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Abstract

We propose a CP-odd asymmetry in the supersymmetric processe+e− → χ̃0
i χ̃

0
j → χ̃0

j τ
∓τ̃±

k by means of the transverseτ∓
polarization. We calculate the asymmetry and cross sections at a future linear collider in the 500 GeV c.m.s. energy ra
longitudinal polarized beams and high luminosity. We work in the Minimal Supersymmetric Standard Model with co
parametersµ, M1 andAτ . The asymmetry can reach values up to 60%. We also estimate the sensitivity for measurinτ
polarization necessary to probe the CP asymmetry.
 2003 Elsevier B.V.Open access under CC BY license.
1. Introduction

In supersymmetric (SUSY) extensions of the Stan-
dard Model (SM), some parameters can be complex.
In the neutralino sector of the Minimal Supersym-
metric Standard Model (MSSM), these are the hig-
gsino mass parameterµ and the gaugino mass para-
meterM1, while M2 can be chosen real by redefin-
ing the fields. In addition, in the scalar tau sector of
the MSSM, also the trilinear scalar coupling parame-
terAτ can be complex. The non-zero phasesϕµ, ϕM1

andϕAτ of these parameters give rise to CP-odd ob-
servables, which are not present if CP is maintained.
Measurements of such CP-odd observables will allow
us to determine these phases, in particular also their
signs.

E-mail addresses: bartl@ap.univie.ac.at (A. Bartl),
tkern@hephy.oeaw.ac.at, tkern@qhepu3.oeaw.ac.at (T. Kernreiter),
kittel@physik.uni-wuerzburg.de (O. Kittel).

In this Letter we consider neutralino production

(1)e+e− → χ̃0
i χ̃

0
j , i, j = 1, . . . ,4

and the subsequent two-body decay of one neutralino

(2)χ̃0
i → τ̃±

m τ∓, m= 1,2,

for a fixedτ -polarization. We would like to stress that
without measuring the transverseτ∓ polarization no
sensitivity to the phase ofAτ , ϕAτ , can be obtained,
because (2) is a two-body decay. When summing
over the τ− polarization, we are sensitive only to
CP violation in the production process [1,2]. Theτ−
polarization is given by [3]

(3)P = Tr(�σ )

Tr(�)
,

with � being the Hermitean spin density matrix of the
τ− and σi the Pauli matrices. We use a convention
for P = (P1,P2,P3) where the componentP3 is
the longitudinal polarization andP1 is the transverse
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polarization in the plane formed bype− andpτ . The
componentP2 is the polarization perpendicular topτ

andpe− and is proportional to the triple-product

(4)sτ · (pτ × pe−),

where sτ is the τ− spin 3-vector. Since under time
reversal the triple-product changes sign, the transverse
τ− polarizationP2 is a T-odd observable. Due to
CPT invariance,P2 is actually a CP-odd observable
if absorbtive phases from final-state interactions are
neglected.

In this Letter we study the asymmetry

(5)ACP = 1

2
(P2 − P̄2),

which is CP-odd, even if absorbtive phases cannot be
neglected. In Eq. (5),P denotes theτ− polarization
vector in the decaỹχ0

i → τ̃+
m τ− andP̄ denotes theτ+

polarization vector in the decaỹχ0
i → τ̃−

m τ+. In Born
approximation it follows from Eq. (5) thatACP = P2.

In Section 2 we briefly review stau mixing in the
MSSM and define the part of the interaction La-
grangian which is relevant for our analysis. In Sec-
tion 3 we define theτ spin density matrix� and
give the analytical formulae. In Section 4 we dis-
cuss the qualitative properties of the asymmetryACP.
We present numerical results fore+e− → χ̃0

1 τ̃1τ

in Section 5. We summarize and conclude in Sec-
tion 6.

2. Stau mixing and Lagrangian

We give a short account of̃τL–τ̃R mixing for
complex µ = |µ|eiϕµ , Aτ = |Aτ |eiϕAτ and M1 =
|M1|eiϕM1 . The masses and couplings of theτ -sleptons
follow from the Hermitian 2× 2 mass matrix which in
the basis(τ̃L, τ̃R) reads [4,5]

Lτ̃
M = −(

τ̃
†
L, τ̃

†
R

)

(6)×
(

M2
τ̃LL

e−iϕτ̃
∣∣M2

τ̃LR

∣∣
eiϕτ̃

∣∣M2
τ̃LR

∣∣ M2
τ̃RR

)(
τ̃L
τ̃R

)
,

with

(7)

M2
τ̃LL

=M2
L̃

+
(

−1

2
+ sin2ΘW

)
cos2βm2

Z +m2
τ ,

(8)M2
τ̃RR

=M2
Ẽ

− sin2ΘW cos2βm2
Z +m2

τ ,

(9)M2
τ̃RL

= (
M2

τ̃LR

)∗ =mτ

(
Aτ −µ∗ tanβ

)
,

(10)ϕτ̃ = arg
[
Aτ −µ∗ tanβ

]
,

wheremτ is the mass of theτ -lepton, ΘW is the
weak mixing angle, tanβ = v2/v1 with v1 (v2) being
the vacuum expectation value of the Higgs fieldH 0

1
(H 0

2 ), andML̃, MẼ , Aτ are the soft SUSY-breaking
parameters of thẽτi system. Thẽτ mass eigenstates

are(τ̃1, τ̃2)= (τ̃L, τ̃R)Rτ̃ T with

(11)Rτ̃ =
(
eiϕτ̃ cosθτ̃ sinθτ̃
−sinθτ̃ e−iϕτ̃ cosθτ̃

)
,

and

cosθτ̃ = −|M2
τ̃LR

|√
|M2

τ̃LR
|2 + (m2

τ̃1
−M2

τ̃LL
)2
,

(12)sinθτ̃ = M2
τ̃LL

−m2
τ̃1√

|M2
τ̃LR

|2 + (m2
τ̃1

−M2
τ̃LL

)2
.

The mass eigenvalues are

m2
τ̃1,2

= 1

2

((
M2

τ̃LL
+M2

τ̃RR

)

(13)∓
√
(M2

τ̃LL
−M2

τ̃RR
)2 + 4|M2

τ̃LR
|2

)
.

The part of the interaction Lagrangian of the
MSSM relevant to study the decay (2) reads (in our
notation and conventions we follow closely [7,8]):

Lτ̃ τ χ̃0 = τ̃k τ̄
(
bτ̃kiPL + aτ̃kiPR

)
χ̃0
i + h.c.,

(14)i = 1, . . . ,4, k = 1,2,

with

aτ̃ki = g
(
Rτ̃

kn

)∗Aτ
in, b

f̃

ki = g
(
Rτ̃

kn

)∗Bτ
in

(15)(n= L,R),

(16)Aτ
i =

(
f τ
Li

hτRi

)
, Bτ

i =
(
hτLi
f τ
Ri

)
,

and

hτLi = (
hτRi

)∗ = YτN
∗
i3,

f τ
Li = − 1√

2
(tanΘWNi1 +Ni2),

(17)f τ
Ri = √

2 tanΘWN∗
i1,
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where Yτ = mτ/
√

2mW cosβ , PL,R = 1/2(1 ∓ γ5)

andg is the weak coupling constant.N is the 4× 4
unitary neutralino mixing matrix, which diagonal-
izes the neutral gaugino–higgsino mass matrixYαβ ,
N∗
iαYαβN

∗
kβ = mχ̃0

i
δik, in the basis (̃B,W̃3, H̃ 0

1 , H̃
0
2 )

[7]. The part of the Lagrangian for the neutralino pro-
duction (1) can be found, e.g., in [10,11].

3. Tau spin density matrix

The unnormalized, Hermitean, 2× 2 spin density
matrix of theτ− is defined by:

(18)�λkλ
′
k ≡

∫ (|M|2)λkλ′
k dLips,

whereM and dLips are the amplitude squared and the
Lorentz invariant phase space element, respectively,
for the whole process of neutralino production (1) and
decay (2). Theτ− helicities are denoted byλk andλ′

k .
In the spin density matrix formalism (as used, e.g., in
[9,10]) the amplitude squared can be written as

(19)
(|M|2)λkλ′

k = 2
∣∣,(

χ̃0
i

)∣∣2 ∑
λi,λ

′
i

(ρP )
λiλ

′
i (ρD)

λkλ
′
k

λ′
iλi

.

It is composed of the un-normalized spin density ma-
tricesρP for the production (1) andρD for the decay
(2), the propagator,(χ̃0

i )= 1/[p2
χi

−m2
χi

+ imχiΓχi ],
with pχi , mχi , Γχi being the four-momenta, masses
and widths of the decaying neutralino, respectively.ρP
andρD carry the helicity indicesλi , λ′

i of the neutrali-
nos and/or the helicity indicesλk , λ′

k of the τ−. The
factor 2 in Eq. (19) is due to the summation of the
χ̃0
j helicities, whose decay is not considered. We in-

troduce a set of spin basis vectorssaχi (a = 1,2,3) for

the neutralinoχ̃0
i , which fulfill the orthonormality re-

lationssaχi · sbχi = −δab andsaχi ·pχi = 0. Then the spin
density matrices can be expanded in terms of the Pauli
matrices:

(ρP )
λiλ

′
i = Pδλiλ′

i
+Σa

P σ
a
λiλ

′
i
,

(20)(ρD)
λkλ

′
k

λ′
iλi

= [
Dλkλ

′
k δλ′

iλi
+ (

Σa
D

)λkλ′
kσ a

λ′
iλi

]
.

The analytical formulae ofP andΣa
P can be found in

[10]. Introducing also a set of spin basis vectorssbτ for

theτ−, Dλkλ
′
k and(Σa

D)
λkλ

′
k can be expanded:

(21)Dλkλ
′
k =Dδλkλ′

k
+Dbσb

λkλ
′
k
,

(22)
(
Σa

D

)λkλ′
k =Σa

Dδλkλ′
k
+Σab

D σb
λkλ

′
k
.

The expansion coefficient are given by

(23)

D = Re
(
bτ̃mi

∗aτ̃mi

)
mτmχ̃i

+ 1

2

(∣∣bτ̃mi

∣∣2 + ∣∣aτ̃mi

∣∣2)(pτ · pχ̃i ),

(24)Db = 1

2
mτ

(∣∣bτ̃mi

∣∣2 − ∣∣aτ̃mi

∣∣2)(
pχ̃i · sbτ

)
,

(25)Σa
D = 1

2
mχ̃i

(∣∣aτ̃mi

∣∣2 − ∣∣bτ̃mi

∣∣2)(
pτ · saχ̃i

)
,

(26)

Σab
D = Re

(
bτ̃mi

∗aτ̃mi

)(
pτ · saχ̃i

)(
pχ̃i · sbτ

)

− (
saχ̃i · sbτ

)[1

2

(∣∣bτ̃mi

∣∣2 + ∣∣aτ̃mi

∣∣2)mτmχ̃i

+ Re
(
bτ̃mi

∗aτ̃mi

)
(pτ · pχ̃i )

]

+ Im
(
bτ̃mi

∗aτ̃mi

)
εµνρσpτµpχ̃i ν

saχ̃i ρ
sbτ σ ,

with ε0123 = 1. The last term in Eq. (26) contains
the triple product (4). This term is proportional to
Im(bτ̃mi

∗aτ̃mi) and is therefore sensitive to the phases
ϕAτ , ϕµ and ϕM1. Inserting the density matrices of
Eq. (20) into Eq. (19) yields

(|M|2)λkλ′
k = 4

∣∣,(
χ̃0
i

)∣∣2[(PD +Σa
PΣ

a
D

)
δλkλ′

k

(27)

+ (
PDb +Σa

PΣ
ab
D

)
σb
λkλ

′
k

]
.

4. Transverse tau polarization and CP asymmetry

From Eqs. (3) and (27) we obtain for the transverse
τ− polarization

(28)P2 =
∫ |,(χ̃0

i )|2Σa
PΣ

a2
D dLips∫ |,(χ̃0

i )|2PD dLips
,

which follows because in the numerator we have used∫ |,(χ̃0
i )|2PD2 dLips= 0 and in the denominator we

have used
∫ |,(χ̃0

i )|2Σa
PΣ

a
D dLips = 0. As can be

seen from Eq. (28),P2 is proportional to the spin
correlation termΣa2

D , Eq. (26), which contains the CP-
sensitive part Im(bτ̃mi

∗aτ̃mi)ε
µνρσpτµpχ̃i ν

sa
χ̃i ρ

s2
τ σ . In
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order to study the dependence ofP2 on the parameters,
we expand

Im
(
bτ̃1i

∗aτ̃1i
)

(29)

= g2
[

cos2 θτ̃ Yτ Im
(
f τ
LiNi3

)
+ sin2 θτ̃ Yτ

√
2 tanΘW Im(Ni1Ni3)

+ sinθτ̃ cosθτ̃
(
Y 2
τ Im

(
Ni3Ni3e

iϕτ̃
)

+ √
2 tanΘW Im

(
f τ
LiNi1e

−iϕτ̃
))]

,

using Eqs. (15)–(17) form = 1. If CP violation is
solely due toϕAτ �= 0 (modπ), we find from (29) that
P2 ∝ sin 2θτ̃ sinϕτ̃ . We note that the dependence ofϕτ̃
onϕAτ is weak if|Aτ | � |µ| tanβ , see Eq. (10). Thus,
we expect thatP2 increases with increasing|Aτ |.

Details concerning phase space and kinematics
necessary for the calculation ofP2 from Eq. (28) can
be found in [2]. Theτ− spin vectorssbτ are chosen by:

s1
τ =

(
0,

s2 × s3

|s2 × s3|
)
, s2

τ =
(

0,
pτ × pe−

|pτ × pe−|
)
,

(30)s3
τ = 1

mτ

(
|pτ |, Eτ

|pτ |pτ

)
.

In order to measureP2 and the CP asymmetryACP,
Eq. (5), theτ− from the decay (2) and theτ+ from
the subsequent̃τ+

m decay,τ̃+
m → χ̃0

1τ
+, have to be

distinguished. This can be accomplished by measuring
the energies of theτ ’s and making use of their different
energy distributions [2].

A potentially large background may be due to stau
productione+e− → τ̃+

l τ̃−
m → τ+τ−χ̃0

1 χ̃
0
1 . However,

these reactions would generally lead to “two-sided
events”, whereas the events frome+e− → χ̃0

1 χ̃
0
i →

τ+τ−χ̃0
1 χ̃

0
1 are “one-sided events”. Moreover, the

background reaction is CP-even and will not give rise
to a CP asymmetry, because the staus are scalars with
a two-body decay.

5. Numerical results

We present numerical results fore+e− → χ̃0
1 χ̃

0
2

and the subsequent decay of the neutralino into the
lightest stauχ̃0

2 → τ̃1τ for a linear collider (LC) with√
s = 500 GeV and longitudinal polarized beams with

(Pe− ,Pe+)= (0.8,−0.6) or (Pe− ,Pe+)= (−0.8,0.6).

This choice favors right or left selectron exchange in
the neutralino production process, respectively [10].
We study the dependence of the asymmetryACP
and the production cross sectionsσ ≡ σp(e

+e− →
χ̃0

1 χ̃
0
2)× BR(χ̃0

2 → τ̃+
1 τ−) on the parametersϕµ, |µ|,

ϕM1, |M1|, ϕAτ , |Aτ | and tanβ .
For the calculations we assume|M1| = 5/3 tan2

ΘWM2, mτ = 0 and use in Eqs. (7) and (8) the renor-
malization group equations (RGEs) for the selectron
masses [6],M2

L̃
= m2

0 + 0.79M2
2 and M2

Ẽ
= m2

0 +
0.23M2

2, taking m0 = 100 GeV. The size of|Aτ | is
restricted due to the tree-level vacuum stability condi-
tions [12]. The restrictions on the masses of the SUSY
particles aremχ̃±

1
> 104 GeV,mτ̃1 > 100 GeV and

mτ̃1 > mχ̃0
1
. For the calculation of BR(χ̃0

2 → τ̃+
1 τ−)

we concentrate on the parameter domain where two-
body decays are allowed and neglect three-body de-
cays. We consider the two-body decays

χ̃0
2 → τ̃mτ, 8̃R,L8, χ̃

0
2Z, χ̃

∓
n W±, χ̃0

1H
0
1 ,

(31)8= e,µ, m,n = 1,2,

with H 0
1 being the lightest neutral Higgs boson.

The Higgs mass parametermA is chosen asmA =
1000 GeV, which means that explicit CP violation
is not important for the lightest Higgs state [13].
Furthermore, the neutralino decays into charginos and
the charged Higgs bosons̃χ0

2 � χ̃±
n H∓, as well as

decays into the heavy neutral Higgs bosonsχ̃0
2 �

χ̃0
1H

0
2,3, are ruled out in this scenario.

In Fig. 1 we show the contour lines forACP in the
ϕAτ –|Aτ | plane. As can be seenACP is proportional
to sin2θτ̃ sinϕτ̃ , which is expected from Eq. (29).ACP
increases with increasing|Aτ | � |µ| tanβ , which also
follows from Eq. (29). Furthermore, in the parameter
region shown the cross sectionσ varies between 20 fb
and 30 fb.

In Fig. 2 we show the dependence ofACP on tanβ
andϕM1. Large values up to±20% are obtained for
tanβ ≈ 5. Note that these values are obtained for
ϕM1 ≈ ±0.8π rather than for maximalϕM1 ≈ ±0.5π .
This is due to the complex interplay of the spin
correlation terms in Eq. (28). In the region shown in
Fig. 2, the cross sectionσ varies between 10 fb and 30
fb.
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Fig. 1. Contour lines ofACP in Eq. (5) for M2 = 200 GeV,
|µ| = 250 GeV, tanβ = 5, ϕM1 = ϕµ = 0 and (Pe− ,Pe+ ) =
(0.8,−0.6).

Fig. 3(a) and (b) show, forϕAτ = 0.5π andϕM1 =
ϕµ = 0, the|µ|–M2 dependence of the cross sectionσ

and the asymmetryACP, respectively. The asymmetry
reaches values up to−15% due to the large value of
|Aτ | = 1 TeV and the choice of the beam polarization
(Pe− ,Pe+) = (−0.8,0.6). This choice also enhances
the cross section, which reaches values of more than
100 fb. The gray shaded area excludes chargino
massesmχ̃±

1
< 104 GeV. In the blank area either the

sum of the masses of the produced neutralinos exceeds√
s = 500 GeV or the two-body decaỹχ0

2 → τ̃+
1 τ− is

not open.
For ϕM1 = 0.5π and ϕµ = ϕAτ = 0 we show in

Fig. 4(a), (b) the contour lines ofσ andACP in the
|µ|–M2 plane, respectively. It is remarkable that in a
large region the asymmetry is larger than−10% and
reaches values up to−40% while also the cross section
is large. Unpolarized beams would reduce the largest
values ofσ by a factor 3, whereasACP would only be
marginally reduced.

For |µ| = 300 GeV andM2 = 400 GeV, we show in
Fig. 5(a), (b) contour lines ofσ andACP, respectively,
in the ϕµ–ϕM1 plane. As can be seen the asymmetry
ACP is very sensitive to variations of the phases
ϕM1 and ϕµ. Even for small phases,ACP can be
sizable. Small values of the phases, especially ofϕµ,

Fig. 2. Contour lines ofACP in Eq. (5) for Aτ = 1 TeV,
M2 = 300 GeV,|µ| = 250 GeV,ϕAτ = ϕµ = 0 and(Pe− ,Pe+ ) =
(0.8,−0.6).

are suggested by constraints on electron and neutron
electric dipole moments (EDMs) [15] for a typical
SUSY scale of the order of a few 100 GeV (for a
review see, e.g., [16]).

The polarization of theτ is analyzed through
its decay distributions. The sensitivities for measur-
ing the polarization of theτ lepton for the vari-
ous decay modes are quoted in [17]. The numbers
quoted are for an ideal detector and for longitudi-
nal τ polarization and it is expected that the sensi-
tivities for transversely polarizedτ leptons are some-
what smaller [14]. Combining informations of all
τ decay modes a sensitivity ofS = 0.35 [18] has
been obtained. Following [17], the relative statisti-
cal error ofP2 (and of P̄2 analogously) can be cal-
culated asδP2 =,P2/|P2| = σ s/(S|P2|

√
N), for σ s

standard deviations, whereN = σL is the number
of events with integrated luminosityL and cross
section σ = σp(e

+e− → χ̃0
1 χ̃

0
2)× BR(χ̃0

2 → τ̃+
1 τ−).

Then for ACP, Eq. (5), it follows that,ACP =
,P2/

√
2. We show in Fig. 6 the contour lines of the

sensitivity S = √
2/(|ACP|

√
N) which is needed to

measureACP at 95% CL (σ s = 2) for L = 500 fb−1,
for the parametersϕAτ = 0.2π , ϕM1 = ϕµ = 0. In
Fig. 7 we show the contour lines of the sensitivityS
for the parametersϕM1 = 0.2π andϕµ = ϕAτ = 0. It is
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(a) (b)

Fig. 3. Contour lines ofσ andACP in the|µ|–M2 plane forϕAτ = 0.5π , ϕM1 = ϕµ = 0,Aτ = 1 TeV, tanβ = 5 and(Pe− ,Pe+ )= (−0.8,0.6).
The blank area outside the area of the contour lines is kinematically forbidden since here either

√
s < mχ̃1

+ mχ̃2
or mτ̃1

+ mτ > mχ̃2
. The

gray area is excluded sincem
χ̃±

1
< 104 GeV.

(a) (b)

Fig. 4. Contour lines ofσ and ACP in the |µ|–M2 plane for ϕM1 = 0.5π , ϕAτ = ϕµ = 0, Aτ = 250 GeV, tanβ = 5 and
(Pe− ,Pe+ ) = (−0.8,0.6). The blank area outside the area of the contour lines is kinematically forbidden since here either

√
s < mχ̃1

+ mχ̃2
or mτ̃1

+mτ >mχ̃2
. The gray area is excluded sincem

χ̃±
1

< 104 GeV.
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(a) (b)

Fig. 5. Contour lines ofσ andACP in the ϕµ–ϕM1 plane forM2 = 400 GeV, |µ| = 300 GeV, tanβ = 5, ϕAτ = 0, Aτ = 250 GeV and
(Pe− ,Pe+ ) = (−0.8,0.6).
Fig. 6. Contour lines ofS for ϕAτ = 0.2π , ϕM1 = ϕµ = 0,
Aτ = 1 TeV, tanβ = 5 and(Pe− ,Pe+ ) = (−0.8,0.6). The blank
area outside the area of the contour lines is kinematically forbidden
since here either

√
s < mχ̃1

+ mχ̃2
or mτ̃1

+ mτ > mχ̃2
. The gray

area is excluded sincem
χ̃±

1
< 104 GeV.

Fig. 7. Contour lines ofS for ϕM1 = 0.2π , ϕAτ = ϕµ = 0,
Aτ = 250 GeV, tanβ = 5 and (Pe− ,Pe+ ) = (−0.8,0.6). The blank
area outside the area of the contour lines is kinematically forbidden
since here either

√
s < mχ̃1

+ mχ̃2
or mτ̃1

+ mτ > mχ̃2
. The gray

area is excluded sincem
χ̃±

1
< 104 GeV.
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interesting to note that in a large region in the|µ|–M2
plane in Figs. 6 and 7 we obtain a sensitivityS < 0.35,
which means that the asymmetries can be measured at
95% CL.

6. Summary and conclusion

We have proposed and analyzed the CP-odd asym-
metryACP in Eq. (5) in neutralino productione+e− →
χ̃0
i χ̃

0
j and the subsequent two-body decay of one neu-

tralino χ̃0
i → τ̃±

k τ∓. The asymmetry is due to the
transverseτ∓ polarization, which is non-vanishing if
CP-violating phases of the trilinear scalar coupling pa-
rameterAτ and/or the gaugino and higgsino mass pa-
rametersM1, µ are present. The asymmetry occurs
already at tree level and is due to spin effects in the
neutralino production and decay process. In a numer-
ical study for e+e− → χ̃0

1 χ̃
0
2 and neutralino decay

χ̃0
2 → τ̃±

1 τ∓ we have shown that the asymmetry can
be as large as 60%. It can be sizeable even for small
phases ofµ andM1, which is suggested by the ex-
perimental limits on EDMs. Depending on the MSSM
scenario, the asymmetry should be accessible in fu-
ture electron–positron linear collider experiments in
the 500 GeV range. Longitudinally polarized electron
and positron beams can considerably enhance both the
asymmetry and the production cross section.
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