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Abstract

The early work of Zellner on the multivariate Student-t linear model has been extended to Bayesian
inference for linear models with dependent non-normal error terms, particularly through various papers
by Osiewalski, Steel and coworkers. This article provides a full Bayesian analysis for a spherical
linear model. The density generator of the spherical distribution is here allowed to depend both on the
precision parameter � and on the regression coefficients �. Another distinctive aspect of this paper is
that proper priors for the precision parameter are discussed.

The normal-chi-squared family of prior distributions is extended to a new class, which allows the
posterior analysis to be carried out analytically. On the other hand, a direct joint modelling of the
data vector and of the parameters leads to conjugate distributions for the regression and the precision
parameters, both individually and jointly. It is shown that some model specifications lead to Bayes
estimators that do not depend on the choice of the density generator, in agreement with previous results
obtained in the literature under different assumptions. Finally, the distribution theory developed to
tackle the main problem is useful on its own right.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and outline

The Bayesian analysis of regression models with multivariate spherical or elliptical error
terms has received considerable attention, especially since the seminal paper of Zellner
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[14], who considers the multivariate spherical Student-t linear model with � degrees of
freedom, say y|�, � ∼ tn(X�, �; �). It is shown there that when this model is combined
with an improper reference prior on the (nuisance) precision parameter �, i.e. �(�) ∝
�−1, posterior inferences on the regression vector � and predictive analysis agree exactly
with those obtained under the normality assumptions. These results were extended to the
entire family of multivariate spherical linear models in Osiewalski and Steel [10,11]. Under
similar assumptions, Arellano-Valle et al. [3] show how the posterior of � can be used for
detecting the presence of outliers or influential observations, in the context of elliptical linear
regression models. They also provide a convenient way to derive the posterior distribution
of � and its moments (see also [13]). Fernández et al. [7] revisit these robustness results
and showed that they are induced by the improper reference prior on �, in the much wider
context of all the continuous multivariate location-scale distributions with density of the
form �ng(�(y − �)), (y, � ∈ Rn, � > 0), where the density g is a general function which
must not depend upon (�, �).

The present paper examines further extensions of the spherical linear models in two
directions. Firstly, the density generator may be related with both the precision � and the
regression (or location) parameters �. Secondly, proper priors for the precision parameter
are examined. Specifically, this work starts with the conventional spherical linear model

y = X� + ε, where ε|� ∼ Sn(�; h)

� ⊥⊥ ε|� and h does not depend on (�, �),
(1.1)

where Sn(�; h) denotes the n-dimensional spherical distribution with precision parameter
� and density generator h (see, for example, [6]). The parameters � and h determine

the density function through �
n
2 h(�‖ε‖2), where the symbols ‖ ‖, ⊥⊥, ⊥⊥ |, and

d= have their
usual meaning (length, independence, conditional independence, and equality in distribution
respectively).

Most of the Bayesian analysis of (1.1) is developed adopting the conventional product
noninformative prior

�(�, �) ∝ �−1�(�), (1.2)

under which Osiewalski and Steel [10] show, e.g., that the posterior of � does not depend on
the density generator. Under (1.2), similar robustness results are discussed in more general
settings by Osiewalski and Steel [12], Fernández et al. [8] and Ng [9].

The present work considers a full Bayesian analysis of an extension of (1.1), where the
generator h is allowed to depend on the model parameters (�, �). The simpler case where
h depends only on the precision parameter � is first discussed, and this makes it possible to
preserve the prior independence assumption between (ε, �) and �. Here a joint modelling
of (y, �) within the spherical class is necessary, while an arbitrary prior distribution for
� may be adopted. Next, the situation where h depends both on � and � is tackled. It is
then necessary to model jointly the distribution of (y, �, �) within the elliptical family,
without any prior independence assumptions. Moreover, in both cases an informative prior
distribution for � is specified using the squared-radial versions of spherical distributions
(see [1]).
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With the idea of extending the usual conjugate analysis for the normal linear model,
the class of dispersion elliptical squared-radial distribution is first defined. In this setting,
we obtain two types of special results: (a) robust posterior inference for �, in the sense
defined by Osiewalski and Steel (1993a), together with a conjugate posterior distribution
for �; and (b) joint conjugate posterior inferences for (�, �). A positive aspect is that in
both situations the whole posterior can be obtained analytically, and it is straightforward
to find explicit solutions for the posterior means and variances. The fact that in both of
the situations considered the posterior mean E(�|y, h) does not depend on the generator h,
indicates that it is a robust Bayes estimator under quadratic loss, with respect to changes
in the specification of the sampling mechanism within the wide class of elliptical sampling
process.

Although the primary aim of this paper is to provide a general Bayesian analysis, this
needs the development of a substantial amount of distribution theory, which has some
interest on its own right. To sharpen the focus of this paper we have collected in Section
2 all the required results on elliptical and spherical distributions, as well as most of the
notation.

The outline of the rest of the paper is as follows. Sections 3 and 4 provide some basic
distribution theory that is needed in subsequent sections. Section 3 describes the main prop-
erties of a multivariate version of the univariate squared-radial (SR) distributions (described
in Section 2), which will later be needed to prove some of the main results in other sections.
Section 4 defines a dispersion elliptical squared-radial (DESR) distribution, which essen-
tially consists of a scaled family of elliptical conditional distributions given T = t , where
T is the squared length of a spherical random vector (which therefore has a squared-radial
distribution). The scale factor takes the form 1

btr
. The main results of this section are a

formula for the p.d.f. and Theorem 1, which provides an important link with the bivariate
squared radial distributions, and have also a key role in the specification of the Bayesian
models discussed in the following sections.

Sections 5 and 6 perform a full Bayesian analysis for two extensions of (1.1). Section 5
considers a spherical linear model, whose generator h may be depend on �. Theorems 2
and 3 in Section 5.1 provide Bayesian version of the classical pivotal quantities for (�, �).
In Section 5.2 the prior independence of � and �, as well as a flat improper prior for �

are assumed. It is shown there that a squared-radial prior for � produces a posterior for �
in this same class. For r = 1, Theorem 4 shows that the posterior of � is a (generalized)
Student-t distribution, depending neither on h nor on �. For r = 0, Theorem 5 shows that
� has an elliptical posterior. Section 6 proposes the direct joint modelling of (y, �, �) as
a way to achieve a conjugate distributions for � and �, both individually and jointly. The
dispersion-location spherical squared-radial linear model defined there, is one alternative
to achieve this (the normal-gamma priors do not lead to an analytically tractable posterior,
unless the spherical distribution is normal). The starting point is a DESR prior for (�, �),
with the conditional distribution of the error vector ε given � and � having a special form.
The main results are Theorem 6, which states the validity of yet another SR characteriza-
tion, and Theorem 7, which details the posterior analysis. The proofs of all theorems are
deferred to Appendix A. Appendix B contains two summary tables. Table B.1 shows the
squared-radial distributions associated to various spherical distributions, while Table B.2
provides their means and variances.
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2. Elliptical and spherical distributions

To establish the notation, facilitate referencing and provide some basic results employed
in the proofs, this section reviews material on spherical and elliptical distributions, which
can be found in standard sources, like Cambanis et al. [4], Dickey and Chen [5] or Fang
et al. [6]. For notational simplicity we often write elliptical (resp. spherical) random vector
for one having an elliptical (resp. spherical) distribution.

2.1. Basic definitions and notations

Denote by ElN(�, �; h) the N -dimensional elliptical distribution with location vector �,
dispersion matrix � and generator h, whose density is

f (y) = |�|− 1
2 h(q(y)), q(y) = (y − �)t�−1(y − �), (2.1)

with h satisfying

∫ ∞

0
u

N
2 −1h(cu) du = �(N

2 )

(c�)
N
2

, ∀ c > 0. (2.2)

Letting IN be the N × N identity matrix and letting � be a positive (precision) parameter,
ElN(0, 1

� IN ; h) and ElN(�, 1
� IN ; h)become a spherical distributionSN(�; h) and translate

spherical distribution SN(�, �; h) respectively. Clearly, if z ∼ SN(�; h), then � + z ∼
SN(�, �; h). In the spherical case q(y) in (2.1) becomes �‖y −�‖2. Spherical distributions
may be viewed as standardized versions of elliptical distributions:

y ∼ ElN(�, �; h) ⇔ z = �− 1
2 (y − �) ∼ SN(1; h). (2.3)

To make explicitly the dimension N , h may be denoted by hN . On the other hand, when h

is unspecified or � = 1, these arguments may optionally be omitted.
When z ∼ SN(1; h), the components Zj have a common symmetric distribution, whose

variance and kurtosis are denoted by �h and �h, respectively. By the additivity of expected
values �h = E( T

N
) and �h = 1

�2
h

E( T 2

N(N+2)
)−1, where T has the same distribution as ‖z‖2.

Thus, by the spherical symmetry E(z) = 0 and Var(z) = �hIN and, from (2.3) E(y) = �

and Var(y) = �h�, where y ∼ ElN(�, �; h). To save space we have adopted the convention
that a formula for an expected value is implicitly assumed to hold only when this expected
value exists.

Under sphericity, the distribution of z is fully determined by that of its squared length.
Let z ∼ SN(1; h), T = ‖z‖2, and U = T −1. As in Arellano-Valle [1], the distributions
of T and U will be called (univariate) squared-radial and inverse squared radial and will
be denoted by SR(N; h) and ISR(N; h), respectively. These distributions are quite simple
conceptually and have appeared in the literature under various names (see [6]). For further
reference we write

z ∼ SN(1; h) ⇔ T = ‖z‖2 ∼ SR(N; h). (2.4)
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Under (2.1), it is easily shown that q(y) ∼ SR(N; h). Table B.1 in Appendix B shows the
squared-radial distributions associated with various spherical distributions, while Table B.2
provides their means and variances. In general these results have appeared in previous
papers, but are collected here for convenience (see, e.g., [5,13]).

2.2. Marginal and conditional generators

Let z = (Zj , j = 1, . . . , N) ∼ SN(1; h) and let T be the squared length of z. Define also
the random vectors zk = (Zj , j = 1, . . . , k), z(k) = (Zj , j = k+1, . . . , N), and let Tk and
T(k) be their squared lengths. Clearly, zk , z(k) are spherical, Tk, T(k) are squared radial, and
the distributions of zk and z(k) are fully determined by those of Tk and T(k), respectively.

Now, let us denote by hN the generator for z. The generator for zk is hk|N , defined by

hk|N(u) =
∫ ∞

0

�
N−k

2

�(N−k
2 )

v
N−k

2 −1hN(u + v) dv. (2.5)

The conditional distribution of zk|z(k) = � is also spherical and zk ⊥⊥ z(k)|T(k). Thus zk|z(k) =
�

d= zk|T(k) = t , with t = ‖�‖2. Furthermore, the generator for zk|T(k) = t is h
k|N
t ,

defined by

h
k|N
t (u) = hN(u + t)

hN−k|N(t)
, u�0. (2.6)

From the formulae for the marginal and conditional generators we get∫ ∞

0
v

N−k
2 −1hN(u + v)dv ∝ hk|N(u),

and

hN(u + t) = h
k|N
t (u)hN−k|N(t), u�0. (2.7)

Notational convention: When the superscript N is clear from the context, it will usually
be omitted, that is, hN = h, hk|N = hk and h

k|N
t = hk

t . Furthermore, the corresponding
marginal and conditional spherical distributions will be denoted by zk ∼ Sk(1; h) and
zk|T(k) = t ∼ Sk(1; ht ), and their respective squared-radial distributions by Tk ∼ SR(k; h)

and Tk|T(k) = t ∼ SR(k; ht ).
The moments of zk and zk|T(k) = t are also determined by those of Tk and Tk|T(k) = t ,

respectively. In particular,

E

(
Tk

k

)
= �h, Var

(
Tk

k

)
=

{
k + 2

k
(�h + 1) − 1

}
�2
h

and

E

(
Tk

k
|T(k) = t

)
= �h(t),

Var

(
Tk

k
|T(k) = t

)
=

{
k + 2

k
(�h(t) + 1) − 1

}
�2
h(t), (2.8)
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where �h(t) = �ht and �h(t) = �ht are the variance and kurtosis parameters corresponding
to the conditional generator ht , respectively.

2.3. The generalized Student-t distribution

Throughout the paper we will illustrate our main results using the generalized elliptical
N -dimensional Student-t distribution with � degrees of freedom, which is discussed in
Arellano-Valle and Bolfarine [2]. It will be denoted by tN (�, �; �, �). We will concentrate
first on the spherical case � = 0 and � = IN , and write instead tN (�, �). Its density
generator is

hN(u) = c(N, �)�
�
2 {� + u}− N+�

2 , where c(N, �) = �(N+�
2 )

�( �
2 )�

N
2

. (2.9)

For a spherical random vector z, (2.4) implies

z ∼ tN (�, �) ⇔ T = ‖z‖2 ∼ N�

�
FN,�, (2.10)

and E(z) = 0, for � > 1, and Var (z) = �(� − 2)−1IN , for � > 2. Moreover, the
marginal generator (2.5) yields hk|N(u) = hk(u) = c(k, �)�

�
2 {�+u}− k+�

2 , i.e., zk ∼ tk(�, �),

while the conditional generator (2.6) yields h
k|N
t (u) = c(k, �(k))�

�(k)
2

t {�t + u}− k+�(k)
2 , i.e.,

zk|T(k) = t ∼ tk(�t , �(k)), where �t = � + t and �(k) = � + N − k. Thus,

�h(t) = �t

�(k) − 2
and �h(t) = �(k) − 2

�(k) − 4
− 1. (2.11)

Notice finally that the generalized Student-t distribution can be represented as scale-mixture
of the normal distribution by assuming that z|V = v ∼ NN(0, vIN) and V ∼ IG( �

2 , �
2 ),

the inverse-gamma distribution with parameter � and �. Thus, tN (�, �) = tN (�) is the usual
multivariate spherical Student-t distribution with � degrees of freedom, and tN (�, 2�−N) =
PVIIN(�, �), � > N

2 , is the multivariate spherical Pearson VII distribution discussed in
Fang et al. [6]. Thus, for instance most of the results derived from the generalized Student-t
distribution can be adapted for the normal scale-mixture class, as well for the entire spherical
class, in a rather simple way.

3. Multivariate squared-radial distributions

A multivariate extension of the squared-radial distribution is given next:

Definition 1. Let z = (Zj , j = 1, . . . , N) ∼ SN(1; h), let (M1, . . . , Mr) be an orthogonal
decomposition of RN , with dim(Mj ) = Nj , and let Pj z be the orthogonal projection of z
onto Mj . We call the distribution of

w = (Wj , j = 1, . . . , r) = (‖Pj z‖2, j = 1, . . . , r) (3.1)

multivariate squared-radial distribution and write w ∼ SR(N1, . . . , Nr ; h).
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This is a valid definition because the spherical symmetry of z implies that the distribution
of w depends on the subspaces only through their dimensions. A canonical form is obtained
choosing Mj as the subspace spanned by a set of unit vectors. Let vi be the ith unit vector and
define A1 = {1, . . . , N1}, Aj = {N1 + · · ·+Nj−1 + 1, . . . , N1 + · · ·+Nj }, j = 2, . . . , r .
Then the ith component of Pj z equals Zi for i ∈ Aj and it is equal to 0 otherwise. Thus

w
d=

⎛
⎝∑

i∈Aj

Z2
i , j = 1, . . . , r

⎞
⎠. (3.2)

Some important properties of the family SR(N1, . . . , Nr ; h) are:

SR1 Closure under aggregation: When the components are aggregated, the new distribution
is still squared-radial, with the corresponding degrees of freedom being added. For
example, (W1, W2, W3, W4, W5) ∼ SR(N1, N2, N3, N4, N5; h) ⇒ (W1 + W2, W3 +
W4, W5) ∼ SR(N1 + N2, N3 + N4, N5; h).

SR2 Invariance for homogeneous functions: If g(aw) = g(w) for any positive a, then g(w)

has the same distribution, say G, for all h and G may be obtained assuming z to be a
normal random vector. For instance, the distribution of the ratio of two components
does not depend on the generator.

SR3 Independence of total and ratios: w∑r
j=1 Wj

⊥⊥ ∑r
j=1 Wj .

SR4 Distribution of ratios: Since the distribution does not depend on h, it may be computed
under normality. In particular, w∑r

j=1 Wj
∼ Dirichlet (N1

2 , . . . , Nr

2 ).

SR5 Invariance under conditioning: (W1, W2, . . . , Wk| ∑r
j=k+1 Wj = s) ∼ SR(N1, . . . ,

Nr, hs).

From SR1–SR5 several general properties of spherical distributions may be proved. For
instance, taking W1 = Tk and W2 = T(k), SR3 and SSR4 become Tk

T
⊥⊥ T and V =

Tk

T
∼ Beta

(
k
2 , N−k

2

)
respectively; while SR2 becomes N−k

k
Tk

T(k)

d= N−k
k

V
1−V

∼ Fk,N−k ,
regardless of the generator h. Under sphericity, the distribution of (zk, z(k)) is determined
by that of (Tk, T(k)) and the same holds for (zk, T(k)). This translates into the following key
relationship:

(Tk, T(k)) ∼ SR(k, N − k; h) ⇔ zk|T(k) = t ∼ Sk(1; ht ) and

T(k) ∼ SR(N − k; h). (3.3)

4. Dispersion elliptical squared-radial distributions

This section introduces a general class of distributions which will have a key place in
the statistical analysis of the spherical linear model to be developed in the next sections.
These distributions are called dispersion elliptical squared-radial (DESR) and they can be
viewed as extension of the well-known normal-gamma family, which leads to a conjugate
Bayesian analysis for the normal linear model.
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Definition 2. Let x be a m × 1 random vector and let T be a positive random variable. Let
h = hm+d be a given generator. If

x|T = t ∼ Elm

(
�,

1

btr
�; hat

)
and T ∼ 1

a
SR(d; h), (4.1)

then (x, T ) is said to have a dispersion elliptical squared-radial distribution and it is denoted
by DESR(m, d; r, a, b; �, �; h).

By ellipticity, the p.d.f. of (x, T ) ∼ DESR(m, d; r, a, b; �, �; h) depends on x only
through q(x) = (x − �)t�−1(x − �). Straightforward computations lead to

f (x, t) = (a�)
d
2 b

m
2

�
(

d
2

) |�|− 1
2 t

rm+d
2 −1h(btrq(x) + at), (x ∈ Rm, t > 0). (4.2)

4.1. Parameters and special cases

(a) 1
b

is a scale parameter. In fact, DESR(m, d; r, a, b; �, �; h) = DESR(m, d; r, a, 1;
�, 1

b
�; h).

(b) The parameter r allows the conditional variances of x|T = t to depend on t . For
(r = 0, b = 1), the dispersion is fully determined by �.

(c) The dispersion spherical squared-radial distribution DSSR(m, d; r, a, b; h) is just the
special case DESR(m, d; r, a, b; 0, Im; h). On the other hand, it can be used as an

alternative starting point by defining z = �− 1
2 (x − �) (see (2.3)). Then

(x, T ) ∼ DESR(m, d; r, a, b; �, �; h) ⇔ (z, T ) ∼ DSSR(m, d; r, a, b; h).

(d) The spherical squared-radial distribution, denoted by SSR(m, d; h) is the particular
case DSSR(m, d; 0, 1, 1; h). Directly from the definitions we get

(z, T ) ∼ SSR(m, d; h) ⇔ z|T = t ∼ Sm(1; ht ) and T ∼ SR(d; h).

When the conditional distributions of z|T = t are all spherical, they are determined by
those of ‖z‖2|T = t , which are in turn determine by the distribution of (z, T ) (see also
(3.3)). Therefore, the SSR and SR families are linked by

(z, T ) ∼ SSR(m, d; h) ⇔ (‖z‖2, T ) ∼ SR(m, d; h).

We are now ready to state the following key result for the general DESR family:

Theorem 1. If (x, T ) ∼ DESR(m, d; r, a, b; �, �); h), then

(bT rq(x), aT ) ∼ SR(m, d; h).

Applying the properties SR1–SR5, as well as (2.10), (2.4) and (3.3) we get:
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Corollary 1. Let (x, T ) ∼ DESR(m, d; r, a, b; �, �; h). Then

(a) T rq(x) ∼ 1
b

SR(m; h); T ∼ 1
a

SR(d; h); q(x)|T = t ∼ 1
btr

SR(m; hat ).
(b) T r−1q(x) ∼ am

bd
Fm,d .

(c) For r = 1,

x ∼ tm

(
�, �; a

b
, d

)
= tm

(
�,

1

b
�; a, d

)
, which does not depend on h. (4.3)

(d) For r = 0, x ∼ Elm(�, 1
b
�; h) and T |x ∼ 1

a
SR(d; hbq(x)).

Proof. (a) follows from SR1 and SR5, while (b) follows from SR2 applied to the ratio
of the two components. On the other hand, (b) implies q(x) ∼ am

bd
Fm,d , for r = 1, so

that (c) is obtained from (2.10). Part (d) is a consequence of (3.3) and the equivalence of
q(x) ∼ 1

b
SR(m; h) and x ∼ Elm(�, 1

b
�; h).

4.2. Some important examples

Example 1. The normal-gamma family: It is a well-known family in the Bayesian literature,
and now it may be obtained as special case of (4.1) by letting b = r = 1 and taking h to

be the normal generator. In fact, taking h(u) = (2�)− m+d
2 e− u

2 , then x|T = t ∼ Nm(�, 1
t
�)

and T ∼ G( d
2 , a

2 ). Notice that the same case, but with r = 0, yields independent normal
and gamma models for x and T , respectively. This is the only situation within the DESR
class where we have independence for any value of a.

Example 2. The DSSR-family induced by the generalized Student-t distribution (see Sec-
tion 2.3): It is defined by

x|T = t ∼ tm

(
�,

1

btr
�; �at ; � + d

)
= tm

(
�, �; �at

btr
; � + d

)
and

T ∼ d�

a�
Fm,d, (4.4)

where �c = � + c. It p.d.f is easy obtained by applying (2.9), with N = m + d, in (4.2).
This family will be used next in order to illustrate some results.

5. Inference in dispersion spherical squared-radial linear models

This section deals with the Bayesian analysis of a spherical linear model, with a generator
depending on the precision parameter � which is given a squared-radial prior. It is shown
here that the prior independence of � and � leads to DSSR distribution for (ε, �). Moreover,
under a flat improper prior for � the posterior for (�, �) belongs to the DSSR class, and so
� has a squared-radial posterior. Finally, the Bayes estimator of � is shown to be invariant
with respect to changes in the generator. This robustness holds also under the much more
general condition that the prior �(�) does not depend on that generator, which generalizes
analogous results in Zellner [14] and Osiewalski and Steel [10].
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5.1. The linear model

Start with a (n + d0)-dimensional spherical distribution with generator h = hn+d0 and
assume the linear model y = X� + ε, with the assumptions that

ε|� ∼ Sn(b0�
r ; ha0�) and � ⊥⊥ ε|�, (5.1)

which includes (1.1) as the particular case r = 1, a0 = 0. The error components 	i are still
uncorrelated, with a common variance 
2

h(�) which depends both on h and �. The general

formula is 
2
h(�) = �h(a0�)

b0�
r , where �h(t) = �ht . For instance, the generalized Student-t

model satisfies 
2
h(�) = �

(�+d0−2)b0�
r + �0

(�+d0−2)�r−1 , where �0 = a0
b0

and � + d0 > 2.

The likelihood of (5.1) is

f (y|�, �) ∝ �
rn
2 hn

a0�
(b0�

r ‖ y − X� ‖2), (5.2)

where a formula for the conditional generator hn
a0�

is given in (2.6), with the substitutions
t = a0�; k = n; N = n + d0.

Consider the proper prior specification

�(�|�) arbitrary

and

�(�) ∝ �
d0
2 −1 hd0(a0�), i.e. � ∼ 1

a0
SR(d0; h). (5.3)

Note that the usual non-informative prior �(�) ∝ �−1 is formally obtained taking d0 =
a0 = 0. At some points we will need the prior independence assumption

� ⊥⊥ �, (5.4)

the flat prior

�(�|�) = constant (5.5)

or both.
From (5.2), (5.3) and (2.7) the following joint density becomes

f (y, �, �) ∝ �
rn+d0

2 −1 hn+d0(b0�
r‖y − X�‖2 + a0�) �(�|�). (5.6)

Under (5.4), (ε, �) ⊥⊥ � and

(ε, �) ∼ DSSR(n, d0; r, a0, b0; h), (5.7)

which includes the joint assumptions (1.1–1.2) as the particular case r = b0 = 1, a0 =
d0 = 0. From (5.7) one immediately gets the following theorem:

Theorem 2. Under (5.1–5.4)

(b0�
r‖ε‖2, a0�) ∼ SR(n, d0; h) and �r−1‖y − X�‖2 ∼ a0n

b0d0
Fn,d0 (5.8)

define pivotal quantities for (�, �).
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The posterior �(�|y) does not admit a general closed expression, unless the geometric
structure is preserved by the choice of the improper prior (5.5). In this case, (5.6) may be
used to get the DSSR posterior density:

�(�, �|y) ∝ �
rn+d0

2 −1 hn+d0(b0�
r ‖ y − X� ‖2 +a0�). (5.9)

We may also get a Bayesian version of the classical pivotal quantities for � and �. In fact,

(5.7), (5.9) and a constant �(�) imply (b0�
r ‖ ε ‖2, a0�)|y d= (b0�

r ‖ ε ‖2, a0�)|�, and
their common distribution is SR(n, d0; h). Thus, conditioning on either � or y produces the
same squared-radial distribution, which may be applied to get the posterior of � and �.

In the sequel we employ the standard notation: �̂ is the ordinary least-squares estimate
of �, i.e., �̂ = (XtX)−1Xty; e is the residual vector y − X�̂, (n − p)s2 is the residual sum
of squares ‖ e ‖2, � = X�, and �̂ = X�̂. We will need the simple identities

‖ � − �̂ ‖2 coincides with the quadratic form (� − �̂)tXtX(� − �̂),

‖ ε ‖2=‖ e ‖2 + ‖ � − �̂ ‖2 .
(5.10)

Thus, we end this section by stating another theorem, which may be used in conjunction
with Corollary 1 to give an alternative proof of Theorems 4 and 5.

Theorem 3. Under (5.1–5.5),

(b0�
r ‖ e ‖2, b0�

r ‖ � − �̂ ‖2, a0�) ∼ SR(n − p, p, d0; h).

5.2. Two special cases

Throughout this section we assume that (5.1), (5.3)–(5.5) hold (which is equivalent to
considering the posterior distribution (�, �)|y ∼ DSSR(n, d0; r, a0, b0; h) defined by (5.9))
and analyzing separately the case of an identity (r = 1) and a constant (r = 0) dispersion
function.

5.2.1. Identity dispersion function: r = 1
In this case � disappears from (5.8) and we get a pivotal quantity for �:

‖y − X�‖2 ∼ a0n

b0d0
Fn,d0 .

From Corollary 1 and (4.3) ε|� ∼ tn(
a0
b0

, d0), regardless of � or h.

Theorem 4. Let r = 1 and assume that (5.1), (5.3)–(5.5) hold. Letting 
2 = �−1, a� =
a0 + � and d = n − p + d0 we have

�|y ∼ tp

(
�̂,

1

b0
(XtX)−1; ab0q(y), d

)
, (5.11)

�|y ∼ 1

ab0q(y)

SR(d; h), 
2|y ∼ ab0q(y) ISR(d; h), (5.12)

where q(y) = (n − p)s2.
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Theorem 4 shows that the class of SR distributions provides a conjugate analysis for
�. The invariance of �(�|y) under a change of generator allows the computations to be
performed under the simpler normal model. This invariance holds under the much more
general condition that �(�) does not depend on h, generalizing thus the results obtained
by Osiewalski and Steel [10] under the conventional spherical linear model (1.1) and the
improper prior (1.2). From the properties of the generalized Student-t model and (2.8)

E(�|y) = �̂ (d > 1), Var (�|y) = ab0q(y)

b0(d−2)
(XtX)−1 (d > 2),

E(�|y) = d �h

ab0q(y)
, Var (�|y) = {

d+2
d

(�h + 1) − 1
} {E(�|y)}2,

where q(y) = (n − p)s2. For b0 = 1, d0 = a0 = 0, �|y ∼ tp(�̂, s2(XtX)−1; n − p) and
�|y ∼ 1

(n−p)s2 SR(n − p; h), a result due to Zellner [14], which here becomes a special
case of (5.11–5.12). Table B.2 makes it easy to get means and variances for a variety of
elliptical models.

Example 3 (Example 2 continued). Consider the DSSR family induced by generalized
spherical Student-t distribution with dimension m = n + d0, which is defined in (4.4).
Thus, the model defined by (5.3–5.2) satisfies

y|�, � ∼ tn

(
X�; �a0�

b0�
r , � + d0

)
and � ∼ � d0

� a0
Fd0,�.

Substituting r = 1 in (5.6), f (y, �|�) ∝ �
n+d0

2 −1 {� + b0� ‖ y − X� ‖2 +a0�}− n+d0+�
2 .

Furthermore �(�|y) ∝ �
d
2 −1{�+ab0q(y)�}− d+�

2 , where q(y) = (n−p)s2, implying �|y ∼
� d

� ab0q(y)
Fd,� and 
2|y ∼ � ab0q(y)

� d
F�,d . The Bayes estimator and the Bayes risk of � and


2 = �−1 are

E(�|y) = �

� − 2

d

ab0q(y)

, (� > 2),

Var (�|y) =
{

d + 2

d

(
� − 2

� − 4

)
− 1

} {
�

� − 2

d

ab0q(y)

}2

, (� > 4),

E(
2|y) = �

�

ab0q(y)

d − 2
, (n > p + 2),

Var (
2|y) =
{

� + 2

�

d − 2

d − 4
− 1

} {
�

�

ab0q(y)

d − 2

}2

, (n > p + 4),

respectively.

5.2.2. Constant dispersion function: r = 0
Unlike the case r = 1, the posterior of � depends on the generator h. The next theorem

states that under an improper constant prior for �, the posterior for � is elliptical and the
posterior of � is squared-radial.
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Theorem 5. Let r = 0 and assume that (5.1), (5.3)–(5.5) hold. Letting 
2 = �−1, a� =
a0 + � and d = n − p + d0 we have

�|y ∼ Elp

(
�̂,

1

b0
(XtX)−1; hb0q(y)

)
, (5.13)

�|y ∼ 1

a0
SR(d0; hb0q(y)), 
2|y ∼ a0ISR(d0; hb0q(y)), (5.14)

where q(y) = (n − p)s2.

The means and variance are easily obtained from the general results given in Section 2.
Thus, letting �h(t) = �ht and �h(t) = �ht ,

E(�|y) = �̂, (n > p + 2), Var (�|y) = �h(b0q(y))
b0

(XtX)−1,

E(�|y) = d0 �h(b0q(y))
a0

, Var (�|y) =
{

d0+2
d0

(�h(b0q(y))+1)−1
}

{E(�|y)}2,

where, as was defined above, q(y) = (n − p)s2.
Although (5.13) implies �(�|y) depends on h, the Bayes estimator of � is �̂ regardless of

the generator.
Table B.2 in Appendix is useful to get the above results for some particular elliptical

distributions.

Example 4 (Example 2 continued). For r = 0, (5.13, 5.14) imply

�|y ∼ tp

(
�̂,

1

b0
(XtX)−1; �b0q(y), � + n − p

)
and

�|y ∼ �b0q(y) d0

(� + n − p) a0
Fd0,�+n−p,

where �t = �+ t , q(y) = (n−p)s2. Thus, the posterior of � does depend on the generator.
The estimator and risk of � are easily obtained from (2.11).

6. Inference in dispersion-location spherical squared-radial linear models

In this section we build a new model that produces conjugate distributions for � and �,
both individually and jointly. This is achieved by modelling (y, �, �) jointly.

6.1. Prior distributions

The normal-gamma priors for the linear model (1.1) do not lead to an analytically tractable
posterior, unless the spherical distribution is normal. To develop an extension we start with
the prior

(�, �) ∼ DESR(p, d0; r, a0, b0; m0,V0; h), (6.1)
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which by (4.1) is equivalent to

�|� ∼ Elm

(
m0,

1

b0�
r V0; ha0�

)
, � ∼ 1

a0
SR(d0; h). (6.2)

Under normality (6.2), with r = 1, reduces to the usual normal-gamma prior distribution.

Besides, for r = 1 � ∼ tp

(
m0,

1
b0

V0; a0, d0

)
, regardless of the generator chosen.

6.2. Joint distributions

For a fixed generator h = hn+p+d0 , define q0(�) = (� − m0)
tV−1

0 (� − m0) and
w0(�, �) = b0�

rq0(�) + a0�. The likelihood is then determined by the distribution
of ε|�, �. To get conjugacy results we assume a rather special form for this conditional
distribution:

ε|�, � ∼ Sn(b0�
r ; hw0(�,�)). (6.3)

The likelihood for the linear model y = X� + ε is

f (y|�, �) ∝ �
rn
2 hn

w0(�,�)
(b0�

r ‖ y − X� ‖2). (6.4)

Let � = (ε, �), t0 = (0, m0) and W0 = diag {In,V0}. Considering Definition 1 we get
that (6.1) and (6.3) imply

(�, �) ∼ DESR(n + p, d0; r, a0, b0; t0,W0; h).

An explicit formula for the joint density is

f (y, �, �) ∝ �
rn+rp+d0

2 −1 hn+p+d0(b0�
r ‖ ε ‖2 +b0�

rq(�) + a0�), (6.5)

which implies that (�, �)|y follows a DESR model.
From (6.1) and (6.3) we get the following fundamental property:

Theorem 6. Under (6.1) and (6.3),

(b0�
r‖ε‖2, b0�

rq0(�), a0�) ∼ SR(n, p, d0; h),

and in analogy with Theorem 2 we get

(b0�
r‖e‖2, b0�

r‖� − �̂‖2, b0�
rq0(�), a0�) ∼ SR(n − p, p, p, d0; h).

The next theorem characterizes the posteriors of � and �.

Theorem 7. Assume that (6.1) and (6.3) hold. LetV = (V−1
0 +XtX)−1 and m = VV−1

0 m0+
(Ip − VV−1

0 )�̂. Let

q(y) = (n − p)s2 + (X�̂ − Xm0)
t (In − XVXt )(X�̂ − Xm0) (6.6)
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and w(y, �) = b0�
rq(y) + a0�. Then(

y
�

)
|� ∼ Eln+p

((
Xm0
m0

)
,

1

b0�
r

(
In + XV0Xt XV0

V0Xt V0

)
; ha0�

)
, (6.7)

�|y, � ∼ Elp

(
m,

1

b0�
r V; hw(y,�)

)
, (6.8)

�|y ∼ 1

ab0q(y)

SR(n + d0; h). (6.9)

From (6.8) E(�|y, �) = E(�|y) = m, which depends neither on � nor on h. Therefore
the posterior mean coincides with that obtained assuming a normal linear model with a
normal-gamma prior distribution. Note however that the choice of h may have an effect
on the posterior covariance matrix of �. The posterior distributions of � and � are easily
obtained by applying Theorem 7.

Corollary 2. For r = 1

�|y ∼ tp

(
m,

1

b0
V; ab0q(y), n + d0

)
and �|y ∼ 1

ab0q(y)

SR(n + d0; h); (6.10)

while for r = 0

�|y ∼ Elp

(
m,

1

b0
V; hb0q(y)

)
and �|y ∼ 1

a0
SR(d0; hb0q(y)), (6.11)

where ab0q(y) = a0 + b0q(y) and q(y) is defined in (6.6).

Example 5 (Example 2 continued). Choose m = n + p + d0 and apply (6.5) to get

f (y, �, �) ∝ �
nr+pr+d0

2 −1 {� + b0�
r ‖ y − X� ‖2 +b0�

rq(�) + a0�}− n+p+d0+�
2 .

Following (6.7) the model may be specified as(
y
�

)
|X, � ∼ tn+p

((
Xm0
m0

)
,

1

b0�
r

(
In + XV0Xt XV0

V0Xt V0

)
; �a0�, � + d0

)

and

� ∼ � d0

� a0
Fd0,�.

From (6.3) and (6.2) the likelihood and the prior may written as

y|�, � ∼ tn

(
X�,

�w0(�,�)

b0�
r , � + d0

)
, with w0(�, �) = b0�

rq0(�) + a0�,

and

�|� ∼ tp

(
m0,

1

b0�
r V0; �a0�, � + d0

)
, � ∼ � d0

� a0
Fd0,�,
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respectively. Hence, when r = 1, in (6.10), we get

�|y ∼ � (n + d0)

� ab0q(y)

Fn+d0,�,

where ab0q(y) = a0 + b0q(y). For r = 0, (6.11) yields

�|y ∼ tp

(
m,

1

b0
V; �b0q(y), � + d0

)
and �|y ∼ �b0q(y) d0

(� + n) a0
Fd0,�+n.

The results for the usual Student-t model follow by setting � = �.

Table B.2 is easily adapted to cover this case.

7. Discussion

One main concern of this paper is to provide basic distribution theory for the elliptical
linear model, with special emphasis on the analytic study of Bayesian analysis for these
models. From these general results we wish to remark some points. First, for a normal gener-
ator and r = 0 the distribution in (5.1) and (6.3) reduces to Nn(X�, 1

b0
In) and the parameter

� fades away. This surprising result means that � has no impact at all on inferences about �,
which is more likely to reflect a deficiency of this model than a physical property. A similar
phenomenon takes place with the likelihood in (5.2) and (6.4). For r = 1, together with
particular values of the constants a0, b0, and the matrix V0, (1.1) is obtained. Although, by
definition, d0 is a positive integer, a convenient meaning may be given to expressions involv-

ing the choice d0 = 0. For instance, the prior �(�) ∝ �
d0
2 −1hd0(a0�) formally becomes

�(�) ∝ �−1h0(0), which yields the reference improper prior �(�) ∝ �−1, interpreting
h0(0) as a positive constant. The same improper prior may be formally obtained from (6.1),
taking a0 = 0 and either V−1

0 = 0 or b0 = 0, provided rp + d0 = 0.
A nice feature of the results obtained here is that posterior means and variances are

easily obtained from the general results for elliptical distributions. One just needs to make
sure that the suitable scale factor is used. We have purposely tried to minimize the explicit
computations of densities, but it is sometimes simpler to prove results in this way. For
instance, the identities

hn+p+d0(u + a + b)

hp+d0(a + b)
= h

n+p
b (u + a)

h
p
b (a)

= h
n+d0
a (u + b)

h
d0
a (b)

,

which are easily derived from (2.6, 2.7) may be applied to get (6.5) and other results in
Section 5. They admit a probabilistic interpretation in terms of the sequential conditioning.

Finally, a much more general situation that was not considered in this work is when the
generator h is indexed by additional “nuisance” parameters, so that it will be unspecified.
Such situations can be adapted in our approaches following the related well discussion in
Osiewalski and Steel [10].
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Appendix A. Proofs of Theorems

Proof of Theorem 2. It follows immediately from b0�
r‖ε‖2 ∼ SR(n; h), the ortho-

gonal projections associated with (5.10) and the general properties of the multivariate radial
distributions. �

Proof of Theorem 4. From d = n − p + d0, (5.4), (5.6) and (5.10) �(�, �|y) ∝ �
p+d

2 −1

h({ab0q(y) + b0‖� − �̂‖2}�) �(�). By integrating with respect to � and applying (2.2)

we get �(�|y) ∝ {ab0q(y) + b0‖� − �̂‖2}− p+d
2 �(�), from which (5.11) follows. By inte-

grating with respect to �, �(�|y) ∝ �
p+d

2 −1 ∫
Rp hp+d({ab0q(y) + b0‖� − �̂‖2}�) �(�)d�.

Applying now (5.5) and the change of variable u = b0�‖� − �̂‖2 reduces this to �(�|y) ∝
�

p+d
2 −1 ∫ ∞

0 u
p
2 −1hp+d(u + ab0q(y)�)du, and (5.12) follows from (2.5) by letting v =

ab0q(y)�. �

Proof of Theorem 5. Substituting r = 0 and (5.10) in (5.6) we get �(�, �|y) ∝ �
d0
2 −1

hn+d0(b0q(y)+b0‖�−�̂‖2+a0�) �(�).Lettingu = b0‖�−�̂‖2+a0�,hn+d0(u+b0q(y)) =
hp+d0+n−p(u + q(y)) = h

p+d0
b0q(y)(u) hn−p(b0q(y)), the joint posterior density becomes

�(�, �|y) ∝ �
d0
2 −1 h

p+d0
b0q(y)(b0‖� − �̂‖2 + a0�) �(�). From h

k|p+d0
b0q(y) (u) = h

k|n+d0
b0q(y) (u) we

get �(�|y) ∝ h
p

b0q(y)(b0‖� − �̂‖2) �(�) and �(�|y) ∝ �
d0
2 −1 ∫

Rp h
p+d0
b0q(y)(b0‖� − �̂‖2 +

a0�) �(�)d�, where hk
b0q(y)(u) = hk+n−p(u+b0q(y))

hn−p(b0q(y))
, u�0, k = p, p + d0. The required

results follows by choosing a constant prior for �. �

Proof of Theorem 7. Proof of (6.7). By assumption, the distribution of (ε, �)|� is el-
liptical. Since linear transformations preserve ellipticity, the distribution of (y, �)|� =
(ε + X�, �)|� is also elliptical. Its mean and dispersion matrix satisfy are identical to those
derived under normality. The conditioning on � justifies the subscript a0� in h. �

Proof of (6.8). It follows from (6.7) or by appealing to the results under normality. �

Proof of (6.9). This involves some long algebraic manipulation and an application of (6.5),

which produces the expression f (y, �) ∝ �
rn+rp+d0

2 −1 ∫
Rp hn+p+d0(b0�

r (�−m)tV−1(�−
m)+b0�

rq(y)+a0�)d�. Letting now u = b0�
r (�−m)tV−1(�−m), this integral is reduces

to f (y, �) ∝ �
rn+d0

2 −1 ∫ ∞
0 u

p
2 −1 hn+p+d0(u + b0�

rq(y) + a0�)du. An application of

(2.5) yields f (y, �) ∝ �
rn+d0

2 −1 hn+d0(b0�
rq(y) + a0�), from which (6.9) follows. �
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Table B.1
Squared-radial distributions corresponding to some subclasses of n-dimensional spherical distributions
(u =‖ z ‖2, z ∈ RN)

Spherical distribution Density generator Squared-radial distribution
SN (1; h) hN SR(N; h)

Normal cN exp{− 1
2 u} 
2

N

Contaminated normal (1 − ε) �(N)(u) + ε �N�(N)(�u), (1 − ε) 
2
N

+ ε � 
2
N

0 < ε < 1, � > 0

Cauchy cN {1 + u}− N+1
2 NFN,1

Student-t cN {� + u}− N+�
2 , � > 0 NFN,�

Generalized student-t cN {� + u}− N+�
2 , �, � > 0 N�

� FN,�

Power exponential cN exp{− 1
2 us }, s > 0 G 1

s ( N
2s

, 1
2 )

Kotz type cNuq exp{− r
2 us }, r, s > 0, G 1

s (
2q+N

2s
, r

2 )

2q + N > 0

Pearson type II cN {1 − u} �
2 −1

, � > 0 Beta(N
2 , �

2 )

Normal scale mixture cN

∫ ∞
0 v

− N
2 �(N)( u

v ) dF (v), cNu
N
2 −1 ∫ ∞

0 v
− N

2 �(N)( u
v ) dF (v),

F a c.d.f. F a c.d.f.

cN is just an appropriate constant; T ∼ G 1
s (�, �) means that T s ∼ G(�, �); �(N)(t) = (2�)

− N
2 e

− t
2 is the

generator of the n-dimensional normal distribution.

Table B.2
Means and variances of squared radial distributions (SR(d; h))

Likelihood SR(d; h) Mean Variance

Normal 
2
d

d 2d

Contaminated normal (1 − ε)
2
d

+ ε�
2
d

1 − ε + ε�
{

d+2
d

1−ε+ε�2

(1−ε+ε�)2 − 1
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Appendix B. Tabular summary of SSR distributions

This appendix contains two tables related with squared-radial distributions (see Sections
2.4 and 3). Table B.1 shows the squared-radial distributions associated to various spherical
distributions, while Table B.2 provides their means and variances (see also [6,13]).
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