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Abstract

In the present article we are concerned with a class of degenerate second order differential operators LA,b

defined on the cube [0,1]d , with d � 1. Under suitable assumptions on the coefficients A and b (among
them the assumption of their Hölder regularity) we show that the operator LA,b defined on C2([0,1]d) is
closable and its closure is m-dissipative. In particular, its closure LA,b is the generator of a C0-semigroup of
contractions on C([0,1]d) and C2([0,1]d) is a core for it. The proof of such result is obtained by studying
the solvability in Hölder spaces of functions of the elliptic problem λu(x) − LA,bu(x) = f (x), x ∈ [0,1]d ,
for a sufficiently large class of functions f .
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1. Introduction

In this paper we continue our study of a class of degenerate elliptic problems

λu(x) − LA,bu(x) = f (x), x ∈ [0,1]d , (1.1)

where d � 1, λ is a positive constant and LA,b is the operator

LA,b := 1

2
Tr
[
AD2]+ 〈b,D〉, (1.2)

with 〈·,·〉 the usual scalar product in R
d . Here we assume that A : [0,1]d → L+(Rd) (where

L+(Rd) is the space of symmetric and non-negative definite (d × d)-matrices) and b : [0,1]d →
R

d are continuous mappings such that

Aν = 0, 〈b, ν〉 � 0, on ∂[0,1]d , (1.3)

where ν is the unit inward normal at ∂[0,1]d . We recall that condition (1.3) is necessary and
sufficient in order to have stochastic invariance (see [8]).

It is known (to this purpose we refer for example to [4]) that the operator LA,b defined
on C2([0,1]d) with values in C([0,1]d) is a pregenerator of a Markov semigroup on C([0,1]d),
equipped with the supremum norm, in the sense of Liggett [13, Definitions 2.1]. A natural ques-
tion to be addressed is whether the closure of LA,b is a generator, which is equivalent to the
solvability of problem (1.1) for a dense subset of data f in C([0,1]d). In [6, Theorem 1.1] we
showed that this is the case when the mappings A and b are of class C2([0,1]d) and the compo-
nents aij of the matrix A satisfy the further condition

aij (x) = aij (xi, xj ), x ∈ [0,1]d .

Note that no non-degeneracy condition is assumed on A. It would be of interest to be able to
exhibit an explicit class of functions f for which problem (1.1) has a solution in C2([0,1]d), but
the method we have used in [6] does not provide an answer to this question. However a first step
in this direction is already contained in [6, Theorem 5.2] where we have proved that there exists
some λ0 � 0 such that for any f ∈ C1([0,1]d) and λ > λ0 there exists a unique weak solution u

in C1([0,1]d) to problem (1.1). That is there exists a unique u ∈ C1([0,1]d) such that

∫
[0,1]d

[
λuϕ + 1

2
〈ADu,Dϕ〉 +

〈
1

2
DA − b,Du

〉
ϕ

]
dx =

∫
[0,1]d

f ϕ dx, (1.4)

for any ϕ ∈ W 1,∞([0,1]d). Moreover, we have shown that

‖u‖C1([0,1]d ) � 1

λ − λ0
‖f ‖C1([0,1]d ). (1.5)

We emphasize that in order to give a meaning to problem (1.1) in its weak formulation (1.4)
we needed some differentiability property of A. Actually in [6, Lemma 3.4] we established a
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maximum principle when A is in C1([0,1]d) and b is in C([0,1]d), which guarantees uniqueness
of weak solutions in C1([0,1]d).

In view of natural applications of these results to the theory of dynamics of populations and
of interacting particles the assumption of C2 regularity for A and b seems to be rather strong.
In this paper, motivated by the work of Bass, Perkins and others (see [2] and [3]), we consider a
matrix A = (aij ) of the form

aij (x) = mi(x)xi(1 − xi)δij , x ∈ [0,1]d , i, j = 1, . . . , d,

where mi are strictly positive functions in Cδ([0,1]d), for some δ ∈ (0,1). Our assumptions on b

include the special form

b(x) = c(θ − x), x ∈ [0,1]d ,

for some positive constant c and some vector θ in the interior of [0,1]d . We would like to stress
that by using the method developed in [2] and [3], the well-posedness of the associated mar-
tingale problem can be proved. This means that if for any x ∈ [0,1]d we denote by {η(t)}t�0
the canonical process on Cx([0,+∞); [0,1]d) and by E and {Et }t�0 we denote the canonical
σ -algebra with the canonical filtration on Cx([0,+∞); [0,1]d), then there exists a unique prob-
ability measure P on (Cx([0,+∞); [0,1]d),E) such that the process

t ∈ [0,+∞) 	→ ϕ
(
η(t)

)−
t∫

0

LA,bϕ
(
η(s)

)
ds,

is an Et -martingale on (Cx([0,+∞); [0,1]d),E,P), for any ϕ ∈ C2([0,1]d).
However, in the present paper our goal is to establish the much stronger result stated in The-

orem 2.1. Namely, we show that the operator LA,b defined on C2([0,1]d) is closable and its
closure is m-dissipative. In particular LA,b is the generator of a C0-semigroup of contractions on
C([0,1]d) and C2([0,1]d) is a core for it. We emphasize that the regularity we impose on the
coefficients mk , bk and ck in Theorem 2.1 is Hölder regularity. It is by no means clear that the
conclusions of the theorem hold when mk , bk and ck are merely continuous and d > 1.

In order to prove Theorem 2.1, we use a change of variables, introduced in the one-
dimensional case by Metafune in [16]. Actually, we write the operator LA,b as the sum of the
operators

Lku(x) = mk(x)xk(1 − xk)D
2
ku(x) + ck(x)bk(xk)Dku(x), x ∈ [0,1]d,

for k = 1, . . . , d . For each k we take

D(Lk) :=
{
u ∈ C

([0,1]d): Dku ∈ C
([0,1]d), D2

ku ∈ C
([0,1]d ∩ {0 < xk < 1}),

lim
xk→{0,1} sup

xi∈[0,1]
xk(1 − xk)D

2
ku(x) = 0

}
.

i �=k
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Clearly C2([0,1]d) is contained in the intersection of all D(Lk), so that LA,b ⊂ L1 + · · · + Ld .
Next, we introduce the following change of variables, by setting for any v ∈ C([0,π]d)

[TΦv](x) := v
(
ϕ−1(x1), . . . , ϕ

−1(xd)
)
, x ∈ [0,1]d,

where ϕ(t) := (1 − cos t)/2, for t ∈ [0,π]. In these new coordinates, the operator Lk can be
written as

Nk = T −1
Φ ◦ Lk ◦ TΦ,

so that

Nkv(y) = μk(y)

[
D2

kv(y) + 1

sinyk

(
2γk(y)βk(yk)

μk(y)
− cosyk

)
Dkv(y)

]
, y ∈ [0,π]d ,

for suitable mappings μk , γk and βk . Finally, we define

N̂ :=
d∑

k=1

Nk, D(N̂) :=
d⋂

k=1

D(Nk) = T −1
Φ

(
d⋂

k=1

D(Lk)

)
.

Although the transformed operator N̂ has singular coefficients, it is possible to obtain for it
Schauder type estimates in the usual Hölder spaces. This is the content of Theorem 2.2 (see also
its Corollary 2.3) and the proof of such a theorem, which is realized in several steps through
Sections 3–5, is the main task of the paper. Clearly, Theorem 2.2 could be reformulated for the
operator LA,b in terms of inhomogeneous Hölder spaces, but we refrain to do it since it is obvious
from Theorem 2.2 and since we do not have a direct application of it in this paper.

The proof of Theorem 2.2 is based on the method of freezing coefficients. Indeed, having
optimal regularity estimates for the operator N (defined as the closure of the operator N̂ ) when
the coefficients μk , βk and γk are constant, we are able to construct an approximate resolvent
operator. Using the fact that, when the coefficients μk , βk and γk are constant, the operator N is
a commutative sum of partial differential operators acting on one variable only, we can apply the
method of sums introduced by Grisvard in [11], see also [9] in the so-called parabolic case. In the
present paper we provide a proof of it due to Da Prato [7], which applies when all operators are
generators of analytic semigroups. Notice that this proof does not rely on complex methods.

Once we have Theorem 2.2, we introduce the closed operator

M := TΦ ◦ N ◦ T −1
Φ , D(M) := TΦ

(
D(N)

)
,

and, thanks to the results proved for N , we show that λ − M is a bijection from D(M) into
C([0,1]d) and C2([0,1]d) is a core for M . We conclude the proof of Theorem 2.1, by showing
that M = LA,b .

The paper is organized as follows. In Section 2 we state our main results and show how
Theorem 2.1 can be deduced from Corollary 2.3. In Section 3 the required estimates for the
partial differential operators acting on one variable are established. They rely on previous results
of Angenent [1] and Metafune [16] and on an abstract result stated in Appendix A. In Section 4
we establish the basic a priori estimates (4.4), by using the method of sums given in Appendix
B. In Section 5 we introduce a suitable partition of unity and construct an approximate resolvent.
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We mention that by extending this approximate resolvent for complex values of λ we could prove
the analyticity of the semigroup generated by N in C([0,1]d), but we refrain to do it in this paper.

2. Statement of main results

Fix a � b and d ∈ N
�. We denote by C([a, b]d) the Banach space of continuous functions

u : [a, b]d → R, endowed with the sup-norm

|u|0 := max
x∈[a,b]d

∣∣u(x)
∣∣.

For any δ ∈ (0,1), Cδ([a, b]d) is the subspace of Hölder continuous functions, endowed with the
norm

|u|δ := |u|0 + [u]δ =: |u|0 + sup
x,y∈[a,b]d

x �=y

|u(x) − u(y)|
|x − y|δ .

If u,v ∈ Cδ([a, b]d) we have

[uv]δ � |u|0[v]δ + [u]δ|v|0. (2.1)

For any k ∈ N, we denote by Ck([a, b]d) the subspace of k-times continuously differentiable
functions u, endowed with the norm

|u|k := |u|0 +
k∑

h=1

[u]h =: |u|0 +
k∑

h=1

sup
x∈[a,b]d

∣∣Dhu(x)
∣∣

and by Ck+δ([a, b]d) the subspace of functions u ∈ Ck([a, b]d) having Hölder continuous kth
derivative, endowed with the norm

|u|k+δ := |u|k + [
Dhu

]
δ
.

Finally, for any δ ∈ (0,1) we denote by hδ([a, b]d) the space of little-Hölder continuous func-
tions, consisting of all functions u ∈ Cδ([a, b]d) such that

lim
ε→0

sup
x,y∈[a,b]d
|x−y|<ε

|u(x) − u(y)|
|x − y|δ = 0.

For any k ∈ N, we denote by hk+δ([a, b]d) the subspace of functions in Ck([a, b]d) such that
Dku ∈ hδ([a, b]d).

It is immediate to check that Cδ1([a, b]d) ⊂ hδ2([a, b]d), for any δ1 > δ2. Moreover it is
possible to prove that hδ2([a, b]d) is the closure of Cδ1([a, b]d) in Cδ2([a, b]d) (for a proof see
e.g. [14, Proposition 0.2.1]).
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We are here concerned with the following second order elliptic operator

⎧⎪⎪⎨
⎪⎪⎩

Lu(x) =
d∑

k=1

[
mk(x)xk(1 − xk)D

2
ku(x) + ck(x)bk(xk)Dku(x)

]
, x ∈ [0,1]d ,

u ∈ D(L) = C2([0,1]d).
(2.2)

We assume that the coefficients mk , ck and bk satisfy the following conditions.

Hypothesis 1. There exists δ ∈ (0,1) such that for any k = 1, . . . , d

(1) the functions mk and ck belong to Cδ([0,1]d) and are strictly positive;
(2) the function bk belongs to Cδ([0,1]), with bk(0) > 0 and bk(1) < 0.

Notice that under the conditions above, if we set

Ahk(x) := δhkmk(x)xk(1 − xk), b̃k(x) := ck(x)bk(xk),

we have

A(x)ν(x) = 0,
〈
b̃(x), ν(x)

〉
� 0, x ∈ ∂[0,1]d ,

where ν is the unit inward normal at ∂[0,1]d . As proved for example in [5, Lemma 3.3], the two
conditions above imply that a minimum principle holds for the operator L. Namely, at any point
x̄ ∈ [0,1]d where a function u ∈ C2([0,1]d) achieves its minimum, we have Lu(x̄) � 0. As is
well known, since L1 = 0, this implies that the operator L is dissipative, that is for any λ > 0

|u|0 � 1

λ
|λu − Lu|0, u ∈ D(L). (2.3)

Therefore, as D(L) = C2([0,1]d) is dense in C([0,1]d), the operator (L,D(L)) is closable in
C([0,1]d) and its closure (L̄,D(L̄)) is a dissipative operator on C([0,1]d).

Thanks to the Lumer–Phillips theorem, if we show that Range(λ − L̄) = C([0,1]d), for any
λ > 0, the main result of this paper follows.

Theorem 2.1. Under Hypothesis 1, the operator (L,D(L)) defined in (2.2) is closable and its
closure is m-dissipative. Hence L̄ generates a C0-semigroup of contractions on C([0,1]d) and
C2([0,1]d) is a core for L̄.

In order to prove that Range(λ − L̄) = C([0,1]d), we study the solvability of the elliptic
equation

λu − Lu = f, (2.4)

for all f in some dense subset of C([0,1]d). To this purpose, in what follows we shall introduce
an auxiliary operator, obtained from L by a suitable change of variables.
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For any k = 1, . . . , d we define

Lku(x) = mk(x)xk(1 − xk)D
2
ku(x) + ck(x)bk(xk)Dku(x), x ∈ [0,1]d,

for any u ∈ D(Lk), where

D(Lk) :=
{
u ∈ C

([0,1]d): Dku ∈ C
([0,1]d), D2

ku ∈ C
([0,1]d ∩ {0 < xk < 1}),

lim
xk→{0,1} sup

xi∈[0,1]
i �=k

xk(1 − xk)D
2
ku(x) = 0

}

and mk , ck and bk are the coefficients of the operator L introduced in (2.2) and fulfilling Hypoth-
esis 1. Clearly we have

Lu = (L1 + · · · + Ld)u, u ∈ C2([0,1]d).
In order to study the operators Lk , we perform a change of variables as in [16]. We define

Φ : [0,π]d → [0,1]d , y 	→ Φ(y) = (
ϕ(y1), . . . , ϕ(yd)

)
,

where ϕ : [0,π] → [0,1] is the homeomorphism

ϕ(t) := 1

2
(1 − cos t), t ∈ [0,π].

If for any v : [0,π]d → R we define

[TΦv](x) = v
(
Φ−1(x)

)
, x ∈ [0,1]d, (2.5)

and set

Nk := T −1
Φ ◦ Lk ◦ TΦ,

it is immediate to check that

Nkv(y) = μk(y)

[
D2

kv(y) + 1

sinyk

(
2γk(y)βk(yk)

μk(y)
− cosyk

)
Dkv(y)

]
, (2.6)

where

μk := mk ◦ Φ, γk := ck ◦ Φ, βk := bk ◦ Φ. (2.7)

By proceeding as in [16, pp. 265–266], it is possible to show that if we set D(Nk) = T −1
Φ (D(Lk)),

then

D(Nk) :=
{
v ∈ C

([0,π]d): Jkv ∈ C2([0,π];C([0,π]d−1)),
lim+(Jkv)′(t) = lim−(Jkv)′(t) = 0

}
,

t→0 t→π



294 S. Cerrai, P. Clément / J. Differential Equations 242 (2007) 287–321
where Jk are the mappings from C([0,π]d) into C([0,π];C([0,π]d−1)) which are defined for
any k = 1, . . . , d , f ∈ C([0,π]d), t ∈ [0,π] and (x1, . . . , xk−1, xk+1, . . . , xd) ∈ [0,π]d−1 by[

Jkf (t)
]
(x1, . . . , xk−1, xk+1, . . . , xd) := f (x1, . . . , xk−1, t, xk+1, . . . , xd)

(for all details see Appendix A).
Now, we define

N̂ :=
d∑

k=1

Nk, D(N̂) :=
d⋂

k=1

D(Nk) = T −1
Φ

(
d⋂

k=1

D(Lk)

)
. (2.8)

The operator N̂ is clearly densely defined and is dissipative in C([0,π]d), hence it is closable
with dissipative closure (N,D(N)).

In Section 5 we shall prove the following result.

Theorem 2.2. Under Hypothesis 1, for any λ > 0 the operator λ − N is an isomorphism from
C2+δ
N ([0,π]d) into Cδ([0,π]d), where

C2+δ
N

([0,π]d) :=
d⋂

k=1

{
v ∈ C2+δ

([0,π]d): Dkv(y) = 0, y ∈ [0,π]d ∩ {yk = 0,π}}. (2.9)

As a consequence of the previous theorem, we have

Corollary 2.3. Under Hypothesis 1, for any δ′ ∈ (0, δ) and λ > 0 the operator λ − N is an
isomorphism from h2+δ′

N ([0,π]d) into hδ′
([0,π]d), where

h2+δ′
N

([0,π]d) :=
d⋂

k=1

{
u ∈ h2+δ′([0,π]d): Dkv(y) = 0, y ∈ [0,π]d ∩ {yk = 0,π}}.

Proof. This is a direct consequence of the fact that λ − N is an isomorphism between
C2+δ′
N ([0,π]d) and Cδ′

([0,π]d), for any δ′ � δ, the spaces h2+δ′
([0,π]d) and hδ′

([0,π]d)

are closed respectively in C2+δ′
([0,π]d) and Cδ′

([0,π]d) and the spaces C2+δ([0,π]d) and
Cδ([0,π]d) are dense respectively in h2+δ′

([0,π]d) and hδ′
([0,π]d).

Actually, if f ∈ h2+δ′
([0,π]d), there exists a sequence {fn}n∈N ⊂ C2+δ([0,π]d) which

converges to f in C2+δ′
([0,π]d), so that the sequence {(λ − N)fn}n∈N converges to the

function (λ − N)f in Cδ′
([0,π]d). Now, as Cδ([0,π]d) ⊂ hδ′

([0,π]d), for each n ∈ N we
have (λ − N)fn ∈ hδ′

([0,π]d) and, as hδ′
([0,π]d) is closed in Cδ′

([0,π]d), we conclude that
(λ − N)f ∈ hδ′

([0,π]d). �
In particular, from Theorem 2.2 and its Corollary 2.3, we have that (N,D(N)) is a densely

defined m-dissipative operator which generates a C0-semigroup of contractions on C([0,π]d)

and h2+δ′
N ([0,π]d) is a core for N , for any δ′ ∈ (0, δ).

Now, we introduce the space

Z := {
v ∈ C4([0,π]d): (Jkv)′(t) = (Jkv)(3)(t) = 0, t ∈ {0,π}, k = 1, . . . , d

}
.
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For any fixed δ ∈ (0,1) and u ∈ h2+δ
N ([0,π]d), we can find a sequence {un}nN ⊂ C4([0,π]d)

which converges to u in the C2+δ([0,π]d) norm. As the function u satisfies a Neumann boundary
condition, we can construct functions un which satisfy a Neumann boundary condition as well.
Moreover, as the sequence {un}n∈N converge to u in the C2+δ([0,π]d) norm, it is possible to
construct the functions un in such a way that their third derivatives vanish at the boundary as
well. This means that Z is dense in h2+δ

N ([0,π]d), with respect to the C2+δ([0,π]d) norm, and,

in particular, for any v ∈ h2+δ
N ([0,π]d) there exists a sequence {vn}n ⊂ Z such that

lim
n→∞vn = v, lim

n→∞ N̂vn = N̂v, in C
([0,π]d).

As h2+δ′
N ([0,π]d) is a core for N , for any δ′ ∈ (0, δ), this implies that Z is a core for N .

Now, we introduce the closed operator

M := TΦ ◦ N ◦ T −1
Φ , D(M) = TΦ

(
D(N)

)
.

As TΦ is an isomorphism from C([0,π]d) into C([0,1]d) and N is m-dissipative and densely de-
fined, it follows that M is m-dissipative and then λ−M is a bijection from D(M) into C([0,1]d),
for any λ > 0. Moreover, as Z is a core for N , it follows that TΦ(Z) is a core for M .

In the next lemma we show that TΦ(Z) ⊆ C2([0,1]d). Since Tφ(Z) is a core for M , this
implies that C2([0,1]d) is a core for M .

Lemma 2.4. For any v ∈ Z, we have that TΦv ∈ C2([0,1]d).

Proof. Clearly TΦv ∈ C([0,1]d). As far as the first derivatives are concerned we have

(
ϕ−1)′(s) = 2

sin(ϕ−1(s))
, s ∈ (0,1),

so that, for any k = 1, . . . , d and x ∈ [0,1]d ∩ {xk ∈ (0,1)}

Dk(TΦv)(x) = 2
Dkv(y)

sinyk

,

where y = Φ−1(x). As Dkv(y) = 0, for yk = 0,π , this implies that

lim
xk→0,1

Dk(TΦv)(x) = 2 lim
yk→0,π

Dkv(y)

sinyk

= 2(−1)xkD2
kv
(
Φ−1(x)

)
|xk=0,1

,

so that Dk(TΦv) ∈ C([0,1]d), for any k = 1, . . . , d , and hence TΦv ∈ C1([0,1]d).
As far as the second derivatives are concerned, for any k = 1, . . . , d and x ∈ [0,1]d ∩

{xk ∈ (0,1)}, we have

D2
k (TΦv)(x) = 4

sinykD
2
kv(y) − cosykDkv(y)

sin3 yk

,

where y = Φ−1(x). Hence, as Dkv(y) = D3
kv(y) = 0, for yk = 0,π , by the theorem of De L’Ho-

pital, we have
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lim
xk→0,1

D2
k (TΦv)(x) = 4 lim

yk→0,π

sinykD
3
kv(y) + sinykDkv(y)

3 sin2 yk cosyk

= 4

3
lim

yk→0,π

D3
kv(y)

sinyk cosyk

+ Dkv(y)

sinyk cosyk

= 4

3

[
D4

kv
(
Φ−1(x)

)+ D2
kv
(
Φ−1(x)

)]
|xk=0,1

.

This means that D2
k (TΦv) ∈ C([0,1]d). Concerning mixed derivatives, for any k �= h = 1, . . . , d

and x ∈ [0,1]d ∩ {xk, xh ∈ (0,1)}

D2
hk(TΦv)(x) = 2

D2
hkv(y)

sinyk sinyh

,

where y = Φ−1(x). As D2
hkv(y) = 0, both for yk = 0,π and for yh = 0,π , we get

lim
xk→0,1

D2
hk(TΦv)(x) = 2 lim

yk→0,π
2

D2
hkv(y)

sinyk sinyh

= 2(−1)xk
D3

hkv(Φ−1(x))

sin(ϕ−1(xh))
|xk=0,1

and analogously for the limit as xh goes to 0 and 1. This allows to conclude that D2
hk(TΦv) ∈

C([0,1]d), for any h, k = 1, . . . , d , so that TΦv ∈ C2([0,1]d). �
Now, if we show that L̄ = M , since λ − M is a bijection from D(M) into C([0,1]d), for any

λ > 0, we have that Range(λ − L̄) = C([0,1]d), for any λ > 0 and Theorem 2.1 is proved. In
order to prove that L̄ = M , we notice that

D(L) = C2([0,1]d)⊆
d⋂

k=1

D(Lk).

Then, due to (2.8) we have T −1
Φ (D(L)) ⊆ D(N̂), so that L ⊆ M and hence

L̄ ⊆ M̄ = M.

On the other hand, since C2([0,π]d) is a core for M , for any u ∈ D(M) there exists a sequence
{un}n∈N ⊂ C2([0,π]d) such that

lim
n→∞un = u, lim

n→∞Mun = Mu.

But Mun = Lun, so that u ∈ D(L̄) and L̄u = Mu.

3. The one-dimensional case

In the present section we denote by E the space C([0,∞];C), equipped with the sup-norm
| · |0, and by F the space {u ∈ C2([0,∞];C): u′(0) = 0}, equipped with the C2-norm | · |2.

We start with the following result by Angenent (see [1, Theorem 4.2]).
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Proposition 3.1. For any b ∈ C, set

Abu(t) := D2u(t) + b − 1

t
Du(t), t > 0, Abu(0) := bu′′(0).

Then, Ab ∈ L(F ;E). Moreover, if Reb > 0, then λ−Ab ∈ Isom(F ;E), for any λ ∈ C\ (−∞,0].

If we set

U := {
(λ, b) ∈ C

2: λ /∈ (−∞,0], Reb > 0
}
,

then U is an open subset of C2 and the map

(λ, b) ∈ U 	→ λ − Ab ∈ Isom(F ;E)

is analytic. Since the mapping B 	→ B−1 from Isom(F ;E) into Isom(E;F) is analytic, the map

(λ, b) ∈ U 	→ (λ − Ab)
−1 ∈ Isom(E;F)

is analytic. Then, given b ∈ C, with Reb > 0, μ ∈ I := [μ1,μ2], with 0 < μ1 < μ2, and
θ ∈ [0,π), we have that there exists M0 = M0(θ, I ) > 0 such that

∥∥(λ − Ab)
−1
∥∥
L(E;F)

� M0, |λ| = 1, |argλ| � θ, μ ∈ I. (3.1)

By using a rescaling argument, as in [1] and [16, Proposition 2.7], we obtain

Proposition 3.2. Let b ∈ C, with Reb > 0, and μ > 0. Then

C \ (−∞,0] ⊂ ρ(Aμb).

Moreover, for every θ ∈ [0,π) and I := [μ1,μ2], with 0 < μ1 < μ2, there exists M1 =
M1(θ, I ) > 0 such that

∥∥(λ − Aμb)
−1
∥∥
L(E)

� M1

|λ| , λ ∈ ρ(Aμb), |argλ| � θ, μ ∈ I. (3.2)

By using the same argument as in [1] or [16], we see that if the constant b is replaced by a
function b ∈ C([0,∞);C), with Reb(0) > 0, then Ab ∈ L(F ;E) and (3.2) holds.

Next, for any μ > 0 and b ∈ C([0,π]), we consider the operator

Bμv(t) :=
{

D2v(t) + (sin t)−1(μb(t) − cos t)Dv(t), t ∈ (0,π),

lims→0,π Bμv(s), t = 0,π,

with

D(Bμ) := {
v ∈ C2([0,π]): v′(0) = v′(π) = 0

}
.

By following the same arguments used in [16, Theorem 2.11] we obtain
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Proposition 3.3. Let b ∈ C([0,π]d) satisfy b(0) > 0 and b(π) < 0 and let I := [μ1,μ2], with
0 < μ1 < μ2. Then, there exist θ ∈ [0,π] and ρ > 0 such that for every λ ∈ C, with |λ| � ρ and
|argλ| � θ , and every μ ∈ I it holds 0 ∈ ρ(λ − Bμ) and

∥∥(λ − Bμ)−1
∥∥
L(E)

� M2

|λ| , (3.3)

for some M2 = M2(θ, ρ, I ) > 0.

The previous proposition implies that if we denote by etBμ , t � 0, the analytic semigroup
on E generated by Bμ, then for any b ∈ C([0,π]), with b(0) > 0 and b(π) < 0, and for any
I := [μ1,μ2], with 0 < μ1 < μ2, there exists a constant M3 = M3(I ) > 0 such that∥∥tBμetBμ

∥∥
L(E)

� M3, t > 0.

Replacing Bμ by mBμ, with m ∈ J := [m1,m2] and 0 < m1 < m2, we obtain

∥∥tmBμetmBμ
∥∥
L(E)

� M3, t > 0, (3.4)

for some M3 = M3(I, J ) > 0.
We conclude the present section by recalling some well-known estimates in Hölder spaces for

the operators (sin t)−1D and mBμ.

Lemma 3.4. Let u ∈ C2([0,π]) such that u′(0) = u′(π) = 0 and fix δ ∈ (0,1).

1. We have ∣∣(sin t)−1Du
∣∣
0 � c|u′′|0,

[
(sin t)−1Du

]
δ
� cδ

[
u′′]

δ
.

2. If mBμu ∈ Cδ([0,π]), with m ∈ J and μ ∈ I , we have that u ∈ C2+δ([0,π]) and there exists
M4 = M4(I, J ) > 0 such that

[u′′]δ � M4[mBμu]δ.

4. The d-dimensional commutative case

In the present section we are concerned with the operator (N̂,D(N̂)) introduced in (2.8), in
the case its coefficients μk and γk , introduced in (2.7), are constant.

In what follows we shall denote

μ := inf
y∈[0,π]d
k=1,...,d

μk(y), M := sup
y∈[0,1π]d
k=1,...,d

μk(y),

and

γ := inf
y∈[0,π]d
k=1,...,d

γk(y), Γ := sup
x∈[0,π]d
k=1,...,d

γk(y).
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Lemma 4.1. Assume that μk and γk are constant, for any k = 1, . . . , d . Then, under Hypothesis 1
the operator N̂ is closable in C([0,π]d) and, if we denote by N its closure, for any λ > 0 we
have that λ − N is an isomorphism between C2+δ

N ([0,π]d) and Cδ([0,π]d) and for any v ∈ X

∣∣(λ − N)−1v
∣∣
0 � 1

λ
|v|0.

Moreover, there exists K = K(μ,M,γ,Γ ) > 0 such that for any λ > 0 and v ∈ X

[
DkDh(λ − N)−1v

]
δ
� K

(
λ−δ|v|0 + [v]δ

)
. (4.1)

Proof. As shown in Proposition 3.3, for any k = 1, . . . , d the operator μkB2γk/μk
is densely

defined and m-dissipative and generates an analytic semigroup etμkB2γk/μk on C([0,π]d). Then,
according to Theorem A.2, we denote by Ek(μkB2γk/μk

) the unique densely defined and m-
dissipative operator, which generates an analytic semigroup on C([0,π]d), such that

etEk(μkB2γk/μk
) = Ek

(
etμkB2γk/μk

)
, t � 0.

Due to (A.10)

Ek(μkB2γk/μk
)etEk(μkB2γk/μk

) = Ek

(
μkB2γk/μk

etμkB2γk/μk

)
,

and then, thanks to (3.4) and to (A.5)

∥∥tEk(μkB2γk/μk
)etEk(μkB2γk/μk

)
∥∥
L(C([0,π]d ))

= ∥∥tμkB2γk/μk
etμkB2γk/μk

∥∥
L(C([0,π])) � M3, (4.2)

for some M3 = M3(μ,M,γ,Γ ) > 0. Next, if for any u ∈ C([0,1]) and v ∈ C([0,1]d−1) we
denote, as in (A.3),

[u ⊗k v](x) := u(xk)v(x1, . . . , xk−1, xk+1, . . . , xd), x ∈ [0,1]d,

it is immediate to check that, when μk and γk are constant,

Nk[u ⊗k v] = (μkB2γk/μk
u) ⊗k v = Ek(μkB2γk/μk

)[u ⊗k v],

last equality following from (A.6). Then, by Theorem A.2 we obtain that, for any k = 1, . . . , d ,
Nk = Ek(μkB2γk/μk

).
This means that the operator Nk is densely defined and m-dissipative and generates an analytic

semigroup etNk , t � 0, in C([0,π]d) and all the semigroups etNk are commuting. Moreover,
thanks to (4.2) there exists some M̄ = M̄(m,M,γ,Γ ) > 0 such that

sup
∥∥tNke

tNk
∥∥
L(C([0,π]d ))

� M̄, k = 1, . . . , d. (4.3)

t>0
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Now, we are in the position to apply Theorem B.2, in the case E = C([0,π]d). To this purpose
we need to identify the spaces X and Y introduced respectively in (B.3) and (B.4), for θ = δ/2.
Noting that for any k = 1, . . . , d

D
(
JkNkJ

−1
k

)= {
v ∈ C2([0,π];C([0,π]d−1)): v′(0) = v′(π) = 0

}
,

as proved for example in Lunardi [14], we have

D
JkNkJ

−1
k

(δ/2,∞) = Cδ
([0,1];C([0,π]d−1)).

Moreover, we have

DNk
(δ/2,∞) = {

u ∈ C
([0,π]d): Jku ∈ D

JkNkJ
−1
k

(δ/2,∞)
}

and then, as

X =
d⋂

k=1

DNk
(δ/2,∞),

according to Lemma C.1 we conclude that X = Cδ([0,π]d), and the norm introduced in (B.2) is
equivalent to the usual norm in Cδ([0,π]d).

Concerning the space Y , we have

Y =
d⋂

k=1

{
u ∈ D(Nk): Nku ∈ DNk

(δ/2,∞)
}
.

Proceeding as before for X and using Lemma 3.4 in his Banach space-valued version, we find
that for any k = 1, . . . , d

{
u ∈ D(Nk): Nku ∈ DNk

(δ/2,∞)
}

= {
u ∈ C

([0,π]d): Jku ∈ C2([0,π];C([0,π]d−1)),
(Jku)′(0) = (Jku)′(π) = 0, (JkNku) ∈ Cδ

([0,π];C([0,π]d−1))}
= {

u ∈ C
([0,π]d): Jku ∈ C2+δ

([0,π];C([0,π]d−1)), (Jku)′(0) = (Jku)′(π) = 0
}
.

In view of Lemma C.2 we conclude that

Y = {
u ∈ C2+δ

([0,π]d): Dku|yk=0 = Dku|yk=π = 0
}= C2+δ

N
([0,π]d).

Therefore, thanks to Theorem B.2 we have that the operator N̂ defined in (2.8) is closable
in C([0,π]d) and, if we denote by N its closure, λ − N is an isomorphism from Y onto X,
for any λ > 0, and estimate (4.1) holds, with DkDh replaced by Nk . Now, by applying again
Lemma 3.4 in its Banach space valued version, we obtain estimate (4.1) for D2

k and then we
obtain the general case DkDh from Lemma C.2. �
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By using interpolation (see [12, Theorem 3.2.1]), as an immediate consequence of the previ-
ous lemma we have

Corollary 4.2. Under the same conditions of Lemma 4.1, for any θ ∈ (0,2 + δ) there exists
K = K(θ,m,M,γ,Γ ) > 0 such that for any λ � 1 and v ∈ X

[
(λ − N)−1v

]
θ

� Kλ
θ

2+δ
−1|v|δ. (4.4)

5. The variable coefficient case

In order to prove our result in the case of non-constant coefficients, we use the method of
approximate resolvents (cf. for example [1] and [12]). This procedure is rather heavy and we will
proceed in several steps.

First we introduce a partition of unity for the hypercube [0,π]d . Namely, for any n ∈ N fixed,
we construct a family of functions {Φn

α}α∈In,d
⊂ C∞([0,π]d), where In,d is a suitable set of

indices, such that for any y ∈ [0,π]d

0 � Φn
α(y) � 1,

∑
α∈In,d

(
Φn

α(y)
)2 = 1.

What is important is that functions Φn
α satisfy the following bounds for the sup-norm and for the

Hölder seminorm

∣∣Φn
α

∣∣
0 � 1,

[
Φn

α

]
δ
� k3(d)nδ, α ∈ In,d ,

for some constant k3(d) independent of n and α. In this way, for each n ∈ N we can introduce an
equivalent norm on Cδ([0,π]d) taking into account of the estimate above,

|v|δ,n := |v|0 + n−δ

k3(d)
[v]δ.

Once we have such a partition of unity, for each n ∈ N and α ∈ In,d we introduce the oper-
ator Nα,n, where we have substituted the coefficients μk and γk appearing in each operator Nk

with the constants μk(yα) and γk(yα), for some points yα ∈ supp(Φn
α). Now, operators Nα,n have

constant coefficients and all results proved in Section 4 for the commutative case can be applied
to such operators.

Next, for any λ > 0 and n ∈ N we introduce the operator

Sn(λ) :=
∑

α∈In,d

Φn
α ◦ (λ − Nα,n)

−1 ◦ Φn
α.

We show that Sn(λ) belongs to L(Cδ([0,π]d),C2+δ
N ([0,π]d)) and

(λ − N)Sn(λ) = I + Cn(λ),
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for a suitable operator Cn(λ). In Lemma 5.4 we show that there exists some n0 ∈ N and λ0 > 0
such that

∣∣Cn0(λ)v
∣∣
δ,n0

� 1

2
|v|δ,n0 , λ � λ0,

so that I + Cn0(λ) ∈ Iso(Cδ([0,π]d)). We will show that this implies that λ − N is an isomor-
phism from C2+δ

N ([0,π]d) into Cδ([0,π]d), for any λ � λ0 and hence for all λ > 0.

5.1. A partition of unity

Let ψ ∈ C∞([0,π]) be a function satisfying

{0 � ψ(t) � 1, t ∈ [0,π],
ψ(0) = 0, ψ(π) = 1, ψ(π − t) = 1 − ψ(t), t ∈ [0,π],
ψ ′(t) > 0, t ∈ (0,π), ψ(k)(0) = ψ(k)(π) = 0, k � 1.

(5.1)

For any n � 3, we set hn := π/n and define

ψn
1 (t) :=

{1, 0 � t � hn,

ψ(π − n(t − hn)), hn � t � 2hn,

0, t � 2hn,

ψn
n−1(t) := ψn

1 (π − t),

ψn
2 (t) :=

⎧⎨
⎩

ψn
n−1(t + π − 3hn), 0 � t � 2hn,

ψn
1 (t − hn), 2hn � t � 3hn,

0, t � 3hn,

ψn
k (t) := ψn

2 (t + 2hn − khn), 2 < k � n − 1.

It is immediate to check that

n−1∑
k=1

ψn
k (t) = 1, t ∈ [0,π]. (5.2)

Now, for any d,n ∈ N we set

In,d := {
α = (α1, . . . , αd), αi = 1, . . . , n − 1

}
and for any α ∈ In,d we define

ϕn
α(y1, . . . , yd) :=

d∏
l=1

ψn
αl

(yl), y = (y1, . . . , yd) ∈ [0,π]d .

Clearly,

suppϕn
α = suppψn

α1
× · · · × suppψn

αd
.

Moreover the following lower bound is satisfied.
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Lemma 5.1. For any n,d ∈ N it holds

inf
y∈[0,π]d

∑
α∈In,d

[
ϕn

α(y)
]2 �

(
1

4

)d

. (5.3)

Proof. We proceed by induction on the dimension d . If d = 1 we have

∑
α∈In,1

[
ϕn

α(y)
]2 =

n−1∑
k=1

[
ψn

k (y)
]2

.

Note that

ψn
1 (y) = 1, y ∈ [0, hn], ψn

n−1(y) = 1, y ∈ [π − hn,π],

so that

∑
α∈In,1

[
ϕn

α(y)
]2 = 1 � 1

4
, y ∈ [0, hn] ∪ [π − hn,π].

Moreover

ψn
k (y) + ψn

k+1(y) = 1, y ∈ [khh, (k + 1)hn

]
, k = 1, . . . , n − 2,

so that

max
{
ψn

k (y),ψn
k+1(y)

}
� 1

2
, y ∈ [khh, (k + 1)hn

]
,

and

∑
α∈In,1

[
ϕn

α(y)
]2 �

(
1

2

)2

= 1

4
, y ∈ [hn, (n − 1)hn

]
.

Now, for any d � 2 we have

∑
α∈In,d

[
ϕn

α(y)
]2 =

n−1∑
k=1

∑
β∈In,d−1

[
ψn

k (y1)
]2

d∏
l=2

[
ψn

βl
(yl)

]2

=
n−1∑
k=1

[
ψn

k (y1)
]2 ∑

β∈In,d−1

[
ϕn

β(y2, . . . , yd)
]2

� 1

4

∑
β∈I

[
ϕn

β(y2, . . . , yd)
]2

.

n,d−1
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Then, if we assume that

∑
β∈In,d−1

[
ϕn

β(y2, . . . , yd)
]2 �

(
1

4

)d−1

,

we have

∑
α∈In,d

[
ϕn

α(y)
]2 �

(
1

4

)d−1 1

4
=
(

1

4

)d

, y ∈ [0,π]d ,

and we can conclude that (5.3) holds. �
Next, for any n ∈ N and α ∈ In,d we define

Φn
α(y) :=

( ∑
α∈In,d

[
ϕn

α(y)
]2
)− 1

2

ϕn
α(y), y ∈ [0,π]d .

As ψ ∈ C∞[0,π] and (5.3) holds, we have that Φn
α ∈ C∞([0,π]d). Moreover 0 � Φn

α(y) � 1,
for any y ∈ [0,π]d ,

∑
α∈In,d

(
Φn

α(y)
)2 = 1, y ∈ [0,π]d ,

and for any n ∈ N and α ∈ In,d it holds

suppΦn
α = suppϕn

α = [
(α1 − 1)hn, (α1 + 1)hn

]× · · · × [
(αd − 1)hn, (αd + 1)hn

]
.

Our aim here is giving an estimate for the Cδ semi-norm of functions Φn
α . For each n ∈ N and

k = 1, . . . , n − 1, we have

∣∣ψn
k

∣∣
0 � 1,

[
ψn

k

]
δ
= k1n

δ,

for some k1 > 0. Hence, by using (2.1) we have

[
ϕn

α

]
δ
=
[

d∏
l=1

ψn
αl

]
δ

�
d∑

l=1

[
ψn

αl

]
δ
� dk1n

δ. (5.4)

Lemma 5.2. There exists some k2 = k2(d) > 0 such that for any α ∈ In,d and vα ∈ C([0,π]d)

∣∣∣∣ ∑
α∈I

ϕn
αvα

∣∣∣∣
0
� k2(d) max

α∈In,d

∣∣ϕn
αvα

∣∣
0,

∣∣∣∣ ∑
α∈I

Φn
αvα

∣∣∣∣
0
� k2(d) max

α∈In,d

∣∣Φn
αvα

∣∣
0.
n,d n,d
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Moreover, if vα ∈ Cδ([0,π]d), we have

[ ∑
α∈In,d

ϕn
αvα

]
δ

� k2(d) max
α∈In,d

[
ϕn

αvα

]
δ
,

[ ∑
α∈In,d

Φn
αvα

]
δ

� k2(d) max
α∈In,d

[
Φn

αvα

]
δ
.

Proof. It follows from the smallness of the supports of the functions ϕn
α that for each cell of the

form

d∏
i=1

[
1

n
βi,

1

n
(βi + 1)

]
, βi = 0,1, . . . , n − 1,

the sums inside the (semi)norms can be reduced to at most 3d terms. Therefore k2(d) can be
taken equal 3d . �

As a consequence of the previous lemma, we have an estimate both for the sup-norm and for
the Hölder seminorm of Φn

α .

Corollary 5.3. There exists k3 = k3(d) > 0 such that for any n ∈ N and α ∈ In,d∣∣Φn
α

∣∣
0 � 1,

[
Φn

α

]
δ
� k3(d)nδ. (5.5)

Proof. The bound on the sup-norm has been already seen. In general, if v ∈ Cδ([0,π]d), with
v(y) � v0 > 0, for any y ∈ [0,π]d we have

[1/v]δ �
∣∣1/v2

∣∣
0[v]δ, [√v ]δ � |1/v|0[v]δ.

Hence, thanks to (5.3), (2.1) and (5.4) we have

[
Φn

α

]
δ
=
[
ϕn

α

( ∑
α∈In,d

(
ϕn

α

)2
)−1/2]

δ

� 2d
[
ϕn

α

]
δ
+
[( ∑

α∈In,d

(
ϕn

α

)2
)−1/2]

δ

� 2d
[
ϕn

α

]
δ
+
∣∣∣∣1/ ∑

α∈In,d

(
ϕn

α

)2
∣∣∣∣
2

0

[ ∑
α∈In,d

(
ϕn

α

)2
]

δ

� 2d
[
ϕn

α

]
δ
+ 16d

[ ∑
α∈In,d

(
ϕn

α

)2
]

δ

.

According to (2.1) and to Lemma 5.2 this implies

[
Φn

α

]
δ
�
[
ϕn

α

]
δ
+ k2(d)32d max

α∈In,d

[(
ϕn

α

)2]
δ
�
[
ϕn

α

]
δ
+ 2k2(d)32d max

α∈In,d

∣∣ϕn
α

∣∣
0

[
ϕn

α

]
δ
,

so that, thanks to (5.4)

[
Φn

α

]
δ
� dk′

3(d)k1n
δ.

If we set k3(d) := dk1k
′ (d), we obtain the thesis. �
3
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In view of (5.5) we introduce an equivalent norm on Cδ([0,π]d). For any v ∈ Cδ([0,π]d) we
set

|v|δ,n := |v|0 + n−δ

k3(d)
[v]δ. (5.6)

Clearly we have

|vw|δ,n � |v|δ,n|w|δ,n,

so that, thanks to (5.5), for any n ∈ N and α ∈ In,d and for any v ∈ Cδ([0,π]d)

∣∣Φn
αv
∣∣
δ,n

�
∣∣Φn

α

∣∣
δ,n

(|v|0 + [v]δ,n,suppΦn
α

)
� 2

(|v|0 + [v]δ,n,suppΦn
α

)
, (5.7)

where

[v]δ,n,suppΦn
α

:= n−δ

k3(d)
sup

y,z∈suppΦn
α

y �=z

|v(y) − v(z)|
|y − z|δ .

5.2. Proof of Theorem 2.2

Our aim here is proving that the operator λ − N is an isomorphism from C2+δ
N ([0,π]d) into

Cδ([0,π]d), for any λ > 0.
To this purpose, for any n � 3 and α ∈ In,d we introduce the operator

Nα,n :=
d∑

k=1

Nk,

where in each operator Nk the functions μk and γk are replaced by the constants μk(yα) and
γk(yα), for some points yα ∈ suppΦn

α . For these operators Lemma 4.1 holds.
Now, for any λ > 0 and n ∈ N we introduce the operator

Sn(λ) :=
∑

α∈In,d

Φn
α ◦ (λ − Nα,n)

−1 ◦ Φn
α,

where the Φn
α ’s have to be interpreted as the multiplication operators by Φn

α . Observe that for any
α ∈ In,α , the operator Φn

α maps Cδ([0,π]d) into itself and C2+δ
N ([0,π]d) into itself as a bounded

operator, so that

Sn(λ) ∈ L
(
Cδ
([0,π]d),C2+δ

N
([0,π]d)), λ > 0.

Moreover,

(λ − N)Sn(λ) = I + Cn(λ), (5.8)
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where

Cn(λ) :=
∑

α∈In,d

[
Φn

α,N
]
(λ − Nα,n)

−1 ◦ Φn
α +

∑
α∈In,d

Φn
α ◦ (Nα,n − N)(λ − Nα,n)

−1 ◦ Φn
α

and for any v ∈ C2+δ
N ([0,π]d)

[
Φn

α,N
]
v = Φn

α(Nv) − N
(
Φn

αv
)
.

If we show that there exist some n0 ∈ N and λ0 � 1 such that for any v ∈ Cδ([0,π]d)

∣∣Cn0(λ)v
∣∣
δ,n0

� 1

2
|v|δ,n0 , λ � λ0, (5.9)

where | · |δ,n0 is the equivalent norm introduced in (5.6), then it follows that I + Cn0(λ) ∈
Isom(Cδ([0,π]d)) and from (5.8)

(λ − N)Sn0(λ)
(
I + Cn0(λ)

)−1 = I, in Cδ
([0,π]d).

By the minimum principle, the operator (λ − N) is injective, and then Sn0(λ)(I + Cn0(λ))−1 is
the inverse of (λ − N), so that (λ − N) ∈ Isom(C2+δ

N ([0,π]d),Cδ([0,π]d)), for any λ � λ0.
On the other hand, if 0 < λ < λ0 we have that the equation λv = Nv + f is equivalent to

v = (λ0 − N)−1(λ0 − λ)v + (λ0 − N)−1f.

Then, as the operator K := (λ0 −N)−1(λ0 −λ) is compact in X and, by the minimum principle,
Ker(I − K) = {0}, we obtain that λ − N ∈ Isom(C2+δ

N ([0,π]d),Cδ([0,π]d)), for all λ > 0.
Hence, in order to conclude the proof of Theorem 2.2 we have to prove that (5.9) holds.

Lemma 5.4. For any n � 3 let us define

Cn(λ) :=
∑

α∈In,d

[
Φn

α,N
]
(λ − Nα,n)

−1 ◦ Φn
α +

∑
α∈In,d

Φn
α ◦ (Nα,n − N)(λ − Nα,n)

−1 ◦ Φn
α.

Then, there exists n0 ∈ N and λ0 � 1 such that for any λ � λ0

∣∣Cn0(λ)v
∣∣
δ,n0

� 1

2
|v|δ,n0 . (5.10)

Proof. If we apply Lemma 3.4 in its Banach space-valued version, to the functions D2
kv, with

v ∈ C2+δ
N ([0,π]d),Cδ([0,π]d) and k = 1, . . . , d , we obtain

∣∣(sinyk)
−1Dkv

∣∣
0 � k4

∣∣D2
kv
∣∣
0,

[
(sinyk)

−1Dkv
]
δ
� k4

[
D2

kv
]
δ
. (5.11)

We recall here that any function v ∈ C2+δ
N ([0,π]d),Cδ([0,π]d) is the restriction to [0,π]d

of a function v̄ ∈ C2+δ(Rd). Actually, if v ∈ C2+δ([0,π]d),Cδ([0,π]d), due to the boundary
N
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conditions we can extend it by evenness and then by 2π periodicity to the whole space R
d .

Hence for any 0 � s � r < 3 and w ∈ Cr([0,π]d) the following interpolation inequality holds

[w]s � N [w]s/r
r |w|1−s/r

0 , (5.12)

for some constant N = N(d, r) (for a proof see [12, Theorem 3.2.1]).
Now, let us estimate the norm of∑

α∈In,d

Φn
α ◦ (Nα,n − N)(λ − Nα,n)

−1 ◦ Φn
α.

For any v ∈ X, if we set w := (λ − Nα,n)
−1Φn

αv, thanks to Lemma 5.2 and to (5.7)

∣∣∣∣ ∑
α∈In,d

Φn
α(Nα,n − N)(λ − Nα,n)

−1Φn
αv

∣∣∣∣
δ,n

� k2(d) max
α∈In,d

∣∣Φn
α(Nα,n − N)w

∣∣
δ,n

� 2k2(d) max
α∈In,d

(∣∣(Nα,n − N)w
∣∣
0 + [

(Nα,n − N)w
]
δ,n,suppΦn

α

)
. (5.13)

Now, for any n ∈ N and α ∈ In,d ,

[
(Nα,n − N)w

]
δ,n,suppΦn

α

�
d∑

k=1

[(
μk − μk(yα)

)
D2

kw
]
δ,n,suppΦn

α

+
d∑

k=1

[
2bk

(
γk − γk(yα)

)
(sinyk)

−1Dkw
]
δ,n,suppΦn

α

�
d∑

k=1

([
D2

kw
]
δ,n

sup
y∈suppΦn

α

∣∣μk(y) − μk(yα)
∣∣+ ∣∣D2

kw
∣∣
0[μk]δ,n

)

+ 2
d∑

k=1

([
(sinyk)

−1Dkw
]
δ,n

× sup
y∈suppΦn

α

∣∣γk(y) − γk(yα)
∣∣|bk|0 + ∣∣(sinyk)

−1Dkw
∣∣
0[bkγk]δ,n

)
.

According to (4.4) and (5.5), if λ � 1

[
D2

kw
]
δ,n

= [
D2

k (λ − Nα,n)
−1Φn

αv
]
δ,n

� K
n−δ

k3(d)

(∣∣Φn
αv
∣∣
0 + [

Φn
αv
]
δ

)

� K
n−δ ((

1 + k3(d)
)|v|0 + [v]δ

)
� K(d)

(|v|0 + [v]δ,n
)

k3(d)
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and according to (5.11)

[
(sinyk)

−1Dkw
]
δ,n

= [
(sinyk)

−1Dk(λ − Nα,n)
−1Φn

αv
]
δ,n

� k4
n−δ

k3(d)

[
D2

k (λ − Nα,n)
−1Φn

αv
]
δ
� k4(d)

(|v|0 + [v]δ,n
)
.

Now, if we choose n0 ∈ N large enough such that

K(d)

d∑
k=1

sup
y∈suppΦn

α

∣∣μk(y) − μk(yα)
∣∣+ 2k4(d)

d∑
k=1

sup
y∈suppΦn

α

∣∣γk(y) − γk(yα)
∣∣|bk|0

� 1

32k2(d)
,

we get for any n � n0

[
(Nα,n − N)w

]
δ,n,suppΦn

α

� 1

32k2(d)
|v|δ,n +

d∑
k=1

(∣∣D2
kw
∣∣
0[μk]δ,n + ∣∣(sinyk)

−1Dkw
∣∣
0[bkγk]δ,n

)
.

Next, due to (5.7), (4.4) and (5.11)

∣∣D2
kw
∣∣
0[μk]δ,n + ∣∣(sinyk)

−1Dkw
∣∣
0[bkγk]δ,n

�
([μk]δ,n + [bkγk]δ,n

)
(1 + k4)

∣∣D2
kw
∣∣
0 � kn(1 + k4)

∣∣D2
k

[
(λ − Nn,α)−1Φn

αv
]∣∣

0

� Kkn(1 + k4)λ
− δ

2+δ

∣∣Φn
αv
∣∣
δ
�
(
1 + k1k3(d)nδ

)
Kkn(1 + k4)λ

− δ
2+δ

∣∣Φn
αv
∣∣
δ,n

� 2
(
1 + k1k3(d)nδ

)
Kkn(1 + k4)λ

− δ
2+δ |v|δ,n.

Now, if we choose n = n0 and λ1 � 1 such that

2
(
1 + k1k3(d)nδ

0

)
Kkn0(1 + k4)λ

− δ
2+δ � 1

32k2(d)
,

for any λ � λ1, we have

[
(Nα,n0 − N)w

]
δ,n0,suppΦ

n0
α

� 1

16k2(d)
|v|δ,n0 . (5.14)

Next, we have to estimate |(Nα,n0 − N)w|0. Thanks to (5.11), we have

∣∣(Nα,n0 − N)w
∣∣
0 � |Nα,n0w|0 + |Nw|0 � M

[
(λ − Nn,α)−1Φn

αv
]

2

and, as above, from (4.4) for some constant kn0∣∣(Nα,n0 − N)w
∣∣ � MKkn0λ

− δ
2+δ |v|δ,n0 .
0
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Thus, due to (5.13) and (5.14) we can choose λ2 � λ1 such that for any λ � λ2∣∣∣∣ ∑
α∈In0,d

Φn0
α (Nα,n0 − N)(λ − Nα,n0)

−1Φn0
α v

∣∣∣∣
δ,n0

� 1

4
|v|δ,n0 . (5.15)

Now, in order to conclude the proof of the lemma, we have to estimate

∑
α∈In0,d

[
Φn0

α ,N
]
(λ − Nα,n0)

−1Φn0
α .

Notice that, as Φn
α ∈ C2+δ

N ([0,π]d) and the coefficients μk and γk are in Cδ([0,π]d), by us-
ing (5.11) we easily obtain

∣∣∣∣ ∑
α∈In0,d

[
Φn0

α ,N
]
(λ − Nα,n0)

−1Φn0
α v

∣∣∣∣
δ

� kn0

∣∣(λ − Nα,n0)
−1Φn0

α v
∣∣
1+δ

,

and by proceeding as before, we can find λ0 � λ2 such that for any λ � λ0∣∣∣∣ ∑
α∈In0,d

[
Φn0

α ,N
]
(λ − Nα,n0)

−1Φn0
α v

∣∣∣∣
δ

� 1

4
|v|δ,n0 .

Together with (5.15), this implies (5.10). �
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Appendix A

Let B be a Banach space and fix a � b. For any u ∈ C([a, b]) and h ∈ B , we denote by u ⊗ h

the mapping in C([a, b];B) defined by

[u ⊗ h](t) = u(t)h, t ∈ [a, b].

Moreover, we denote by C([a, b]) ⊗ B the subspace of C([a, b];B) given by finite linear com-
binations of element u ⊗ h. By using a Banach-valued version of Bernstein polynomials, it is
immediate to check that C([a, b]) ⊗ B is dense in C([a, b];B). The proof of the following
lemma can be found in [10, Example 6, pp. 224–225]. We thank B. de Pagter for showing us this
reference.

Lemma A.1. Let B be a Banach space. For any N ∈ L(C([a, b])) there exists a unique NB ∈
L(C([a, b];B)) such that

NB(u ⊗ h) = Nu ⊗ h, u ∈ C
([a, b]), h ∈ B. (A.1)
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Moreover, it holds

‖NB‖L(C([a,b];B)) = ‖N‖L(C([a,b])). (A.2)

Now, for any u ∈ C([a, b]) and v ∈ C([a, b]d−1) and for any k = 1, . . . , d we define

[u ⊗k v](x) := u(xk)v(x1, . . . , xk−1, xk+1, . . . , xd), x ∈ [a, b]d, (A.3)

and we denote by C([a, b]) ⊗k C([a, b]d−1) the subspace of C([a, b]d) given by finite linear
combinations of elements u ⊗k v. Clearly, C([a, b]) ⊗k C([a, b]d−1) is a dense subspace of
C([a, b]d).

Next, for any k = 1, . . . , d , f ∈ C([a, b]d), t ∈ [a, b] and (x1, . . . , xk−1, xk+1, . . . , xd) ∈
[a, b]d−1 we define

[
Jkf (t)

]
(x1, . . . , xk−1, xk+1, . . . , xd) := f (x1, . . . , xk−1, t, xk+1, . . . , xd). (A.4)

With this definition,

Jk :C
([a, b]d)→ C

([a, b];C([a, b]d−1))
is a surjective isometry. Then, for any N ∈ L(C([a, b])) and k = 1, . . . , d we define

Ek(N) := J−1
k NC([a,b]d−1)Jk,

where the operator NC([a,b]d−1) is defined in Lemma A.1, by taking B = C([a, b]d−1). According
to Lemma A.1, it is immediate to check that Ek(N) ∈ L(C([a, b]d) and∥∥Ek(N)

∥∥
L(C([a,b]d ))

= ‖N‖L(C([a,b])). (A.5)

Moreover, for any u ∈ C([a, b]) and v ∈ C([a, b]d−1)

Ek(N)[u ⊗k v] = Nu ⊗k v.

Theorem A.2. Let A :D(A) ⊂ C([a, b]) → C([a, b]) be a densely defined and m-dissipative op-
erator generating an analytic semigroup etA. Then, for any k = 1, . . . , d there exists a unique
densely defined and m-dissipative operator Ek(A) :D(Ek(A)) ⊂ C([a, b]d) → C([a, b]d) gen-
erating an analytic semigroup etEk(A), such that

etEk(A) = Ek

(
etA

)
, t � 0.

Moreover,

D
(
Ek(A)

)⊇ D(A) ⊗k C
([a, b]d−1),

D(A) ⊗k C([a, b]d−1) is a core for Ek(A), and

Ek(A)(u ⊗k v) = Au ⊗k v, u ∈ D(A), v ∈ C
([a, b]d−1). (A.6)
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Proof. For any λ > 0 we set

J (λ) := R(λ,A) = (λ − A)−1.

Due to the assumptions on A, we have that the range of J (λ) is dense in C([a, b]) and

∥∥λJ (λ)
∥∥
L(C([a,b])) � 1, λ > 0.

With the notations introduced above, for any λ > 0 we define the operator Ek(J (λ)) ∈
L(C([a, b]d)). Due to (A.5) we have

∥∥λEk

(
J (λ)

)∥∥
L(C([a,b]d ))

� 1, λ > 0.

We first show that {Ek(J (λ))}λ>0 is a pseudo-resolvent, that is

Ek

(
J (λ)

)− Ek

(
J (μ)

)= (μ − λ)Ek

(
J (λ)

)
Ek

(
J (μ)

)
, λ,μ > 0. (A.7)

As C([a, b]) ⊗k C([a, b]d−1) is dense in C([a, b]d) and Ek(J (λ)) is a bounded operator on
C([a, b]d) for any λ > 0, it is sufficient to prove (A.7) only on C([a, b]) ⊗k C([a, b]d−1). For
any u ∈ C([a, b]) and v ∈ C([a, b]d−1), we have

Ek

(
J (λ)

)
(u ⊗k v) − Ek

(
J (μ)

)
(u ⊗k v) = [

J (λ)u
]⊗k v − [

J (μ)u
]⊗k v

= [
J (λ)u − J (μ)u

]⊗k v = [
(μ − λ)J (λ)J (μ)u

]⊗k v

= (μ − λ)Ek

(
J (λ)

)
Ek

(
J (μ)

)
(u ⊗k v),

and the same is true for finite linear combinations of elements of the type u ⊗k v.
Next, we show that the range of Ek(J (λ)) is dense in C([a, b]d). To this purpose, as

C([a, b]) ⊗k C([a, b]d−1) is dense in C([a, b]d), it is sufficient to prove that the range
of Ek(J (λ)) is dense in C([a, b]) ⊗k C([a, b]d−1). Let u ∈ C([a, b]) and v ∈ C([a, b]d−1). As
the range of J (λ) is dense in C([a, b]), there exists a sequence {un}n ⊂ C([a, b]) such that
J (λ)un → u, so that Ek(J (λ))(un ⊗k v) = J (λ)un ⊗k v → u ⊗k v.

Hence, since the family {Ek(J (λ))}λ>0 is a pseudo-resolvent and the range of the oper-
ator Ek(J (λ)) is dense in C([a, b]d), in view of [17, Theorem 9.4] we can conclude that
{Ek(J (λ))}λ>0 is the resolvent of a unique densely defined closed m-dissipative linear opera-
tor Ek(A), which generates a C0-contraction semigroup etEk(A).

We remark that

D
(
Ek(A)

)= RangeEk

(
J (λ)

)⊃ [
RangeJ (λ)

]⊗k C
([a, b]d−1)= D(A) ⊗k C

([a, b]d−1).
Moreover

Ek

(
J (λ)

)(
λI − Ek(A)

)
(u ⊗k v) = u ⊗k v = [

J (λ)(λI − A)u
]⊗k v

= Ek

(
J (λ)

)[
(λI − A)u ⊗k v

]
,

so that, as Ek(J (λ)) is injective, we have
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Ek(A)(u ⊗k v) = λu ⊗k v − (
λI − Ek(A)

)
(u ⊗k v)

= λu ⊗k v − [
(λI − A)u

]⊗k v = Au ⊗k v.

Next, we show that D(A) ⊗k C([a, b]d−1) is a core for Ek(A). Let g ∈ D(Ek(A)) and let f ∈
C([a, b]d) such that g = Ek(J (λ))f . As C([a, b]) ⊗k C([a, b]d−1) is dense in C([a, b]d), there
exists {fn} ∈ C([a, b]) ⊗k C([a, b]d−1) such that

fn → f, Ek

(
J (λ)

)
fn → Ek

(
J (λ)

)
f.

We have

fn =
jn∑

j=1

u
j
n ⊗k v

j
n,

so that

gn := Ek

(
J (λ)

)
fn =

jn∑
j=1

[
J (λ)u

j
n

]⊗k v
j
n ∈ D(A) ⊗k C

([a, b]d−1),
and

gn → Ek

(
J (λ)

)
f = g,

(
λ − Ek(A)

)
gn = fn → f = (λ − A)g.

In order to conclude the proof we have to show that the semigroup etEk(A) is analytic. We
show that there exists some constant M > 0 such that for any f ∈ C([a, b]d)

∣∣tEk(A)etEk(A)f
∣∣
C([a,b]d )

� M|f |C([a,b]d ), t > 0. (A.8)

By the exponential formula we have

etEk(A)(u ⊗k v) = lim
n→∞

(
I − t/nEk(A)

)−n
(u ⊗k v) = lim

n→∞
(
t/nEk

(
J (t/n)

))n
(u ⊗k v)

and then, by iteration, we obtain

etEk(A)(u ⊗k v) = lim
n→∞

[(
t/nJ (t/n)

)n
u
]⊗k v = etAu ⊗k v. (A.9)

As etA is analytic, for any t > 0 the operator AetA is bounded on C([a, b]) and there exists
M > 0 such that

∣∣AetA
∣∣
L(C([a,b])) � M/t, t > 0.

Hence, if we show that

Ek(A)etEk(A) = Ek

(
AetA

)
, t > 0, (A.10)
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we can conclude that (A.8) holds. For any u ∈ C([a, b]) and v ∈ C([a, b]d−1), due to (A.9) we
have

Ek

(
AetA

)
(u ⊗k v) = [

AetAu
]⊗k v = Ek(A)

(
etAu ⊗k v

)= Ek(A)etEk(A)(u ⊗k v)

and by linearity we have that (A.10) holds on C([a, b]) ⊗k C([a, b]d−1). By density we can
conclude that (A.10) is true on C([a, b]d). �
Appendix B

Let E be a real Banach space endowed with the norm | · |E and let {Sk(t)}dk=1 be a family of d

commuting C0-contraction analytic semigroups on E with corresponding generators {Ak}dk=1.
We assume that there exists M > 0 such that for any k = 1, . . . , d

sup
t>0

t
∥∥AkSk(t)

∥∥
L(E)

� M.

In what follows we shall denote by S(t), t � 0, the product of the semigroups Sk , that is

S(t) :=
d∏

k=1

Sk(t), t � 0.

It is well known that S(t), t � 0, is also an analytic C0-contraction semigroup and its generator,
which will be denoted by A, is the closure in E of the operator

∑d
k=1 Ak defined on

D

(
d∑

k=1

Ak

)
:=

d⋂
k=1

D(Ak).

Proceeding as in [9], for any θ ∈ (0,1) and p ∈ [1,∞] we set

DA(θ,p) := (
E,D(A)

)
θ,p

,

where (E,D(A))θ,p is the real interpolation space between E and D(A) of exponents θ and p.
We recall that in the case p = ∞

|u|DA(θ,p) := |u|E + sup
t>0

tθ−1
∣∣AS(t)u

∣∣
E

=: |u|E + [u]DA(θ,p).

The proof of the following lemma is due to Alessandra Lunardi [15], whom we thank.

Lemma B.1. Under the above assumptions, for any θ ∈ (0,1) and p ∈ [1,∞]

DA(θ,p) =
(

E,

d⋂
k=1

D(Ak)

)
θ,p

. (B.1)
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Proof. Recall that (
E,

d⋂
k=1

D(Ak)

)
θ,p

=
d⋂

k=1

DAk
(θ,p).

Since we have

D(A) ⊃
d⋂

k=1

D(Ak),

due to Grisvard [11] we have

DA(θ,p) = (
E,D(A)

)
θ,p

⊃
d⋂

k=1

(
E,D(Ak)

)
θ,p

=
d⋂

k=1

DAk
(θ,p),

so that one inclusion in (B.1) is proved.
The proof of the opposite inclusion is more delicate. We give it in the case d = 2. The general

case d � 2 follows by similar arguments. As in [9, p. 325] we set

DAk
(1,p) := (

E,D
(
A2

k

))
1
2 ,p

.

From [9, Lemma 3.9] we have

D(A) ⊂ DA1(1,∞) ∩ DA2(1,∞) ⊂ DA1(1,p) ∩ DA2(1,p),

for any θ ∈ (0,1) and p ∈ [1,∞], so that for k = 1,2

DA(θ,∞) ⊂ (
E,DAk

(1,∞)
)
θ,∞.

Hence, due to the Reiteration Theorem (see [14, Theorem 1.2.15]) for k = 1,2 we obtain

DA(θ,∞) ⊂ (
E,D(Ak)

)
θ,∞.

By using again [11] this yields

DA(θ,∞) ⊂ (
E,D(A1)

)
θ,∞ ∩ (

E,D(A2)
)
θ,∞ = (

E,D(A1) ∩ D(A2)
)
θ,∞. �

In what follows we shall denote by X the space DA(θ,∞), equipped with the corresponding
norm

|u|X := |u|E + [u]X := |u|E +
d∑

k=1

[u]DAk
(θ,∞). (B.2)

Note that, in view of Lemma B.1

X =
d⋂

DAk
(θ,∞). (B.3)
k=1
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Furthermore we shall denote by Y the space

Y :=
d⋂

k=1

{
u ∈ D(Ak): Aku ∈ DAk

(θ,∞)
}
, (B.4)

equipped with the norm

|u|Y := |u|X +
d∑

k=1

|Aku|X.

Note that due to Lemma B.1

Y ⊂
d⋂

k=1

D(Ak) ⊂ D(A) ⊂ X ⊂ E,

with continuous embeddings and, if we endow D(A) with the graph norm, for any λ > 0 we have

λ − A :D(A) → E,

is an isomorphism.
Now we can state the following abstract Schauder theorem.

Theorem B.2. Let {Sk(t)}dk=1 be a family of d commuting C0-contraction analytic semigroups
on a Banach space E with corresponding generators {Ak}dk=1. Assume that there exists M > 0
such that for any k = 1, . . . , d

sup
t>0

t
∥∥AkSk(t)

∥∥
L(E)

� M. (B.5)

Then, for any λ > 0 the operator λ − A :Y → X is an isomorphism, for X and Y defined respec-
tively in (B.3) and (B.4). Moreover, for any k = 1, . . . , d[

Ak(λ − A)−1f
]
X

� K[f ]X, (B.6)

where

K := M2c(θ)(3 + d)

∞∫
0

σ θ−1

1 + σ
dσ.

Remark B.3. The importance of the theorem above concerning the equation

λu =
d∑

k=1

Aku + f, u ∈
d⋂

k=1

D(Ak), (B.7)

is twofold. First, it provides a specific subspace X ⊂ E of data f for which Eq. (B.7) is solvable
in a strict sense.
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Secondly, the theorem above provides the important a priori estimate (B.6) which will be used
in an essential way in the proof of the main result. We emphasize that we have a precise control
of the constant K in terms of the dimension d , of the Hölder exponent θ and of the constant M

which we have introduced in (B.5).

Proof of Theorem B.2. A proof of this result, in a more general formulation, was given by
Grisvard in [11], by using complex methods. Here we give a proof of this special case by using a
real method which is due to Da Prato (unpublished lecture notes) and, for the sake of simplicity,
we only consider the case p = ∞.

For any f ∈ E, we define

u :=
∞∫

0

e−λs
d∏

k=1

Sk(s)f ds.

In order to prove our result, it is sufficient to show that the following conditions are satisfied:

(1) if f ∈ DAk
(θ,∞), for some θ ∈ (0,1) and k = 1, . . . , d , then u ∈ D(Ak) and

Aku ∈
d⋂

j=1

DAj
(θ,∞); (B.8)

(2) if f ∈ X, then

λu =
d∑

j=1

Aku + f (B.9)

and Aku ∈ X, for any k = 1, . . . , d ;
(3) if f = 0, then u = 0 is the only solution to (B.9) in the space

⋂d
j=1 D(Aj );

(4) if f ∈ X, then (B.6) holds.

Let f ∈ DAk
(θ,∞), for some θ ∈ (0,1) and k = 1, . . . , d . For each n � 1 we define

un :=
∞∫

1/n

e−λs

d∏
h=1

Sh(s)f ds.

We have un ∈ D(Ak) and

Akun =
∞∫

1/n

e−λsAkSk(s)

d∏
h=1

Sh(s)f ds.
h�=k
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If we show that

∞∫
0

e−λs

∣∣∣∣∣AkSk(s)

d∏
h=1
h�=k

Sh(s)f

∣∣∣∣∣
E

ds < ∞, (B.10)

we have that

lim
n→∞Akun =

∞∫
0

e−λsAkSk(s)

d∏
h=1
h�=k

Sh(s)f ds,

and then, as un converges to u, by the closedness of Ak we conclude that u ∈ D(Ak) and

Aku =
∞∫

0

e−λsAkSk(s)

d∏
h=1
h�=k

Sh(s)f ds.

The semigroups Sh(t) are all commuting and are contractions, then, thanks to (B.5), we have

∞∫
0

e−λs

∣∣∣∣∣AkSk(s)

d∏
h=1
h�=k

Sh(s)f

∣∣∣∣∣
E

ds �
∞∫

0

e−λs

∥∥∥∥∥
d∏

h=1
h�=k

Sh(s)

∥∥∥∥∥
L(E)

∣∣AkSk(s)f
∣∣
E

ds

� M

∞∫
0

e−λssθ−1 ds|f |DAk
(θ,∞) = MΓ (θ)λ−θ |f |DAk

(θ,∞).

This implies (B.10). Moreover, we have

|Aku|E � MΓ (θ)λ−θ |f |DAk
(θ,∞). (B.11)

Next, we show that (B.8) holds. In fact we prove something more. Namely, we show that there
exists M = M(θ) > 0 such that

sup
t∈(0,1]

t1−θ
∣∣AjSj (t)Aku

∣∣
E

� 4M2c(θ), j = 1, . . . , d, (B.12)

where

c(θ) =
∞∫

0

σ θ−1

1 + σ
dσ.

Assume first that j �= k. By using again (B.5), for any t ∈ (0,1] we have
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t1−θ
∣∣AjSj (t)Aku

∣∣
E

� t1−θ

∞∫
0

e−λs

∣∣∣∣∣AjSj (t + s)

d∏
h=1

h�=k,j

Sh(s)AkSk(s)f

∣∣∣∣∣
E

ds

� M2t1−θ

∞∫
0

e−λs 1

t + s
sθ−1 ds|f |DAk

(θ,∞)

� M2t1−θ

∞∫
0

1

t + s
sθ−1 ds|f |DAk

(θ,∞).

Now, it is immediate to check that

t1−θ

∞∫
0

1

t + s
sθ−1 ds =

∞∫
0

σ θ−1

1 + σ
dσ < ∞,

so that (B.12) follows. Now, assume j = k. In this case we have

t1−θ
∣∣AkSk(t)Aku

∣∣
E

� t1−θ

∞∫
0

e−λs

∣∣∣∣∣A2
kSk(t)

d∏
h=1

Sh(s)f

∣∣∣∣∣
E

ds

� t1−θ

∞∫
0

e−λs

∣∣∣∣∣Sk(t/2)

d∏
h=1
h�=k

Sh(s)AkSk

(
(t + s)/2

)
AkSk(s/2)f

∣∣∣∣∣
E

ds

� 4M2t1−θ

∞∫
0

e−λs 1

t + s
sθ−1 ds|f |DAk

(θ,∞),

and then we can conclude as above. This means that

d∑
j=1

sup
t>0

t1−θ
∣∣AjSj (t)Aku

∣∣
E

� M2(3 + d)c(θ)|f |DAk
(θ,∞). (B.13)

Therefore, collecting all terms, from (B.11) and (B.13) we have

|Aku|X �
(
MΓ (θ)λ−θ + M2(3 + d)c(θ)

)|f |DAk
(θ,∞). (B.14)

Next, assume f ∈ X. We have

d∑
k=1

Aku =
∞∫

e−λs

d∑
k=1

Ak

d∏
h=1

Sh(s)f ds
0
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=
∞∫

0

e−λs d

ds

(
d∏

h=1

Sh(s)f

)
ds

= −f −
∞∫

0

d

ds

[
e−λs

d∏
h=1

Sh(s)f

]
ds = −f + λu,

and this proves (B.9).
Next, let us prove uniqueness. The operators A1, . . . ,Ad are dissipative and densely defined,

hence strongly dissipative, in the sense of [18]. It follows that the operator A1 +· · ·+Ad defined
on

⋃d
k=1 D(Ak) is also dissipative. This implies that if u satisfies (B.9), then

|u|E � 1

λ
|f |E,

which implies uniqueness.
Finally, (B.6) follows from (B.14) and the previous points. �

Appendix C

With the notations of Appendix A, for any k = 1, . . . , d we denote by Jk the mapping from
C([a, b]d) into C([a, b];C([a, b]d−1)) defined by[

Jku(t)
]
(x1, . . . , xk−1, xk+1, . . . , xd).

We have the following characterization of the space Cδ([a, b]d). The proof is straightforward.

Lemma C.1. For any a � b and δ ∈ (0,1)

Cδ
([a, b]d)=

d⋂
k=1

{
u ∈ C

([a, b]d): Jku ∈ Cδ
([a, b];C([a, b]d−1))},

and

|u|δ ≈ |u|0 +
d∑

k=1

[Jku]δ.

Next we give a characterization of C2+δ
N ([a, b]d), the space of C2+δ([a, b]d)-functions, en-

dowed with Neumann boundary conditions.

Lemma C.2. For any a � b and δ ∈ (0,1)

{
u ∈ C2+δ

([a, b]d): Dku|xk=a = Dku|xk=b
= 0

}
=

d⋂{
u ∈ C

([a, b]d): Jku ∈ C2+δ
([a, b];C([a, b]d−1)), (Jku)′(a) = (Jku)′(b) = 0

}
,

k=1
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and

|u|2+δ ≈ |u|0 +
d∑

k=1

[
D2

kJku
]
δ
.

Proof. If u ∈ C([a, b]d) is such that Jku ∈ C2+δ([a, b];C([a, b]d−1)), for any k = 1, . . . , d , and
(Jku)′(a) = (Jku)′(b) = 0, due to the conditions on the derivative of Jku we can extend it by
evenness and then by 2(b − a) periodicity to the whole space Rd . Then, as proved for example
in [12, Theorem 3.4.1], for any h, l = 1, . . . , d

[
D2

klu
]
δ
� cδ

d∑
k=1

∣∣D2
ku
∣∣
δ
,

and this implies that u ∈ C2+δ([a, b]d). �
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