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We developed and tested a new automated chromosome karyotyping scheme using a two-layer classifi-
cation platform. Our hypothesis is that by selecting most effective feature sets and adaptively optimizing
classifiers for the different groups of chromosomes with similar image characteristics, we can reduce the
complexity of automated karyotyping scheme and improve its performance and robustness. For this pur-
pose, we assembled an image database involving 6900 chromosomes and implemented a genetic algo-
rithm to optimize the topology of multi-feature based artificial neural networks (ANN). In the first
layer of the scheme, a single ANN was employed to classify 24 chromosomes into seven classes. In the
second layer, seven ANNs were adaptively optimized for seven classes to identify individual chromo-
somes. The scheme was optimized and evaluated using a ‘‘training–testing–validation” method. In the
first layer, the classification accuracy for the validation dataset was 92.9%. In the second layer, classifica-
tion accuracy of seven ANNs ranged from 67.5% to 97.5%, in which six ANNs achieved accuracy above
93.7% and only one had lessened performance. The maximum difference of classification accuracy
between the testing and validation datasets is <1.7%. The study demonstrates that this new scheme
achieves higher and robust performance in classifying chromosomes.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Since Tjio and Levan discovered that the number of human
chromosomes was 46 in 1956 [1] and the Denver group classifica-
tion standard was established in 1960 [2], karyotyping of human
chromosomes has became an important clinical procedure for
screening and diagnosing genetic disorders and cancers [3]. Karyo-
typing is a standard technique utilized to classify metaphase chro-
mosomes into 24 types. Fig. 1 demonstrates a male normal
metaphase spread and the corresponding karyotype of chromo-
somes. Because manual karyotyping is a labor-intensive and
time-consuming task, developing automatic computer-assisted
karyotyping systems has attracted significant research interest
for the last 30 years [4].

In the development of automated karyotyping schemes, the
extraction and computation of chromosome image features as well
as the selection and optimization of feature classifiers are two most
important challenges. Due to banding patterns of the metaphase
chromosomes, many features related to global and local banding
characteristics, chromosome length, and centromere index (CI)
have been extracted and computed in the previous studies [5–8].
ll rights reserved.
While the banding features were computed from the chromosome
density profiles in most of the studies [9], the wavelet-based band-
ing features were also tested in other study [10]. Since there are no
established standards (or commonly accepted rules) to compute
and select image features, many of initially computed features
can be redundant. Thus, feature selection is a vital process for iden-
tifying chromosomes and a small set of features can significantly
affect the accuracy and efficiency of the chromosome classification
[11,12]. Researchers have tried and tested different methods to se-
lect optimal feature sets to represent chromosomes. For examples,
one study implemented the ‘‘knocking-out” algorithm to select fea-
tures from density profiles, CI and chromosome lengths [13], and
another study applied principle component analysis (PCA) and dis-
crete cosine transform (DCT) functions to define and identify fea-
tures that have higher discrimination power to classify
chromosomes [14].

In order to automatically classify metaphase chromosomes, dif-
ferent classifiers have also been investigated and reported in previ-
ous studies, which include statistical models [3,5,6,8,10,14,15],
artificial neural networks (ANN) [9,13,16–21], knowledge-based
expert schemes [22–24], transportation algorithm [12], homologue
matching algorithm [25], the fuzzy-logic based classifier [26], and
other methods [27–29]. Among them, statistical algorithms and
ANN classifiers are the most popular methods and studies have
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Fig. 1. (a) A metaphase spread image and (b) the corresponding karyotype image.

Fig. 2. A flow diagram of automated classification of chromosomes.
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showed that both types of classifiers yield comparable results
when classifying human chromosomes [30]. One study showed
that an ANN and a maximum likelihood (ML) based classifier
achieved accuracy rates of 82.8% and 81.7%, respectively, when
applying to the same database [18]. The main advantages of ANN
include that (1) it is capable of modeling the human brain ability
to recognize objects based on incomplete or partial information
and (2) it is relatively easy to be trained because of its simple topo-
graphic structure [31]. As a result, several research groups have
developed and tested different ANNs for the classification of meta-
phase chromosomes. In most of the these studies, a single large
size ANN was developed to classify all of 24 types of chromosomes,
while publicly available databases (i.e., Copenhagen, Edinburgh,
and Philadelphia) and a jackknifing (leave-one-out) method were
used to train and test the ANN [9,13,16,17,19]. For examples, the
first group trained and tested three ANNs with 15 input neurons,
three different hidden neurons (10, 15, and 20), and 23 output neu-
rons to classify 23 types of chromosomes (omitting chromosome
Y). The study reported the average classification error rate as
10.3% on the Copenhagen dataset [9]. The second group developed
and tested an ANN with 15 input neurons, 100 hidden neurons, and
24 output neurons and it reported that classification error rates
were 6.2%, 17.8%, and 22.7% for the Copenhagen, Edinburgh, and
Philadelphia databases, respectively [17]. The third group trained
an ANN with 27 input neurons and reported the classification error
rate of 6.52% on the Copenhagen Dataset [19].

Despite of the research efforts and progress made in the previ-
ous studies, these ANN-based classifiers have a number of limita-
tions. First, developing a single ANN to simultaneously classify
24 types of chromosomes makes the classifier complicated and dif-
ficult to train [24]. It also tends to generate unstable results. A pre-
vious study showed that by reducing the size of a single ANN, the
testing accuracy on chromosome classification increased from
75.8% to 88.3% [20]. Second, the number of input neurons and hid-
den neurons was all empirically selected resulting in large varia-
tions among different ANNs when applied to the same public
databases. Third, a large and complex ANN needs to be trained
using a large size dataset in order to achieve robust results.
Although a leave-one-out method takes full advantage of the data-
base by using the maximum number of training data, it has two
disadvantages including that (1) it requires the high computational
cost in ANN training since it needs to train ANN N times instead of
training once for a database containing N chromosomes and (2) it
cannot generate a single optimal and workable ANN for future test-
ing [32]. Finally, the robustness of these ANNs has not been evalu-
ated using independent validation dataset.
The motivation of this study is to investigate a new approach to
overcome the limitations of previous approaches to optimize ANNs
for classification of chromosomes. Our hypothesis is that by select-
ing most effective or optimal feature sets and adaptively optimizing
a sets of small size ANN classifiers, we can reduce the complexity of
automated karyotyping scheme and improve its performance and
robustness. To test this hypothesis, we proposed to develop and test
a new computerized scheme as shown in Fig. 2. In this study, we fo-
cused our research effort on identifying effective image features,
adaptively optimizing ANN classifiers for different groups of chro-
mosomes, and testing scheme performance and robustness. The de-
tailed description of the scheme development and the experimental
results is presented in the following sections.

2. Materials and methods

2.1. An experimental database

In this study, we selected 150 various metaphase chromosome
cells, which were originally obtained from peripheral blood and
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amniotic fluid samples of patients, who underwent diagnosis at the
genetic laboratory of the University of Oklahoma Health Science
Center (OUHSC). All metaphase cells were stained with Giemsa
dye mixture as the staining agent, and the band levels of these
chromosomes were determined to be 400. Fig. 3(a) shows chromo-
some #1 with 400 bands. The digital images of the metaphase
chromosomes were captured using a digital camera installed on
the Nikon LABOPHOT-2 optical microscope, which is equipped
with an oil immersion based objective for magnification of 100�
and having a numerical aperture (NA) of 1.45. The pixel size is
0.2 lm � 0.2 lm on the sample slides. A computer scheme was ap-
plied to detect and identify analyzable metaphase chromosome
cells depicted on acquired digital images. It first uses a median fil-
ter to reduce the image noise. After applying an adjustable thresh-
old to segment initially suspicious chromosomes, the scheme uses
a component labeling algorithm and a raster scanning method to
label and group the segmented regions and delete the isolated
small areas. The scheme then computes a set of features from
the segmented regions and applies a decision-tree based classifier
to identify analyzable metaphase cells [33]. In this study, the com-
puterized identified analyzable metaphase cells were visually
examined and confined by an experienced cytogeneticist. The se-
lected 150 metaphase cells were then randomly divided into three
independent training, testing and validation datasets, each of
which includes 50 metaphase cells and 2300 individual chromo-
somes. Specifically, each dataset includes 100 chromosomes for
each of 22 types (from chromosome #1 to #22). In addition, the
training dataset includes 62 X and 38 Y chromosomes, while test-
ing and validation datasets include 64 X and 36 Y, and 63 X and 37
Y chromosomes, respectively.

2.2. Feature computation

To extract and compute chromosome image features, we first
applied a modified thinning algorithm to detect the medial axis
for the chromosome [34]. During this detection process, a conven-
tional thinning algorithm is first applied to detect the initial med-
ial axis, in which some pixels near both ends of a chromosome
are missing and some redundant pixels are generated around
the middle section of the chromosome. Second, an interpolation
algorithm is followed to connect every selected fifth pixel and
generate a new smoothed medial axis that can delete the redun-
dant pixels. To retrieve the missing pixels near both end of the
axis, the algorithm searches for the tip pixels based on the exten-
sion (interpolation) of previous slopes of the ending pixels of the
Fig. 3. (a) Illustration of an ideogram of chromosome #1 and a real chromosome #1, (b) s
obtained by a modified thinning algorithm.
medial axis. The revised medial axis is then connected based on
the smoothed slopes of every pair of the selected fifth pixels. Fi-
nally, the algorithm checks whether the ending pixels reach the
exterior contour of the chromosome; if they do, the procedure
is completed and an ‘‘optimal” medial axis is detected. Otherwise,
the algorithm iteratively retraces two ending pixels at the medial
axis until they reach the exterior contour of the chromosome. Fig.
3(b) displays a number of detected medial axes of the chromo-
some #1 with different morphologies. The more detailed descrip-
tion of this detection algorithm and experimental results has
been previously reported [34].

A computer scheme was applied to compute chromosome fea-
tures. For each chromosome, 31 features are computed to form
an initial feature pool, which is listed and categorized in Table 1.
As shown in Table 1, four categories of features are extracted and
computed for each chromosome. To extract these features, three
image profiles including density, shape, and banding profile are
calculated [34]. Each profile defines a one-dimensional graph of a
chromosome property computed at a sequence of points along
the identified medial axis of a chromosome.

(1) A density profile determines the average grey scale value of
every perpendicular line across the medial axis of a chromo-
some (x). It is computed as: DðxÞ ¼ ½

Pn
i¼1

giðxÞ�=n, where gi(x) is
the gray value of each pixel in a perpendicular line, and n is the
number of all pixels in each perpendicular line. The com-
puter scheme applies a median filter to reduce possible
impulses and noise in the density profile. Fig. 4(a–c) are
the corresponding density profiles for chromosome #22,
#10, and #1, respectively.

(2) A shape profile records the weighted width of every perpen-
dicular line across the medial axis of a chromosome (x). It is
defined as: SðxÞ ¼

Pn
i¼1
½giðxÞ � diðxÞ2�=

Pn
i¼1

diðxÞ2, which corre-
sponds to the sum of the product of the grey scale value
gi(x) and its corresponding Euclidean distance diðxÞ away
from the medial axis of the perpendicular line, divided by
the sum of the distance [6]. Fig. 4(d–f) describes the shape
profile of chromosome #22, #10, and #1, respectively.

(3) An idealized banding profile is computed by processing a
density profile D(x) with a non-linear transform filter
defined by Kramer and Bruckner method [35]. It is a profile
in which each band is characterized by a uniform density
and the transitions between neighboring bands are step
functions [36]. By assuming that x is the index number of
a profile, B(x) is an original banding profile obtained by a
everal medial axis detection results of chromosome #1 with different morphologies



Table 1
Distribution of 31 computed chromosome features in the initial feature pool

Feature category Number of features Brief feature description

1. Pixel distribution 3 Chromosome size, length, and average density.
2. Centromere index (CI) 2 Area and length of CI.
3. Local band patterns 12 Band distributions computed from the original chromosome image.
4. Processed band patterns 14 Band patterns computed from 8 WDD functions and 6 differences (the first order derivatives) of WDD functions.

Fig. 4. (a) A density profile of chromosome #22, (b) a density profile of chromosome #10, (c) a density profile of chromosome #1, (d) a shape profile of chromosome #22, (e) a
shape profile of chromosome #10, (f) a shape profile of chromosome #1, (g) an example of chromosome #19, (h) an original banding profile, (i) a reversed banding profile, (j)
an idealized density profile gained by a non-linear file. Note: G is the gray value of all pixels in each perpendicular line across the medial axis of a chromosome; W is the width
of a chromosome; L is the length of a chromosome.

X. Wang et al. / Journal of Biomedical Informatics 42 (2009) 22–31 25
median filtered density profile, IB(x), is an idealized banding
profile, NF[B(x)] is a non-linear filter for B(x), and N(x) is
neighborhood of B(x) the scheme computes:

NðxÞ ¼ ½Bðx� 1Þ;BðxÞ;Bðxþ 1Þ� ð1Þ

DIFMAX ¼MAX½NðxÞ� � B½x� ð2Þ

DIFMIN ¼ B½x� �MIN½NðxÞ� ð3Þ

IBðxÞ ¼ NF½BðxÞ� ¼
BðxÞ þ DIFMAX=R If DIFMAX 6 DIFMIN
BðxÞ � DIFMIN=R If DIFMIN < DIFMAX

�

ð4Þ

An iterative computing method is applied to identify the optimal
IB(x). In the first iteration, R = 2, while in the following iteration
steps, R = 1. The iterations are configured to continue until the re-
sult of the previous step is the same as the current iteration. The
idealized banding profile can avoid the transitions between black
and white bands and reduce errors of analyzing band features. For
example, Fig. 4(g) is an example of chromosome #19 and Fig.
4(h–j) show an original banding profile, a reversed banding profile,
and an idealized banding profile gained by a non-linear filter,
respectively.

As shown in Table 1, 31 features can be divided into four cate-
gories. The first category includes three features representing pixel
distribution of each chromosome. These are (1) size that is deter-
mined by counting the number of chromosome pixels, (2) length
that is defined by counting the number of pixels in the full skeleton
of a chromosome, and (3) density that is computed as average gray
value of all chromosome pixels.

The second category includes the centromere index related fea-
tures. A centromere is a unique region in the chromosome where
the chromatids are joined and by which the chromosome is at-
tached to the spindle during cell division [37]. A centromere sepa-
rates a chromosome into two arms a shorter arm (p-arm) and a
longer arm (q-arm) as shown in Fig. 4(a). Polarity assignment
determines the orientation of a chromosome through the identifi-
cation of a p-arm and a q-arm. In our previous study, we applied a
computing algorithm to identify centromeres and polarities [34]. A
rule-based classification approach is applied to search for the glo-
bal minimum in different ranges of shape profiles as well as detect
centromere and assign polarities of chromosomes with various
sizes. The centromere index (CI) is also computed as the ratio of
the length of a shorter arm to the total length of the chromosome.
Thus, two features in this category are computed as (1) area of CI,
denoted by CI(A)=Ap/(Ap+Aq) where Ap is the area of a p-arm and Aq is

the area of a q-arm, and (2) length of CI, denoted by CI(L)=Lp/(Lp+Lq)

where Lp is the length of a p-arm and Lq is the length of a q-arm.

The third feature category contains 12 local band related fea-
tures. The scheme segments the band pattern and identifies corre-
sponding banding features by computing the first and second
derivatives of an idealized banding profile. The scheme scans the



26 X. Wang et al. / Journal of Biomedical Informatics 42 (2009) 22–31
first and second derivative profiles. During the process, the scheme
searches for points (pixels) in which the first derivative is zero
indicating a transition point of the band. The scheme then checks
the second derivative values of these points. If the value of the sec-
ond derivative is negative, this is the local maximum point repre-
senting a peak of the dark band. Otherwise, this point is the local
minimum representing a valley of the white band. We identify
black bands as the areas between two peaks and white bands as
the areas between two valleys. Based on the scanning results, the
scheme examines four banding characteristics involving (a) the
band mass that is the number of pixels in the band, (b) the band
position that is the location of the peak of a black band or the valley
of a white band, (c) the band width that is the length between pix-
els of two peaks or valleys, and (d) the band height that is the gray
value of the peak (or valley) in the band. Based on these character-
istics, the scheme computes 12 features, which includes (1) the
average pixel value of the darkest band in a chromosome, (2) the
location of the darkest band, (3) the average pixel value of the cen-
tromere line, (4) the location of the first black band, (5) the ratio of
the largest white area to the total chromosome area, (6) the total
number of detected bands in a chromosome, (7) the number of
bands on a p-arm, (8) the number of bands on a q-arm, (9) the
number of black bands on a p-arm, (10) the number of black bands
on a q-arm, (11) the total number of black bands in the chromo-
some, and (12) the total number of white bands in a chromosome.

The fourth feature category includes 14 image features, which
are computed from global band pattern and based on the weighted
density distribution (WDD) functions [36]. WDD is defined as:

WDDjðxÞ ¼

Pn

i¼1

WjiðxÞ�DiðxÞ

Pn

i¼1

DiðxÞ
, where j = 1,2,....,8, Di(x) is the density value

of a density profile D(x) of a chromosome (x) with length of n
points (pixels) and Wji(x) is the jth weighted function value at the
sample point (i) along the medial axis of each chromosome. Eight
different weight functions are demonstrated in Fig. 5. WDD ana-
lyzes how the density is distributed in a whole chromosome and
describes the global band patterns. Six of eight WDD functions
(WDD1 to WDD6) have been tested in a previous study [6]. In this
study, we designed two new functions WDD7 and WDD8. Among
these WDD functions, WDD2, WDD4, and WDD6 do not depend
Fig. 5. Display of eight w
on the prior knowledge of centromeres and polarities, while
WDD1, WDD3, and WDD5 are polarity-dependent functions,
WDD7 and WDD8 depend on both centromere measurement and
polarity assignment. After computation, WDD1 shows whether
the density is mainly distributed in the q-arm of a chromosome,
WDD2 determines whether the density is mainly distributed in
the middle of the profile, WDD3 to WDD6 mainly calculate the
overall density distribution of a chromosome, WDD7 searches for
a dark band in the p-arm of a chromosome, and WDD8 detects if
there are three equally spaced dark bands in the q-arm of a chro-
mosome. Applying the first six weighted functions (seen in Fig.
5) to the DD(x) which is used to compute the absolute differences
of density profile D(x) of a chromosome (x): DDi(x)=|Di(x)-Di-1(x)|
[6]. The scheme computes six new features:

DWDDjðxÞ ¼

Pn�1

i¼1
Wjðiþ1ÞðxÞ � DDiðxÞ

Pn�1

i¼1
DDiðxÞ

;

where j = 1,2,. . .,6, DDi(x) is the different density value of DD(x)
at the sample point (i) of a chromosome (x), Wj(i+1)(x) is the jth
weighted function value at the sample point (i + 1) along the medial
axis of each chromosome. In summary, WDDj(x) is used to test the
density distribution of a chromosome, while DWDDj(x) is applied
to test the absolute difference (similar to the first derivative) of
density functions of the chromosomes. These two sets of functions
generate total 14 features in this category to describe global band
patterns of a chromosome.

Since different metaphase stages can influence the size and
band patterns of chromosomes in different cells [36] and the pre-
vious study proved that the normalization of size features within
each metaphase chromosome cell substantially improved the clas-
sification accuracy for karyotyping chromosomes [6], we adap-
tively normalized each of 31 features within the individual
metaphase cell. We assume that a metaphase cell contains N chro-
mosomes (i.e., N = 46) and each chromosome includes 31 features.
We also define each feature as Fij,i = 1,...,N; j = 1,. . .,31 and a feature
vector of each chromosome as Fi.For a specific jth feature, the
scheme sorts the feature values of N chromosomes in a metaphase
eighted functions.



Table 2
The classification of chromosomes based on Denver group classification

Chromosome Class Size Relative Position of Centromerea

Group A (1–3) Large Metacentric
Group B (4–5) Large Submetacentric
Group C (6–12,X) Medium Submetacentric
Group D (13–15) Medium Acrocentric
Group E (16–18) Relatively short Submetacentric
Group F (19–20) Short Metacentric or Submetacentric
Group G (21–22,Y) Short Acrocentric

a Note: Metacentric-the centromere locates in the middle section of a chromo-
some, submetacentric-the centromere lies between the middle and the end of a
chromosome, and acrocentric-the centromere is close to the end of a chromosome.
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cell to determine the maximum feature value ðFmax
j Þ and the min-

imum value Fmin
j . The normalized feature is then computed as:

Fnorm
ij ¼

Fij � Fmin
j

Fmax
j � Fmin

j

; i ¼ 1; :::;N; j ¼ 1; :::;31:

As a result, all feature values representing chromosomes at different
metaphase cells are normalized and distributed in the range from 0
to 1.

3. Optimization of a two-layer chromosome classifier

In this study, we built a multi-feature ANN based metaphase
chromosome classifier. Since using a single large size ANN to
simultaneously classify 24 different types of chromosomes (1–22,
X and Y) is a difficult task, which makes the ANN very complex
and requires a large number of training samples to achieve a high
level of performance, we used a different approach to overcome
this difficulty. Our classifier includes a two-layer structure (similar
to a decision-tree) to separate a large size ANN into eight small size
ANNs (as shown in Fig. 6). Each ANN uses a feed-forward structure
with three layers, which includes the input, hidden, and output
neurons. Based on Denver group classification standard, a single
ANN is implemented to classify chromosomes into seven sub-
groups in the first layer of the classifier. These seven sub-groups
are named as groups A to G and their common characteristics are
described in Table 2. The ANN implemented in the first layer
(ANN-1 as shown in Fig. 7(a)) has three output neurons and uses
the binary coding method to generate seven sub-groups (as shown
in Fig. 7(b)). In the second layer of the classifier, seven ANNs (ANN-
2-1 to ANN-2-7) were adaptively optimized to classify the chromo-
somes into 24 types based on the corresponding subset of training
data. After the ANN in the first layer classifies a testing chromo-
some into one of the seven sub-groups, the second ANN optimized
for each sub-group is automatically applied to further classify the
chromosome into one type of chromosomes included in this sub-
group. For example, if a testing chromosome is assigned to sub-
group 1 by ANN-1, ANN-2-1 (as shown in Fig. 6) is then applied.
ANN-2-1 has two output neurons. Depending on the output value
Fig. 6. Illustration of an ANN-based decision tr
of ANN-2-1, this testing chromosome is classified as one of the
three possible chromosomes covered by this sub-group. Specifi-
cally, the ANN output of ‘‘00” ‘‘01”, and ‘‘11” represents chromo-
some 1, 2, and 3, respectively.

We used genetic algorithm (GA) to optimize each ANN by
selecting an optimal set of features from our initial pool of 31 fea-
tures and determine the appropriate number of hidden neurons.
GA was first pioneered by John Holland based on the principle of
natural selection and population genetics more than 30 years ago
[38] and it has been widely studied and implemented in many
fields including optimization of the ANN applied in computer-
aided detection and diagnosis schemes for medical images [39].
In this study, the binary coding method is applied to create a chro-
mosome string used in GA. Note that the chromosome used in GA is
totally different from the metaphase chromosomes to be classified
in this study. To avoid confusion, the GA chromosomes are all pre-
sented in Italic format. Each of the initially extracted 31 features
corresponds to a gene of a GA chromosome. To determine the num-
ber of hidden neurons in the second layer of the ANN, we added
four genes in the GA chromosome. Thus, the GA chromosome string
has a fixed length of 35 genes. The first 31 genes represent com-
puted features, in which ‘‘1” indicates that the feature represented
by this gene is selected or activated, and ‘‘0” indicates that the cor-
responding feature is discarded or inactivated. The last 4 genes of
the GA chromosome indicate the number of hidden neurons, which
is based on the conversion between decimal and binary number
ee classifier used to classify chromosomes.



Fig. 7. (a) Illustration of an ANN optimized by GA in the first layer, (b) illustration of an ANN optimized by GA in the second layer.

28 X. Wang et al. / Journal of Biomedical Informatics 42 (2009) 22–31
systems. For example, ‘‘0101” denotes that the ANN has 5 hidden
neurons, and ‘‘1000” represents the 8 hidden neurons.

A publicly available GA software known as Genesis developed
by John J. Grefenstette [40] was selected for this study. To apply
the GA software in our optimization application, we designed
and coded a new GA evaluation function. After GA generates a test-
ing chromosome string that determines the number of ANN input
and hidden neurons. The evaluation function calls the pre-devel-
oped ANN training and testing programs. Each ANN is trained
using the back propagation (BP) method, which operates by learn-
ing the weights for a multi-layer network with a fixed set of units
and interconnections. Each ANN utilized gradient descent to mini-
mize the squared error between the network output values and the
target output values for those outputs [31]. After training and test-
ing datasets are separately used to optimize ANN weights and test
ANN performance. The program computes a mean square error
(MSE) between ANN generated testing scores and the pre-recorded
truth (reference) for all testing samples. The computed MSE is used
as a fitness criterion to assess ANN classification performance and
it returns to the GA main program. The GA chromosomes strings
with a smaller MSE have higher probability of being selected to
produce new GA chromosomes in the next generation using the
method of crossover and mutation. GA searches for the best genes
to form a new generation of GA chromosomes. GA optimization is
terminated when the output converges to the smallest MSE value
or reaches a predetermined number of generations (i.e., 100). The
‘‘best” GA chromosome is then used to determine the topology of
the ANN applied in our chromosome classifier, which includes
the selected features used as the input neurons and the number
of hidden neurons.

To generate the highly performed and robust ANNs using GA
optimization process, several measures were taken to set up the
training or optimization parameters used in ANN training and GA
optimization. Since the steepness of the activation function, the
learning rate, the momentum term, the learning iterations, and
the upper bound of training error can all influence ANN perfor-



Table 4
The topologies of 7 ANNs used in the second layer of the classifier

ANN 2-1 2-2 2-3 2-4 2-5 2-6 2-7

Number of input neurons 13 14 14 17 15 14 11
Number of hidden neurons 14 15 5 13 14 10 8
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mance and robustness, we implemented two primary procedures
to minimize the over-fitting and improve the robustness of the
ANN performance. First, we limited the number of training itera-
tions to 1000 and used a large ratio between the momentum
(0.8) and learning rate (0.01). Second, for each GA chromosome,
one ANN is trained with the training dataset and the performance
of this ANN is evaluated using an independent testing dataset.
Adding this testing method to GA optimization avoids the proba-
bility of GA converging to the over-fitted ANNs by always selecting
the best trained GA chromosomes to generate new GA chromosomes
in the next generation of optimization. The similar training proto-
col has been extensively tested in our previous study [39].

Before running GA program, we also need to select a number of
initial parameters that include the initialization, evaluation,
recombination, crossover, and mutation values of the chromo-
somes. Based on the recommendation of GA software developer
[40] and our previous experience [39], we set the initial population
size of GA chromosomes as 100. We specified the crossover rate,
mutation rate and generation gaps to be 0.6, 0.001, and 1.0, respec-
tively. A crossover rate of 0.6 denotes that 60% of genes between
two adjacent chromosomes are exchanged to produce two new
chromosomes in the new generation. The selected mutation rate
indicates that every gene in the population has 0.1% chance to mu-
tate. Finally, the entire population of chromosomes is replaced in
each generation, which is represented by a value of generation
gap 1.0.

Although GA optimization involves the use of two independent
datasets (‘‘training” and ‘‘testing”) to minimize the risk of ANN
over-fitting, the ‘‘testing” dataset is also involved in the optimiza-
tion cycle. To eliminate the assessment bias, we use another inde-
pendent dataset (validation dataset) that has not been involved in
GA optimization, in an effort to objectively evaluate the perfor-
mance and robustness of this chromosome classification scheme.
The validation performance is tabulated and analyzed.
3. Results

Table 3 summarizes the classification results which include the
best GA chromosome string for each of eight ANNs and the classifi-
cation accuracy for both the testing and validation datasets. In the
first layer of the classifier, the best GA chromosome that represents
the ANN-1 for the classification of the chromosomes into seven
groups is shown in the second row of Table 3. The first 31 genes
in GA chromosome string represent 31 chromosome features and
the last 4 genes indicate the number of hidden neurons. Since there
are 15 ‘‘1” and 16 ‘‘0” in the first 31 genes, the optimized ANN-1
includes 15 features (input neurons). The selected 15 features cor-
respond to features 1, 2, 3, 6, 8, 10, 12, 14, 15, 18, 19, 23, 28, 29, and
30. The last four genes (0110) represent that ANN-1 includes 6
hidden neurons. Using the independent validation dataset, ANN-
1 correctly classifies and assigns 92.9% (2136 out of 2300) individ-
ual chromosomes into the correct sub-groups.
Table 3
Summary of GA optimization of 8 ANNs and classification results

Group name Type of chromosomes Best GA chromosome

Seven groups A–G 111001010101011001100010000
A 1–3 1110100001000000000100111100
B 4–5 000100101101001000101110101
C 6–12, X 0100100111101000000100011101
D 13–15 000001010001011011011111110
E 16–18 011101100101000000110111100
F 19–20 111101000011011000000100110
G 21–22, Y 0110001101000000000110110011
In the second layer of the classifier, seven optimized ANNs are
independently generated by the GA. Due to the different image
characteristics of seven training and testing datasets as shown in
Table 2, GA adaptively selects optimal topologies for these seven
ANNs. The differences of the seven GA-optimized ANNs are sum-
marized in Table 4. Each of the 31 initially computed image fea-
tures are selected and used in at least once with the exception of
feature 16, which corresponds to the total number of black bands
in a chromosome and it has never been selected by any of seven
ANNs. Also, no single feature has been selected and used in all se-
ven ANNs. Fig. 8 shows the occurrence of each feature being used
in the seven ANNs. Using the validation dataset to test the perfor-
mance of these ANNs, the classification accuracy of the six ANNs,
with the exception of the one used in sub-group C, ranges from
93.7% to 97.5%. The accuracy of the ANN optimized for sub-group
C only reaches 67.5%. The overall classification accuracy is 86.8%
and 86.7% for testing and validation datasets, respectively.

4. Discussion

This study focused on a task to improve the performance and
robustness of an ANN-based automated karyotyping scheme by
reducing the complexity of ANN structure and selecting optimal
feature sets. The study has following unique characteristics. First,
we developed and tested a multi-step classifier that includes two
decision layers with eight ANNs. Since the classification task of
each ANN was simplified by reducing the number of output neu-
rons or classification classes, the sizes of these ANNs are substan-
tially reduced compared with the sizes of the ANNs reported in
previous studies. One important advantage of using our approach
is that each ANN can be trained using relatively small dataset
and keep highly robust performance. To prove this advantage, we
also built and optimized a single ANN to classify all 24 types of
chromosomes using the same GA optimization protocol. Then,
the ANN was tested using the same validation dataset. This single
ANN achieves 70% classification accuracy, while our two-layer clas-
sifier with eight ANNs achieves 86.7% classification accuracy.

Second, selection of an optimal set of low correlated features
plays an important role in successfully developing ANN or other
machine learning classifiers. The previous studies used empirical
methods to select image features and the number of hidden neu-
rons. In this study, we applied genetic algorithm (GA) to search
for the optimal topology of the ANN including both the optimal
feature set (input neurons) and the number of hidden neurons.
Using GA optimization approach combined with the use of inde-
Testing accuracy result (%) Validation accuracy rate (%)

11100110 91.1 92.9
1111110 99.0 97.3

11001111 94.0 95.5
1010101 68.3 67.5

10111101 95.0 95.3
10011110 96.3 97.3
00111010 96.5 98.0

0001000 94.7 93.7
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pendent training and testing datasets, we substantially reduce the
risk of the ANN being trapped by the local minimum in a multi-
dimensional feature space. In addition, most of the previous stud-
ies [16,17,19] used a jackknifing (leave-one-out) training and test-
ing method to optimize ANNs. This approach has inherent bias and
does not generate a single workable ANN [41]. In order to eliminate
or minimize the evaluation bias, we divided our database into
three independent datasets and used the ‘‘training–testing–valida-
tion” method to optimize the classifier and assess its performance
and robustness.

Third, unlike most of the previous studies that used publicly
available datasets, we used the dataset collected from our own
genetic laboratory. Table 5 describes and compares the image char-
acteristics between our dataset and three public datasets (Copen-
hagen, Edinburgh, and Philadelphia). Since the Copenhagen
database contains high quality straight chromosomes in which
the locations of centromeres are known through manual identifica-
tion, the testing performance of ANN classifiers is usually high. For
example, three studies reported classification error rates of 6.2%,
8.8%, 10.3%, respectively, on Copenhagen database [9,16,17]. Edin-
burgh and Philadelphia datasets contain chromosomes that are
much more difficult to classify. As a result, the performance of
the previously developed classifiers is substantially low. The re-
ported error rates are approximately 17.8% to 22.3% and 22.7% to
28.6% for Edinburgh and Philadelphia datasets, respectively
[16,17,19]. One limitation of this study is that we cannot directly
compare the performance of our scheme to other schemes due to
the use of different databases. However, based on the characteris-
tics presented in Table 5, the difficult level of our dataset should be
between Edinburgh and Philadelphia databases. Thus, the 13.3% er-
Table 5
Summary of different chromosome databases

Database Copenhagen E

Tissue of origin Peripheral blood P
Number of chromosomes 8106 5
Data quality Good F
Including severely bent or touching chromosomes No Y
ror rate of our classifier is encouraging and it suggests that our
scheme achieves a very comparable or improved performance
due to the diversity of our database and the use of an unbiased
‘‘training–testing–validation” method.

Fourth, we assessed robustness of our scheme using an inde-
pendent validation dataset. The difference of classification accu-
racy of each ANN is small when applying to both the testing
dataset used for GA optimization and the validation dataset. The
biggest difference between applying to the two datasets is 61.7%
in all sub-groups (as shown in Table 3). The high robustness of this
new automated scheme can be attributed to two main factors.
First, the classifier is composed of a number of adaptively opti-
mized small size ANNs with a small number set of affective and
low-correlated features. This adaptive approach eliminates the
requirement of building and optimizing a large size ANN and the
smaller size ANN is generally easy to be trained using relatively
small training dataset and to maintain high level of robustness.
For example, unlike some of previously developed ANNs that in-
clude more than 100 hidden neurons [16,17], the numbers of hid-
den neurons used in our eight ANNs are 617. The ANN used in the
first layer has only 6 hidden neurons. Second, several measures
have been taken to control or minimize the risk of over-fitting each
ANN during the GA optimization. These measures include the
selection of the large ratio between the training momentum and
the learning rate, the limitation on ANN training iterations, and
the use of the ANN performance on the testing dataset rather than
the training dataset as the GA fitness criterion.

In summary, this preliminary study demonstrated (1) a new con-
cept of using an adaptive optimization method to build an auto-
mated karyotyping scheme with an ANN-based two decision layer
dinburgh Philadelphia OUHSC

eripheral blood Chorionic villus Peripheral blood amniotic fluid
548 5847 6900
air Poor Fair
es Yes Yes
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classifier, (2) the feasibility of using GA to select optimal features and
ANN topologies, and (3) the high and robust performance level of the
new scheme. Despite of these encouraging results, this study has a
number of weaknesses. First, the classification accuracy for sub-
group C remains substantially lower compared to the other sub-
groups of the chromosomes. Second, although we established a large
and diverse database in this study, the metaphase chromosomes
were all collected from normal samples. Because the numerical
and structural changes can often be found in samples diagnosed with
cancers and other genetic disorders [42], we do not know to date
whether the performance of our scheme will be significantly af-
fected when it is applied to classify abnormal chromosomes. There-
fore, before this automated scheme can be introduced and applied in
the routine clinical practice, we need to further improve the classifi-
cation accuracy of the scheme (in particular for the sub-group C) and
test the performance of our scheme in the classification of abnormal
or cancerous metaphase chromosomes.

Acknowledgments

This research is supported in part by grants from the National
Institutes of Health (NIH), CA115320. The authors acknowledge the
support of the Charles and Jean Smith Chair endowment fund as well.
The authors also thank Molly E. Donovan, for her editorial assistance.

References

[1] Tjio JH, Levan A. The chromosome number in man. Hereditas 1956;42:1–6.
[2] Conference D. A proposed standard system of nomenclature of human mitotic

chromosomes. Lancet 1960;1:1063–5.
[3] Piper J, Granum E, Rutovitz D, Ruttledge H. Automation of chromosome

analysis. Signal Process 1980;2:203–21.
[4] Wang X, Zheng B, Wood M, Li S, Chen W, Liu H. Development and evaluation of

automated systems for detection and classification of banded chromosomes:
current status and future perspectives. J Phys D: Appl Phys 2005;38:2536–42.

[5] Groen F, Kate Tt, Smeulders A, Young I. Human chromosome classification
based on local band descriptors. Patt Recogn Lett 1989;9:211–22.

[6] Piper J, Granum E. On fully automatic feature measurement for banded
chromosome classification. Cytometry 1989;10(3):242–55.

[7] van Vliet LJ, Young IT, Mayall BH. The Athena semi-automated karyotyping
system. Cytometry 1990:51–8.

[8] Schwartzkopf WC. Maximum likelihood techniques for joint segmentation-
classification of multi-spectral chromosome images. Austin: The University of
Texas at Austin; 2002.

[9] Jennings AM, Graham J. A neural network approach to automatic chromosome
classification. Phys Med Biol 1993;38:959–70.

[10] Wu Q, Castleman KR. Automated chromosome classification using wavelet-
based band pattern descriptors. IEEE Symposium on Computer-Based Medical
Systems CBMS 2000. Houston, TX, USA: 2000. p. 189–94.

[11] Johnston DA, Tang KS, Zimmerman S. Band features as classification measures
for G-banded chromosome analysis. Comput Biol Med 1993;23(2):115–29.

[12] Tso MKS, Graham J. The transportation algorithm as an aid to chromosome
classification. Patt Recog Lett 1983;1:489–96.

[13] Lerner B, Levinstein M, Rosenberg B, Guterman H. Feature selection and
chromosome classification using a multilayer perceptron neural network,
Neural Networks. IEEE Int Conf Comput Intell 1994:3540–5.

[14] Wu Q, Liu Z, Chen T, Xiong ZKRC. Subspace-based prototyping and classification
of chromosome images. IEEE Trans Image Process 2005;14:1277–87.

[15] Carothers A, Piper J. Computer-aided classification of human chromosomes: a
review. Stat Comput 1994;4:161–71.

[16] Sweeney WP, Musavi MT, J.N.Guidi. Classification of chromosomes using a
probabilistic neural network. Cytometry 1996;16:17–24.
[17] Errington P, Graham J. Application of artificial neural networks to chromosome
classification. Cytometry 1993;14:627–39.

[18] Lerner B. Toward a completely automatic neural-network-based human
chromosome analysis. IEEE Trans Syst Man Cybern—B: Cybern 1998;28:
544–52.

[19] Cho J. Chromosome classification using back propagation neural networks.
IEEE Eng Med Biol Mag 2000;19:28–33.

[20] Delshadpour S. Reduced size multi layer perceptron neural network for human
chromosome classification. In: Proceedings of the 25th Annual International
Conference of the IEEE (Engineering in Medicine and BiologySociety). 2003. p.
2249–52.

[21] Wu Q, Suetens P, Oosterlinck A. Chromosome classification using a multi-layer
perceptron neural net. In: Proceedings of the 12th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. 1990. p.
1453–54.

[22] Wu Q, Suetens P, Oosterlinck A. On knowledge-based improvement of
biomedical pattern recognition-a case study. In: Proceedings of 5th
conference on artificial intelligence for applications. 1989. p. 239–44.

[23] Lu Y, Ya Y. An expert system for banded chromosomes recognition. In:
Proceedings of the annual international conference of the IEEE engineering in
medicine and biology society. 1989. p. 1789–90.

[24] Ramstein G, Bernadet M, Kangoud A, Barba D. A rule-based image analysis
system for chromosome classification. In: Proceedings of the annual
international conference of the IEEE engineering in medicine and biology
society; 1992; 1992. p. 926–27.

[25] Zimmerman SO, Johnston DA, Arrighi FE, Rupp ME. Automated homologue
matching of human G-banded chromosomes. Comput Biol Med
1986;16:223–33.

[26] Keller JM, Gader P, Sjahputera O, Caldwell CW. A fuzzy logic rule-based system
for chromosome recognition. In: Proceedings of the eighth IEEE symposium on
computer-based medical systems. 1995. p. 125–32.

[27] Popescu M, Gader P, Keller J, Klein C. Automatic karyotyping of
metaphase cells with overlapping chromosomes. Comput Biol Med
1999;29:61–82.

[28] Stanley RJ, Keller JM, Gader P, Caldwell CW. Data-driven homologue
matching for chromosome identification. IEEE Trans Med Imaging
1998;17:451–62.

[29] Gregor J, Granum E. Finding chromosome centromeres using band pattern
information. Comput Biol Med 1991;21(1-2):55–67.

[30] Graham J, Errington P, Jennings AM. A neural network chromosome classifier. J
Radiat Res 1992;33:250–7.

[31] Mitchell TM. Machine learning. Boston MA: WCB McGraw-Hill; 1997.
[32] Li Q. Reliable evaluation of performance level for computer-aided diagnostic

scheme. Acad Radiol 2007;14:985–91.
[33] Wang X, Li S, Liu H, Wood M, Chen W, Zheng B. Automated identification of

analyzable metaphase chromosomes depicted on microscopic digital images. J
Biomed Inform 2007;41:264–71.

[34] Wang X, Zheng B, Li S, Mulvihill JJ, Liu H. A rule-based scheme for centromere
identification and polarity assignment of metaphase chromosomes. Comput
Methods Programs Biomed 2008;89(1):33–42.

[35] Kramer HP, Bruckner JB. Iterations of a non-linear transformation for
enhancement of digital images. Patt Recogn 1975;7:53–8.

[36] Granum E. Pattern recognition aspects of chromosomeanalysis—computerized
and visual interpretation of banded human chromosomes. Lyngby: Tech Univ
Denmark; 1980.

[37] Tseng CC. Human chromosome analysis in tested studies for laboratory
teaching. In: Goldman CA, editor. In: Proceedings of the 16th Workshop/
Conference of the Association for Biology Laboratory Education (ABLE).
Atlanta, Georgia; 1995. p. 35–56.

[38] Holland JH. Adaption in neural and artificial systems. University of Michigan
press. Ann Arbor Mich 1975.

[39] Zheng B, Chang YH, Good WF, Gur D. Performance gain in computer-assisted
detection schemes by averaging scores generated from artificial neural
networks with adaptive filtering. Med Phys 2001;28:2302–8.

[40] Kantrowitz M. Prime time freeware for AI, issue 1-1. Artif Intell Repository
1994;1(1). Selected materials from the Carnegie Mellon University, Sunnyvale,
CA, Prime Time Freeware.

[41] Li Q, Doi K. Reduction of bias and variance for evaluation of compute-aided
diagnostic schemes. Med Phys 2006;33:868–75.

[42] Shih LM, Wang TL. Apply innovative technologies to explore cancer genome.
Curr Opin Oncol 2005;17:33–8.


	Automated  classification of metaphase chromosomes: Optimization of an adaptive computerized scheme
	 Introduction
	 Materials And Methodand methods
	 An experimental Databasedatabase
	 Feature Computationcomputation

	 Optimization of a Two-layer Chromosome Classifiertwo-layer chromosome classifier
	 Results
	 Discussion
	AcknowledgementAcknowledgments
	References


