with BX795. This treatment led to visible changes
in the cell morphology from spindle-shaped cells to rounded
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Figure 5. miR-211 modulates melanoma cellular adhesion via NUAK1. (a) WM3682 and WM3314 melanomas were transfected as indicated followed by

EDTA treatment, and recorded with real-time video microscopy for 1 min (see Supplementary Movies). Two movies were analyzed in each assay. Graphs

quantify relative cell area changes (mean±SD). (b) WM3682 and WM3314 melanomas were grown on glass cover slips and transfected as indicated. Forty-eight

hours post transfection, cells were fixed immediately after aspiration of the media and phosphate-buffered saline (PBS) wash or after incubation with 1 mM

EDTA buffer for 1 min. Cells were stained with phalloidin (red) and DAPI (blue). Three sets of cells were analyzed, and representative images are shown.

Bar¼10mm. (c) and (d) represent results of rescue experiments of melanoma cells transfected as indicated and subjected to adhesion assay. cDNA,

complementary DNA; Ctrl, control.
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cells with many plasma membrane protrusions (Supplemen-
tary Figure S6a and b online). Similar to the effect of miR-211
or siNUAK1, BX795 increases cell adhesion (Supplementary
Figure S6b online) and reduces cell invasion (Supplementary
Figure S6c and d online). BX795 and its analogs have
previously been shown to have anticancer effects (Feldman
et al., 2005). Our results support these findings by showing
that in melanoma cells BX795 significantly reduces invasion
and loss of cell adhesion (Po0.05).

DISCUSSION
In addition to the ‘‘clonal evolution’’ (Nowell, 1976) and
‘‘cancer stem cell’’ models of cancer propagation (Al-Hajj
et al., 2003; Clarke et al., 2006; Dalerba et al., 2007), the
‘‘phenotypic plasticity’’ model (also named the ‘‘intercon-
version model’’) has been recently proposed based on
observations of cancer cell plasticity (Quintana et al., 2010).
This model underscores the capacity of cancer clones to
undergo reversible changes giving rise to tumor heterogeneity
(Hoek and Goding, 2010; Bell and Levy, 2011; Gupta et al.,
2011; Scheel and Weinberg, 2011). A similar model, the
‘‘state switching’’ model, describes melanoma progression
via two transcriptional signatures corresponding to the proli-
ferative or invasive potential (Hoek et al., 2008a; Hoek and
Goding, 2010). This model can be explained by a positive
feedback loop (e.g., double-negative feedback), in which
activation of one program suppresses the other (Alon, 2006).
Suppression can be achieved via transcription factors and/or
miRNAs (Figure 2a). Still, little is known about the roles of
miRNAs in melanoma plasticity or about their cooperation
with the transcription factors in co-regulating these transitions.
Using microarray gene expression analysis of melanoma and
normal melanocytes, we identified two inversely correlated
gene clusters, which correspond to two transcription signa-
tures of melanoma invasion and proliferation (Figure 1).
Subsequently, we identified distinct sets of miRNAs that can
preferentially mediate each of these signatures (Figure 2d).
Our data provide additional understanding of these phenoty-
pic states and suggest that melanoma invasion is mediated by
miRNAs as well.

We and others have previously shown that miR-211 and
MITF together have important roles in melanoma invasion and
migration (Levy et al., 2010; Mazar et al., 2010; Boyle et al.,
2011). As discussed above, the transition between an invasive
and proliferative state involves the reduction or increase of
MITF expression, respectively. Bioinformatic exploration of
the networks of miRNAs and their targets reveals that miRNAs
commonly cooperate with transcription factors in regulating
large sets of target genes (Shalgi et al., 2007). Our data suggest
that miR-211 is a key player in the MITF-mediated inhibition
of melanoma invasion (Figures 3 and 4e, and Supplementary
Figure S2 and Supplementary Figure S4 online). Our data
further show that miR-211-mediated suppression of
NUAK1 increases melanoma adhesion and reduces invasion
(Figure 5, and Supplementary Figures S2–S5, and Movies
online), whereas miR-211 depletion promotes morphologi-
cal changes and loss of adhesion as a result of de-repression
of NUAK1. Additionally, we show that a protein kinase

inhibitor of NUAK1, BX795 (Feldman et al., 2005), leads to
similar morphological effects and inhibits invasion and loss
of melanoma adhesion. We demonstrate that MITF and
miR-211 work together to inhibit these programs. MITF
regulates many cellular programs in melanoma, including
replication, genomic stability, mitosis, and senescence
(Hoek et al., 2008b; Strub et al., 2011). It would be
interesting to explore additional programs that MITF
orchestrates together with the miRNAs that it directly
regulates.

miR-211 inhibits melanoma invasion by targeting multiple
genes, such as KCNMA1, TGFB2R, NFAT5, and POU3F2/
BRN2 (Levy et al., 2010; Mazar et al., 2010; Boyle et al.,
2011; Zbytek et al., 2012). Here, we show that miR-211
regulates melanoma adhesion. Clearly, a number of genes are
expected to contribute to this phenotype. Indeed, a number of
predicted direct targets were identified. In this study, we
focused on one gene, NUAK1, which is at least partially
regulated by miR-211 and whose levels are reduced with
miR-211 overexpression. We showed that NUAK1 is a direct
target of miR-211 and that NUAK1 is involved in mediating
the effect of reduced miR-211 levels, as NUAK1 knockdown
phenocopies transfection of the miR-211 mimic. Still, many
other genes directly or indirectly targeted by miR-211 may
affect melanoma invasiveness and adhesion. Additionally,
there may be other factors affecting NUAK1 expression in
cancers that are independent of miR-211. For example, the
MAF family leads to upregulation of NUAK1 in malignant
multiple myeloma and colorectal cancers (Kusakai et al.,
2004; Suzuki et al., 2005), while BRAF negatively regulates
LKB1 phosphorylation of NUAK1, promoting melanoma
proliferation (Zheng et al., 2009).

Recent studies have shown that cancer cells are more
sensitive than non-tumor cells to miRNA regulation (Inui
et al., 2010; Mendell and Olson, 2012). In addition to their
long half-lives, one of the major advantages of using miRNAs
as a strategy for anti-cancer therapy is that a single miRNA can
target multiple pathways and even revert diseased phenotypes.
Therefore, therapeutic manipulation of a single miRNA offers
promise for drug-resistant malignancies or for enhancing
responsiveness to standard cancer strategies (Kasinski and
Slack, 2011). miR-211 is an intronic miRNA, hosted within
a protein coding gene, melastatin (Levy et al., 2010). Similar to
its host gene, miR-211 demonstrates highly restricted expres-
sion and is detected primarily in the melanocyte lineage.
Our data demonstrate that high expression levels of miR-211
correlate with decreased invasiveness and agree with
previously published mRNA expression profiles (Hoek et al.,
2008a; Levy et al., 2010). In this respect, low miR-211
expression could be a marker for invasive melanomas;
moreover, miRNA expression profiles may be used as a
molecular taxonomy of cancers (Lu et al., 2005) that can
serve to identify cancer origin (Rosenfeld et al., 2008). The
absence of miR-211 expression in known cases of melanoma
might signify the presence of invasive melanoma cells. Our
data suggest that miR-211 may be useful for differential
diagnosis and detection of particular melanoma variants
with metastatic potential. Given its crucial roles in
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melanoma adhesion and invasion, miR-211 may be an
excellent therapeutic target.

MATERIALS AND METHODS
Microarray expression data

In silico analyses were performed using published melanoma

and normal melanocyte microarray expression profiles (Lin et al.,

2008). miRNA expression was derived for eleven melanoma cell lines

and matched to samples within the gene expression data. Gene

expression profiles of different phases of melanoma progression were

downloaded from the GEO database (GSE4587) (Smith et al., 2005).

Detailed methods are described in Supplementary Information online.

Statistical analysis
Statistical calculations of differential expression and microscopy

real-time analyses were performed using two-tailed Student’s t-test.

The hypergeometric test was used to perform enrichment analyses.

Cell culture, invasion, migration, and adhesion assays and
real-time microscopy analysis

Melanoma cells were selected and subjected to matrigel invasion

assay (BD Biosciences, San Jose, CA) as described (Levy et al., 2010).

Cell attachment and detachment analyses were based on the mea-

surement of adherent cells at the indicated time points, normalized to

t¼ 0. Detailed methods are described in Supplementary Information

online.

In situ hybridization

Tissue microarray slides including 100 specimens (US Biomax) were

deparaffinized using EZ-prep solution (Ventana Medical Systems,

Tucson, AZ), fixed with 10% PFA (37 1C for 20 min), digested with

proteinase K (20mg/ml; 37 1C for 10 min; Roche, Indianapolis, IN),

then denatured (70 1C for 10 min). Next, the probe was added to the

slides diluted in RiboHybe Reagent (Ventana Medical Systems) and

allowed to hybridize at 53 1C for 6 h. Slides were washed twice with

2� SSC at 73 1C for 6 min followed by the use of Ventana bluemap

kit according to the manufacturer’s instructions. After development,

slides were counterstained with nuclear fast red solution. Probes were

DIG-labeled locked nucleic acid-based oligonucleotides specific for

miR-211 (Exiqon, Vedbaek Denmark). Signal intensity in tissue

samples was divided into three categories: low (0 and 1), medium

(2), and high (3) (Supplementary Table S3 online). Expression of miR-

211 and NUAK1 is significantly inversely correlated (Wilcoxon paired

two-sided signed rank test P¼ 3.0� 10� 3).

Oligonucleotide transfection
miRNAs (miR-211 mimic, anti-miR-211, and control scrambled-

miRNA), oligonucleotides (Invitrogen, Grand Island, NY), or siRNAs

(si-NUAK1 and control scrambled-siRNA) were transfected using

HiPerFect (Qiagen, Hilden, Germany) according to the manufacturer’s

instructions. Cells were transfected twice with 20 pmol miRNA mimic

or 200 pmol anti-miR per well (0.5� 106 cells) at 24-h intervals. Cells

were used for the experiments 48 h after the second transfection.

RNA purification and quantitative real-time
reverse-transcriptase–PCR

Forty-eight hours post transfection, total RNA was harvested

using Trizol reagent (Invitrogen) according to the manufacturer’s

instructions. Quantitative real-time reverse-transcriptase–PCR results

were normalized to actin. Results are the average of three indepen-

dent experiments. Supplementary Table S4 online lists the primer

sequences used. Additional detailed methods are described in

Supplementary Information online.

Gel electrophoresis and immunoblotting

Forty-eight hours post transfection, total protein of melanoma cells

was harvested and analyzed by western blot as detailed in

Supplementary information online.

Luciferase assay
Cells were first transfected with miRNA as described, followed

by transfection with appropriate plasmids. Forty-eight hours later,

the cells were subjected to luciferase assay (Promega, Madison, WI).

Renilla luciferase levels were used for normalization.

Plasmids

Luciferase-NUAK1 30UTR was cloned into pcDNA 3.1 containing

FireFly luciferase (Addgene plasmid 1265). Six CXCR4 sites were cut

out with Xho1 and EcoRV and replaced by NUAK1 30UTR.
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