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HOMOLOGY CLASSES IN TOPOLOGICAL GROUPS? 
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SUPPOSE that G is a connected topological group with H,(G; Z) of finite type. A theorem of 

Cartan and Serre [5] then implies that the Hurewicz map induces a monomorphism 

7c,(G)/torsion + PH,(G; Z)/torsion 

onto a subgroup of maximal rank. (Here PH,(G; Z) denotes the module of primitive elements 

in the coalgebra H,(G; Z).) This leads naturally to the following: 

Problem. Let G be a connected topological group with H,(G; Z) of finite type. Let 

x E PH,(G; Z)/torsion be an element of degree t. What is the smallest integer N(t) such that 

N(r) *x is spherical? 

As a step towards answering this question we shall establish: 

THEOREM. Let G be an s-connected topologicalgroup, s > 0, with H,(G; Z) offinite type. 

Let t be a positice integer and XEH,(G; Z)/torsion a primitice element. Then N,(t) *x is a 

spherical class where 

N,(t) = fl 
&+I 

2(p- l)<f-s 
pa prime 

and [a] denotes the integral part of [a]. 

If G is a simply connected topological group with H,(G; Z) finitely generated as an 

abelian group then G is also 2-connected [I]. Moreover, PH,(G; Z)/torsion is zero in even 

dimensions and so the spherical elements in H,(G; Z)/torsion are all odd dimensional. 

Thus by a slight reindexing of the above result we obtain: 

THEOREM. Let G be a simply connected topological group with H,(G; Z)jnitely generated 

as an abelian group. Let r be a positive integer. If x E H,,_ l(G; Z) is a primitive element then 

N(r) .x is a spherical class where 

NC,.)= fl p[$%+. 

P-=r 
pa prime 

t Partially supported by NSF-GP-3946. 
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70 LARRY SMITH 

The first few values of X(r) are: 

The number N(r) compares nicely with the number 

m(r) = JJ p[r’p-‘I 
e<r 

pa prime 

studied by Adams in [O]. 

It also compares favorably with the number (r - I)! which we know from Bott’s 

work to be the number required when G = SU(n). More precisely we have 

I-- I -a&&- 1) 

(r-l)!= Q p p-i 

p ~p&le 

where cr,(r - 1) denotes the sum of the coefficients in the p-adic expansion of r - 1. Note 

that when r = pk + 1 that (r - I)! and N(r) contain almost the same power of p in their 

factorizations. 

Our study of spherical and primitive classes in topological groups is closely related to 

the method of Adams in [0] and entails studying the connective coverings of the group G; 

the main technical tool being [7], [l I]. This treatment owes much to the work of W. Singer 

on divisibilities of Chern classes [lo]. 

The restriction that G be a topological group may be weakened but would involve us 

with several delicate questions concerning Postnikov systems and connective coverings 

which would be best postponed until another occasion. 

It is a pleasure to acknowledge the help that I have received from my wife Mi-Soo Bae 

Smith. I am also indebted to W. Singer for reading, and helping to correct a few bobbles, 

in an early draft of this paper. I wish to thank the referee for aid in improving the exposition. 

$1. FORMULATION OF THE PROBLEM 

In this section we show how to convert the homotopy problem that we are interested in 

to a cohomology problem. 

Convention. The word space will always mean a connected pointed topological space 

with compactly generated topology, of the homotopy type of a cw-complex. All base points 

will be assumed non-degenerate. 

The entire discussion will take place in the obvious category whose objects are spaces. 

Given a space B we may construct a tower of fibrations over B 
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. 

I 
B(n, . . . ) co) 

I s(n- 1.n) 

B(n - 1, . . .) co) 

I 
. 
. 
. 

1 
B(2, . . . , co) 

I 

1 rr(l.2) 

B=B(l,...,co) 

with the following properties: (see [0], [S]) 

(1) Jri(B(n? . . . , co)) = 0 for i < n 

(2) n(n - 1, n),:rrj(E(n, . . . , 00)) ---t nj(B(n - 1, . . . , co)) is an isomorphism for j 2 n 

(3) Each rr(n - 1, n): B(n, . . . , CO) -+ B(n - 1, . . . , co) is a principal K(n,_ r(B), n - 2) 

bundle. 

This tower is referred to as the connective tower of B (or sometimes the upside down 

Postnikov tower of B). It is unique in a suitable homotopy category of towers. 

If B is simply connected then applying the !A-functor to the connective tower of B 

yields the connective tower of RB, i.e., R(B(n, . . . , co)) = (Qf3)(n - 1, . . . , co) and similarly 

for the maps. 

Thus if G is a group all the spaces in the connective tower of G may be assumed to be 

groups [4]. In addition the classifying diagram for the fibration x(n - 1, n):G(n, . . . , co) + 
G(n - 1, _. . , co), i.e.. 

G(n, . . . , a) -+ L(rr,_ r(G), n - 1) 

r(n) x(n- 1.n) 
I rpfn) I 

G(n- 1, . . . . co)---+ K(rr,_ r(G), n - 1) 

is a Hopf fibre square in the sense of [7]. 

Suppose now that G is a connected topological group. Then we have a commutative 

diagram 

n,(G(n, . . . , +-$ ff,(G(n, . . . , 00); Z> 

en. . . . . 0). 
1 

= 
I 

n(n. . . . . 0). 

n,(G) 

h 
+H (G; Z) 

where h is the Hurewicz map. 
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Notation. If A is an augmented algebra over the ring K let Qtl = K @*IA, where IA4 

is the augmentation ideal of A. The elements of the K module Qa are called the indecompos- 

able elements of A. 

PROPOSITION 1.1. Suppose that G is a connected topological group rcith H,(G; Z) of 
finite type. Then there are (unnatural!) isomorphisms f, g making the diagram 

z,(G)jtorsion 
h 

+ PH,(G; Z)/torsion 

I 1, z 

QH”(G; &/torsion 

/g 
QnCn.....O). 

+ QH”(G(n, . . . , co)Z),ltorsion 

commutative. 

Proof. From our discussion above we have the natural commutative diagram 

n,(G)/torsion h 
-f PH,(G; Z)jtorsion 

a 
I 

z 
J 

PH,(G(n, . . . , co); Z)/torsion Px(“V”.‘o’* -+ PH,(G; Z)jtorsion. 

Applying the functor Horn,,, , Z) to the bottom row, and using the fact that 

PH,(G(n, . . . , co); Z)‘torsion and PH,(G; Z)/torsion are free abelian groups we obtain the 

desired conclusion. c] 

Thus we have converted the problem of how rc,(G),‘torsion is imbedded in PH,(G, Z)/ 

torsion by the Hurewicz map, to the study of how QH”(G, Z)/torsion is imbedded by 

Qn(n, . . . ,O>, into QH”(G(n, . , ax); Z). The remainder of this paper is devoted to a study 

of this cohomology problem by the methods of [II]. 

$2. WHAT PRIiMES CAN DIVIDE ? 

Definition. Let X be a topological space and x E H,(X; Z)/torsion a spherical homology 

class. We say that .Y is spherically divisible iff there exists a spherical homology class 

y~H,(x; Z)/torsion such that .y = M_Y for some mEZ, m # 0, & 1. If x is not spherically 

divisible then we say that x is spherically indivisible. 

Our objective in this section will be to demonstrate: 

THEOREM 2.1. Let G be an s-connected topological group, s > 0, bti,ith H,(G; Z) offinite 

type. If t is a positive integer and p is a prime that divides a spherically indivisible spherical 

homology class in H,(G; Z)/torsion then 2(p - 1) -C t - s. 

(It is of course implicit in the above theorem that H,(G; Z)/torsion contains a non-zero 

spherical homology c!ass; for otherwise the statement is trivial.) 

The proof of Theorem 2.1 will be based on the results of [7], [Ill. We give below a short 

summary of the results that we need. For an introduction to Eilenberg-Moore theory the 

reader should consult [3], [6], [7], or [12]. 
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Recollections. We now assume that all spaces have homology of finite type. A Hopf 

space is a homotopy associative H-space [7]. A Hopf fibre square 9 is a diagram of spaces 

where 

(I) no: E, 4 B, is a fibration, 

(2) f : B ---f B, is a continuous map. 

(3) rr:E -+ B is the fibration induced by the mapf : B + B, , 

(4) all the spaces are Hopf spaces and all the maps are homotopy multiplicative, 

(5) B, is simply connected. 

Associated with such a fibre square and a prime p we have an Eilenberg-Moore 

spectral sequence [3], [12], {E,, d,} with the following properties: 

(I) E, * H*(E; Z,) in the naive sense, 

(2) E, = Tor ,&,,(H*(R Z,), H*(Eo; Zp)) 
(3) Each E, is a Hopf algebra, d, is a derivation of Hopf algebras and the convergence 

in (I) is as Hopf algebras. 

was 

In [7] this spectral sequence was studied in some detail. Among the results established 

the following ([7; Corollary 4.61; compare [I 1; Proposition 5.51): 

PROPOSITION 2.2. Let p be a prime and 9 

E-E, 

X 
I I 

“0 

BL+ B, 

be a Hopffbre square with 

(1) rco : E, + B, the path space jibration ocer B, , 

(2) H*(Bo; Zp) an abelian Hopf algebra which as an algebra is isomorphic to a free 

commutatice algebra, 

(3) H*(RB,,; ZJ is a primitke Hopf algebra. 

Set R* = H*(B; Z,)/lf *. Then the sequence 

0 -+ QR* -+ QH*(E; Z,) 

is exact. q 

3efore turning to the proof of Theorem 2.1 we record an elementary lemma. 

LEMMA 2.3. Let 0 -+ Z -+ Z 5 Z, -+ 0 be the usual exact sequence determined by multiplica- 

tion by the prime p. Let f : X --f Y be a map of spaces and y E H*( Y; Z). Then f *(y) is divisible 

by P 8-pf,(y) = OEH*(X; ZJ. 

Proof: A routine consequence of the exact cohomology triangle determined by the 

exact coefficient sequence 0 + Z + Z + Z, -b 0. [7 
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Proof of Theorenz 2.1. Combining Lemma 2.3 and Proposition 1.1 we see that it suffices 

to show the following: 

(*) : If .r E H’(G; Z,) is an indecomposable element that is the reduction of an indecomposable 

element of H’(G; Z)/torsion and there exists an integer II such that t > n > 0 and 

n(n, . . . ) O)*(x) # OE QH*(G(n, . . . , 00); Z,) 

while 

n(n + 1, n)*n(n, . . .) O)*(x) = OeQH*(G(n + 1, . . . , co); Z,) 

then 2(p - 1) < t - s. 

So suppose that the conditions of (*) obtain. Consider the Hopf fibre square Y(n + 1) 

G(n + 1, . . . . ~0) ----f L(n,(G), n) 

n(n+ 1.n) 
I 1 

G(n, . . . , co) ‘“1 K(n,(G), n). 

Observe that by the results of Cartan [2] and Serre [9] we may apply Proposition 2.2 to 

Y(n + 1). So doing we deduce that 

n(n + 1, n)*n(n, . . . , O)*(x) = 0~Qff”(G(n + 1, . . . , m); Zp) 

ifi 

7T(n, . . . , O)*(x) = OE QH*(G(n, . . . , co); Z,)//&I)* 

iff 

n(n, . . .) o)*(x) = dn>*(Y) 

for some YEQH*(x,(G), n; Z,). From Cartan [2] and Serre [9] it follows that 

where P? are admissible monomials of positive degree (recall t > n). 

?A straightforward calculation shows that rc(n, . . . , O)*(x) is the reductionof an integral 

class that represents a non-zero element of [H*(G(n, . . . , co); Z)/torsion prime to p] @ Z,. 

Hence at least one P? does not begin in a fi [l]. Therefore since G is s-connected we have 

t = deg x = deg y 2 2(p - 1) + deg I 2 2(p - 1) + s + 1 

and hence t - s 2 2(p - 1) + 1, i.e., t - s > 2(p - 1) as claimed. c] 

COROLLARY 2.4. Let G be a simply connected topological group with H,(G; Z)finitely 

generated as an abelian group. If r is a positive integer and p is a prime that divides a 

spherically indivisible spherical homology class in H,,_ l(G; Z)/torsion then p < r. 

Proof. From [l] it follows that n,(G) = O.The result now follows easily from Theorem 

2.1. 0 

t For < 7i(n, . . . , O)*(x), (J > # 0 E Z for a suitable spherical class (T E H,(G(n, . . . , cc ; Z). 
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Remark. Corollary 2.4 was clearly known to Serre. While not explicit in [S] it appears 

as a step in the proof of Proposition IV.6 of [8] and we include it simply for the sake of 

completeness. Our proof is in a sense the Eckmann-Hilton dual of Serre’s. 

53. WHAT irIl_JLTIPLES ARE SPHERICAL? 

Our objective in this section will be to establish: 

THEOREM 3.1. Let G be an s-connected topological group, s > 0, with H,(G; Z) offinite 

type. Let t be a positice integer and x E fI,(G; Z)/torsion a primitive element. Thelen N,(t)x 

is a spherical class wAere 

and [a] denotes the integral part of a. 

As in the proof of Theorem 2.1 this will be a consequence of properties of the connective 

tower of G. This requires that we review some additional results of [7]. 

Recollections. Consider a Hopf fibre square % 

E--+ E, 

L 
I I 

110 

B--/-, B, 

where B, = K(Tc, n), n > 1, rt is a finitely generated abelian group, and rr,,: E, --f B, is the 

path space fibration. Let (E,, d,} denote the Eilenberg-Moore spectral sequence of 9 with 

Z,-coefficients, p a prime. 

Since H*(B,; Z,)\\f* is a sub-Hopf algebra of H*(B,,; Zp) it follows from [2] and [9] 

and the Bore1 structure theorem [5; Theorem 7.1 l] that H*(B,,; Z,)\\f* is a free commutative 

algebra. Since H*(&; Zp) is primitive so is H*(&,; Z,)\\j*. Thus 

H*(BO i zp>\\f* = s[{xiIl 

where 

and P2.1 is an admissible monomial satisfying various conditions while &i,j = 0, 1, CI~,~EZ,. 

(See [2] for the precise conditions.) 

We turn now to the proof of Theorem 3.1. We shall require the following technical 

lemma. Our notation is that of [7]. 

LEMMA 3.2. Suppose that p is a prime and 9 
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is a Hopfjbre square rrhere B, = Ii(~i, n), n > 1 , n a jnite1.v generated abelian group, and 

x0: E. -+ B. k the path space jibration. Let XE H*(B; Z) be a primitice indecomposable 

hating reduction P(X)E H*(B; Z,) also indecomposable. Suppose that p(x) = f *(y), then 

p L n*(s) = s-‘/?y mod decomposables 
i 1 P 

in H*(E; ZJ. (Note that X*(X) is divisible by p by Lemma 2.3.) 

Proof. Let 

g:B+K(Z,de,ox) 

be a map such that g*ideex = x E H*(B; Z) and let 

h :B, -+ K(Z,, deg y) 

be a map such that h*ldegy = y E H*(Bo; Z,). Form the Hopf fibre square 

K(Z, deg x) --+ L(Z, , deg _v) 

t 
1 I 

K(Z, deg x) y--+ K(Z, , deg y) 

where tI*ldegy = prdcgx~ H*(Z, deg x; ZJ. (Recall that deg x = deg J.) It is immediate that 

P(b f*(&,.)) = P&x 

and that 

Prdeg x = s- %deg v E H*(Z, deg x, Z,). 

(Note that K(Z, deg X) is both the total and base space of the fibration 72: K(Z, deg x) + 

K(Z, deg x). This should cause no confusion in the above formulas.) 

Next note that we have a morphism of Hopf fibre squares 

Eo 

/I 

c L(ZPY degy) 

E. : W, deg x> 2 

,/A t 1 

I 
- K(Z,,degy) 

>K(Z, deg x) /r 4 

and the result now follows by naturality of the Eilenberg-Moore spectral sequence. •i 

PROPOSITION 3.3. Suppose that p is a prime and that 

E-+Eo 

xi 1~ 

B--/-+ B, 

is a Hopf jbre square where B, = K(Tc, n), n > 1 and 71 a finitely generated abelian 

group. Let XE H*(B; Z) b e a primitive indecomposable with p-x # 0 and rvith reduction 

ME H*(B; Z,) also indecomposable. Suppose that p(x) =j*(y) and that deg x > n. Then 

x*(x) E H*(E; Z) is divisible by p but not by p2. 
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Proof. From Lemma 2.3 we learn that E*(X) is divisible by p. From Lemma 3.2 we see 

that if s-‘by # 0 E QH*(E; Z,) then n*(.v) is not divisible by p2. Consider first the case when 

p is odd. Since J is indecomposable and deg ,Y = deg y < n 

y = &I,, pp, + pa,.. p;q 

where PFs’, Py”’ are admissible monomials not beginning in /;, with excess <n, and a,,, 

a,,, # 0~ Z,. From [7; Theorem 5.51 it follows that s-‘fi! = OEQH*(E; Zp) iff there exist 

admissible monomials P’p’*’ with 

(1) deg I$‘*’ = 2T + 1 - n 

(2) ljq = PPp’<‘,, 

(3) Ez,. Pi’5’l E H*(&; Z,)f*\\ is an indecomposable element. 

(Note that CU,,~~P~~‘Z is a non-zero indecomposable element of H*(&; Zp) by the results 

of PI.) 
Since /IPcs’ is again an admissible monomial and the admissible monomials are a basis 

for d*(p) it follows from (2) that PF*’ = PiPJ’s’ and hence 

f *zcI,* P”“f = f *En,* P,‘P;‘,‘S’I 

= Pp% “Ca,. PJ,‘I = 0 

by (3). 

Hence 

p(s) = j*pca,.. P2-I = ~j-“~:o,.~ P;% 

But this contradicts the fact that p-x # 0 [I]. Hence ifp is odd rc*(,~) is divisible byp but not 

by p2. 

Consider now the case p = 2. It then follows from [7] (compare [I I ; Proposition 2.1 

and Proposition 2.21) that s-‘fiy # OEQH*(E; Zp) iff /j’y = 0 in H*(&; Z,). Since p = 2, 

/I = Sq’. Let 

y = csq“1. 

Note that not all of the Sq” can begin on the left in an odd Sq’. For if this were the case the 

Adem relation Sq’Sq’j = Sq’jfl would show 

p(x) = f*(y) = sq’j-*csq’~‘“~ 

contrary to the hypothesis that 2.x # 0. Therefore it follows that 

py = sqly = c Sq’Sq’9 # 0 
5 

and the result follows for p = 2. 0 

Remark. The reader should compare Proposition 3.3 with the results obtained by 

W. Singer in Section 9 of [IO]. 

LEMMA 3.4. Let X be a simply connected space and 

X(n + 1,. . . , a) -+ L(n,(X), n) 

P_(n) 
I I 

X(n,..., a) -% K(n,(X), n) 
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the nth-connecticefibre square over X. Then 

q(n)*:H”(E,(X), n; Z,) + H”(X(n, . . . , co); Z,) 

is an isomorphism and 

cp(n)*:H”‘l(n,(X), n; Z,) -+ H”“(X(n, . . . , co); Zp) 

is a monomorphism. 

Proof. An elementary consequence of the generalized Whitehead Theorem [8]. 0 

THEOREM 3.5 Let G be an s-connected topological group, s > 0, with H,(G; Z) ofjinite 

type. Let t be a positive integer and p a prime with 2(p - 1) < t - s. Then the highest power 

of p that divides a spherically indivisible spherical homology class in H,(G; Z) is no greater 

than p&yU! 117 lchere [a] denotes the integral part of a. 

Proof. Suppose that XE H’(G; Z) is an indecomposable element. Since G is simply 

connected we may assume that t > 1. From Proposition 3.3 we see that in passing from 

G(n, . . . , co) to G(n + 1,. . . , co) that rc(n, . . ., O)*(x) becomes divisible by at most one 

more power ofp. Moreover, from Lemma 3.2 we see that if x(n, . . . , O)*(x) becomes divisible 

by p then 

p’kn(n+ l,n)*n(n,..., 
( 

O)*(x)) = s-‘pal $Im 7c(n + 1, n)*. 

Since the element of lowest possible degree in H*(n,(G), n; Z,)\\f* is P,’ I (by Lemma 3.4) 

which has dimension 2(p - 1) + 11 it follows that the element of lowest possible dimension 

of H*(G(n+l,..., co); Z,) not in Im n(n + 1, n)* is s- ‘Ppl I which has dimension 

n - 1 + 2(p - 1). Since Im n(n + 1, n)* is an d*(p)-submodule of H*(G(n + 1, . . . . co); 2,) 

the lowest possible dimension of an element yE H*(G(n + 1, . . . , co); ZJ with 

s-‘/ItXr = [JJ 

[Ed*, deg c > 0, is n - 1 + 2(p - 1). In passing to still higher connective fiberings 

G(nfk+l,..., 00) one obtains in view of Lemma 3.4 no new cohomology classes of 

dimension < n - 1 + 2(p - 1). Therefore by Proposition 2.3 

n(n + 2(p - l), . . . , n)*(s-‘/?w) # 0. 

Repeating the above argument for each n > s yields the result. 0 

Proof of Theorem 3.1. It follows from Theorem 3.5 that a spherically indivisible 

spherical class in H,(G; Z)/torsion is divisible by at most N,(t) = n ,~&2&1 
2(p--lj<r-s 
p = prime 

Since the spherical elements are a subgroup of PH,(G; Z)/torsion of maximal rank it 

follows that some multiple of any primitive class must be spherical. Combining these two 

facts the result follows. 0 

COROLLARY 3.6 Let G be a simply connected topological group with H,(G; Z) finitely 
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generated as an abelian group. Let r be a positive integer. If XE HI,_ I(G; Z) is a primitice 

element then N(r).r is a spherical class where 

N(r) = n pM&)l. 
PC? 

pa prime 

Proof. From [l] it follows that G is 2-connected and the result now follows from 

Theorem 3.1 by a slight reindexing. 0 

54. CONCLUDING REMARKS 

The problem that we have been studying has a natural companion problem which may 

be described as follows: 

Problem. Let G be an s-connected topological group with H*(G; Z) of finite type. 

What is the largest integer n,(t) such that any spherical class H,(G; Z)/torsion is divisible 

by n,(t) ? 

The case when H,(G; Z) is finitely generated as an abelian group is of particular interest 

(e.g. G a Lie group). In this case if G has no 2-torsion and t # 2’ - 1, then work of E. 

Thomas [14] implies that any spherical class of dimension t is divisible by 2. Additional 

results of Thomas [13] seem to indicate further that if t # 1, 3, 7, 15 then any spherical class 

of dimension t is divisible by 2. 

Computations of sundry examples lends credence to the following: 

CONJECTURE. Let G be a connected topological group rvirh H,(G; Z) torsion free ofjirzite 

rank. If a E H,,_ ,(G ; Z) is a spherical class and p is a prime sati.$ving 

(1) P < r 
(2) r # kp’, 0 < k < p, i 2 0 then p divides a. 

We remark that the restriction that H*(G; Z) be torsion free is important as the follow- 

ing example shows. 

Recall the H*(F?; Z,) = E[x,, x1 !, x15, xz3] and that H*(F,; Z,) has no 5-torsion. 

Note that 15 = 2(S) - 1, 8 # k5’, 0 < k < 5, and that degree P51 = S. Simple calculations 

show 

H’(F,(n, . . . , 00); Z,) = 0 3 < i < 10. 

It therefore follows easily that there is a spherical class CT, 5 E H, 5(F4; Z)/torsion that is not 

divisible by 5. 

I am indebted to Allan Clark for bringing the above example to my attention. 

In the special case that G is a Lie group it would be interesting to have formulas for 

n(r) and N(r) in terms of the Lie algebra and Weyl group of G. 
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