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Let X be a Suslin-Bore1 set in a compact space. It is proved that X is either c-scattered or 

contains a compact perfect set. If X is first countable, the result remains valid when X is a 

Suslin-Bore1 set in a Prohorov space. It is also proved that every first countable Prohorov space 

is a Baire space. 
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0. Introduction 

As it is well known, every analytic subset X of a Polish (separable complete 

metric) space is either countable or contains a copy of the Cantor set [12, p. 4791. 

This theorem has been generalized (with ‘a-discrete’ replacing ‘countable’) to Bore1 

and Suslin subsets of arbitrary complete metric spaces ([18] and [2], respectively). 

Further, completeness can be replaced by the Prohorov property [lo], a measure- 

theoretic property enjoyed by complete metric spaces. 

In this paper we generalize the above results when X is a Suslin-Bore1 subset of 

a tech-complete space or a first countable Suslin-Bore1 subset of a Prohorov space. 

Here the conclusion states that X is either u-scattered or contains a compact perfect 

set. This is proved in Theorems 3.1 and 4.2 in view of the remarks of Section 2. 

From Theorem 4.2 we deduce that the Sorgenfrey line is not Prohorov, answering 

a question of Mosiman and Wheeler ([13] and [22]). It is also proved that every 

first countable Prohorov space is a Baire space (Theorem 4.4). Other results concern- 

ing the Prohorov property for first countable spaces are proved in Theorems 5.6 

and 5.7. 

I would like to thank Professor D.H. Fremlin for providing a copy of [4]. 
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1. Preliminaries 

Throughout this paper all topological spaces are assumed to be regular and 

Hausdorff. A non-negative Bore1 measure p on a space X is called (a) mzdditiue 

if for every increasing net {G,} of open sets in X, lim, p(G,) = P(IJ~ G,), and (b) 

Radon (or light) if p is inner regular with respect to compact sets. It is well known 

that every Radon measure is r-additive and that every r-additive measure is regular 

with respect to closed sets. 

The support S(p) of a r-additive measure p on X is defined by 

S(p)=n{F: F closed in X, p(F)=p(X)) 

and is the least closed subset of X with full measure. If p vanishes on singletons, 

S(p) is dense in itself. 

A space X is called scattered if no nonempty subset of X is dense in itself. It is 

called a-scattered if it is a countable union of scattered subsets. A nonempty, 

closed, dense in itself subset of X is called perfect. We have that X contains a 

compact perfect set if and only if X admits a non-zero Radon measure, vanishing 

on singletons, i.e. non-atomic ([8] and [17]). 

We denote by M:(X) the space of non-negative Radon measures on X, endowed 

with the weak topology. That is, for a net {pL,} in M:(X), pu, + p if and only if 

jfd/*,+lfdp f or all bounded continuous real-valued functions f on X. We say 

that X is a Prohorou space if every compact set H in M:(X) is uniformly tight, 

that is, for every E>O there exists a compact set K in X such that p(X\K)< F 

for all /* E H. 

Concerning the Prohorov property, one of our main tools will be the deep result 

of Preiss [15] that the space of rational numbers is not Prohorov. We shall also use 

the fact that the Prohorov property is preserved by countable products, countable 

intersections, closed subspaces and open subspaces (see [13] and [20]). Since every 

compact space is trivially Prohorov, it follows that every tech-complete space (i.e. 

homeomorphic to a G,-subspace of a compact space) is Prohorov. The class of 

tech-complete spaces has the above stability properties of Prohorov spaces (see [3, 

Section 3.91). 

We are primarily concerned with the following classes of spaces: 

Definition (i) A completely regular space X is called i’ech-analytic if there exists a 

Tech-complete space R c X x N” such that X=v,(R), where rr,:XxNN+X 

denotes the projection. 

(ii) A space X is called Prohorov-analytic if there exists a Prohorov space 

R c X xN” such that X = rr,( R). 

Tech-analytic spaces were introduced by Fremlin in [4] in an equivalent form as 

a common generalization of K-analytic spaces and absolutely analytic metric spaces. 
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2. Suslin-Bore1 sets 

In this section we show that a wide class of subsets of a tech-complete (resp. 

Prohorov) space consists of tech-analytic (resp. Prohorov-analytic) spaces. 

For every u E N” and n EN, let CTI n = (u(l), a(2), . . . , u(n)) and set NC”‘= 

{(T 1 n : CT E N”, n E N}. A subset A of a topological space X is called St&in- Borel if 

A is expressible as 

where each A,,,, is a Bore1 set in X. If the sets A,i, can be chosen to be closed, A 

is called a Suslin set. When X is metrizable, every Suslin-Bore1 set is Suslin. 

If a subset A of a space X is the intersection of a closed with an open set, A is 

called a D-set. A countable intersection (resp. countable union) of D-sets is called 

a Da-set (resp. DC-set). 

The next proposition follows from the arguments of the proof of Theorem 4(b) 

in [4] and we sketch the proof for completeness. 

Proposition 2.1. A subset A of a topological space X is S&in-Bore1 if and only if 

there exists a Da-subset R of X xN” such that A = rr,( R). 

Proof. The ‘if’ part follows from the fact that for every Bore1 set R c X xN”, v,(R) 

is Suslin-Bore1 in X (cf. [16, Theorem 2.6.51). 

If A is open or closed in X, then A = T,(R), where R = A x (0) (for any (Y EN”) 

is D8 in X xN”. Now let A be as in (*) above, where for every s E FU@!), A, = T,( R,) 

for some D,-set R, c X xNN. Then A = T,(R), where R is the subset of X xN” x 

(N”)“‘“’ given by 

R = f? 1(x, a, (Pm)rrmw (x, Pain) E Ra1.1. 
n=, 

Finally, we see that R is a D,-set and as N” x (NN)N(N’ is homeomorphic to N”, this 

completes the proof. 0 

Remarks. As every D,-subspace of a Prohorov space is Prohorov, it follows from 

Proposition 2.1 that every Suslin-Bore1 set in a Prohorov space is Prohorov-analytic. 

For subsets of tech-complete spaces we have an equivalence: a subset of a 

Tech-complete space is tech-analytic if and only if it is Suslin-Bore1 [4, Theorem 

51. The ‘only if’ part follows from the fact that every tech-complete subspace of a 

completely regular space is a Da-subset, being Gs in its closure (see [3, Exercise 

3.9.A]). Thus, eech-analytic spaces are those completely regular spaces that are 

Suslin-Bore1 in some (or any) of their compactifications. 
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3. tech-analytic spaces 

In this section we prove: 

Theorem 3.1. For a i’ech-analytic space X, exactly one of the following alternatives 

holds: either (i) X is u-scattered, or (ii) X contains a compact perfect set. 

For the proof of Theorem 3.1 we shall need some lemmas; Lemmas 3.2, 3.3 and 

3.4 are concerned with u-scattered spaces; Lemma 3.5 is based on the Baire category 

method for the space of Radon measures used in [ 14, Theorem 6.11 and [8, Theorem 

11. 

Lemma 3.2. If X is a a-scattered space, then X does not contain any compact perfect 

set. 

Proof. Suppose that X = lJy=, X,,, where each X, is scattered, and that X contains 

a compact perfect set. Then there is a non-zero Radon measure p on X vanishing 

on singletons. Fix an n such that p*(X,,) > 0. Then p* induces a non-zero T-additive 

measure v on X,,, vanishing on singletons. But the support of v, as a dense in itself 

subset of X,,, is empty and so v = 0, a contradiction. 0 

Lemma 3.3. Let (X, 3) be a topological space, % a countable family of subsets of X 

and @ the topology on X generated by 9 and %. Zf (X, 9) is scattered then (X, .T) 

is u-scattered. 

Proof. Consider the sets G, and Fe given by: 

(i) G,=0, F,=X; 

(ii) G,,, = {x E F,: x is ?-isolated in F,}, Fe,, = F,\G,,,; and 

(iii) Gc = 0 and Fe = n c<5 F, for limit ordinals [> 0. 

Since (X, @) is scattered, there is an ordinal K such that F, = 0, so X = UcSK G, 

Clearly we can assume that % is closed under finite intersections. Let % = 

{C,:n=1,2 ,._. }anddefineG~,,n,for&~~andn=l,2 ,..., by: 

(a) G5+i,” = {x E F(: there exists a Y-open set V such that V n C, n Fe = {x}}; and 

(b) Gc,” = 0 if 5 is limit. 

Then we have G, = lJy==, GS,n and Gf+,,, c C,, n Fe. Finally, we set X, = Ups, Gcsn 

for n = 1, 2, . . . and we observe that X,, c C, and X = l-l:=, X,. 

We claim that if x E G5,n then x is Y-isolated in lJpa5 GP,,. If this holds then 

each X,, is T-scattered (because X,, = lJEsx G,,) and so (X, 9) is a-scattered. To 

prove the claim, assume that x E G,,, so that 5 = 5 + 1 and there is a Y-open set V 

such that Vn C,, n Fc = {x}. Since x E X, c C,, we have Vn X,, n Fc = {x}, that is, 

x is Y-isolated in X,, n Fe Since X,, n Fs ~Upzg G,,,, x is Y-isolated in 

UPa5 Gp.,. 0 
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Lemma 3.4. If R c X x N” is u-scattered, then T,(R) is u-scattered. 

Proof. Clearly, we can assume that R is scattered. Moreover, since for every x E X, 

R,={(YE@ (x,LY)ER) 

is countable, as a scattered subset of l@“, we can also assume that each R, is at most 

a singleton. Thus, there is a function f: n,(R) + NN such that R = Gr(f), the graph 

off: 

Now let %’ be a countable base for the topology of @ and set Ce = {,j’( B): B E 33). 

If y denotes the relative topology of T,(R) and 5? the topology on nl( R) generated 

by y and %, then (r,(R), .?) is homeomorphic to R and so is scattered. It now 

follows from Lemma 3.3 that T,(R) is c-scattered. 0 

For the next lemma we shall use the following notation. Given a family % of 

subsets of a space Y we denote by K( g, Y) the largest subset 2 of Y with the 

property that no nonempty open set in 2 is contained in any member of E’; K( 8, Y) 

is closed in Y and is called the ‘non-locally 25 kernel of Y’ (see [18, Theorem l] 

for the existence of this kernel). 

If j: Y --1 X is a continuous function and TV is a Bore1 measure on Y, we denote 

by f(p) the image measure on X defined by f(,p)( B) = ~(f-‘( B)) for all Bore1 sets 

B in X. 

Lemma 3.5. Let Y be a tech-complete space, f: Y --z X a continuous function and set 

Z? = {f-‘({x}): x E X]. Then the following are equivalent: 

(i) K(%, Ylf0; 
(ii) there exists a compact perfect set K c Y and a Radon probability measure p 

onKsuchthatS(~)=Kand~(EnK)=OforallEE%. 

Proof. (ii)=+(i). It is obvious that K c K( 8, Y), so K( Z, Y) f 0. 

(i)-(ii). Without loss of generality we assume that K( 2?, Y) = Y. (Otherwise, 

consider the restriction off to K (25, Y) which is tech-complete as a closed subset 

of Y.) 

For every F > 0 we set 

C, = {p E M:( Y): p(E) 2 F for some E E g}. 

We show that each C, is closed and has empty interior in M:(Y). 

Let {P,},~.~ be a net in C, with pL, + I_L E M:( Y). For every Q E ~4, choose E, E 8 

with pL,(E,) 2 F and set 

F=nae.r~ U Ep. 
p=a 

If (Y 2 y, then 
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So, by [21, Part II, Theorem 21, 

for every y. By the r-additivity of p, it follows that p(F) 2 E. So there exists some 

x ef(F). Also, by the definition of 8, each f(Ea) is a singleton, say f(Ea) = {x0}. 

We claim that there is a subnet {~a}~,~ of {x~}~~.~ converging to x. Indeed, if V 

is an open neighborhood of x then S-‘(V) n F # 0 and f-‘(V) is open. Thus, for 

every (Y E & there exists /3 2 (Y such that f-‘( V) n Ep # 0, that is, x0 E V. This proves 

the claim. 

Now, let K be a closed neighborhood of x. We have that x0 E K for large enough 

P and sof(~~~)(K) af(pp)({xp]) = pLp(Ep) 2 s. Since the net {f(l*O)lpt~ converges 

to f(p), f(p)(K)> limp supf&)(K) z E. By the regularity of f(p), it follows 

that f(p)({x)) a s. Thus, ~(f-‘((x1)) 2 E and we have shown that C, is closed in 

M:(Y). 
We now show that the interior of C, is empty. Let p = Cy=, c$,,, where S,,, denotes 

the Dirac measure at y, E Y, ci 2 0 and n E kJ. Since the set of all measures of this 

form is dense in M:(X) (see [21, Part II, Theorem lo]) it suffices to show that p 

is in the closure of M:( Y)\C,. If U is a nonempty open set in Y, then U meets 

uncountably many members of Z?, because K (25, Y) = Y, as a eech-complete space, 

is a Baire space (see [3, Theorem 3.9.31). Thus, for every open neighborhood U, of 

y, we can distribute the mass ci among points of Ui belonging to distinct elements 

of ‘8 such that no point has mass >s/2n. Let pU, be the resulting measure. It is 

easy to see that CL”, + ciSy,, for i = 1,. . . , n, where the family of the neighborhoods 

Ui of yi is directed in the obvious way. Therefore, p is the limit of a net of measures 

in M:( Y)\C, and we have shown that C, has empty interior. 

By the above, the set (0) u lJZ=i C,,,, is of the first category in M:(Y). Since Y 

is eech-complete, so is M:(Y) (cf. [21, Part II, Theorem 171) and by the Baire 

Category Theorem for M:(Y) there exists a nonzero measure VE 

M:( Y)\UZ=, G/II. Then V(E) = 0 for all E E 8. Choose a compact set K in Y such 

that v(K) > 0 and K is the support of the restriction ~1~ of v to the Bore1 sets in 

K. It is clear that K and p = (l/v(K)) vlK have the desired properties. 0 

Proof of Theorem 3.1. By Lemma 3.2, (i) and (ii) cannot hold simultaneously. So 

we prove only that l(i) implies (ii). 

Let R be a Tech-complete subspace of X xN” such that X = rr,( R). We set 

f= 7r,lR: R + X, 8 = {f-‘({x}): x E X} and choose a subset U of X xN” containing 

exactly one point from each member of 8. As rr,( U) = X and X is not c-scattered, 

it follows from Lemma 3.4 that U is not scattered. Thus, K( 8, R) # 0 and by Lemma 

3.5 there exists a compact set K c R and a probability Radon measure p on K such 

thatS(~)=Kand~(KnE)=OforallEE~.SettingL=~,(K)andv=(rrllK)(~), 

we have that v is a probability Radon measure on L, vanishing on singletons, such 

that S(V) = L. Thus, L is a compact perfect subset of X. 0 
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4. Prohorov-analytic spaces 

We shall prove that the analogue of Theorem 3.1 holds for first countable 

Prohorov-analytic spaces. The proof is similar except that Lemma 3.5 is replaced 

by the next lemma which is based on an idea using Preiss’ Theorem and contained 

in [lo]. 

Given a family Z? of subsets of a space X, we say that a set 2 c X is Z-discrete 

if for every x E 2 there exists E E 8 such that {x} = E n 2. 

Lemma 4.1. Let X be a first countable Prohorov space and E a partition of X into 

D-sets. Then the following are equivalent: 

(i) K(%XX)ZO; 
(ii) there exists an ‘Z-discrete set Q such that Q is homeomorphic to the rational 

numbers and cl,(Q) is a compact perfect set. 

Proof. (ii)*(i) is trivia1 because Qc K( %Y, X). 

(i)a(ii). Let {V:, n = 1,2, . . . } be a decreasing neighborhood base for each x E X. 

Without loss of generality we assume that K( Z$ X) = X. (Otherwise, consider 2 = 

K( 8, X) and .Y?” = (2 n E: E E ZT} which is a partition of 2 to D-sets such that 

K(& 2) = Z.) If E E ZT, then int(E) = (21 and E = F n G, where F is closed and G 

is open in X. Therefore, int( F) n G = 0 and so F n G c F\int( F). This implies that 

every E E ii%‘, and therefore every finite union of members of 8, is nowhere dense. 

Using this fact we can easily construct by induction points x(s) E X for every s E hJCN) 

such that the set P of all x(s) is g-discrete and x(s, n) E V:,,,\{x(s)}, where (s, n) = 

(s,, s2, . . . , s,, n) ifs = (sr, s2,. . . , s,) and n EN. It is clear that P is countable dense 

in itself and metrizable, so by a well-known theorem of Sierpinski (see [ 12, p. 2871) 

P is homeomorphic to the rationals. 

By Preiss’ Theorem [15], P is not Prohorov and so there is a compact set H of 

probability measures in M:(P) such that H is not uniformly tight. Fix an F > 0 

such that for every compact set K c P there is Al. E H with p(K) s 1 -E. Now we 

consider H as a compact set of Radon measures on the Prohorov space X. Thus 

we find a compact set L c X such that p (P n L) > 1 - e/2 for all p E H. 

To complete the proof it is enough to show that Pn L contains a copy Q of the 

rationals. Suppose that this is false. Then P n L is a countable scattered metrizable 

space and so a Polish space. Since the set (~1 ,,nL: p E H} is relatively compact in 

M:(P n L) (see [20, Lemma 5.1]), by the Prohorov property of Pn L, there exists 

a compact set K c Pn L such that p(Pn L\K) < F/2 for all p E H. But then 

p(K) > 1 - E for all p E H, contradicting the choice of F and completing the 

proof. 0 

Theorem 4.2. For a first countable Prohorov-analytic space X, exactly one of the 

following alternatives holds: either (i) X is u-scattered, or (ii) X contains a compact 

perfect set. 
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Proof. As in Theorem 3.1 we prove only that l(i) implies (ii). Let R be a Prohorov 

subspace of X xNN such that X = n,(R) and set % = {R,: x E X}. As X is not 

v-scattered, by the arguments used in Theorem 3.1, we see that K(E, R) ZO. 

Applying Lemma 4.1, we find an g-discrete set Q homeomorphic to the rationals 

such that clR( Q) is compact and perfect. Setting L = r,(cl,( Q)), we have that a,(Q) 

is dense in L and dense in itself. Thus L is a compact perfect subset of X. 0 

We shall now give some other consequences of Lemma 4.1. 

Corollary 4.3. (a) Every Jirst countable Prohorov space is either scattered or contains 

a compact perfect set. (b) Every a-scatteredjirst countable Prohorov space is scattered. 

Proof. (a) follows directly from Lemma 4.1 when ‘8 is the partition of the space 

into singletons and (b) follows from (a) and Lemma 3.2. 0 

Of course Corollary 4.3 remains valid if we replace ‘first countable Prohorov’ by 

‘tech-complete’ (we use Lemma 3.5 instead of Lemma 4.1). In this case part (a) is 

essentially [S, Theorem 3(i)]. 

A useful observation about Lemma 4.1 is that the compact set K = cl,(Q) in (ii) 

meets uncountably many members of %?. This is because K n E is nowhere dense 

for every E E 8 and K is a Baire space. Using this fact we prove the next theorem 

which was first proved by Preiss [15, Theorem 51 for metric Prohorov spaces. 

Theorem 4.4. Every$rst countable Prohorov space is a Baire space. 

Proof. Let X be a first countable Prohorov space and assume that X is of the first 

category in itself, that is, X = UT=‘=, F,,, where each F, is closed nowhere dense. Set 

En=Fn\Ul<nFiy n=l,‘L..., and %={E,: n=l,2,...}. Then 8 is a partition of 

X to D-sets with empty interior, so K( 8, X) =X. Using Lemma 4.1, we find a 

compact set meeting uncountably many members of 8. Since 8 is countable, this 

is a contradiction and we have shown that X is of the second category in itself. As 

the same argument applies for every nonempty open set in X, we conclude that X 

is a Baire space. 0 

I do not know whether the above theorem can be generalized to the space MT; 

that is, if X is first countable and Prohorov, must M:(X) be a Baire space? If the 

answer is ‘yes’, then we can prove that Lemma 3.5 holds for first countable Prohorov 

spaces Y using the same method. 

In view of Theorem 4.4 we have the following extension of Lemma 4.1. 

Corollary 4.5. Lemma 4.1 remains valid when % is a partition of X to D,-sets. 

Proof. For the essential direction (i)+(ii), we assume as in Lemma 4.1 that 

K( 8, X) =X. Then each member of Z is a D,-set with empty interior, so a set of 
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the first category in X. But X is by Theorem 4.4 a Baire space and so every countable 

union of members of 8 has empty interior. Now we construct the set P as in Lemma 

4.1 and proceed in the same way. Cl 

Remarks. (1) Since every complete metric space is Tech-complete, either of 

Theorems 3.1 and 4.2 applies when X is an absolutely analytic metric space (i.e. 

homeomorphic to a Suslin subspace of a complete metric space). But every metrizable 

(or, more generally, paracompact and perfectly normal) a-scattered space is u- 

discrete (cf. [ 18, Theorem 4’1). Thus, we obtain the results of [2] and [ 181 mentioned 

in the introduction. 

(2) Let S be the Sorgenfrey line, i.e. the real line with the topology of the right 

half-open intervals. S is a first countable, dense in itself, regular space and every 

compact subset of S is countable. Thus, by Corollary 4.3(a), S is not Prohorov; this 

solves [22, Problem 12.151, first raised by Mosiman and Wheeler in [13]. 

Moreover, because S is hereditarily Lindelijf and so paracompact and perfectly 

normal, it follows from (1) that S is not u-scattered. (This can also be deduced 

from Lemma 5.1 below, because S is a dense in itself Baire space.) Therefore, by 

Theorem 4.2, S is not even Prohorov-analytic. 

We conclude this section by showing that none of the above results holds if ‘first 

countable’ is dropped. 

Haydon [6, Theorem 2.4 and p. 93 proved that every subspace Z of PkJ (the 

Stone-Tech compactification of kJ) whose compact sets are finite is Prohorov. 

Moreover, he proved that there exists such a space Z admitting a r-additive 

non-Radon measure [6, Example 2.51. In particular, there exists a r-additive non-zero 

measure on Z vanishing on singletons and, as in the proof of Lemma 3.2, we 

conclude that Z is not a-scattered. Thus, Z is a counterexample for Theorem 4.2. 

Next we give a common counterexample for Lemma 4.1, Theorem 4.4 and 

Corollaries 4.3 and 4.5. Another common feature of these results is that each of 

them implies Preiss’ Theorem that the rationals are not Prohorov. 

Example 4.6. There exists a finer topology 9 on the space Q of rational numbers 

such that (0, 9) is a regular, dense in itself, Prohorov space whose compact sets 

are finite. (In particular, (0, 9) is a-scattered, but not a Baire space.) 

Let S: pN+ [0, l] be a continuous surjection and let K be the intersection of all 

compact subsets F of /3kJ such that f(F) = [0, 11. Choose a countable dense subset 

D of [0, 11 and a subset E of K such that fl, : E + D is one-to-one and onto. 

Because D is homeomorphic to the rationals, it suffices to show that E is a dense 

in itself Prohorov space whose compact sets are finite. 

It is clear that K is dense in itself and that E is dense in K. So, E is dense in 

itself. Because E is countable and /3kJ does not contain nontrivial convergent 

sequences, every compact subset of E is finite. Thus, by Haydon’s result mentioned 

above, E is Prohorov. 
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5. Scattered and u-scattered spaces 

In this section we characterize those first countable spaces that are scattered (resp. 

o-scattered) in terms of the Prohorov (resp. Prohorov-analytic) property (Theorems 

5.6 and 5.7). First we shall prove some lemmas, beginning with the following 

extension of Lemma 3.2. 

Lemma 5.1. If X is a a-scattered space, then X does not contain any dense in itself 

nonempty Baire subspace. 

Proof. Suppose that X = Ur=:=, X,,, where the Xn’s are scattered and pairwise dis- 

joint, and that X contains a nonempty dense in itself Baire space Y. Define f: Y + Iw 

with fLX, = n (if Y n X,, # 0) for all n. It is clear that the graph Gr(f) off is 

scattered. Since Y is a Baire space, by a special form of Blumberg’s Theorem (see 

[23, Corollary 1.5]), there is a dense subset 2 of Y such that fl, is continuous. But 

then Gr(f1,) is a dense in itself subset of Gr(f), a contradiction. 0 

The next lemma is proved in [9, Theorem 4.151 and in [ 11, Theorem 2.31; it is a 

special case of a result of Graf [5, Theorem 51. We refer to [ll, Section 21 and [7] 

for the definition of a strong lifting p for a Radon measure on a space Y and the 

fact that the sets p(A), where A is Bore1 in Y, form a base for a topology y, on Y 

Lemma 5.2. Let X and Y be compact spaces and v a Radon measure on Y admitting 

a strong lifting p. Then every continuous surjection f: X + Y has a FP-continuous right 

inverse. 

Using this result, we prove the next lemma on the existence of spaces for which 

none of the alternatives of Theorems 3.1 and 4.2 holds. 

Lemma 5.3. Every non-u-scattered space X contains a subset which is neither u- 

scattered nor contains any compact perfect set. 

Proof. Of course we can assume that X contains a compact perfect set Y By [16, 

Proposition 5.4.11, there is a continuous surjection f: Y + [0, 11. Let A denote the 

Lebesgue measure on [0, l] and let p be a strong lifting for A. By Lemma 5.2, there 

is a yp-continuous function g: [0, l] + Y such that f 0 g is the identity function of 

[O, 11. 
Now A is a T-additive measure on ([0, 11, Fp) (see [l, Proposition 31 or use the 

arguments of the proof of [ll, Theorem 2.21) and so the measure /_L = g(A) is 

r-additive on Y. It is clear that p*(g[O, 11)) = 1 and therefore CL* induces a probability 

T-additive measure on the subspace Z = g([O, 11). By the arguments of Lemma 3.2, 

Z is not u-scattered. 
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We choose a Bernstein set B in [0, 11, that is, a subset B of [0, 11 such that neither 

B nor [0, l]\B contains any compact perfect set (see [12, pp. 514-5161) and set 

2, = 2 nf-‘( B) and 2, = Z\f-‘( B). S ince Z=Z,uZ,, some Z, (i=l or 2) isnot 

a-scattered. Since flz, is continuous and one-to-one, it follows from the choice of 

B that Zi does not contain any compact perfect set. Therefore Zi is the desired 

subset. 0 

Lemma 5.4. Let X be a space such that for some x E X, X\(x) is Prohorov and x has 

a countable neighborhood base. Then X is Prohorov. 

The proof follows from the arguments used in [13, Lemma 5.111 and is omitted. 

Lemma 5.5. Every first countable scattered space is Prohorov. 

Proof. Let Fe and GC be defined as in Lemma 3.3 for some first countable scattered 

space X. Then X = lJCCr GC for some ordinal K. We prove by induction that lJ5_ GC 

is Prohorov for every p < K. So we assume that lJCC5 G< is Prohorov for every 5 < p 

and show that lJeCp G( is locally Prohorov (hence Prohorov by [13, Theorem 4.71). 

If p is limit, this is trivial because lJCC6 G, is open for every S < p. If p = 5-t 1, then 

U Gs=<y< G,uG,=~;< (Cy< G,uix)), 
5<P 

where each UsCi G, u {x} is Prohorov (by Lemma 5.4) and open in lJtCp GC because 

x is isolated in GC Therefore, lJzCp G, is locally Prohorov. 0 

Remark. By an example of Varadarajan [21, p. 2251 the assumption of first countabil- 

ity in Lemmas 5.4 and 5.5 cannot be dropped. 

We are now ready to prove the next two theorems. For metrizable spaces X some 

other equivalent conditions can be added to these theorems (see [18, Theorem 111 

and [19, Theorem 21). 

Theorem 5.6. For a first countable space X the following are equivalent: 

(i) X is u-scattered ; 

(ii) X is Prohorov-analytic and every Baire subspace of X has an isolated point; 

(iii) X is Brohorov-analytic and every compact subset of X is countable; 

(iv) X is hereditarily Prohorov-analytic. 

Proof. (i)*(iv). As in the proof of Lemma 5.1, there is f: X+f@ such that Gr(f) 

is scattered. Now for every Z c X, Z = rrr(Gr(f(,)) and Gr(f I,) is Prohorov by 

Lemma 5.5, so Z is Prohorov-analytic. 
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(iv)+(i). Suppose that X is not a-scattered. Then, by Lemma 5.3, there is 2~ X 

such that 2 is neither a-scattered nor contains any compact perfect set. SO, by 

Theorem 4.2, Z is not Prohorov-analytic. 

(i)+(ii). Since (i)a(iv), X is Prohorov-analytic. The rest follows from Lemma 

5.1. 

(ii)+(iii) follows from the fact that every uncountable compact first countable 

space contains a compact perfect set (cf. [16, Theorem 3.5.1 and Proposition 5.4.11). 

(iii)+(i) follows from Theorem 4.2. 0 

Theorem 5.7. For a jirst countable space X the following are equivalent: 

(i) X is scattered ; 

(ii) X is Prohorov and every Baire subspace of X has an isolated point; 

(iii) X is Prohorov and every compact subset of X is countable: 

(iv) X is hereditarily Prohorov ; 

(v) X is u-scattered and every closed subset of X is a Baire space; 

(vi) X is a-scattered and Prohorov. 

Proof. (i)=+(iv) follows from Lemma 5.5 and (iv)+(i) from the fact that a non- 

scattered first countable space contains a copy of the rationals. The proof of the 

equivalence of (i)-(iii) is similar to the proof of the corresponding assertions of 

Theorem 5.6 (with Corollary 4.3(a) replacing Theorem 4.2). Finally, (i)d(vi)+ 

(v)*(i) follow from Lemma 5.5, Theorem 4.4 and Lemma 5.1, respectively. q 
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