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SUMMARY

Pluripotent embryonic stem cells (ESCs) maintain
self-renewal and the potential for rapid response to
differentiation cues. Both ESC features are subject
to epigenetic regulation. Here we show that the
histone acetyltransferase Mof plays an essential
role in the maintenance of ESC self-renewal and plu-
ripotency. ESCs with Mof deletion lose characteristic
morphology, alkaline phosphatase (AP) staining, and
differentiation potential. They also have aberrant
expression of the core transcription factors Nanog,
Oct4, and Sox2. Importantly, the phenotypes of Mof
null ESCs can be partially suppressed by Nanog
overexpression, supporting the idea that Mof func-
tions as an upstream regulator of Nanog in ESCs.
Genome-wide ChIP-sequencing and transcriptome
analyses further demonstrate that Mof is an integral
component of the ESC core transcriptional network
and that Mof primes genes for diverse develop-
mental programs. Mof is also required for Wdr5
recruitment and H3K4 methylation at key regulatory
loci, highlighting the complexity and interconnectiv-
ity of various chromatin regulators in ESCs.

INTRODUCTION

Embryonic stem cells (ESCs) are pluripotent cells capable of

indefinite self-renewal and differentiation into all cell types. The

maintenance of ESC pluripotency status requires specific core

transcription factors, such as Oct4 (also known as Pou5f1),

Sox2, and Nanog, which are the cornerstones of an intricate

and highly interconnected ESC transcriptional network or core

regulatory circuitry (Chen et al., 2008; Macarthur et al., 2009;

Orkin et al., 2008). They recruit multiple chromatin regulatory

factors or complexes to promote activation of stemness genes

while simultaneously allowing for repression of differentiation

genes (Orkin and Hochedlinger, 2011; Young, 2011). Two antag-
C

onistic chromatin methylation activities (i.e., Polycomb repres-

sion complex 2 [PRC2] and MLL family complexes) are shown

to function coordinately with these core transcription factors

in ESCs. The PRC2 complex methylates histone H3K27 and

functions to silence developmentally regulated genes. On the

other hand, MLL family histone methyltransferases (HMTs)

deposit histone H3K4 methylation, which keeps lineage-specific

genes poised for activation as cells enter various differentiation

pathways. The significance of H3K4 and H3K27 methylation in

regulating the ESC transcription program is best exemplified

by the presence of ‘‘bivalent domains’’ at many important

regulatory regions, defined by high levels of both H3K4 and

H3K27 trimethylation. These bivalent domains are evolutionarily

conserved and their resolution during ESC differentiation serves

to commit ESCs into a specific lineage (Azuara et al., 2006;

Bernstein et al., 2006; Pan et al., 2007).

In addition to histone methylation, the pluripotency status of

ESCs is also regulated by histone acetylation. Addition of histone

deacetylase (HDAC) inhibitors prevents ESC differentiation and

increases the efficiency of induced pluripotent stem cell (iPSC)

induction (Feng et al., 2009). Histone acetylation also supports

‘‘hyper-dynamic’’ chromatin conformation (Meshorer, 2007;

Niwa, 2007) and hyperactive transcription states (Efroni et al.,

2008), two common signatures of pluripotent cells. Upon differ-

entiation, the chromatin structure of ESCs becomes more

compact and overall transcription is reduced (Aoto et al., 2006;

Park et al., 2004). This process is accompanied by global

reduction of panacetylation of histones H3 and H4 (Kobayakawa

et al., 2007). Consistent with the importance of histone acetyla-

tion in ESC function, genetic ablation or knockdown of several

histone acetyltransferases (HATs) such as Tip60, p300, and

Gcn5 led to aberrant expression of lineage-specific genes and

profound defects in ESC differentiation (Chen et al., 2008; Fazzio

et al., 2008; Lin et al., 2007; Zhong and Jin, 2009). Notably, these

HATs do not affect expression of the core pluripotency factors

Oct4, Nanog, and Sox2 (Fazzio et al., 2008; Lin et al., 2007;

Zhong and Jin, 2009). Instead, they function mostly at down-

stream differentiation processes.

HAT Mof (also called MYST1 or KAT8) is a highly conserved

MYST family HAT. MOF was originally described as an essential

component of the X chromosome dosage compensation
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complex (DCC) in Drosophila, causing a 2-fold increase in

expression of X-linked genes in male flies (Conrad and Akhtar,

2011; Gelbart and Kuroda, 2009; Lucchesi et al., 2005). In

mammals, MOF is essential for vertebrate development and

constitutive ablation of Mof leads to peri-implantation lethality

in mouse embryos (Gupta et al., 2008; Thomas et al., 2008).

Mof�/� embryos showed massive abnormal chromatin aggre-

gations, suggesting a crucial role for Mof in maintenance of

chromatin structures in vivo. Mammalian MOF was initially

purified in a WDR5-containing complex (Dou et al., 2005). Later

in vitro biochemical studies show that MOF resides in two dis-

tinct complexes in mammals: the MOF-MSL complex and the

MOF-MSL1v1 complex (Li and Dou, 2010), which are either

physically or functionally connected with H3K4 methyltransfer-

aseMLL. In brief, theMOF-MSL1v1 complex physically interacts

with theMLL complex through the commonly shared component

WDR5 and coordinates with MLL in transcription activation (Dou

et al., 2005; Li et al., 2009); On the other hand, the MOF-MSL

complex is able to stimulate H3K4me3 through H2BK34ub-

mediated trans-tail regulation (Wu et al., 2011). Given the close

connection of MOF and H3K4 methylation, the direct interaction

between MOF and WDR5, and the recent demonstration that

WDR5 mediates self-renewal and reprogramming (Ang et al.,

2011), we decided to examine whether MOF plays a role in

ESC fate determination and whether MOF-mediated H4 acetyla-

tion contributes to ESC pluripotency.

Using the conditional knockout ESC lines for Mof, here we

show thatMof is essential for ESC self-renewal and pluripotency.

Mof deletion leads to loss of ESC self-renewal and defects in

embryoid body (EB) formation, which are accompanied by

reduced H4K16 acetylation (K16ac) and global changes in ESC

transcriptome. Importantly, unlike other HATs, Mof directly regu-

lates expression of the core ESC transcription factors Nanog,

Oct4, and Sox2, and Mof null phenotypes can be partially

rescued by ectopic Nanog expression. All together, our data

provide strong support for a critical and unique role of Mof in

regulating the ESC core transcriptional network.

RESULTS

Mof Expression and H4K16ac Are Downregulated
during ESC Differentiation
Recent studies show that histone modifications, especially

histone H3K4me3 and H3K27me3, play important roles in regu-

lating ESC self-renewal and pluoripotency. Given the interaction

of MOF with MLL (Dou et al., 2005) and the correlation of

H3K4me3 and H4K16ac at transcriptionally active genes

(Ruthenburg et al., 2011), we decided to examine whether Mof

and its acetyltransferase activity play a role in murine ESC

functions. To this end, we first compared levels of Mof and

H4K16ac in ESCs to those of mouse embryonic fibroblasts

(MEFs). As shown in Figure 1A, the levels of Mof and H4K16ac

were significantly higher in ESCs than those inMEFs. Differences

in histone H3K4me3 and H3K27me3 in ESCs versus MEFs were

moderate in comparison (Figure 1A). Furthermore, when ESCs

were subjected to either retinoic acid (RA)-induced differentia-

tion (Figures 1B and 1C) or spontaneous differentiation (Figures

1D and 1E), Mof transcript and protein levels were gradually

downregulated, which were in parallel with downregulation of
164 Cell Stem Cell 11, 163–178, August 3, 2012 ª2012 Elsevier Inc.
ESC pluripotency genes Pou5f1 (Oct4) and Nanog (Figures 1B

and 1D). As a control, we also observed a similar downregulation

of Wdr5 in differentiating ESCs, consistent with the previous

report (Ang et al., 2011).

Establishing 4-OHT-Inducible Mof Knockout ESC Lines
Downregulation of Mof expression during ESC differentiation is

intriguing because this process is concomitant with changes in

chromatin conformation and dynamism (Gaspar-Maia et al.,

2011). To determine the role of Mof in ESCs, we derived induc-

ible Mof knockout ESC lines from the Mofflox/flox, Cre-ERTM

mouse model we previously described (Li et al., 2010). In this

model, floxed Mof alleles (i.e., exons 4–6) can be deleted upon

4-OHT-induced expression of Cre recombinase (Figure 2A).

This leads to Mof protein degradation and loss of global

H4K16ac (Li et al., 2010). The primary ESC lines including

Cre-ERTM-positive Mofflox/flox, Mofflox/+, and Mof+/+ were ob-

tained from E3.5 dpc embryos after intercrossing Mofflox/+,

Cre-ERTM mice (Figure 2A). Successful generation of Mof+/+,

Mof+/�, and Mof�/� ESCs was confirmed by genotyping and

immunoblots (Figures 2A and 2B). For Mof deletion, these cells

were subjected to continuous 4-OHT treatments for 4 days. As

shown in Figure S1A (available online), day 4 is the earliest

time point at which we were able to achieve complete Mof dele-

tion and observe significant reduction in the Mof protein level.

We decided to use this time point for all the experiments

described in this study. Consistent with the role of Mof and

H4K16ac in regulating higher-order chromatin structures (Robin-

son et al., 2008; Shogren-Knaak et al., 2006), Mof deletion led to

massive chromatin compaction with significant increase of

densely stained heterochromatin in the nucleus as observed by

electron microscopy studies (Figure 2C). Mof deletion eventually

led to growth arrest and cell death of ESCs (Figure S1B).

However, the chromatin aggregation shown here (day 4) was

not a result of cell death. At this time point, the cell cycle index

ofMof knockout ESCs was comparable to that of wild-type cells

(Figures S1C–S1E). The generation of inducible Mof knockout

ESC lines allowed us to study the effects of Mof deletion on

ESC functions in a defined genetic background.

Mof Is Required for ESC Self-Renewal and
Differentiation
Apparent changes in ESC morphology were observed upon

Mof deletion. Mof�/� ESCs became flattened and elongated

with reduced cell-cell contacts and failed to form compact

colonies in culture (Figure 2D, right panel). These morphological

changes were not due to defects in ESC proliferation because

similar changes, albeit to a less extent, were also observed

forMof+/� ESCs (Figure 2D, middle panel), which had no detect-

able growth differences from the wild-type cells (Figure S1F and

data not shown).

Consistent with morphological changes, Mof�/� ESCs had

very weak AP staining compared to that of Mof+/+ and Mof+/�

ESCs (Figure 2D), suggesting loss of ESC self-renewal capa-

bility. A moderate decrease of AP staining was also observed

forMof+/� cells (Figure 2D and Figure S2A). We further examined

the ability of Mof�/� ESCs to aggregate in suspension to form

EBs. As shown in Figure 2E, Mof�/� ESCs failed to aggregate

and most cells remained dispersed in suspension culture. In
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Figure 1. Mof Is Downregulated during ESC Differentiation

(A) Immunoblots for proteins from mouse embryonic fibroblasts (MEFs) and embryonic stem cells (ESCs) as indicated on top. Antibodies are indicated at left.

(B) Real-time PCR and (C) immunoblot analyses for RA-induced ESC differentiation. (D) Real-time PCR and (E) immunoblot analyses for ESC differentiation during

EB formation. In (B) and (D), fold changes of each transcript relative to its expression in day 0 EB formation are presented. For (C) and (E), b-actin was used as the

loading control.
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contrast, both Mof+/+ and Mof+/� ESCs efficiently aggregated

and eventually developed into cystic structures (Figure 2E

and data not shown).We further examined differentiation of three

primitive germ layers inMof+/� EBs.We found that expression of

marker genes for all three germ layers was downregulated

in Mof+/� EBs (Figures S2B–S2E). The effects of deleting

one Mof allele were moderate, consistent with largely normal

phenotypes of Mof+/� mice (data not shown). Because Mof �/�

ESCs were not able to form EBs, we decided to delete Mof

after ESC aggregation and examine whether Mof played a role

at later differentiation steps. We examined expression of hema-

topoietic genes (i.e., Tal1, Lmo2, and Runx1), which were

highly expressed in late EBs. These genes were significantly

compromised inMof�/� EBs, suggesting impairment of hemato-
C

poietic differentiation (Figure S3A). Taken together, ESCs with

Mof deletion had defects in several characteristic features of

stem cells: morphology, AP activity, and EB formation/differenti-

ation. These results suggest that Mof is essential for ESC

functions.

Mof Deletion Led to Aberrant Expression of ESC Core
Transcription Factors and Differentiation Marker Genes
To gain insights into the function of Mof in ESCs and to rule

out the possibility that loss of self-renewal and pluripotency

observed in Mof�/� cells was due to a general defect in cell

proliferation and/or increased apoptosis, we performed gene

expression analyses forMof+/+ andMof�/� ESCs by microarray.

We found that Mof deletion had profound impacts on the ESC
ell Stem Cell 11, 163–178, August 3, 2012 ª2012 Elsevier Inc. 165



Figure 2. Mof Is Essential for ESC Self-

Renewal

(A) Left, schematic for wild-type andMof knockout

alleles. Genotyping primers (red arrows) are indi-

cated. Right, genotyping results for wild-type,

floxed Mof alleles as well as Cre-ERTM by PCR.

(B) Immunoblots for Mof and H4K16ac in Mof +/+,

Mof flox/+, and Mof flox/flox cells after 4-OHT treat-

ment. Immunoblot for b-actin was used as the

loading control.

(C) Electron microscopy images of wild-type (left)

and Mof knockout nuclei (right). Densely stained

heterochromatin is indicated by arrow. Scale bars,

2 mm.

(D) Alkaline phosphatase staining of Mof +/+,

Mof +/�, and Mof�/� ESCs.

(E) Light microscopy images of day 4 EB for

Mof+/+, Mof +/�, and Mof�/� ESCs. Scale bars,

0.5 mm. Also see Figure S1.
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transcriptome. There were 4,475 genes that were differentially

expressed by more than 2-fold upon Mof deletion (Table S1

and Table S2). About an equal number of genes were up-

(2,081) or down- (2,394) regulated in Mof�/� ESCs (Table S1

and Table S2). Of note, fold changes in gene expression upon

Mof deletion were generally small, with mean fold change at

�2.8 (Figure 7C, total) for both upregulated and downregulated

genes. Consistent with Mof playing an important role in ESCs,

we found changes in expression of Oct4, Nanog, and most of

their conserved joint targets (Figure 3A and Loh et al., 2006).

Most of these genes (e.g., Oct4, Nanog, Rif1, Esrrb, Zic3, Tcf7,

Jarid2, and Rest) were significantly downregulated with the
166 Cell Stem Cell 11, 163–178, August 3, 2012 ª2012 Elsevier Inc.
exception of Klf4 and Myc, whose

expressions were increased. Microarray

results for key ESC regulators were

confirmed by RT-PCR (Figure 3B). In

addition to changes in expression of

ESC core transcription factors, Mof

deletion also led to aberrant expression

of differentiation markers for all three

primitive germ layers. They included

Sox17, Foxa2, Gata6, and Gata4 for

primitive endoderm, T/Bra and Lhx1 for

primitive mesoderm, and Sox1, Pax3,

Otx2, and Nestin for neuroectoderm

(Figure 3C). Most of these differentia-

tion genes were upregulated, supporting

the idea that Mof null phenotypes were

not simply due to general loss of cell

viability.

To examine whether genes with

changed expression were direct Mof

targets, we performed ChIP analyses

for Mof and H4K16ac on selected gene

promoters. As shown in Figure 3D, Mof

directly bound to pluripotency genes

including Nanog, Pou5f1, Sox2, Fgf4,

Lefty1, and Tcl1 (Figure 3D). Downregu-

lation of these genes in Mof�/� ESCs
(Figure 3B) coincided with loss of Mof binding and H4K16ac

(Figure 3D). Our result that Mof directly regulates Nanog and

Oct4 makes Mof a unique HAT in regulating ESC self-renewal

genes. In contrast, all other HATs studied insofar, including

Tip60, Gcn5, and p300/CBP, showed little effects on transcrip-

tion of Oct4, Nanog, and Sox2 after knockout or knockdown.

Instead, they were important for regulating downstream ESC

differentiation processes (Fazzio et al., 2008; Lin et al., 2007;

Zhong and Jin, 2009). In addition to examining Mof binding at

ESC core transcription factor loci, we also checked Mof

binding at several genes whose expression was upregulated

by Mof deletion. Surprisingly, we found that some of the



Figure 3. Mof Regulates the ESC Core Transcriptional Network

(A) Heat map of expression of conserved Nanog andOct4 joint targets (Loh et al., 2006) in wild-type andMof�/� ESCs. Fold change of gene expression relative to

wild-type ESCs is indicated at bottom.

(B and C) Real-time PCR analyses for pluripotency (B) and differentiation genes (C) in Mof�/� and Mof +/+ ESCs as indicated. All mRNA levels were normalized

against b-actin and are presented as relative expression in Mof null versus wild-type ESCs.

(D) ChIP for pluripotency genes that were downregulated in Mof�/� ESCs.

(E) ChIP for differentiation genes that were upregulated in Mof�/� ESCs.

For (D and E), primer sets were designed corresponding to Mof binding peaks identified by ChIP-seq (indicated in Figure S6). The antibody is indicated at top.

Signals for each experiment were normalized to 5% input. For (B)–(E), means and standard deviations (as error bars) from at least three independent experiments

are presented. Also see Figure S6.
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upregulated genes (i.e., Eomes, Klf4, T/Bra, and Sox17) had

Mof binding at coding regions and their expression changes

were concurrent with loss of Mof and H4K16ac (Figure 3E).

Bindings of Mof at these genes and at Sox1, GATA4, and Nes-
C

tin were also confirmed by ChIP-sequencing (ChIP-seq) anal-

yses (Figure S6C, see below). Despite modest fold changes,

these results suggest that Mof deletion can lead to both

increased and decreased expression of its direct targets.
ell Stem Cell 11, 163–178, August 3, 2012 ª2012 Elsevier Inc. 167
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Figure 4. ChIP-Seq Analysis of Mof Binding Sites in ESCs

(A) Chromosome distribution of Mof binding peaks in mouse ESCs. y axis, count of ChIP-seq reads per kilobase. x axis, chromosome name.

(B) Distribution ofMof binding sites relative to nearest Refseq genes. Top, schematic for eight counting categories. Bottom, pie chart for percentage distribution of

Mof peaks in each category.

(C) Distribution of Mof peaks in a 12 kb region from �2 kb to +10 kb around TSS (indicated by red arrow). y axis, percentage of Mof peaks relative to total Mof

peaks within the defined region. x axis, bin numbers, with each representing a 500 bp region. Mof peaks are indicated as class I and class II peaks at bottom.

(D) Comparison ofMof distributionwithin the defined 12 kb region inmESCs (blue) and humanCD4+ cells (red). TSS and class I and II sites are indicated at bottom.

Also see Figure S4.
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Genome-wide Mapping of Mof Binding Sites in ESCs
by ChIP-Seq
Increased expression of Mof direct targets in Mof�/� ESCs is

surprising considering its widely accepted role as a transcription

coactivator. In order to assess the function of Mof at global

levels, we decided to identify Mof direct targets in murine ESC

genome by ChIP-seq. ChIP-seq of input DNA was used as the
168 Cell Stem Cell 11, 163–178, August 3, 2012 ª2012 Elsevier Inc.
control and duplicated biological samples were sequenced

and analyzed. The ChIP-seq results showed that Mof distributed

broadly in ESCs, enriched (over input) on all autosomes in the

mammalian genome (Figure 4A). In contrast to highly enriched

male X chromosome binding in Drosophila, Mof had minimal

binding on sex chromosomes in mammal (Figure 4A). To

examine Mof distribution relative to gene structure, we divided
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the genome into eight categories: 50 distal (2–100 kb upstream of

transcription start site [TSS]), 50 proximal (0–2 kb upstream of

TSS), 50 UTR (TSS to ATG), coding, 30 UTR (TGA to transcription

end site [TES]), 30 proximal (0–2 kb downstream of TES), and 30

distal (2–100 kb downstream of TES) regions. The rest of the

loci were referred to as gene poor regions. Peak counts after

normalizing against category sizes were included in Figure S4A.

The majority of Mof binding sites (�56%) were mapped to the

transcribed region in the genome including �44% peaks in

coding regions, �10% in 50 UTR and �2% in 30 UTR. The distri-

bution of Mof wasmore pronounced toward 50 end of genes with

20% peaks at 50 proximal or 50 UTR as compared to �6%

binding at 30 UTR and 30 proximal regions (Figure 4B). Further-

more, �30% of Mof peaks were at either distal or gene poor

regions (Figure 4B). The functional significance of gene distal

binding for Mof remained to be explored. Screen shots for Mof

peaks at representative genes were included in Figure S6 and

Figure S7.

We further analyzed Mof binding peaks within a 12 kb region

surrounding annotated TSS. To this end, Mof peaks were

counted and grouped into 24 bins with 500 bp intervals starting

from�2 kb to +10 kb regions. As shown in Figure 4C, Mof peaks

centered on TSS and �40% Mof peaks were within 500 bp of

TSS. Furthermore, relatively low but persistent Mof binding

was found throughout the 10 kb region downstream of TSS,

which accumulatively accounts for 50% Mof peaks within the

defined 12 kb region. To gain further insights on Mof binding in

ESCs, we divided Mof peaks into two classes: class I includes

peaks at �2 to +0.5 kb region (bins 1–5), representing promoter

and TSS proximal Mof binding; and class II includes peaks

at +0.5 to +10 kb region (bins 6–24), representing Mof binding

at downstream coding region (Figure 4C and Figure S4B). We

then compared our Mof ChIP-seq results with those of primary

human restingCD4+ cells (hCD4+) (Wang et al., 2009). Consistent

with ESC-specific regulation, no MOF binding was found at

Nanog, Oct4, or Sox2 genes in hCD4+ cells (Figure S6B, Wang

et al., 2009). At global level, Mof binding in hCD4+ cells was

significantly enriched at the 50 end of genes (41.8%), in contrast

to 23.2% of MOF binding at coding regions (Figure S4C). The

difference in Mof peak distribution between mESCs and hCD4+

cells was not due to differences in category breakdown of two

genomes, which was about the same (Figures S4A and S4C).

Consistently, analyses of Mof peaks in the defined 12 kb region

near TSS showed significant enrichment of Mof class I peaks

(71.4%) and fewer class II peaks (29.6%) in the differentiated

hCD4+ cells as compared to mESCs (48.8% class I and 51.2%

class II). The basis for different Mof distribution in these two cells

remains to be decided. However, broader Mof distribution

downstream of TSS is consistent with the hyper-dynamic chro-

matin conformation (Meshorer, 2007; Niwa, 2007) and hyperac-

tive transcription states (Efroni et al., 2008) of ESCs.

Mof Has a Broad Role in Regulating the ESC
Transcriptome
To understand the direct function of Mof in regulating the ESC

transcriptome, we cross-referenced the ChIP-seq results with

gene expression analyses. We found that among genes with

changed expression in Mof�/� ESCs, 1,557 down- (�65%)

and 1,295 up- (�62.5%) regulated genes had Mof binding sites
C

(Figure 5A). Consistent with global changes in Mof transcrip-

tome, changes in expression of Mof direct targets were modest,

with mean fold change around 2.5 (Figure 7C). Gene ontology

(GO) term enrichment analyses of differentially expressed Mof

targets confirmed that Mof, as a general transcription cofactor,

is indeed involved in many biological processes such as gene

expression, cell cycle regulation, DNA repair, and the metabolic

process (Table S3 and Table S4) (Li et al., 2010). These pathways

were largely downregulated upon Mof deletion. When develop-

mental pathways were examined, we found that downregulated

Mof targets were highly enriched for stem cell maintenance,

development, and differentiation (p < 10�5, Figure 5B). In

contrast, upregulatedMof targets were highly enriched in cellular

differentiation and various developmental programs (Figure 5B).

The downregulation of stem cell genes and upregulation of

multilineage differentiation genes in Mof�/� ESCs at a global

level support our results at selected gene targets. Interestingly,

most of the upregulated differentiation genes shown in Figure 3

had Mof binding sites at the downstream coding regions

(Figure S6).

Given the distinct Mof binding within the 12 kb region of the

TSS, we further characterized Mof target genes based on

whether Mof binding is in promoter and TSS proximal region

(class I) or at gene bodies (class II) (Figure 5C). We found that

significantly more genes with exclusive class I Mof binding sites

were downregulated (824 versus 494) upon Mof deletion (single-

sided Fisher’s exact test, p = 3.6e�6, Figure 5C). In contrast,

a significant number of genes with exclusive class II Mof binding

sites were upregulated upon Mof deletion (single-sided Fisher’s

exact test, p = 0.0098, Figure 5C). These results imply that

distinct Mof binding patterns along target genes reflect a real

functional difference for Mof in transcription regulation. Consis-

tent with GO term analyses for Mof transcriptome, class II Mof

targets were enriched for genes involved in cell differentiation

or tissue/organ development, many of which were upregulated

upon Mof deletion (data not shown).

Mof Specifically Regulates the Nanog Core
Transcriptional Network
Given that Mof deletion in mESCs led to loss of self-renewal

(Figure 2) and downregulation of stem cell maintenance genes

(Figure 5C) including core transcription factors Nanog, Pou5f1

(Oct4), and Sox2 (Figure 3), we hypothesized that Mof may

play an important role in the ESC core transcriptional network.

To test this, we first compared the Mof transcriptome with those

of core transcription factors reported in the literature to see if

there were any interconnectivity (Ang et al., 2011; Ivanova

et al., 2006; Loh et al., 2006). We performed gene set enrichment

analyses (GSEA) for Mof direct targets with those of several core

ESC transcription factors including Nanog, Oct4, Esrrb, Tbx3,

and Sall4. Interestingly, significant enrichment was only found

for Mof and Nanog transcriptome (p < 0.00001, Figure 5D),

whereas there was no statistically significant enrichment for

other ESC core transcription factors (i.e., Oct4, Esrrb, Tbx3,

and Sall4) (Figure 5D and Figures S5A–S5C). Furthermore,

when we performed separate GSEA for Nanog transcriptome

and Mof targets that had class I or class II binding sites, only

Mof targets with class I binding sites show significant enrichment

of Nanog-regulated genes (Figure 5D). No enrichment between
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Figure 5. Mof Regulates the Nanog-Specific ESC Core Transcriptional Network

(A) Venn diagram for overlap of Mof bound genes (yellow) and genes that were either upregulated (blue) or downregulated (orange) inMof�/� ESCs. Fisher’s exact

test (p < 2.2 3 10�16) was performed to test for statistical significance of enrichment of upregulated or downregulated genes with direct Mof binding.

(B) GO term analyses for Mof downregulated genes (top) and Mof upregulated genes (bottom). Selected developmental pathways are presented and log p value

was used to rank the enrichment.

(C) Top, Venn diagram for overlap of Mof targets with class I (green) or class II (yellow) binding sites. Bottom, a table for number of genes that were upregulated or

downregulated in each category.

(D and E) GSEA of Mof targets with class I binding sites (D) or class II binding sites (E) and Nanog (left) or Oct4 (right) transcriptome (Ang et al., 2011). NES,

normalized enrichment score; FDR (p value), false discovery rate. Also see Figures S4 and 5.
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Mof targets with class II only binding sites and Nanog transcrip-

tome were found (p = 0.011, Figure 5E). Importantly, in corrobo-

ration with the observation that class I Mof targets were largely

downregulated upon Mof deletion, correlation of Mof and

Nanog transcriptome is mostly for the downregulated gene
170 Cell Stem Cell 11, 163–178, August 3, 2012 ª2012 Elsevier Inc.
sets (NES = �2.17, Figure 5D). Similar GSEA for Oct4 transcrip-

tome did not identify significant correlation with either class I or

class II Mof targets (Figures 5D and 5E, right panel).

In addition to transcriptome analyses, we also compared Mof

binding peaks with those of Nanog (Ang et al., 2011). We found
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that �79% of Nanog target genes had Mof binding (Fisher’s

exact test, p < 10�16, Figure S4C). Importantly, distribution of

average Mof/Nanog joint peaks showed enrichment toward 50

end of genes compared to Mof alone peaks (Figure S4D), in

agreement with our finding that genes with class I Mof binding

sites are specifically involved in Nanog-dependent transcription

regulation in ESCs (Figure 5D). All together, these results strongly

argue that Mof is an integral part of the Nanog-mediated ESC

core transcriptional network.

Overexpression of Nanog Rescues Mof Null Phenotypes
in ESCs
Nanog is a highly divergent homeodomain-containing protein

commonly bestowed a central position in the transcriptional

network of pluripotency (Chambers et al., 2007; Mitsui et al.,

2003; Silva et al., 2009). Given the direct regulation of Nanog

expression by Mof (Figure 3B) and specific GSEA enrichment

of Mof- and Nanog-regulated genes (Figure 5D), we decided to

test whether overexpression of Nanog rescues self-renewal

defects of Mof�/� ESCs. To this end, we stably transfected

Mofflox/flox, Cre-ERTM cells with a Nanog-expressing vector (Ito

et al., 2010). For controls, we also made cell lines that stably

express wild-type Mof or Mof truncation mutant (i.e., D173–

257aa) that is enzymatically deficient (Li et al., 2010). As shown

in Figure 6A, levels of exogenous Mof, Mof mutant, and Nanog

proteins were comparable to endogenous protein levels in

Mof flox/flox, Cre-ERTM ESCs. Endogenous Mof was then deleted

by 4-OHT treatments before the experiment. Consistent with the

result that Mof regulated Nanog expression (Figure 3B), Nanog

protein level was drastically lower in Mof�/� cells, which could

be fully restored by expression of either wild-type Mof or exoge-

nous Nanog. In contrast, inactive Mof mutant could not rescue

Nanog expression (Figure 6A). When we examined ESC

morphology, AP activity, and expression of key regulators of

the rescued cell lines, we found that wild-type Mof was able to

rescue most Mof null phenotypes (Figures 6B and 6C). The

Mof�/� ESCs expressing exogenous Mof had indistinguishable

morphology from those of wild-type ESCs (Figure 6B) and

�70%–80% of colonies were AP staining positive (Figure 6B).

This result confirmed that phenotypes observed in Mof�/�

ESCs were due to Mof deletion, but not other nonspecific

secondary mutations. In contrast, the Mof mutant failed to

rescue Mof-deficient phenotypes. The Mof�/� + Mofmut ESCs

had loose cell-cell contacts and poor AP staining, which were

similar to Mof�/� ESCs (Figure 6B). This result suggests that

Mof acetyltransferase activity was essential for its functions in

ESCs. Strikingly, although exogenous Nanog could not rescue

loss of viability associated with extended culturing of Mof�/�

ESCs (data not shown), it rescued most defects associated

with ESC self-renewal. About 50%–60% Nanog-expressing

Mof�/� ESCs formed compact colonies and demonstrated

strong AP staining, indicative of the restoration of ESC features

(Figure 6B). The lower numbers of AP-positive clones from

Nanog rescue cells probably result from variation in exogenous

Nanog expression level and low Oct4 expression in these cells

(see below). In addition to morphological changes, we also

examined whether ectopic Nanog expression restored expres-

sion of Mof-dependent ESC genes. In most cases, Nanog

expression led to changes in gene expression similar to that of
C

wild-type or wild-type rescue ESCs. As shown in Figure 6C,

exogenous Nanog reactivated several genes repressed in

Mof�/� ESCs, including Fgf4, Lefty1, and Otx2, to the level of

wild-type or wild-type Mof-rescued ESCs. The notable excep-

tion is Oct4, which remained low in Nanog-rescuedMof�/� cells

(see Discussion). Similarly, Nanog suppressed induction of

differentiation regulators such as Foxa2, Gata4, and Gata6 in

Mof�/� ESCs (Figure 6C). One thing worth noting is that global

H4K16ac remained very low in Nanog-rescued ESCs. This

suggests that Mof and its acetyltransferase activity are probably

required for expression of Nanog, which in turn regulates

a cascade of pluripotency and/or differentiation genes. Taken

together with the genomic analysis and the Nanog rescue exper-

iment, our results suggest that Nanog is a major target and

a functional mediator of Mof in ESCs.

Mof Regulates Wdr5 Binding at Key Regulatory Regions
in ESCs
Several groups recently studied the function of H3K4me3 in

ESCs by knocking down key components of the MLL complex

Dpy30/Rbbp5 or Wdr5 (Ang et al., 2011; Jiang et al., 2011).

Although knocking down these genes affected global

H3K4me3, only Wdr5 knockdown significantly attenuated

expression of self-renewal genes (i.e., Nanog, Oct4, and Sox2)

and induction of cell differentiation (Ang et al., 2011). The differ-

ences of Wdr5 and Dpy30/Rbbp5 knockdown phenotypes

in ESCs raise an interesting question: is the function of Wdr5 in

ESCs solely to establish H3K4me3 or does Wdr5 play roles in

other yet uncharacterized epigenetic pathways to influence

ESC self-renewal? Given that Wdr5 is a stable component of

the Mof-Msl1v1 complex (Dou et al., 2005; Li et al., 2009), we

decided to examine whether Wdr5 plays a role in Mof-mediated

ESC regulation. We first confirmed that both global H3K4me3

and Wdr5 expression were not affected by Mof deletion in

ESCs (Figures S7A and S7B). We then compared Mof ChIP-

seq data with that of Wdr5 and H3K4me3 in ESCs (Ang et al.,

2011). We surveyed the extent that Mof binding peaks fell within

100 bp of the peak centers for Wdr5 or H3K4me3. Strikingly,

Mof binding peaks physically overlapped with close to 30%

of Wdr5 and 39% of H3K4me3 peaks across the genome

(p < 10�16, Pearson’s Chi-square test, Figure 7A). The close

proximity of these binding sites suggested that they colocalized

on either the same or adjacent nucleosomes. We further

analyzed the distribution of Mof/Wdr5 and Mof/H3K4me3 joint

peaks along the defined 12 kb region surrounding TSS. As

shown in Figure 7B, joint peaks for Mof/Wdr5 and Mof/

H3K4me3 were highly enriched around TSS, with 83% (pink,

1,293 genes) and 71% (orange, 2,944 genes) peaks, respec-

tively, in the class I region. In contrast, a larger proportion of

Mof peaks without Wdr5 or H3K4me3 resides in the class II

region (Figure 7B). The promoter enrichment of Mof/Wdr5 was

consistent with our previous finding that the Wdr5-containing

Mof-Msl1v1 complex functions in transcription initiation (Li

et al., 2009).

Consistent with the observation that more genes with class I

Mof peaks were downregulated, among �491 Mof/Wdr5 joint

targets that changed expression uponMof deletion, a significant

percentage of genes (306, 62.3%) were downregulated as

compared to �55% of Mof targets without Wdr5 binding
ell Stem Cell 11, 163–178, August 3, 2012 ª2012 Elsevier Inc. 171



Figure 6. Nanog Overexpression Rescues Mof Null Phenotypes in ESCs

(A) Immunoblots for Nanog, Mof, and H4K16ac in wild-type orMof�/� ESCs rescuedwith control vector, wild-typeMof, mutant Mof, or Nanog. Antibodies used in

the experiments are indicated at right. Both exogenous wild-type and mutant Mof were Myc-tagged.

(B) AP staining of wild-type ESCs and Mof�/� ESCs expressing exogenous wild-type Mof, Mof mutant, or Nanog as indicated. Top, percentage of AP-positive

clones of Mof�/� and three rescue ESCs relative to wild-type ESCs is presented. Means and standard deviations (as error bars) from two independent

experiments are presented. Bottom, images (203) for each cell lines as indicated at bottom.

(C) Real-time PCR analyses for pluripotency (left) and differentiation genes (right) in Mof�/� and three rescue cell lines as indicated. All mRNA levels were

normalized against b-actin and were presented as relative fold changes to wild-type ESCs. Means and standard deviations (as error bars) from at least three

independent experiments are presented. Also see Figure S3.
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(single-sided Fisher’s test, p = 4.2e�9; for gene list see Table S7).

Another feature of Mof/Wdr5 joint targets is that their upregula-

tion upon Mof deletion was significantly less than Mof targets
172 Cell Stem Cell 11, 163–178, August 3, 2012 ª2012 Elsevier Inc.
withoutWdr5 binding (nonpairedWilcoxon test, p = 2.87e�6, Fig-

ure 7C right panel). A similar distinction of Mof/H3K4me3 joint

targets was also found (nonpaired Wilcoxon test, p = 4.58e�6,
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Figure 7D right panel). Given the colocalization of Mof/Wdr5

peaks and downregulation of their targets upon Mof deletion, it

is likely that regulation of the ESC core transcriptional network

by Wdr5 could be partially mediated by Mof. Indeed, ChIP

analyses confirmed that that binding of Wdr5 and H3K4me3

at selected pluripotent gene targets was Mof dependent. As

shown in Figure 7E, Mof was essential for Wdr5 binding at the

Nanog promoter (Figure 6B). Mof deletion led to both reduced

Wdr5 binding and H3K4me3. Similar regulation was also ob-

served at Sox2 and Utf1 gene promoters (Figure 7E). These

results suggest that both Mof and Wdr5 are important for

regulating pluripotent genes such as Nanog and Sox2 (Fig-

ure 7E). Furthermore, we also identified a couple of cases

(i.e., Cbx5 and Dhx1) where Mof deletion led to reduced Wdr5

binding with no change in H3K4me3 inMof�/� ESCs (Figure 7C),

supporting the idea that Wdr5 can play roles independent of

H3K4me3 at some gene promoters. All these genes had

decreased expression upon Mof deletion. For controls, we per-

formed ChIP assays for Wdr5 and H3K4me3 at several Mof

targets without Wdr5 binding. At gene loci such as Mef2a,

GATA4, and Klf4, Wdr5 binding was very low and did not change

upon Mof deletion. However, we observed a slight increase

in H3K4me3 at these loci (Figure 7E), which accompanied

increased expression of these genes in Mof�/� ESCs (Table

S7). Although interplays between Mof and Wdr5 binding were

complex, nonetheless, we were able to establish Mof as an

important upstream regulator of Wdr5 at important ESC loci.

Mof Regulates H3K4 Methylation at Some Bivalent
Domains in ESCs
Since we found that H3K4me3 at some gene loci depended on

Mof, we decided to further examine whether Mof is involved in

setting up and/or regulating the H3K4me3 in ESCs, especially

at the functionally important bivalent domains (Azuara et al.,

2006; Bernstein et al., 2006). To this end, we cross-examined

Mof binding peaks with reported bivalent regions (Bernstein

et al., 2006). Among 8,041 peak regions that were marked with

both H3K4me3 and H3K27me3, there were 2,046 peaks

(�26.3%) that physically overlap with Mof binding sites (i.e.,

centering in the same region). A significant proportion of over-

lapping peaks (i.e., 564 or 27.6%) was within 2 kb of TSS

(p < 10�16; for a full list see Table S7). Among them, 106 genes

were downregulated and 41 genes were upregulated in

Mof �/� ESCs (Table S7), highlighting the potential regulatory

role of Mof at bivalent domains in ESCs. ChIP assays for direct

Mof binding and H3K4me3 and H3K27me3 at selected loci

were shown in Figure S7D. Several Mof-regulated bivalent

genes (e.g., Olig1 and Fgf15) have been shown to play important

roles in ESC differentiation (Fischer et al., 2011; Zhou and Ander-

son, 2002), further supporting the importance of Mof in ESC

regulation.

DISCUSSION

Nanog Is a Key Downstream Target for Mof in ESCs
Among chromatin regulators, only a handful of them have

been reported to regulate ESC self-renewal (Orkin and Hoched-

linger, 2011; Young, 2011). Here, we have firmly established that

Mof is a critical epigenetic regulator for this important stem cell
C

feature. ESCs with Mof deletion exhibit loss of self-renewal

and aberrant expression of both pluripotency genes and differ-

entiation marker genes. Importantly, we have shown that Mof

function is largely mediated by the ESC core transcription factor

Nanog. Using combined gene expression and ChIP-seq anal-

yses for wild-type and Mof�/� ESCs, we demonstrate that Mof

has a profound and direct impact on the ESC transcriptome.

GSEA for Mof direct targets and the ESC core transcriptional

network shows significant and specific enrichment between

Mof and Nanog transcriptome (Figure 4D). The enrichment is

mostly for the downregulated gene set, supportingMof as a tran-

scription coactivator in Nanog pathways. A prominent role ofMof

in regulating the ESC transcription network is further supported

by the fact that �80% of Nanog target genes have direct Mof

binding sites (Figure S5D) and ectopic expression of Nanog

can partially suppress loss of the self-renewal phenotype in

Mof�/� ESCs.

There are several thingswewould like to point out in the Nanog

experiments.

First, although Mof targets overlap significantly with those

of Nanog, they do not necessarily bind to the same DNA

sequences. In fact, when we performed ‘‘motif’’ search for Mof

binding sites, consensus sequences for Nanog binding sites

were not identified as top hits (data not shown). It is possible

that Nanog may preferably bind to genes that already have

Mof bindings. The recent finding that Nanog weakly interacts

with Wdr5, a Mof-interacting protein, is consistent with this

scenario (Ang et al., 2011). Alternatively, given the wide distribu-

tion of Mof peaks in genome, it is possible thatMof and H4K16ac

modulate the chromatin ‘‘milieu’’ (Orkin and Hochedlinger,

2011), which in turn influences Nanog recruitment. The exact

mechanism for the functional interplays between Mof and core

transcription factors in ESCs remains to be studied.

Second, Nanog expression suppressed most Mof null pheno-

types without restoration of H4K16ac (Figure 6A). This result

points out that although Mof is essential for regulating Nanog

and/or other ESC core transcription factors, it is probably func-

tionally redundant with other chromatin regulators in regulating

downstream targets. Therefore, once Nanog protein level is

restored by ectopic expression, Mof is largely dispensable for

downstream regulatory events. Precedence has recently been

reported for an Eed/Sox2 regulatory loop, in which overexpress-

ing Sox2 can rescue phenotypes of Eed-deficient ESCs without

restoring H3K27me3 (Ura et al., 2011). This hypothesis is further

supported by previous studies that show that multiple HATs,

including Tip60, p300, and Gcn5, function downstream of ONS

in ESCs. These enzymes are able to acetylate histones for

transcription activation. Indeed, although genetic ablation or

knocking down these enzymes has no effects on expression of

ONS themselves, they affect expression of ONS target genes

and ESC differentiation processes to various degrees (Fazzio

et al., 2008; Lin et al., 2007; Zhong and Jin, 2009). Future charac-

terization of Nanog-dependent gene regulation in Mof�/� ESCs

and interplays of Mof with other chromatin regulatory complexes

at Nanog target genes will provide insights in this regard.

Third, although Nanog expression rescued most Mof null

phenotypes, it failed to restore Oct4 expression in Mof�/�

ESCs (Figure 6C). This result suggests that Mof regulation of

Oct4 expression is independent of Nanog in ESCs. The failure
ell Stem Cell 11, 163–178, August 3, 2012 ª2012 Elsevier Inc. 173
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Figure 7. Mof Regulates Wdr5 Binding at Key ESC Loci

(A) Top, Venn diagram for direct physical overlap of binding peaks for Mof (blue), Wdr5 (pink), and H3K4me3 (orange) (Ang et al., 2011). Total number and

percentage of overlapping peaks relative to Wdr5, or H3K4me3 peaks, are summarized in the table below.

(B) Distribution of Mof and Mof/Wdr5 joint peaks (top) or Mof/H3K4me3 joint peaks (bottom) as class I or class II peaks. Red arrow, TSS. y axis, percentage of

peaks relative to total peaks within the defined region. x axis, bins representative of a 500 bp region.

(C) The box plots for fold changes in expression of total (white), Mof/Wdr5 (pink), and Mof only (blue) target genes.

(D) The box plots for fold changes in expression of total (white), Mof/H3K4me3 (orange), and Mof only (blue) target genes. For (C) and (D), bottom and top of the

boxes correspond to the 25th and 75th percentiles and the internal band is the 50th percentile (median). The plot whiskers extending outside the boxes correspond
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for Nanog overexpression to restore Oct4 expression may

explain partial rescue phenotypes of the Mof�/� ESCs (Fig-

ure 6B). Unexpectedly, although most Nanog-expressing

Mof �/� ESCs have a low Oct4 level, they did not differentiate

into the trophectoderm lineage. The levels of trophectoderm

marker genes such as Hand1 and Cdx2 that were normally

activated by Oct4 knockdown (Niwa et al., 2000) remained

unchanged in Mof�/� ESCs (Figure S3B). This result suggests

that Mof is important for activation of at least some trophecto-

derm markers and for differentiation of trophectoderm lineage.

The requirement of Mof during cell differentiation is also sup-

ported by the fact that differentiation markers for all three germ

layers are modestly but consistently downregulated by loss of

aMof allele (Figure S2). Therefore, it is likely that Mof is important

for both ESC stemness and differentiation. Whether these two

processes involve the same or distinct Mof complexes will be

subject to future studies.

Distinctive Mof Binding in ESCs
Our ChIP-seq analyses reveal that unlike Drosophila, where Mof

exhibits a bimodular Mof binding pattern at TSS and 30 end of

genes (Kind et al., 2008), Mof binding in mammals is enriched

at TSS but also distributed evenly in downstream coding regions.

The difference may be a reflection of distinct gene structures for

mammal and Drosophila. Interestingly, we find that the elevated

Mof binding at gene coding regions is a unique feature in ESCs.

The coding-bound Mof accounts for �50% of total Mof peaks

within the 12 kb defined regions in ESCs whereas they comprise

�20% in hCD4+ cells (Figure 4D). GO term analyses for genes

with coding-bound Mof show drastic differences between these

two cells. When pathways specific for developmental processes

are analyzed, genes with coding-bound Mof in ESCs are heavily

involved in tissue/organ development and programs for multili-

neage cell differentiation (Figure S5A). However, those in

hCD4+ cells are only involved in hematopoietic and lymphoid

organ development and leukocyte differentiation (Figure S5A).

Parallel GO term analyses on genes with TSS Mof binding

show no cell-specific enrichment in differentiation (Table S5).

This result shows that significant and cell-specific enrichment

of Mof targets is intriguingly linked to the differentiation potential

of respective cells. Since most differentiation genes are not ex-

pressed in wild-type ESCs, Mof binding serves to mark these

‘‘poised’’ genes for later activation.

One remaining question for this ESC-specific Mof binding

pattern is how it is established and how Mof is recruited to these

poised loci in ESCs. Since these loci are not actively transcribed,

Mof binding at these regions cannot be simply explained as

a transcription-coupled event. One feature of ESCs is their highly

dynamic chromatin states. It would be interesting to test if broad

binding of Mof is a result of less compact higher-order chromatin

structure in ESCs and if Mof is selectively targeted to regions

with yet-to-be-characterized epigenetic marks that destine

genes for differentiation-induced activation. Notably, the epige-
to the lowest and highest datum within 1.5 interquartile ranges. p values were ca

each category is indicated at bottom. Left, downregulated gene set. Right, upre

(E) ChIP experiments for Wdr5 (top) and H3K4me3 (bottom) at selected joint ta

indicated at top. Signals for each experiment were normalized to 5% input. Me

experiments are presented. Also see Figure S7.

C

netic marks are not necessarily bivalent domains, which show no

significant enrichment at Mof binding sites in ESCs.

Mof-Mediated Transcriptional Regulation in ESCs
One surprising finding of our study is that Mof deletion leads to

both increased and decreased expression of its direct targets.

Although we cannot rule out that gene upregulation is due to

indirect effects, a significant number of upregulated genes

have Mof binding sites near TSS or in gene bodies (Figure 3C).

Notably, the fold changes for both the downregulation and

upregulation of gene expression upon Mof deletion seem

modest, with mean changes �2.5- to 2.8-fold. It is likely that

Mof functions as a chromatin modulator, regulating chromatin

environment and finetuning the transcription machinery as it

passes the transcribed region. The moderate effects on tran-

scription are consistent with chromosome-wide 2-fold gene

activation observed in the Mof-mediated Drosophila dosage

compensation process. To understand whether different tran-

scription outcome upon Mof deletion is due to regulation by

distinct Mof complexes (i.e., Mof-Msl1v1 and Mof-Msl) (Li

et al., 2009), we divide Mof targets based on (1) relative position

of Mof binding sites to TSS and (2) whether they have Mof/Wdr5

joint peaks. The results show that genes with Mof binding

exclusively at TSS are more likely to be downregulated upon

Mof deletion (824 versus 494, Figure 5C). This bias is also

observed for Mof/Wdr5 joint targets (306 versus 185, Figure 7C).

Given that Mof/Wdr5 joint peaks are overwhelmingly located

at TSS (Figure 7B), these two results corroborate with each

other in supporting a specific function of the Mof-Msl1v1 com-

plex at TSS.

On the contrary, for genes with coding-bound Mof, especially

those with exclusive class II sites, Mof deletion leads to an equal

chance of upregulation or downregulation (Figure 5C). These

Mof targets (without Wdr5 peaks) also seem to be more upregu-

lated upon Mof deletion compared to those with Mof/Wdr5 or

Mof/H3K4me3 joint peaks (Figure 7C and data not shown).

Altogether, these results argue for a distinct role for coding-

bound Mof in transcription regulation. Because the Wdr5-

independent Mof-Msl complex is important for transcription

elongation, it is tempting to suggest that coding-bound Mof

mostly resides in the Mof-Msl complex. It will be important to

further dissect the Mof binding pattern and corresponding

transcriptome based on the presence of other Mof-interacting

proteins (i.e., MSL1–3) to prove this point in the future. Intrigu-

ingly, two recent studies on Drosophila DCC complex (dMof-

Msl) show that components of DCC are capable of reducing

gene expression in the presence of Mof and its H4K16ac activity

(Prestel et al., 2010; Schiemann et al., 2010). It would be inter-

esting to examine whether this is conserved in mammal and

whether MSL proteins serve to restrain expression of some

Mof-Msl targets in ESCs. In the latter case, Mof deletion could

lead to the disassembly of the Mof-Msl complex and thus relieve

the repressive effects of MSL proteins at specific loci.
lculated using nonpaired Wilcoxon tests as indicated. The number of genes in

gulated gene set.

rget genes in wild-type and Mof�/� ESCs. The antibodies used for ChIP are

ans and standard deviations (as error bars) from at least three independent
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Mof, H3K4me3, and ESC Regulation
Several recent studies explored the function of another tran-

scription-activation-related chromatin modification, H3K4me3,

in ESC regulation. One group showed that knocking down

Wdr5, a component of the MLL methyltransferase, significantly

attenuated expression of self-renewal genes (i.e., Nanog, Oct4,

and Sox2) and resulted in loss of pluripotency and induction of

cell differentiation (Ang et al., 2011). However, another group

showed that knocking down Dpy30 and Rbbp5 in the same

complexes had minimal effects on ESC self-renewal and ONS

expression despite reduction of both global and loci-specific

H3K4me3 (Jiang et al., 2011). The differences of Wdr5 and

Dpy30/Rbbp5 knockdown phenotypes in ESCs raise an inter-

esting question: does the H3K4me3-independent function of

Wdr5 contribute to ESC regulation? In light of our results here,

one likely explanation for the reported paradoxical observation

is that Wdr5 functions as part of the Mof complex to regulate

transcription in ESCs. This explains why Wdr5 depletion has

broader ESC phenotypes than knocking down Dpy30 or

RbbP5. In support, we show that Mof deletion affects Wdr5

recruitment at important gene loci, including Nanog and Sox2,

and at some loci, changes in Wdr5 binding and gene expression

(e.g., Cbx5) are not always accompanied by changes in

H3K4me3 (Figure 7C). Future studies on the detailed mecha-

nisms of how Mof and H3K4me3 coordinate to activate ONS

genes and how Wdr5 contributes to Mof function in this context

will provide insights in this aspect. The ability of Mof to regulate

Wdr5 and H3K4me3 at some loci in ESCs has prompted us to

examine its role at setting up the bivalent domains, epigenetic

regulatory elements that govern ESC transcription program

(Azuara et al., 2006; Bernstein et al., 2006). Indeed, we find

that Mof regulates H3K4me3 at some important bivalent

domains including those at the promoters of Nanog and Sox2

(Figure 7D). Genome-wide analyses further support extensive

interconnection betweenMof and H3K4me3 in ESCs (Figure 7A).

Importantly, deletion of Mof in ESCs leads to aberrant expres-

sion for genes with nearby bivalent domains (Figure 7D and

Table S7). The close interactions between Mof and Wdr5/

H3K4me3 probably underlie the essential functions of Mof in

regulating ONS expression and their regulatory circuitry.

EXPERIMENTAL PROCEDURES

Generation of ESC Lines and ESC Differentiation

Inducible Cre-expressing mouse line CAGG Cre-ERTM was as previously

described (Li et al., 2010). The Mof ESC lines were derived from the inner

cell mass of 3.5 dpc blastocysts, which were obtained from timed mating of

Mof flox/flox; CAGG Cre-ERTM mice.

AP Staining of ESCs

The Stemgent� Alkaline Phosphatase (AP) Staining Kit was used for the

detection of the AP activity according to the manufacturer’s instructions. For

AP staining, 1,000 ESCs for each genotype were plated and cultured with or

without 4-OHT for 4 days before the staining.

Immunoblot, Quantitative RT-PCR, and ChIP Analyses

These experiments were performed as previously described (Byun et al., 2009;

Dou et al., 2006). Anti-Mof (Santa Cruz), anti-H4K16ac (Millipore), anti-

H3K27me3 (Millipore), anti-H3K4me3 (Millipore), anti-Wdr5 (Millipore), and

anti-mouse or anti-rabbit IgG (Sigma) antibodies were used. All RT and

ChIP-PCR primers are listed in the Supplemental Experimental Procedures.
176 Cell Stem Cell 11, 163–178, August 3, 2012 ª2012 Elsevier Inc.
Gene Expression Microarray, GO, and GSEA Analyses

Microarray analyses for wild-type and Mof null ESCs (GSE37268) were per-

formed on Affymetrix GeneChip Mouse Genome 430 2.0 arrays (Affymetrix).

The expression change of a gene was calculated using the geometric mean

of all probes aligned on the gene. R package GOstats (Falcon and Gentleman,

2007) and GO.db (http://stuff.mit.edu/afs/athena.mit.edu/software/) were

used for GO term association studies. For each gene list, conditional single-

sided hypergeometric tests were used to calculate the p value of GO term

enrichment. GSEA (Isakoff et al., 2005) was performed using JavaGSEA

software provided by http://www.broadinstitute.org/gsea/. GSEA was of two

gene sets representing differentially expressed genes ranked as a list by fold

changes. GSEAwas run on this preranked list with the number of permutations

equaling 1,000.

ChIP-Seq Analyses

ChIP-seq analysis for Mof (GSE37268) was performed at NCI Sequencing

Facility. Images acquired were processed through the image extraction

pipeline and aligned to mouse NCBI build mm9 using ELAND. Peaks were

called using HPeak (Qin et al., 2010), a hidden Markov model-based software

program for identifying ChIP-enriched regions. Pearson’s Chi-square test with

Yates’ continuity correction or Fisher exact test was used for calculating

p values when evaluating overlaps between lists of genes.

ACCESSION NUMBERS

The data gathered over the course of this experiment have been deposited in

NCBI’s Gene Expression Omnibus and are accessible through GEO Series

accession number GSE37268.
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