Topology Vol. 8, pp. 69-80. Pergamon Press 1969. Printed in Great Britain

ON THE RELATION BETWEEN SPHERICAL AND PRIMITIVE HOMOLOGY CLASSES IN TOPOLOGICAL GROUPS[†]

LARRY SMITH

(Received 1 April 1968)

SUPPOSE that G is a connected topological group with $H_*(G; \mathbb{Z})$ of finite type. A theorem of Cartan and Serre [5] then implies that the Hurewicz map induces a monomorphism

 $\pi_*(G)/\text{torsion} \to PH_*(G; \mathbb{Z})/\text{torsion}$

onto a subgroup of maximal rank. (Here $PH_*(G; \mathbb{Z})$ denotes the module of primitive elements in the coalgebra $H_*(G; \mathbb{Z})$.) This leads naturally to the following:

Problem. Let G be a connected topological group with $H_*(G; \mathbb{Z})$ of finite type. Let $x \in PH_*(G; \mathbb{Z})/torsion$ be an element of degree t. What is the smallest integer N(t) such that $N(t) \cdot x$ is spherical?

As a step towards answering this question we shall establish:

THEOREM. Let G be an s-connected topological group, s > 0, with $H_*(G; \mathbb{Z})$ of finite type. Let t be a positive integer and $x \in H_i(G; \mathbb{Z})/torsion$ a primitive element. Then $N_s(t) \cdot x$ is a spherical class where

$$N_{s}(t) = \prod_{\substack{2(p-1) < t-s \\ p \text{ a prime}}} p^{\left[\frac{t-s-1}{2(p-1)-1}\right]}$$

and [a] denotes the integral part of [a].

If G is a simply connected topological group with $H_*(G; \mathbb{Z})$ finitely generated as an abelian group then G is also 2-connected [1]. Moreover, $PH_*(G; \mathbb{Z})$ /torsion is zero in even dimensions and so the spherical elements in $H_*(G; \mathbb{Z})$ /torsion are all odd dimensional. Thus by a slight reindexing of the above result we obtain:

THEOREM. Let G be a simply connected topological group with $H_*(G; \mathbb{Z})$ finitely generated as an abelian group. Let r be a positive integer. If $x \in H_{2r-1}(G; \mathbb{Z})$ is a primitive element then $N(r) \cdot x$ is a spherical class where

$$N(r) = \prod_{\substack{p < r \\ p \text{ a prime}}} p^{\left[\frac{2(r-2)}{2(p-1)-1}\right]}.$$

[†] Partially supported by NSF-GP-3946.

The first few values of N(r) are:

r	2	3	4	5
<i>N</i> (<i>r</i>)	1	4	48	576

The number N(r) compares nicely with the number

$$m(r) = \prod_{\substack{p < r \\ p \text{ a prime}}} p^{[r/p-1]}$$

studied by Adams in [0].

It also compares favorably with the number (r-1)! which we know from Bott's work to be the number required when G = SU(n). More precisely we have

$$(r-1)! = \prod_{\substack{p < r \\ p \text{ a prime}}} p^{\frac{r-1-\sigma_p(r-1)}{p-1}}$$

where $\sigma_p(r-1)$ denotes the sum of the coefficients in the *p*-adic expansion of r-1. Note that when $r = p^k + 1$ that (r-1)! and N(r) contain almost the same power of *p* in their factorizations.

Our study of spherical and primitive classes in topological groups is closely related to the method of Adams in [0] and entails studying the connective coverings of the group G; the main technical tool being [7], [11]. This treatment owes much to the work of W. Singer on divisibilities of Chern classes [10].

The restriction that G be a topological group may be weakened but would involve us with several delicate questions concerning Postnikov systems and connective coverings which would be best postponed until another occasion.

It is a pleasure to acknowledge the help that I have received from my wife Mi-Soo Bae Smith. I am also indebted to W. Singer for reading, and helping to correct a few bobbles, in an early draft of this paper. I wish to thank the referee for aid in improving the exposition.

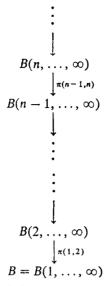
§1. FORMULATION OF THE PROBLEM

In this section we show how to convert the homotopy problem that we are interested in to a cohomology problem.

Convention. The word space will always mean a connected pointed topological space with compactly generated topology, of the homotopy type of a *cw*-complex. All base points will be assumed non-degenerate.

The entire discussion will take place in the obvious category whose objects are spaces.

Given a space B we may construct a tower of fibrations over B



with the following properties: (see [0], [8])

- (1) $\pi_i(B(n, ..., \infty)) = 0$ for i < n
- (2) $\pi(n-1, n)_*: \pi_j(B(n, ..., \infty)) \to \pi_j(B(n-1, ..., \infty))$ is an isomorphism for $j \ge n$
- (3) Each $\pi(n-1, n): B(n, \ldots, \infty) \to B(n-1, \ldots, \infty)$ is a principal $\mathbf{K}(\pi_{n-1}(B), n-2)$ bundle.

This tower is referred to as the connective tower of B (or sometimes the upside down Postnikov tower of B). It is unique in a suitable homotopy category of towers.

If B is simply connected then applying the Ω -functor to the connective tower of B yields the connective tower of ΩB , i.e., $\Omega(B(n, \ldots, \infty)) = (\Omega B)(n - 1, \ldots, \infty)$ and similarly for the maps.

Thus if G is a group all the spaces in the connective tower of G may be assumed to be groups [4]. In addition the classifying diagram for the fibration $\pi(n-1, n): G(n, ..., \infty) \rightarrow G(n-1, ..., \infty)$, i.e..

$$\begin{array}{ccc} G(n,\ldots,\infty) & \longrightarrow \mathbf{L}(\pi_{n-1}(G), n-1) \\ \mathscr{T}(n) & \xrightarrow{\pi(n-1,n)} & & \downarrow \\ G(n-1,\ldots,\infty) & \longrightarrow \mathbf{K}(\pi_{n-1}(G), n-1) \end{array}$$

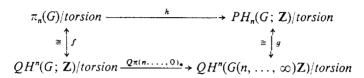
is a Hopf fibre square in the sense of [7].

Suppose now that G is a connected topological group. Then we have a commutative diagram

where h is the Hurewicz map.

Notation. If A is an augmented algebra over the ring K let $QA = K \otimes_A IA$, where IA is the augmentation ideal of A. The elements of the K module QA are called the indecomposable elements of A.

PROPOSITION 1.1. Suppose that G is a connected topological group with $H_*(G; \mathbb{Z})$ of finite type. Then there are (unnatural!) isomorphisms f, g making the diagram



commutative.

Proof. From our discussion above we have the natural commutative diagram

Applying the functor $\text{Hom}_{z}(, \mathbb{Z})$ to the bottom row, and using the fact that $PH_{n}(G(n, ..., \infty); \mathbb{Z})$ /torsion and $PH_{n}(G; \mathbb{Z})$ /torsion are free abelian groups we obtain the desired conclusion. \Box

Thus we have converted the problem of how $\pi_n(G)/\text{torsion}$ is imbedded in $PH_n(G, \mathbb{Z})/\text{torsion}$ by the Hurewicz map, to the study of how $QH^n(G, \mathbb{Z})/\text{torsion}$ is imbedded by $Q\pi(n, \ldots, 0)_*$ into $QH^n(G(n, \ldots, \infty); \mathbb{Z})$. The remainder of this paper is devoted to a study of this cohomology problem by the methods of [11].

§2. WHAT PRIMES CAN DIVIDE?

Definition. Let X be a topological space and $x \in H_*(X; \mathbb{Z})/\text{torsion}$ a spherical homology class. We say that x is spherically divisible iff there exists a spherical homology class $y \in H_*(X; \mathbb{Z})/\text{torsion}$ such that x = my for some $m \in \mathbb{Z}$, $m \neq 0, \pm 1$. If x is not spherically divisible then we say that x is spherically indivisible.

Our objective in this section will be to demonstrate:

THEOREM 2.1. Let G be an s-connected topological group, s > 0, with $H_*(G; \mathbb{Z})$ of finite type. If t is a positive integer and p is a prime that divides a spherically indivisible spherical homology class in $H_t(G; \mathbb{Z})/torsion$ then 2(p-1) < t - s.

(It is of course implicit in the above theorem that $H_t(G; \mathbb{Z})/\text{torsion}$ contains a non-zero spherical homology class; for otherwise the statement is trivial.)

The proof of Theorem 2.1 will be based on the results of [7], [11]. We give below a short summary of the results that we need. For an introduction to Eilenberg-Moore theory the reader should consult [3], [6], [7], or [12].

Recollections. We now assume that all spaces have homology of finite type. A Hopf space is a homotopy associative *H*-space [7]. A Hopf fibre square \mathcal{F} is a diagram of spaces

$$\begin{array}{c} E \longrightarrow E_{0} \\ \pi \downarrow & \downarrow \\ B \xrightarrow{f} B_{0} \end{array}$$

where

(1) $\pi_0: E_0 \to B_0$ is a fibration,

(2) $f: B \to B_0$ is a continuous map.

(3) $\pi: E \to B$ is the fibration induced by the map $f: B \to B_0$,

(4) all the spaces are Hopf spaces and all the maps are homotopy multiplicative,

(5) B_0 is simply connected.

Associated with such a fibre square and a prime p we have an Eilenberg-Moore spectral sequence [3], [12], $\{\mathbf{E}_r, \mathbf{d}_r\}$ with the following properties:

- (1) $\mathbf{E}_r \Rightarrow H^*(E; \mathbf{Z}_p)$ in the naive sense,
- (2) $\mathbf{E}_2 = \operatorname{Tor}_{H^*(B_0; \mathbf{Z}_p)}(H^*(B; \mathbf{Z}_p), H^*(E_0; \mathbf{Z}_p))$
- (3) Each E, is a Hopf algebra, d, is a derivation of Hopf algebras and the convergence in (1) is as Hopf algebras.

In [7] this spectral sequence was studied in some detail. Among the results established was the following ([7; Corollary 4.6]; compare [11; Proposition 5.5]):

PROPOSITION 2.2. Let p be a prime and \mathcal{F}

$$\begin{array}{cccc}
E & \longrightarrow & E_{0} \\
\pi & & & & \downarrow \\
\pi & & & & \downarrow \\
B & \xrightarrow{f} & B_{0}
\end{array}$$

be a Hopf fibre square with

- (1) $\pi_0: E_0 \to B_0$ the path space fibration over B_0 ,
- (2) $H^*(B_0; \mathbb{Z}_p)$ an abelian Hopf algebra which as an algebra is isomorphic to a free commutative algebra,
- (3) $H^*(\Omega B_0; \mathbb{Z}_p)$ is a primitive Hopf algebra.

Set $R^* = H^*(B; \mathbb{Z}_p) / f^*$. Then the sequence

$$0 \rightarrow QR^* \rightarrow QH^*(E; \mathbf{Z}_p)$$

is exact. 🗌

Before turning to the proof of Theorem 2.1 we record an elementary lemma.

LEMMA 2.3. Let $0 \to \mathbb{Z} \to \mathbb{Z} \xrightarrow{\rho} \mathbb{Z}_{\rho} \to 0$ be the usual exact sequence determined by multiplication by the prime p. Let $f: X \to Y$ be a map of spaces and $y \in H^*(Y; \mathbb{Z})$. Then $f^*(y)$ is divisible by p iff $\rho f_*(y) = 0 \in H^*(X; \mathbb{Z}_p)$.

Proof. A routine consequence of the exact cohomology triangle determined by the exact coefficient sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}_p \rightarrow 0$. \Box

LARRY SMITH

Proof of Theorem 2.1. Combining Lemma 2.3 and Proposition 1.1 we see that it suffices to show the following:

(*): If $x \in H^t(G; \mathbb{Z}_p)$ is an indecomposable element that is the reduction of an indecomposable element of $H^t(G; \mathbb{Z})/torsion$ and there exists an integer n such that t > n > 0 and

$$\pi(n,\ldots,0)^*(x)\neq 0\in QH^*(G(n,\ldots,\infty);\mathbb{Z}_p)$$

while

$$\pi(n+1, n)^* \pi(n, ..., 0)^*(x) = 0 \in QH^*(G(n+1, ..., \infty); \mathbf{Z}_p)$$

then 2(p-1) < t - s.

So suppose that the conditions of (*) obtain. Consider the Hopf fibre square $\mathcal{T}(n+1)$

Observe that by the results of Cartan [2] and Serre [9] we may apply Proposition 2.2 to $\mathcal{T}(n+1)$. So doing we deduce that

$$\pi(n+1, n)^* \pi(n, ..., 0)^*(x) = 0 \in QH^*(G(n+1, ..., \infty); \mathbf{Z}_p)$$

iff

$$\pi(n,\ldots,0)^*(x) = 0 \in QH^*(G(n,\ldots,\infty);\mathbb{Z}_p)/|\varphi(n)^*$$

iff

$$\pi(n,\ldots,0)^*(x)=\varphi(n)^*(y)$$

for some $y \in QH^*(\pi_n(G), n; \mathbb{Z}_p)$. From Cartan [2] and Serre [9] it follows that

$$y = \sum P_p^{I_j} i$$

where $P_p^{I_j}$ are admissible monomials of positive degree (recall t > n).

[†]A straightforward calculation shows that $\pi(n, \ldots, 0)^*(x)$ is the reduction of an integral class that represents a non-zero element of $[H^*(G(n, \ldots, \infty); \mathbb{Z})/\text{torsion prime to } p] \otimes \mathbb{Z}_p$. Hence at least one $P_p^{I_j}$ does not begin in a β [1]. Therefore since G is s-connected we have

 $t = \deg x = \deg y \ge 2(p-1) + \deg i \ge 2(p-1) + s + 1$

and hence $t - s \ge 2(p - 1) + 1$, i.e., t - s > 2(p - 1) as claimed. \Box

COROLLARY 2.4. Let G be a simply connected topological group with $H_*(G; \mathbb{Z})$ finitely generated as an abelian group. If r is a positive integer and p is a prime that divides a spherically indivisible spherical homology class in $H_{2r-1}(G; \mathbb{Z})$ /torsion then p < r.

Proof. From [1] it follows that $\pi_2(G) = 0$. The result now follows easily from Theorem 2.1. \Box

[†] For $\langle \pi(n, \ldots, 0)^*(x), \sigma \rangle \neq 0 \in \mathbb{Z}$ for a suitable spherical class $\sigma \in H_t(G(n, \ldots, \infty; \mathbb{Z}))$.

Remark. Corollary 2.4 was clearly known to Serre. While not explicit in [8] it appears as a step in the proof of Proposition IV.6 of [8] and we include it simply for the sake of completeness. Our proof is in a sense the Eckmann-Hilton dual of Serre's.

§3. WHAT MULTIPLES ARE SPHERICAL?

Our objective in this section will be to establish:

THEOREM 3.1. Let G be an s-connected topological group, s > 0, with $H_*(G; \mathbb{Z})$ of finite type. Let t be a positive integer and $x \in H_t(G; \mathbb{Z})/torsion$ a primitive element. Then $N_s(t)x$ is a spherical class where

$$N_{s}(t) = \prod_{\substack{2(p-1) < t-s \\ p \text{ a prime}}} p^{\left[\frac{t-s-1}{2(p-1)-1}\right]}$$

and [a] denotes the integral part of a.

As in the proof of Theorem 2.1 this will be a consequence of properties of the connective tower of G. This requires that we review some additional results of [7].

Recollections. Consider a Hopf fibre square \mathcal{F}

$$\begin{array}{c} E \longrightarrow E_{0} \\ \pi \downarrow \qquad \qquad \downarrow \pi_{0} \\ B \xrightarrow{f} B_{0} \end{array}$$

where $B_0 = \mathbf{K}(\pi, n), n > 1, \pi$ is a finitely generated abelian group, and $\pi_0: E_0 \to B_0$ is the path space fibration. Let $\{\mathbf{E}_r, \mathbf{d}_r\}$ denote the Eilenberg-Moore spectral sequence of \mathscr{F} with \mathbf{Z}_p -coefficients, p a prime.

Since $H^*(B_0; \mathbb{Z}_p) \setminus f^*$ is a sub-Hopf algebra of $H^*(B_0; \mathbb{Z}_p)$ it follows from [2] and [9] and the Borel structure theorem [5; Theorem 7.11] that $H^*(B_0; \mathbb{Z}_p) \setminus f^*$ is a free commutative algebra. Since $H^*(B_0; \mathbb{Z}_p)$ is primitive so is $H^*(B_0; \mathbb{Z}_p) \setminus f^*$. Thus

$$H^*(B_0; \mathbf{Z}_p) \setminus \{f^* = \mathbf{S}[\{x_i\}]\}$$

where

$$x_i = \sum a_{ij} \beta^{\boldsymbol{\epsilon}_{i,j}} P_p^{I_{i,j}} \iota$$

and $P_p^{I_{i,j}}$ is an admissible monomial satisfying various conditions while $\varepsilon_{i,j} = 0, 1, a_{i,j} \in \mathbb{Z}_p$. (See [2] for the precise conditions.)

We turn now to the proof of Theorem 3.1. We shall require the following technical lemma. Our notation is that of [7].

LEMMA 3.2. Suppose that p is a prime and \mathcal{F}

$$\begin{array}{c} E \longrightarrow E_{0} \\ \pi \downarrow \qquad \qquad \downarrow \pi_{0} \\ B \stackrel{f}{\longrightarrow} B_{0} \end{array}$$

LARRY SMITH

is a Hopf fibre square where $B_0 = \mathbf{K}(\pi, n), n > 1, \pi$ a finitely generated abelian group, and $\pi_0: E_0 \to B_0$ is the path space fibration. Let $x \in H^*(B; \mathbb{Z})$ be a primitive indecomposable having reduction $\rho(x) \in H^*(B; \mathbb{Z}_n)$ also indecomposable. Suppose that $\rho(x) = f^*(y)$, then

$$\rho\left(\frac{1}{p}\pi^*(x)\right) = s^{-1}\beta y \mod decomposables$$

in $H^*(E; \mathbb{Z}_p)$. (Note that $\pi^*(x)$ is divisible by p by Lemma 2.3.)

Proof. Let

$$g: B \to \mathbf{K}(\mathbf{Z}, \deg x)$$

 $g: B \to K(\mathbb{Z}, \deg)$ be a map such that $g^*\iota_{\deg x} = x \in H^*(B; \mathbb{Z})$ and let

$$h: B_0 \to \mathbf{K}(\mathbf{Z}_p, \deg y)$$

be a map such that $h^*\iota_{\deg y} = y \in H^*(B_0; \mathbb{Z}_p)$. Form the Hopf fibre square

where $\theta^* \iota_{\deg y} = \rho \iota_{\deg x} \in H^*(\mathbb{Z}, \deg x; \mathbb{Z}_p)$. (Recall that deg $x = \deg y$.) It is immediate that

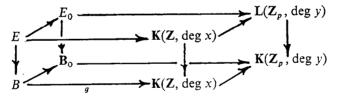
$$\rho\left(\frac{1}{p}\,\hat{\pi}^*(\iota_{\deg x})\right) = \rho\iota_{\deg x}$$

and that

$$\rho \iota_{\deg x} = s^{-1} \beta \iota_{\deg y} \in H^*(\mathbb{Z}, \deg x, \mathbb{Z}_p).$$

(Note that $K(Z, \deg x)$ is both the total and base space of the fibration $\hat{\pi}: K(Z, \deg x) \rightarrow K(Z, \deg x)$ K(Z, deg x). This should cause no confusion in the above formulas.)

Next note that we have a morphism of Hopf fibre squares



and the result now follows by naturality of the Eilenberg-Moore spectral sequence.

PROPOSITION 3.3. Suppose that p is a prime and that

$$\begin{array}{cccc}
E & \longrightarrow & E_{0} \\
\pi & & & \downarrow \\
\pi & & & \downarrow \\
B & \stackrel{f}{\longrightarrow} & B_{0}
\end{array}$$

is a Hopf fibre square where $B_0 = \mathbf{K}(\pi, n)$, n > 1 and π a finitely generated abelian group. Let $x \in H^*(B; \mathbb{Z})$ be a primitive indecomposable with $p \cdot x \neq 0$ and with reduction $\rho(x) \in H^*(B; \mathbb{Z}_p)$ also indecomposable. Suppose that $\rho(x) = f^*(y)$ and that deg x > n. Then $\pi^*(x) \in H^*(E; \mathbb{Z})$ is divisible by p but not by p^2 .

Proof. From Lemma 2.3 we learn that $\pi^*(x)$ is divisible by p. From Lemma 3.2 we see that if $s^{-1}\beta y \neq 0 \in QH^*(E; \mathbb{Z}_p)$ then $\pi^*(x)$ is not divisible by p^2 . Consider first the case when p is odd. Since y is indecomposable and deg x = deg y < n

$$y = \sum a_{s'} P_p^{I's'} \iota + \beta \sum a_{s''} P_p^{I''s''} \iota$$

where $P_p^{I's'}$, $P_p^{I''s''}$ are admissible monomials not beginning in β , with excess < n, and $a_{s'}$, $a_{s''} \neq 0 \in \mathbb{Z}_p$. From [7; Theorem 5.5] it follows that $s^{-1}\beta y = 0 \in QH^*(E; \mathbb{Z}_p)$ iff there exist admissible monomials $P_p^{J's'}$ with

(1) deg $P_p^{J's'} = 2T + 1 - n$

(2)
$$\beta P_p^{I's'} = \beta P_p^T P_p^{J's}$$

(3) $\sum a_{s'} P_p^{T_{s'}} i \in H^*(B_0; \mathbb{Z}_p) f^* \setminus i \text{ is an indecomposable element.}$

(Note that $\sum a_{s'} \beta P_p^{I's'}i$ is a non-zero indecomposable element of $H^*(B_0; \mathbb{Z}_p)$ by the results of [2].)

Since $\beta P_p^{I'_{s'}}$ is again an admissible monomial and the admissible monomials are a basis for $\mathscr{A}^*(p)$ it follows from (2) that $P_p^{I'_{s'}} = P_p^T P^{J'_{s'}}$ and hence

$$f^* \Sigma a_{s'} P^{I's'} \iota = f^* \Sigma a_{s'} P^T_p P^{J's'}_p \iota$$
$$= P^T_p f^* \Sigma a_{s'} P^J_p \iota = 0$$

by (3).

Hence

$$\rho(x) = f^* \beta \Sigma a_{s''} P_n^{I''s''} \iota = \beta f^* \Sigma a_{s''} P_n^{I''s''} \iota$$

But this contradicts the fact that $p \cdot x \neq 0$ [1]. Hence if p is odd $\pi^*(x)$ is divisible by p but not by p^2 .

Consider now the case p = 2. It then follows from [7] (compare [11; Proposition 2.1] and Proposition 2.2]) that $s^{-1}\beta y \neq 0 \in QH^*(E; \mathbb{Z}_p)$ iff $\beta y = 0$ in $H^*(B_0; \mathbb{Z}_p)$. Since p = 2, $\beta = Sq^1$. Let

$$y = \Sigma S q^{I_s} \iota$$

Note that not all of the Sq^{I_s} can begin on the left in an odd Sq^i . For if this were the case the Adem relation $Sq^1Sq^{2j} = Sq^{2j+1}$ would show

$$\rho(x) = f^*(y) = Sq^1 f^* \Sigma Sq^{I''s''}\iota$$

contrary to the hypothesis that $2 \cdot x \neq 0$. Therefore it follows that

$$\beta y = Sq^1 y = \sum_s Sq^1 Sq^{I_s} \iota \neq 0$$

and the result follows for p = 2. \Box

Remark. The reader should compare Proposition 3.3 with the results obtained by W. Singer in Section 9 of [10].

LEMMA 3.4. Let X be a simply connected space and

$$\mathscr{F}(n) \qquad \qquad \begin{array}{c} X(n+1,\ldots,\infty) \longrightarrow \mathcal{L}(\pi_n(X),n) \\ \downarrow \qquad \qquad \downarrow \\ X(n,\ldots,\infty) \xrightarrow{\varphi(n)} \mathcal{K}(\pi_n(X),n) \end{array}$$

the nth-connective fibre square over X. Then

 $\varphi(n)^*: H^n(\pi_n(X), n; \mathbb{Z}_n) \to H^n(X(n, \ldots, \infty); \mathbb{Z}_n)$

is an isomorphism and

$$\varphi(n)^*: H^{n+1}(\pi_n(X), n; \mathbf{Z}_p) \to H^{n+1}(X(n, \ldots, \infty); \mathbf{Z}_p)$$

is a monomorphism.

Proof. An elementary consequence of the generalized Whitehead Theorem [8].

THEOREM 3.5 Let G be an s-connected topological group, s > 0, with $H_*(G; \mathbb{Z})$ of finite type. Let t be a positive integer and p a prime with 2(p-1) < t - s. Then the highest power of p that divides a spherically indivisible spherical homology class in $H_t(G; \mathbb{Z})$ is no greater than $p[\frac{t-s-1}{2(p-1)-1}]$, where [a] denotes the integral part of a.

Proof. Suppose that $x \in H^t(G; \mathbb{Z})$ is an indecomposable element. Since G is simply connected we may assume that t > 1. From Proposition 3.3 we see that in passing from $G(n, \ldots, \infty)$ to $G(n + 1, \ldots, \infty)$ that $\pi(n, \ldots, 0)^*(x)$ becomes divisible by at most one more power of p. Moreover, from Lemma 3.2 we see that if $\pi(n, \ldots, 0)^*(x)$ becomes divisible by p then

$$\rho\left(\frac{1}{p}\pi(n+1,n)^*\pi(n,\ldots,0)^*(x)\right) = s^{-1}\beta\alpha\iota\notin \mathrm{Im}\ \pi(n+1,n)^*.$$

Since the element of lowest possible degree in $H^*(\pi_n(G), n; \mathbb{Z}_p) \setminus f^*$ is P_p^{-1} : (by Lemma 3.4) which has dimension 2(p-1) + n it follows that the element of lowest possible dimension of $H^*(G(n+1,\ldots,\infty); \mathbb{Z}_p)$ not in $\operatorname{Im} \pi(n+1,n)^*$ is $s^{-1}P_p^{-1}\iota$ which has dimension n-1+2(p-1). Since Im $\pi(n+1, n)^*$ is an $\mathscr{A}^*(p)$ -submodule of $H^*(G(n+1, \ldots, \infty); \mathbb{Z}_p)$ the lowest possible dimension of an element $y \in H^*(G(n+1,\ldots,\infty); \mathbb{Z}_n)$ with

$$s^{-1}\beta\alpha\iota = \zeta y$$

 $\zeta \in \mathscr{A}^*(p)$, deg $\zeta > 0$, is n-1+2(p-1). In passing to still higher connective fiberings $G(n + k + 1, ..., \infty)$ one obtains in view of Lemma 3.4 no new cohomology classes of dimension < n - 1 + 2(p - 1). Therefore by Proposition 2.3

$$\pi(n+2(p-1),\ldots,n)^*(s^{-1}\beta\alpha\iota)\neq 0.$$

Repeating the above argument for each n > s yields the result.

Proof of Theorem 3.1. It follows from Theorem 3.5 that a spherically indivisible spherical class in $H_t(G; \mathbb{Z})/\text{torsion}$ is divisible by at most $N_s(t) = \prod_{\substack{2(p-1) < t-s \\ p \neq p \text{ time}}} p_{p \neq p \text{ time}}^{\lfloor \frac{t-s-1}{2(p-1)-1} \rfloor}$.

Since the spherical elements are a subgroup of $PH_*(G; \mathbb{Z})$ /torsion of maximal rank it follows that some multiple of any primitive class must be spherical. Combining these two facts the result follows.

COROLLARY 3.6 Let G be a simply connected topological group with $H_*(G; \mathbb{Z})$ finitely

generated as an abelian group. Let r be a positive integer. If $x \in H_{2r-1}(G; \mathbb{Z})$ is a primitive element then N(r)x is a spherical class where

$$N(r) = \prod_{\substack{p < r \\ p \text{ a prime}}} p[2(\frac{r-2}{2(p-1)-1})].$$

Proof. From [1] it follows that G is 2-connected and the result now follows from Theorem 3.1 by a slight reindexing. \Box

§4. CONCLUDING REMARKS

The problem that we have been studying has a natural companion problem which may be described as follows:

Problem. Let G be an s-connected topological group with $H_*(G; \mathbb{Z})$ of finite type. What is the largest integer $n_s(t)$ such that any spherical class $H_t(G; \mathbb{Z})/torsion$ is divisible by $n_s(t)$?

The case when $H_*(G; \mathbb{Z})$ is finitely generated as an abelian group is of particular interest (e.g. G a Lie group). In this case if G has no 2-torsion and $t \neq 2^j - 1$, then work of E. Thomas [14] implies that any spherical class of dimension t is divisible by 2. Additional results of Thomas [13] seem to indicate further that if $t \neq 1$, 3, 7, 15 then any spherical class of dimension t is divisible by 2.

Computations of sundry examples lends credence to the following:

CONJECTURE. Let G be a connected topological group with $H_*(G; \mathbb{Z})$ torsion free of finite rank. If $\sigma \in H_{2r-1}(G; \mathbb{Z})$ is a spherical class and p is a prime satisfying

- (1) p < r
- (2) $r \neq kp^i$, 0 < k < p, $i \ge 0$ then p divides σ .

We remark that the restriction that $H^*(G; \mathbb{Z})$ be torsion free is important as the following example shows.

Recall the $H^*(F_4; \mathbb{Z}_5) = E[x_3, x_{11}, x_{15}, x_{23}]$ and that $H^*(F_4; \mathbb{Z}_5)$ has no 5-torsion. Note that 15 = 2(8) - 1, $8 \neq k5^i$, 0 < k < 5, and that degree $P_5^{-1} = 8$. Simple calculations show

$$H^{i}(F_{4}(n, ..., \infty); \mathbb{Z}_{5}) = 0$$
 $3 < i < 10.$

It therefore follows easily that there is a spherical class $\sigma_{15} \in H_{15}(F_4; \mathbb{Z})/\text{torsion that is not divisible by 5.}$

I am indebted to Allan Clark for bringing the above example to my attention.

In the special case that G is a Lie group it would be interesting to have formulas for n(r) and N(r) in terms of the Lie algebra and Weyl group of G.

LARRY SMITH

REFERENCES

- 0. J. F. ADAMS: On Chern characters and the structure of the unitary group, Proc. Camb. phil. Soc. math. phys. Sci. 57 (1961), 189-199.
- 1. W. BROWDER: Torsion in H-spaces, Ann. Math. (2) 74 (1961), 24-51.
- 2. H. CARTAN: Algèbres d'Eilenberg-MacLane et homotopie, Seminar Cartan 1954/1955, Ecole Normale Supérieure.
- 3. S. EILENBERG and J. C. MOORE: Homology and fibrations I, Comment. math. helvet. 40 (1966), 199-236.
- 4. J. MILNOR: Construction of universal bundles I, Ann. Math. (2) 63 (1956), 272-284.
- 5. J. MILNOR and J. C. MOORE: The structure of Hopf algebras, Ann. Math. (2) 81 (1965), 211-264.
- 6. J. C. MOORE: Algèbre homologique et homologie des espaces classifiants, Seminar Carten et Moore 1959/1960, Exposé 7, Ecole Normale Supérieure.
- 7. J. C. MOORE and L. SMITH: Hopf algebras and multiplicative fibrations I, II, Am. J. Math. (to appear).
- 8. J. P. SERRE: Groupes d'homotopie et classes des groupes abelienes, Ann. Math. (2) 58 (1953), 258-294.
- 9. J. P. SERRE: Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. math. helvet. 27 (1953), 198-234.
- 10. W. SINGER: Connective fiberings over BU and U, Topology 7 (1968), 189-225.
- 11. L. SMITH: The cohomology of stable two Stage Postnikov systems, Ill. J. Math. 11 (1967), 310-329.
- 12. L. SMITH: Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Am. math. Soc. 129 (1967), 58-93.
- 13. E. THOMAS: On the mod 2 cohomology of certain H-spaces, Comment. math. helvet. 37 (1962), 132-140.
- 14. E. THOMAS: Steenrod squares and H-spaces II, Ann. Math. (2) 81 (1965), 473-495.

Princeton University