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For 20 years the amyloid cascade hypothesis of Alzheimer disease (AD) has placed the amyloid-b
peptide (Ab), formed from the amyloid precursor protein (APP), centre stage in the process of neu-
rodegeneration. However, no new therapeutic agents have reached the clinic through exploitation
of the hypothesis. The APP metabolites, including Ab, generated by its proteolytic processing, have
distinct physiological functions. In particular, the cleaved intracellular domain of APP (AICD) regu-
lates expression of several genes, including APP itself, the b-secretase BACE-1 and the Ab-degrading
enzyme, neprilysin and this transcriptional regulation involves direct promoter binding of AICD. Of
the three major splice isoforms of APP (APP695, APP751, APP770), APP695 is the predominant neuronal
form, from which Ab and transcriptionally-active AICD are preferentially generated by selective pro-
cessing through the amyloidogenic pathway. Despite intensive research, the normal functions of the
APP isoforms remain an enigma. APP plays an important role in brain development, memory and
synaptic plasticity and secreted forms of APP are neuroprotective. A fuller understanding of the
physiological and pathological actions of APP and its metabolic and gene regulatory network could
provide new therapeutic opportunities in neurodegeneration, including AD.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer’s disease (AD) and related dementias constitute a
spectrum of age-related neurodegenerative diseases leading to
major cognitive and behavioural deficits. AD is a global problem
affecting over 30 million people worldwide and some 10 million
in Europe alone with lesser developed countries predicted to har-
bour 70% of dementia cases over coming decades, creating a rap-
idly growing epidemic. It is now just over 20 years since the
amyloid cascade hypothesis was formulated to provide a frame-
work for explaining the biochemical mechanisms underlying the
neurodegenerative processes occurring in Alzheimer’s disease
and for the design of potential therapeutics [1]. The hypothesis
places the 40–42 amino acid, amyloid b-peptide (Ab), derived
by proteolytic processing of the membrane glycoprotein amyloid
precursor protein (APP), centre stage in the cell death process. Re-
cent reappraisals of the hypothesis have, however, highlighted
that Ab-independent factors may also contribute to the disease
process and that oligomeric forms of Ab may be the principal
toxic agents [2–4]. Furthermore, no new therapeutic agents have
reached the clinic based on exploitation of the amyloid cascade
hypothesis [5]. A variety of factors probably contribute to this,
especially the limitations in the animal models currently avail-
able, which are based on the rare, familial forms of the disease,
and the heterogeneity of the late-onset forms of AD. We, and oth-
ers, have hence emphasised that a major unmet scientific need in
the AD field is to understand completely the normal biochemistry
of APP, and the physiological roles of its key metabolites, in order
to clarify what is happening in the disease situation. Indeed, APP
is more than just an ‘‘amyloid precursor’’ but is expressed ubiqui-
tously as a type I membrane glycoprotein and has specific bio-
chemical and pathological roles in other tissues which are
generally ignored since its historic origins unsurprisingly led to
a predominant focus on AD-related mechanisms. For example,
APP is a primary androgen target gene that promotes prostate
cancer growth and which is up-regulated also in colon and pan-
creatic tumours implying a general role for the protein in cell
growth, differentiation and carcinogenesis [6,7].

2. APP isoforms and metabolism

APP is expressed in both neuronal cells and extra-neuronal tis-
sues [8] and belongs to a larger evolutionarily conserved APP
superfamily found in diverse organisms from nematode to man
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[9] which, in mammals, consists of APP itself and APP-like proteins
APLP1 and APLP2 (Fig. 1). In Drosophila melanogaster and C. elegans
their APP homologues have been named APPL and APL-1, respec-
tively [10,11]. In, neuronal cells, it is anterogradely transported
in vesicles by kinesin-mediated fast transport to various cell com-
partments including synapses [12], reviewed in [13]. There are
three major isoforms of APP (APP695, APP751, APP770) generated as
a result of alternative splicing of exons 7 and 8. Compared with
APP695, the APP751 isoform contains an additional Kunitz-type pro-
tease inhibitor (KPI) domain and the 770 isoform also contains a
19-amino acid, OX-2 domain. APLP2 more closely resembles
APP770 in domain composition whereas APLP1 is more similar to
APP695 (Fig. 1). In brain, APP695 is principally neuronal and is
expressed at relatively high levels compared with the other two
isoforms. In human cortex the ratio of different APP isoform
mRNAs is approx APP770/APP751/APP695 = 1:10:20, although there
are regional differences. In AD brain the various isoforms show dif-
ferent temporal- and disease-specific expression implying they ex-
ert distinct functional and metabolic roles [14,15]. Until recently,
no clearcut functional differences have been ascribed to the differ-
ent APP isoforms apart from the protease-inhibitory role of the KPI
domain. However, it appears that the neuronal APP695 isoform is
preferentially involved in regulation of gene expression [16], as de-
tailed in Section 6.

APP isoforms were shown to be differentially expressed during
brain maturation [17] and alternative splicing and processing of
the APP gene was found to be regulated by various factors, includ-
ing hormones, growth factors, phorbol esters and interleukins [18–
20]. The regulatory region of the APP gene contains consensus sites
recognised by the transcription factor, specificity protein 1 (SP1)
[21]. Recently microRNAs, which represent small, non-coding
RNAs interacting with target mRNA and mediating translational
inhibition or transcript destabilisation, were suggested to regulate
APP gene expression and to play an important role in neurodegen-
eration [22]. In particular miR-101 and miR-153 were shown to
down-regulate expression of APP in human cell cultures suggesting
their relevance to AD pathology [23,24].

APP is expressed in various organs and tissues. Northern blot
analysis has demonstrated that, in rat, endogenous APP mRNA is
expressed significantly more in the brain, kidney and lung com-
pared to heart and liver. A similar APP expression pattern was also
seen when the human APP transgene, driven by the ubiquitin-C
promoter, was introduced to the animals aiming at producing a
rat model of AD. The tissue specificity of APP expression suggests
the presence of regulatory elements within the cDNA sequence of
APP determining the character of its expression [25]. However,
Fig. 1. Schematic representation of the proteins from the APP family and their main
domains. They are all type I transmembrane glycoproteins. APLP1 and APP695 both
lack the KPI and OX2 domains, contained in APLP2 and APP770 while APP751 has only
the KPI domain.
there are some data suggesting that membrane localisation and
processing of APP in neurones differ from those in peripheral cells
(e.g., lymphoid cells, hepatocytes or kidney) which suggests that
functioning of this transmembrane holoprotein and production of
Ab in the brain is a critical determinant of its receptor-transducer
properties unique to this organ [26]. Abnormal APP metabolism
in the pancreas is also linked to the pathogenesis of type 2 diabetes
and strong epidemiological evidence suggest a link between diabe-
tes and AD [27] and AD has been referred to as type 3 diabetes [28].

Despite APP from various species being characterised by a
rather significant conservative amino acid sequence, rodent APP
in the region of Ab peptide differs from human by 3 amino acids
(Arg5 is substituted by Gly, Tyr10 by Phe and His13 by Arg) which
makes rodent Ab less prone to form amyloid aggregates [29]. As re-
cently suggested, His13 in Ab peptide is critical for the ability of the
peptide to bind Zn which is required for initiation of fibrillogenesis
[30]. Because of this difference in the Ab peptide structure, rodent
models of AD require the over-expression of human APP and/or
other proteins involved in human AD pathology, which brings
some limitations to the utilisation of mouse and rat models of
AD for a full understanding of the pathology of this human disease.
Furthermore, there is also a proteolytic processing difference be-
tween species, as the sequence differences in mouse versus human
APP also protect against b-secretase processing [31].

Platelet and leukocyte APP isoforms are processed using mech-
anisms similar to those in neuronal cells to generate Ab and soluble
forms of APP [32]. They therefore potentially provide a peripheral
model of APP biochemistry and perhaps a mirror into abnormali-
ties in APP processing in the brain. In the transition from normal
to mild cognitive impairment to AD, a small but significant shift
in the ratio of platelet APP isoforms from the larger to the smaller
forms has been consistently observed [33–35] and has been sug-
gested as a possible AD biomarker. However, when utilising ex-
tra-neuronal cells as models for studying APP metabolism and its
effects, interpretation of data may be influenced by the nature of
the isoforms endogenously expressed in these cells.
3. APP processing

There are two divergent pathways of APP metabolism occurring
naturally (Fig. 2), of which the minor (amyloidogenic) pathway in-
volves the consecutive actions of two membrane-bound aspartic
proteinases generically termed b- and c-secretases [36,37]. This
pathway generates not only Ab but a number of other physiologi-
cally active metabolites, including the cleaved intracellular domain
(AICD), which could all contribute to, or ameliorate, the patholog-
ical processes leading to AD. More than 90% of APP metabolism,
however, normally involves the initial alternative cleavage of APP
by a zinc metalloproteinase termed a-secretase followed again
by c-secretase. Since a-secretase cleaves APP within the Ab pep-
tide region, it prevents Ab formation and activation of this pathway
is hence potentially neuroprotective. Some recent data suggest that
subcellular trafficking of APP to the non-amyloidogenic pathway is
regulated by huntingtin associated protein-1 (HAP-1) since down-
regulation of the latter in neurons results in increased production
and accumulation of Ab [38].

The c-secretase mediated cleavage of APP C-terminal mem-
brane-bound fragments formed after a- or b-secretase action on
the holoprotein is but one example of the general phenomenon
of intramembrane proteolysis [39,40] and is analogous to the
cleavage of the Notch receptor in the Notch signalling pathway.
The c-secretase complex with its catalytic presenilin (PS) core
functions as a promiscuous aspartic protease able to act on a
diverse range of membrane protein substrates and showing
flexibility in its site of cleavage of susceptible substrates. These



Fig. 2. Proteolytic processing of APP and generation of functionally active AICD. The b-,c-secretase amyloidogenic pathway principally mediates the nuclear signalling by
AICD. Some of the genes reported to be regulated by AICD are indicated. For a more complete listing, see [37,80]. sAPPa, soluble form of APP produced by a-secretase
cleavage; sAPPb, soluble form of APP produced by b-secretase cleavage.
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proteolytic pathways and their aberrant actions in AD are fully
described in this issue [41] and here we will focus on the APP iso-
forms and the generation of the intracellular domain of APP (AICD)
and its physiological and pathological actions, particularly in sig-
nalling from membrane to nucleus through epigenetic modulation
of gene expression.

4. APP and normal brain functions

Although still not fully understood, the role of APP in normal
functioning of the brain and other organs had been intensively
studied. The protein sequence analysis of the APP superfamily
members strongly suggests that the normal function of APP relates
to cell–cell interaction and cell–substrate adhesion [11,42] consis-
tent with a role in development. Several recent studies confirmed
that, in developing brain, APP is required for neuronal precursor
cells to migrate correctly in the nascent cortical plate [43] and that
this effect of APP requires its interaction with products of other
proteins, DISC-1, and Disabled-1 [44]. The most recent data also
suggest that pancortins, proteins expressed in developing and ma-
ture brain cortex and reducing the activity of b-secretase, interact
with APP promoting neuronal cell migration [45]. APP was also
shown to play an important role in cell cycle progression of neural
stem cells, through the interaction of APP with amyloid precursor
protein binding protein-1 (APP-BP1). In rat, substantial expression
of both APP-BP1 and APP was observed in embryonic brain and in
the early postnatal period (up to P12) with only low levels of APP-
BP1 found in the adult brain [46]. During embryogenesis the
APP695 isoform was shown to be the major form involved in
embryonic brain maturation [47]. Apart from brain development,
APP is also required for formation of neuromuscular junctions
where APP co-localises with acetylcholine receptors [48].

APP has many other interacting proteins and the APP interac-
tome may play important roles in regulating its trafficking, pro-
cessing and signaling effects [49]. The increase of APP levels
during synaptogenesis suggests a functional role of this protein
in the process of neuronal network formation. Confocal micro-
scopic analyses in primary neurons showed colocalization of APP
with synaptic vesicle proteins among which synaptotagmin-1, a
resident synaptic vesicle protein, directly binds to APP. This
allowed the authors to suggest that APP interacts with the calcium
sensor of synaptic vesicles and as such might play a role in the reg-
ulation of synaptic vesicle exocytosis [50].

One of the important neuronal functions recently described for
APP is to maintain neuronal calcium homeostasis and cell oscilla-
tions which is essential for synaptic transmission and neuronal
networking [51]. This was based on the observation that APP
over-expression inhibits spontaneous synchronous calcium oscilla-
tions in rat cortical neurones in culture and that phosphorylation
of T668 in the APP intracellular domain is needed for this effect
[52]. The role of APP in learning and memory is substantiated by
studies showing that regulation of its level of expression can mod-
ulate synaptic spine density, which is mediated predominantly via
its soluble, a-cleaved APP ectodomain (sAPPa) [53,54]. Further-
more, both APP and APLP2 are essential at PNS and CNS synapses
for spatial learning and long-term potentiation (LTP) [55].

In adult brain APP has been also suggested to play an important
role in axonal outgrowth and restoration of neuronal functions
after injury. Thus, in the Drosophila head injury model, APP was
shown to be up-regulated up to 7 days after the impact [56] and
this observation was confirmed in APP overexpressing mice which
had more efficient sciatic nerve regeneration after injury due to
better organisation of regenerating fibres. In these mice, APP was
also shown to prevent neuropathic pain [57].

Among numerous physiological functions ascribed to APP, one
is related to its ferroxidase and iron-trafficking properties suggest-
ing that some neurotrophic properties of APP and its fragments
could be mediated by iron regulation [58]. On the other hand, iron
regulates APP mRNA expression suggesting a role for iron in the
metabolism of APP [59]. Similarly, it was shown that copper can
regulate APP expression and supporting a hypothesis on a role
for APP in copper homeostasis. Both iron and copper-regulated
APP expression were suggested as potential therapeutic targets
in AD [60].

Reconstitution experiments with APP695 suggested that APP can
act as a receptor-like protein that could operate through a G pro-
tein [61] and regulation of Go GTPase activity by APP was con-
firmed by Brouillet and colleagues [62]. More recent work
suggested that neurotoxicity of Ab is mediated by a mechanism
that involves APP-dependent Go protein activation and that a
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receptor-like function of APP might be implicated in neuronal
degeneration in AD [63]. In neuronal cells APP was found to local-
ize not only in the plasma membrane but also in mitochondria
where it can enter, interacting with the import receptors [64].
Accumulation of APP and Ab observed in mitochondria of AD mice
and patients results in mitochondrial dysfunction and impairment
of cell energy metabolism in the brain [65,66].
5. APP and cellular response to hypoxia and ischaemia

APP metabolism was shown to undergo significant changes dur-
ing ageing and in response to various environmental factors which
is considered to be one of the mechanisms contributing to the
development of sporadic forms of AD [67]. There are data demon-
strating that amyloid metabolism is affected by ischaemia and hy-
poxia and that an increased level of APP is a part of the acute
adaptive response of the brain to hypoxia [68]. Levels of membrane
bound APP were found to be significantly increased in rat neocor-
tex after severe hypoxia. However, this effect was less pronounced
in the group of animals subjected to hypoxic preconditioning prior
to severe hypoxia [69]. The analysis of the protein levels of soluble
and membrane-bound forms of APP in the neocortex and hippo-
campus of rats subjected to severe hypoxia and severe hypoxia
with preconditioning has demonstrated that an increased ADAM17
expression in preconditioned animals 24 h after hypoxia corre-
sponded to higher levels of the soluble form of APP and a reduction
of the membrane bound fraction which confirmed a role for
ADAM17 in APP shedding [69]. According to our own data prenatal
hypoxia also resulted in increased levels of APP in the brain of rats
during postnatal development. Moreover, levels of APP in rat cor-
tex and hippocampus also increased after ischaemia caused by
four-vessel occlusion [70]. Recently, using APP�/� and BACE�/�

mice, it was demonstrated that APP regulates cerebral blood flow
in response to hypoxia, and that its cleaved fragments are crucial
for rapid adaptation to ischaemic conditions [71].

Although up-regulation of APP levels is considered neuropro-
tective in hypoxia and ischaemia, it can also lead to an increased
production of Ab due to activation of BACE1 and reduced levels
of the amyloid-degrading enzymes neprilysin (NEP) and endothe-
lin converting enzyme-1 (ECE-1) [70,72]. Reduced levels of NEP
expression caused by hypoxia were recently linked to histone
modifications in the NEP gene promoter [73]. The decrease of
NEP expression in NB7 neuronal cells caused by hypoxia [74] is
linked to activation of caspases and reduced binding of AICD to
the NEP promoter [75]. Intriguingly, PS1/2 mutations identified in
Alzheimer patients differentially affected the hypoxic response,
involving the generation of AICD. Together, these results suggest
a direct role for PS in the regulation of the oxygen sensing pathway
via the APP/AICD cleavage cascade [76].

Other types of stress (e.g., restraint stress) were also demon-
strated to affect APP expression differentially affecting levels of
the neuronal APP695 isoform, particularly, in the amygdala of rats.
Up-regulation of APP695 levels in the amygdala after restraint
stress is considered to participate in the brain stress response
maintained by the basolateral amygdaloid nucleus [77].
6. APP and gene regulation

The prediction and first report of a c-secretase cleaved
C-terminal intracellular domain of APP (originally named AID)
was provided by [78] who identified its presence in brain tissue
from normal subjects and AD patients and showed that this frag-
ment could induce apoptosis. Hence, this led to the suggestion that
the toxic effects of APP processing may not just be due to Ab alone.
Following from this, Cao and Sudhof [79] were able to show that
the C-terminal domain (now generally termed AICD) could form
a complex with the nuclear adaptor protein Fe65 and the histone
acetyltransferase Tip60, which could stimulate gene transcription
in a heterologous reporter system but they did not identify any
endogenously regulated genes. Since that time numerous studies
have produced a profusion of data both supporting and refuting a
significant impact of AICD on transcriptional activity [80,81]. A
possible explanation for the failure to detect changes in previously
reported genes is that these genes are not affected by lack of APP
under resting conditions or only in a small subset of cells and that
AICD normally has a relatively minor effect on basal gene expres-
sion. Furthermore the nature of the particular model systems used
(cell types, constructs used, cell density and ageing, transgenic
animal models, etc.) may significantly affect results creating
difficulties in comparing between apparently conflicting studies
(discussed in [40,82,83]).

An additional complexity is that c-secretase shows flexibility in
its site of C-terminal cleavage of APP, and AICD is generated by
prior cleavage of APP at the so-called e-site following initial release
of its ectodomain [84,85]. It has been speculated that familial AD
mutations in presenilin may affect e-cleavage, not only of APP
but also of the many other c-secretase substrates (e.g., cadherins),
leading to changes in levels of the intracellular domains with sig-
nalling properties and increased levels of the membrane-bound
fragments which can themselves be cell toxic. Such mechanisms
may contribute to the toxicities associated with clinical trials using
c-secretase inhibitors [86,87]. Other studies have suggested that
FAD mutations have a very variable effect at the e-cleavage site,
and that the main effect of the mutations is on the intermediary
Ab generating steps, e.g., [88].

Although all three APP isoforms are potentially amyloidogenic,
it has now been shown that, in neuronal cell lines, sAPPb, Ab and
AICD are preferentially formed from the neuronal APP695 isoform
[16]. This observation supports a previous report that, in humans,
Ab is specifically formed in vivo from the APP695 isoform since the
KPI-containing isoforms were preferentially cleaved by the
a-secretase [89]. In addition only APP695, when expressed in neu-
ronal cell lines, increased nuclear AICD levels and NEP expression
[16]. We have hence emphasised that it is nuclear, rather than total
cellular, AICD levels that reflect AICD functional in gene regulation
[16]. The APP isoforms themselves can exist in homodimeric forms
with the KPI and transmembrane regions being involved in dimer-
ization, which causes APP751 to be more efficiently processed
through the non-amyloidogenic pathway than APP695 an event
occurring at the cell-surface, probably by selective regulation of
APP trafficking [90,91]. Wild-type APP695 is preferentially traf-
ficked through the amyloidogenic endosomal pathway where it
co-localises with BACE-1 promoting b-cleavage and subsequent
formation of Ab and AICD. This is a cholesterol- and lipid raft-
mediated process [16,92,93].

Examples of genes that have been linked with AICD regulation
include genes directly linked to AD: APP itself, BACE-1, and NEP
(Fig. 2), the latter Ab-degrading enzyme having contributed to a
greater understanding of the underlying molecular mechanisms
involved [94,95]. Relatively little is known of the nuclear com-
plexes involving AICD and their functional significance. A number
of earlier studies had convincingly demonstrated that AICD could
associate with Fe65 protein and the histone acetyltransferase
Tip60 to form a stable transcriptional complex. Until very recently,
however, other components that may contribute to this process
had not been identified. Two studies have now, however, signifi-
cantly advanced our molecular understanding of AICD interactions
in gene transcription. In the first of these, by screening for proteins
that interact with the C-terminal tail of APP or its homologues,
were able to identify a key interacting protein as a component of
the key eukaryotic transcriptional mediator complex, namely
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MED12 [96,97]. This hence provided a link to the transcription
machinery validating the regulatory mechanism acting through
AICD (Fig. 2). In brief, AICD can recruit the mediator complex to
AICD-binding promoter regions depending on the presence of
MED12. This study not only validated some of the previously iden-
tified genes responsive to AICD e.g., NEP and aquaporin-1, but also a
number of other genes [98]. Based on these results, a map of the
AICD-associated nuclear interactome was depicted [99]. Specifi-
cally, AICD can activate CUX1 transcriptional activity, which may
be associated with AICD-dependent neuronal cell death. This work
helps to understand the AICD-associated biological events in AD
progression and provides novel insights into the development of
AD. Our current hypothesis is that one of the physiological roles
of APP is modulation of the epigenome supported by the recent re-
port that over-expression of APP containing the Swedish mutation
predisposing to AD switches global gene expression towards AD
pathogenesis [100].

The cytoplasmic tail of APP has more than 20 interacting
protein partners which connect APP to different intracellular sig-
nalling pathways including regulation of transcription, apoptosis
and cytoskeletal dynamics. These partners include members of
the Fe65, X11 and MINT families of proteins and in this way the
AICD domain can control localization of membrane associated pro-
teins in turn affecting the cellular transcriptome [101]. The mech-
anisms involved in these regulatory processes underlying AICD
action have been summarized in [40,83].

The remodelling of chromatin provides the major regulatory
mechanism for regulating gene expression. Such epigenetic mech-
anisms may contribute to the various risk factors (ischaemia, hy-
poxia, oxidative stress) and pathological events that predispose
to sporadic AD (Fig. 3). The effect of familial mutations on the cel-
lular transcriptome may be mediated in part through direct AICD
activity or alternatively through an indirect response to Ab accu-
mulation. Chromatin remodelling, involving enhanced histone
acetylation, is associated with the increased expression of several
genes important for learning and memory [102]. On the contrary,
transcriptional repression by histone deacetylases (HDACs) has
been linked to memory impairment in aged animals [103]. Follow-
ing our cellular based studies in which we demonstrated that
HDAC inhibitors can upregulate expression of NEP through
Fig. 3. Role of environmental and stress factors in chromatin remodelling and epigen
promoters leads to silencing of the genes while HDAC inhibitors (e.g., valproic acid, VA) f
hypoxia, ageing or Ab-mediated cellular stress result in changes in gene expression lead
cdisplacement of HDAC1 by AICD [95], we have recently shown
that the general HDAC inhibitor and anti-convulsant, sodium val-
proate, can attenuate memory deficits and up-regulate NEP activity
in an adult rat model [70]. Since several distinct HDACs are
involved in chromatin regulation, more selective HDAC inhibitors
may represent better tools for targeted gene regulation and
provide a novel therapeutic avenue for treatment of neurodegener-
ative diseases, including AD. In this context, HDACs 1 and 3 are of
particular therapeutic interest in relation to neurodegeneration
and cognition [104].

Given the potential involvement of APP in carcinogenesis, it is
noteworthy that treating pancreatic and colon cancer cells with
the HDAC inhibitors sodium valproate or trichostatin A led to
down-regulation of APP. This in turn was mediated by prior
up-regulation of GRP78, an endoplasmic reticulum chaperone
immunoglobulin-binding protein [7], which is involved in APP
maturation and inhibition of tumour cell growth. In contrast, treat-
ing cells with valpromide, a valproate derivative lacking HDAC
inhibitory properties, had no effect on APP levels. Valproate did
not modify the level of epidermal growth factor receptor, another
type I transmembrane protein, nor of APLP2 demonstrating the
specificity of the valproate effect on APP. Small interfering RNA-
mediated knockdown of APP also resulted in significantly de-
creased cell growth. Based on these observations, the data suggest
that APP down-regulation via HDAC inhibition may provide a novel
mechanism for pancreatic and colon cancer therapy. On the other
hand, the anti-cancer drug and tyrosine kinase inhibitor, gleevec,
stabilises and elevates AICD levels and hence AICD-mediated
up-regulation of genes such as NEP [82,105]. However, AICD mod-
ulation of gene expression appears to be preferentially neuronal
specific. For example, AICD is readily detectable in prostate cell
lines but does not regulate NEP expression except in the presence
of HDAC inhibitors [106]. AICD nuclear signalling also does not ap-
pear to operate in, for example, endothelial cells, HEK [95], or HeLa
cells [96].

Most of the genes identified as AICD targets appear to be up-
regulated. However, the epidermal growth factor receptor (EGFR)
was shown to be down-regulated following over-expression of
AICD whereas deficiency in PS/c-secretase activity or in APP
expression results in a significant increase of EGFR. AICD
etic regulation of APP-related gene expression. Binding of HDACs to target gene
acilitate binding of AICD (or other regulators) activating gene expression. Ischaemia,
ing to synaptic loss and neuronal death.
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negatively regulates EGFR gene transcription by directly binding to
its promoter both in cultured cells and in mouse brain in vivo
[107]. Hence AICD may play a role in EGFR-mediated tumorigene-
sis. The memory loss induced by Ab oligomers appears to be med-
iated in part through the EGFR since Ab oligomers induce EGFR
activation suggesting the receptor as a potential target for treating
the cognitive dysfunction induced by oligomers [108]. Stathmin-1,
which functions as an important regulatory protein of microtubule
dynamics and is found associated with neurofibrillary tangles in
brains of AD patients, is also down-regulated on AICD overexpres-
sion and could contribute to AD pathogenesis [109].

Although AICD over-expression studies need to be treated with
caution, it has been demonstrated that such over-expression in
mouse neuro2A cells alters the expression of two key signalling
proteins, patched homolog 1 (PTCH1), required for sonic hedgehog
signalling, and a member of the transient receptor potential cation
channel family (TRPC5) [110]. These observations at least suggest a
role for AICD in developmental regulation and control of calcium
homeostasis.

Comparative transcriptome profiling of APP and APLP2 genes in
adult mouse cortex failed, however, to detect changes in some of
the previously reported AICD target genes, e.g., BACE-1, Kai1,
GSK-3b and p53, although EGFR was up-regulated consistent with
the observations of Zhang and colleagues [107] but only modestly
in APLP2-deficient mice. Some heat shock proteins and plasticity-
related genes were both down-regulated in cortices from the APP
knockout mice.

AICD may also exert actions independent of direct regulation of
gene expression, for example regulation of phosphoinositide-
mediated calcium signaling [111]. The apoptotic actions of AICD,
particularly when the fragment is over-expressed in vivo or
in vitro, may be a consequence of direct interaction with GSK-3b
promoting its kinase activity rather than through an effect on its
transcription [112,113]. In this way AICD strongly inhibited
Wnt/b-catenin-mediated signaling providing the peptide with a
regulatory role in neuronal cell proliferation and differentiation.

Also it is not only the C-terminal domain of APP (AICD) that can
modulate gene expression. Other metabolites may also have this
capability, for example, sAPPb regulation of the expression of the
klotho gene [114]. Even intact APP, quite independent of AICD,
has gene regulatory roles, most recently in the demonstration of
APP regulation of cholesterol metabolism [115] and of acetylcho-
linesterase (Hicks D, Makova NZ, Nalivaeva NN, Turner AJ, 2013
in revision). A proteomics study of APP/APLP1/APLP2 knockdown
cell lysates revealed changes to over 30 proteins [116]. In particu-
lar, significant down-regulation of methionine adenosyltransferase
II suggested a role of APP family proteins in cellular methylation
mechanisms and is consistent with reports of disturbed S-adeno-
sylmethionine levels in tissue and CSF of AD patients. Since meth-
ylation plays an important role in neurotransmitter metabolism,
this may have relevance for neurodegeneration.
7. Unresolved questions and controversies

While the majority of studies into APP biology have focused on
pathogenic mechanisms and therapeutic opportunities, a growing
number of studies have begun to focus on fundamental physiolog-
ical roles for APP family members from growth and development
to cancer mechanisms. What is clear from this brief overview is
that many questions and controversies still, however, remain unre-
solved. Among those discussed here are the significance of gene
regulation by APP and/or its metabolites, particularly the genes
regulated by AICD (both up- and down-regulation), the preferred
neuronal specificity of these effects and their physiological signif-
icance in quantitative terms. The distinct biological functions of
the APP isoforms need to be addressed alongside the importance
of its homo- and hetero-dimerisation and the roles of the protein
domains differentiating the isoforms, especially the KPI region.
This may well be important through distinct ligand interactions
for the differential trafficking and metabolism of the isoforms. In
this context comparative studies of APP695 and APLP1 (both lacking
the KPI domain) alongside APP751/770 and APLP2 (containing KPI
domains) could well be informative. The detailed mechanism of
AICD transcriptional regulation from its anterograde transport to,
and import into, the nucleus, alongside the consensus motifs for
AICD-promoter binding need dissecting in detail. Furthermore,
the identity of any neuronal ‘‘cofactors’’ required for AICD complex
formation and for mediating neuronal specificity need to be
identified. More definitive transcriptomic studies are required to
identify both APP family regulated genes and the subset of
AICD-regulated genes. Overall, AICD modulates both neurotoxic
and neuroprotective genes, ranging from Ab-degrading enzymes
to apoptotic genes [40,83]. Hence the peptide mediates a subtle
mechanism for the control of gene regulation and its overall contri-
bution to the neurodegenerative pathways needs elucidation, as
well as its potential as a therapeutic target.
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