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a b s t r a c t

In this paper, we discuss the existence andmultiplicity of positive solutions for the singular
fractional boundary value problem

Dα
0+u(t) + f


t, u(t),Dν

0+u(t),Dµ

0+u(t)


= 0,

u(0) = u′(0) = u′′(0) = u′′(1) = 0,

where 3 < α ≤ 4, 0 < ν ≤ 1, 1 < µ ≤ 2, Dα
0+ is the standard Riemann–Liouville frac-

tional derivative, f is a Carathédory function and f (t, x, y, z) is singular at the value 0 of
its arguments x, y, z. By means of a fixed point theorem, the existence and multiplicity of
positive solutions are obtained.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This paper investigates the singular fractional boundary value problem

Dα
0+u(t) + f


t, u(t),Dν

0+u(t),D
µ

0+u(t)


= 0, (1.1)

u(0) = u′(0) = u′′(0) = u′′(1) = 0, (1.2)

where 3 < α ≤ 4, 0 < ν ≤ 1, 1 < µ ≤ 2 are real numbers. Here f satisfies the local Carathéodory condition on [0, 1] ×

D, D ⊂ R3 (f ∈ Car([0, 1] × D)) , f (t, x, y, z) may be singular at the value 0 of all its space variables x, y, z, and Dα
0+ is the

standard Riemann–Liouville fractional derivative of order α.
We say that f satisfies the local Carathéodory condition on [0, 1] × D, D ⊂ R3, if

(i) f (·; x, y, z) : [0, 1] → R is measurable for all (x, y, z) ∈ D ,
(ii) f (t; ·, ·, ·) : D → R is continuous for a.e. t ∈ [0, 1],
(iii) for each compact set K ⊂ D there is a function ϕK ∈ L1[0, 1] such that

|f (t, x, y, z)| ≤ ϕK (t), for a.e. t ∈ [0, 1] and all (x, y, z) ∈ K .

A function u ∈ C2
[0, 1] is called a positive solution of problem (1.1), (1.2), if u > 0 on (0, 1],Dα

0+u ∈ L1[0, 1], u satisfies
boundary condition (1.2) and equality (1.1) holds for a.e. t ∈ [0, 1].

Recently, fractional differential equations have been discussed extensively as valuable tools in the modeling of many
phenomena in various fields of science and engineering. For examples and details, see [1–22] and the references therein.
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Papers, such as [10,23–28], discuss fractional boundary value problems with nonlinearities having singularities in space
variables.

Paper [29] investigates positive solutions of the singular Dirichlet problem
Dα
0+u(t) + f (t, u(t),Dµu(t)) = 0,

u(0) = u(1) = 0,
where 1 < α < 2, 0 < µ ≤ α−1, and f is a Carathéodory function on [0, 1]×(0, ∞)×R. The existence of positive solutions
is obtained by the combination of regularization and sequential techniqueswith the Guo–Krasnosel’skii fixed point theorem
on cones.

In [1], the authors discuss the (n, p) boundary value problem
y(n)

+ Q

t, y, y′, . . . , y(q)

= 0, 0 < t < 1,

y(i)(0) = 0, 0 ≤ i ≤ n − 2,
y(p)(1) = 0,

where 0 ≤ q ≤ p ≤ n − 1, but fixed. The function Q (t, y, y′, . . . , y(q)) is singular at yi = 0, 0 ≤ i ≤ q. The existence results
are ascertained by using topological transversality results.

The singular problem
Dα
0+u(t) + q(t)f


u(t), u′(t), . . . , u(n−2)(t)


= 0, n − 1 < α ≤ n, n ≥ 2,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(n−2)(1) = 0,
was discussed in [27], where f ∈ C


(0, ∞)n−1


and q ∈ Lr [0, 1] (r > 0) are positive. The existence results of positive

solutions are proved by the combination of regularization and sequential techniques with a fixed point theorem for mixed
monotone operators on normal cones.

More recently, Staněk [25] investigates the problem
Dα
0+u(t) + f (t, u(t), u′(t),Dµu(t)) = 0,

u(0) = 0, u′(0) = u′(1) = 0.
Here 2 < α < 3, 0 < µ < 1 and f satisfies the local Carathéodory condition on [0, 1] × D , D ⊂ R3. The existence of
positive solutions is obtained by means of Guo–Krasnosel’skii fixed point theorem on cones.

Inspired by above works, we consider the existence and the multiplicity of positive solutions of problem (1.1), (1.2),
where f satisfies the local Carathéodory condition and f (t, x, y, z) can be singular at the value 0 of all its space variables
x, y, z.

Throughout the paper, ∥x∥1 =
 1
0 |x(t)|dt is the norm in L1[0, 1] and ∥x∥ = max{|x(t)| : t ∈ [0, 1]} is the norm in

the space C[0, 1], while ∥x∥∗ = max{∥x∥, ∥x′
∥, ∥x′′

∥} is the norm in C2
[0, 1]. AC[0, 1] and ACk

[0, 1] are sets of absolutely
continuous functions and functions having absolutely continuous k-th derivatives on [0, 1], respectively.

We work with the following conditions on f in (1.1),
(H1) f ∈ Car([0, 1] × D), D = (0, ∞)3, and there exists a positive constant m such that, for a.e. t ∈ [0, 1] and all

(x, y, z) ∈ D ,

f (t, x, y, z) ≥ m.

(H2) f satisfies the estimate, for a.e. t ∈ [0, 1] and all (x, y, z) ∈ D ,

f (t, x, y, z) ≤ p(x, y, z) + γ (t)h(x, y, z),
where γ ∈ L1[0, 1], p ∈ C(D) and h ∈ C([0, ∞)3) are positive, p and h are nonincreasing and nondecreasing in all
their arguments, respectively, 1

0
p

Mtα−1,

(2 − ν)M
6

t3−ν,
(2 − µ)M

6
t3−µ


dt < ∞,

M =
m

(α − 2)0(α + 1)
, lim

x→∞

h(x, x, x)
x

= 0.

(H3) f satisfies the estimate, for a.e. t ∈ [0, 1] and all (x, y, z) ∈ D ,

f (t, x, y, z) ≤ p(x, y, z) + γ (t)h(x, y, z),
where γ ∈ L1[0, 1], p ∈ C(D) and h ∈ C([0, ∞)3) are positive, p and h are nonincreasing and nondecreasing in all
their arguments, respectively, 1

0
p

Mtα−1,

(2 − ν)M
6

t3−ν,
(2 − µ)M

6
t3−µ


dt < ∞,

M =
m

(α − 2)0(α + 1)
, lim

x→0

h(x, x, x)
x

= 0.
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Since (1.1) is a singular equation, we use regularization and sequential techniques to prove the existence and themultiplicity
of positive solutions of problem (1.1), (1.2). To this end, we define χn and fn(n ∈ N) by the following formulas

χn(t) =


t, if t ≥

1
n
;

1
n
, if t <

1
n
,

for a.e. t ∈ [0, 1] and all (x, y, z) ∈ R3,

fn(t, x, y, z) = f (t, χn(x), χn(y), χn(z)).

Then condition (H1) provides that fn ∈ Car([0, 1] × R3) and

fn(t, x, y, z) ≥ m, for a.e. t ∈ [0, 1] and all (x, y, z) ∈ R3. (1.3)

Condition (H2) gives

fn(t, x, y, z) ≤ p

1
n
,
1
n
,
1
n


+ γ (t)h


x +

1
n
, y +

1
n
, z +

1
n


,

for a.e. t ∈ [0, 1] and all (x, y, z) ∈ [0, ∞)3,


(1.4)

fn(t, x, y, z) ≤ p(x, y, z) + γ (t)h

x +

1
n
, y +

1
n
, z +

1
n


, for a.e. t ∈ [0, 1] and all (x, y, z) ∈ D.


(1.5)

Condition (H3) gives

fn(t, x, y, z) ≤ p

1
n
,
1
n
,
1
n


+ γ (t)h


x +

1
n
, y +

1
n
, z +

1
n


,

for a.e. t ∈ [0, 1] and all (x, y, z) ∈ [0, ∞)3,


(1.6)

fn(t, x, y, z) ≤ p(x, y, z) + γ (t)h

x +

1
n
, y +

1
n
, z +

1
n


, for a.e. t ∈ [0, 1] and all (x, y, z) ∈ D.


(1.7)

We investigate the regular fractional differential equation

Dα
0+u(t) + fn(t, u(t),Dν

0+u(t),D
µ

0+u(t)) = 0. (1.8)

This paper is organized as follows. Section 2 contains some results of fractional calculus theory and auxiliary technical
lemmas, which are used in the next two sections. Section 3 deals with the auxiliary regular problem (1.8), (1.2). We reduce
the solvability of this problem to the existence of a fixed point of an operatorQn. By the fixed point theoremof cone expansion
and compression, the existence of one or at least two fixed points of Qn is obtained. In Section 4, we prove the existence and
multiplicity of positive solutions of problem (1.1), (1.2) by applying the results of Sections 2 and 3. Two examples are also
presented to demonstrate the application of our results.

2. Background materials and preliminaries

For the convenience of the reader, we present here the necessary definitions from fractional calculus theory. These
definitions can be found in the recent literature, such as [9,10,14,25,29].

Definition 2.1. The fractional integral of order α > 0 of a function y : [0, 1] → R is defined by

Iα0+y(t) =
1

0(α)

 t

0
(t − s)α−1y(s)ds,

provided the right hand side is pointwise defined on [0, 1].

Definition 2.2. The Riemann–Liouville fractional derivative of order β > 0 of a function υ ∈ C(0, 1] is defined by

Dβ

0+υ(t) =
1

0(n − β)


d
dt

n  t

0
(t − s)n−β−1υ(s)ds,

provided that the right hand side is pointwise defined on (0, 1], where n = [β] + 1 and [β] means the integral part of the
number β . 0 is the Euler gamma function.
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Lemma 2.1 ([25]).We have

Iα0+ : L1[0, 1] →


L1[0, 1], if α ∈ (0, 1);
AC[α]−1

[0, 1], if α ≥ 1,

where [α] means the integral part of α and AC0
[0, 1] = AC[0, 1].

Lemma 2.2 ([10, Lemma 2.3]). If x ∈ L1[0, 1] and α + β ≥ 1, then the equation

Iα0+I

β

0+x


(t) =


Iα+β

0+ x


(t) holds at any
t ∈ [0, 1], that is, t

0
(t − s)α−1

 s

0
(s − ξ)β−1x(ξ)dξ


ds =

0(α)0(β)

0(α + β)

 t

0
(t − s)α+β−1x(s)ds. (2.1)

Lemma 2.3 ([23]). Suppose that α > 0, α ∉ N. If x ∈ C(0, 1] and Dα
0+x ∈ L1[0, 1]. Then

x(t) = Iα0+D
α
0+x(t) +

n
k=1

cktα−k, for t ∈ (0, 1],

where n = [α] + 1 and ck ∈ R, k = 1, 2, . . . , n.

Lemma 2.4. Suppose that µ ∈ (1, 2) and x ∈ C2
[0, 1], x(0) = x′(0) = 0. Then Dµ

0+x ∈ C[0, 1] and

Dµ

0+x(t) =
1

0(2 − µ)

 t

0
(t − s)1−µx′′(s)ds. (2.2)

Proof. According to the integration by parts, we have t

0
(t − s)1−µx(s)ds =

1
2 − µ

 t

0
(t − s)2−µx′(s)ds, t

0
(t − s)2−µx′(s)ds =

1
3 − µ

 t

0
(t − s)3−µx′′(s)ds.

Hence

Dµ

0+x(t) =
1

0(2 − µ)


d
dt

2  t

0
(t − s)1−µx(s)ds

=
1

0(3 − µ)


d
dt

2  t

0
(t − s)2−µx′(s)ds

=
1

0(4 − µ)


d
dt

2  t

0
(t − s)3−µx′′(s)ds

=
1

0(2 − µ)

 t

0
(t − s)1−µx′′(s)ds.

The fact that
 t
0 (t − s)1−µx′′(s)ds is continuous on [0, 1] gives the continuity of Dµ

0+x. �

Remark 2.1. If µ = 2 and x ∈ C2
[0, 1], x(0) = x′(0) = 0, it is easy to obtain that x′′(t) ∈ C[0, 1].

Lemma 2.5. Suppose that ν ∈ (0, 1] and x ∈ C2
[0, 1], x(0) = x′(0) = 0. Then Dν

0+x ∈ C[0, 1] and

Dν
0+x(t) =

1
0(2 − ν)

 t

0
(t − s)1−νx′′(s)ds. (2.3)

Proof. The proof is similar to Lemma 2.4, so we omit it here. �

Lemma 2.6. Given g ∈ L1[0, 1], then for t ∈ [0, 1],

u(t) =

 1

0
G(t, s)g(s)ds, (2.4)
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is the unique solution in C2
[0, 1] of the equation

Dα
0+u(t) + g(t) = 0, (2.5)

satisfying the boundary condition (1.2), where α ∈ (3, 4] and

G(t, s) =


tα−1(1 − s)α−3

− (t − s)α−1

0(α)
, if 0 ≤ s ≤ t ≤ 1;

tα−1(1 − s)α−3

0(α)
, if 0 ≤ t ≤ s ≤ 1.

(2.6)

Proof. By Lemma 2.3, we can see that

u(t) =


−Iα0+ρ(t) + c1tα−1

+ c2tα−2
+ c3tα−3

+ c4tα−4, for 3 < α < 4;

−Iα0+ρ(t) + c1tα−1
+ c2tα−2

+ c3tα−3
+ c4tα−4

+ c5tα−5, for α = 4,

are all solutions of (2.5) in C(0, 1], where cj ∈ R. Since Lemma 2.1 guarantees that Iα0+ρ ∈ AC2
[0, 1] for 3 < α < 4 and

Iα0+ρ ∈ AC3
[0, 1] for α = 4, therefore

u(t) =


−Iα0+ρ(t) + c1tα−1, for 3 < α < 4;

−Iα0+ρ(t) + c1tα−1
+ c2tα−2, for α = 4

are all solutions of (2.5) in C2
[0, 1], where c1, c2 ∈ R. Considering that solutions should satisfy u(0) = 0 and u′(0) =

u′′(0) = u′′(1) = 0, we get c1 =
1

0(α)

 1
0 (1 − s)α−3ρ(s)ds and c2 = 0. As a result,

u(t) =
1

0(α)


tα−1

 1

0
(1 − s)α−3ρ(s)ds −

 t

0
(t − s)α−1ρ(s)ds


=

 1

0
G(t, s)ρ(s)ds,

is the unique solution of problem (2.5), (1.2) in C2
[0, 1]. �

Lemma 2.7. Let G be as defined in (2.6). Then

(1) G(t, s) ∈ C([0, 1] × [0, 1]) and G(t, s) > 0 on (0, 1) × (0, 1),
(2) G(t, s) ≤

1
0(α)

for (t, s) ∈ [0, 1] × [0, 1],

(3)
 1
0 G(t, s)ds ≥

tα−1

(α−2)0(α+1) for t ∈ [0, 1],

(4) ∂
∂t G(t, s) ∈ C([0, 1] × [0, 1]) and ∂

∂t G(t, s) > 0 on (0, 1) × (0, 1),
(5) ∂

∂t G(t, s) ≤
1

0(α−1) for (t, s) ∈ [0, 1] × [0, 1],

(6)
 1
0

∂
∂t G(t, s)ds ≥

tα−2

(α−2)0(α)
for t ∈ [0, 1],

(7) ∂2

∂t2
G(t, s) ∈ C([0, 1] × [0, 1]) and ∂2

∂t2
G(t, s) > 0 on (0, 1) × (0, 1),

(8) ∂2

∂t2
G(t, s) ≤

1
0(α−2) for (t, s) ∈ [0, 1] × [0, 1],

(9)
 1
0

∂2

∂t2
G(t, s)ds ≥

t(1−t)
0(α−1) for t ∈ [0, 1].

Proof. (1) It follows from the definition of G that G is continuous on [0, 1] × [0, 1]. If 0 < s < t < 1, then

tα−1(1 − s)α−3
− (t − s)α−1

= (t − s)α−3


tα−1


1 − s
t − s

α−3

− (t − s)2


.

Since (1 − s)/(t − s) is increasing in s on (0, t), we have (1 − s)/(t − s) > 1/t . Hence,

tα−1(1 − s)α−3
− (t − s)α−1

≥ (t − s)α−3 t2 − (t − s)2


≥ 0,

where 0 < s < t < 1. In addition, it is clear that G(t, t) =
tα−1(1−t)α−3

0(α)
> 0 for t ∈ (0, 1), and tα−1(1 − s)α−3 > 0 for

0 < t < s < 1. Therefore we get that G > 0 on (0, 1) × (0, 1).
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(3) For t ∈ [0, 1], we have 1

0
G(t, s)ds =

 t

0

tα−1(1 − s)α−3
− (t − s)α−1

0(α)
ds +

 1

t

tα−1(1 − s)α−3

0(α)
ds

=
1

0(α)


tα−1

 1

0
(1 − s)α−3ds −

 t

0
(t − s)α−1ds


=

1
0(α)


tα−2

α − 1
−

tα

α


=

tα−1

0(α)

α − t(α − 2)
α(α − 2)

≥
tα−1

(α − 2)0(α + 1)
.

(4) Since

∂

∂t
G(t, s) =


tα−2(1 − s)α−3

− (t − s)α−2

0(α − 1)
, if 0 ≤ s ≤ t ≤ 1;

tα−2(1 − s)α−3

0(α − 1)
, if 0 ≤ t ≤ s ≤ 1.

It is clear that ∂
∂t G(t, s) is continuous on [0, 1] × [0, 1]. The proof of ∂

∂t G(t, s) > 0 on [0, 1] × [0, 1] is supported by the
following facts that:

if 0 < t ≤ s < 1, we have

∂

∂t
G(t, s) =

tα−2(1 − s)α−3

0(α − 1)
> 0;

if 0 < s < t < 1, we have

tα−2(1 − s)α−3
− (t − s)α−2

= (t − s)α−3


tα−2


1 − s
t − s

α−3

− (t − s)


> (t − s)α−3s > 0.

(6) For t ∈ [0, 1], we have 1

0

∂

∂t
G(t, s)ds =

 t

0

tα−2(1 − s)α−3
− (t − s)α−2

0(α − 1)
ds +

 1

t

tα−2(1 − s)α−3

0(α − 1)
ds

=
1

0(α − 1)


tα−2

 1

0
(1 − s)α−3ds −

 t

0
(t − s)α−2ds


=

1
0(α − 1)


tα−2

α − 2
−

tα

α − 1


=

tα−2 (α − 1 − (α − 2)t)
(α − 2)0(α)

≥
tα−2

(α − 2)0(α)
.

(7) Since

∂2

∂t2
G(t, s) =


tα−3(1 − s)α−3

− (t − s)α−2

0(α − 2)
, if 0 ≤ s ≤ t ≤ 1;

tα−3(1 − s)α−3

0(α)
, if 0 ≤ t ≤ s ≤ 1.

We can see that ∂2

∂t2
G(t, s) is continuous on [0, 1] × [0, 1]. The proof of ∂2

∂t2
G(t, s) > 0 on [0, 1] × [0, 1] is supported by the

following facts that:
if 0 < t ≤ s < 1, we have

∂2

∂t2
G(t, s) =

tα−3(1 − s)α−3

0(α − 2)
> 0;
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if 0 < s < t < 1, we have

tα−3(1 − s)α−3
− (t − s)α−3

= (t − s)α−3


tα−3


1 − s
t − s

α−3

− 1


> (t − s)α−3(1 − 1) = 0.

(9) We have for t ∈ [0, 1] that 1

0

∂2

∂t2
G(t, s)ds =

 t

0

tα−3(1 − s)α−3
− (t − s)α−2

0(α − 2)
ds +

 1

t

tα−3(1 − s)α−3

0(α)
ds

=
1

0(α − 2)


tα−3

 1

0
(1 − s)α−3ds −

 t

0
(t − s)α−3ds


=

1
0(α − 2)


tα−3

α − 2
−

tα−2

α − 2


=

tα−3(1 − t)
0(α − 1)

≥
(1 − t)

0(α − 1)
.

It is obvious that (2), (5) and (8) hold. �

3. Auxiliary regular problem (1.8), (1.2)

Let X = C2
[0, 1] and define a cone P in X as

P = {x ∈ X : x(0) = x′(0) = 0, x(t) ≥ 0, x′(t) ≥ 0, x′′(t) ≥ 0, for t ∈ [0, 1]}.

By Lemmas 2.4 and 2.5 and (2.2), (2.3), we can obtain that

Dν
0+x ∈ C[0, 1], Dµ

0+x ∈ C[0, 1] and
Dν
0+x(t) ≥ 0, Dµ

0+x(t) ≥ 0, for x ∈ P and t ∈ [0, 1].


(3.1)

Define an operator Qn on P by the formula

(Qnx)(t) =

 1

0
G(t, s)fn(s, x(s),Dν

0+x(s),D
µ

0+x(s))ds. (3.2)

Lemma 3.1. Qn : P → P is a completely continuous operator.

Proof. Given x ∈ P and let ρ(t) = fn(t, x(t),Dν
0+x(t),D

µ

0+x(t)). Then, by (1.3) and (3.1), we have that ρ ∈ L1[0, 1] and

ρ(t) ≥ m for a.e. t ∈ [0, 1]. It follows from Lemma 3.1 that G, ∂
∂t G, ∂2

∂t2
G are nonnegative and continuous on [0, 1] × [0, 1]

and G(0, s) = 0 for s ∈ [0, 1]. Therefore, we get Qnx ∈ C2
[0, 1], (Qnx)(0) = (Qnx)′(0) = (Qnx)′′(0) = 0 and Qnx ≥ 0,

(Qnx)′ ≥ 0, (Qnx)′′ ≥ 0 on [0, 1]. As a result, Qn : P → P .
In order to prove Qn is a continuous operator, let {xk} ⊂ P be a convergent sequence. Suppose that limk→∞ xk = x. Then

limk→∞ x(j)
k = x(j)(t) uniformly on [0, 1], where j = 0, 1, 2. Since, for µ ∈ (1, 2), ν ∈ (0, 1],

|Dµ

0+xk(t) − Dµ

0+x(t)| ≤
∥x′′

k (t) − x′′(t)∥
0(2 − µ)

 1

0
(t − s)1−µds ≤

∥x′′

k (t) − x′′(t)∥
0(3 − µ)

,

|Dν
0+xk(t) − Dν

0+x(t)| ≤
∥x′′

k (t) − x′′(t)∥
0(2 − ν)

 1

0
(t − s)1−νds ≤

∥x′′

k (t) − x′′(t)∥
0(3 − ν)

,

we have limk→∞ Dµ

0+xk(t) = Dµ

0+x(t) and limk→∞ Dν
0+xk(t) = Dν

0+x(t) uniformly on [0, 1]. In addition, it follows from (2.2)
and (2.3) that, for µ ∈ (1, 2), ν ∈ (0, 1],

∥Dµ

0+xk∥ ≤
∥x′′

k∥

0(2 − µ)

 t

0
(t − s)1−µds ≤

∥x′′

k∥

0(3 − µ)
, (3.3)

∥Dν
0+xk∥ ≤

∥x′′

k∥

0(2 − ν)

 t

0
(t − s)1−νds ≤

∥x′′

k∥

0(3 − ν)
. (3.4)

Let

ρk(t) = fn(t, xk(t),Dν
0+xk(t),D

µ

0+xk(t)). (3.5)
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Then we can obtain from the Lebesgue dominated convergence theorem that limk→∞ ρk(t) = ρ(t) for a.e. t ∈ [0, 1]. Since
fn ∈ Car([0, 1]×R3) and {xk} is bounded in C2

[0, 1], inequalities (3.3) and (3.4) imply that {Dµ

0+xk} and {Dν
0+xk} are bounded

in C[0, 1]. It is obvious that {Dµ

0+xk} is also bounded in C[0, 1] for µ = 2. As a result, there exists ϕ ∈ L1[0, 1], such that

m ≤ ρk(t) ≤ ϕ(t), for a.e. t ∈ [0, 1] and all k ∈ N. (3.6)

It follows from the Lebesgue dominated convergence theorem and from the following relations (see Lemma 2.7)

|(Qnxk)(t) − (Qnx)(t)| ≤
1

0(α)

 1

0
|ρk(s) − ρ(s)|ds,

|(Qnxk)′(t) − (Qnx)′(t)| ≤
1

0(α − 1)

 1

0
|ρk(s) − ρ(s)|ds,

|(Qnxk)′′(t) − (Qnx)′′(t)| ≤
1

0(α − 2)

 1

0
|ρk(s) − ρ(s)|ds,

that limk→∞(Qnxk)(j)(t) = (Qnx)(j)(t) uniformly on [0, 1], where j = 0, 1, 2. Consequently, Qn is a continuous operator.
Now,whatwe should do is to prove that, for any bounded sequence {xk} ⊂ P , the sequence {Qnxk} is relatively compact in

X . In order to apply the Arzelà–Ascoli theorem,we need to prove that {Qnxk} is bounded in X and {(Qnxk)′′} is equicontinuous
on [0, 1]. Let {xk} ∈ P be bounded and suppose that S is a positive number and ∥xk∥ < S, ∥x′

k∥ < S, ∥x′′

k∥ < S, for k ∈ N.
Then, (3.3) implies that ∥Dµ

0+xk∥ ≤
S

0(3−µ)
and (3.4) implies that ∥Dν

0+xk∥ ≤
S

0(3−ν)
. Put ρk as in (3.5). Then (3.6) holds for

some ϕ ∈ L1[0, 1]. Since

0 ≤ (Qnxk)(t) =

 1

0
G(t, s)ρk(s)ds ≤

1
0(α)

 1

0
ϕ(s)ds =

∥ϕ∥1

0(α)
,

0 ≤ (Qnxk)′(t) =

 1

0

∂

∂t
G(t, s)ρk(s)ds ≤

1
0(α − 1)

 1

0
ϕ(s)ds =

∥ϕ∥1

0(α − 1)
,

0 ≤ (Qnxk)′′(t) =

 1

0


∂

∂t

2

G(t, s)ρk(s)ds ≤
1

0(α − 2)

 1

0
ϕ(s)ds =

∥ϕ∥1

0(α − 2)
,

it shows that {Qnxk} is bounded in X . In addition, for 0 ≤ t1 ≤ t2 ≤ 1, the following relation,

|(Qnxk)′′(t2) − (Qnxk)′′(t1)| ≤
tα−3
2 − tα−3

1

0(α − 2)

 1

0
(1 − s)α−3ρkds +

1
0(α − 2)

 t2

0
(t2 − s)α−3ρkds

−

 t1

0
(t1 − s)α−3ρk(s)ds


≤

∥ρk∥1

0(α − 2)
(tα−3

2 − tα−3
1 ) +

1
0(α − 2)

 t2

t1
(t2 − s)α−3ρk(s)ds

+

 t1

0


(t2 − s)α−3

− (t1 − s)α−3 ρk(s)ds


≤
∥ϕ∥1

0(α − 2)
(tα−3

2 − tα−3
1 ) +

1
0(α − 2)

×


(t2 − t1)α−3

∥ϕ∥1 +

 t1

0


(t2 − s)α−3

− (t1 − s)α−3ϕ(s)ds


,

holds. Now, we choose any ϵ > 0. Since tα−3 is uniformly continuous on [0, 1] and |t − s|α−2 on [0, 1] × [0, 1], there
exists δ > 0 such that for each 0 ≤ t1 < t2 ≤ 1, t2 − t1 < δ, 0 ≤ s ≤ t , we have 0 < tα−3

2 − tα−3
1 < ϵ, 0 <

(t2 − s)α−3
− (t1 − s)α−3 < ϵ. Hence, for k ∈ N, 0 ≤ t1 < t2 ≤ 1 and t2 − t1 < min{δ, α−3

√
ϵ}, the inequality,

|(Qnxk)′′(t2) − (Qnxk)′′(t1)| ≤
3ε

0(α − 2)
∥ϕ∥1,

holds. As a result, {(Qnxk)′′} is equicontinuous on [0, 1]. �

Lemma 3.2 ([14]). Let Y be a Banach space, and P ⊂ Y be a cone in Y . Let Ω1, Ω2 be bounded open balls of Y centered at the
origin with Ω1 ⊂ Ω2. Suppose that A : P ∩ (Ω2 \ Ω1) → P is a completely continuous operator such that

∥A x∥ ≥ ∥x∥, for t ∈ P ∩ ∂Ω1, ∥A x∥ ≤ ∥x∥, for t ∈ P ∩ ∂Ω2

holds. Then A has a fixed point in P ∩ (Ω2 \ Ω1).
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Theorem 3.1. Let (H1) and (H2) (or (H3)) hold. Then problem (1.8), (1.2) has a solution un ∈ P and

un(t) ≥ Mtα−1, for t ∈ [0, 1]. (3.7)

Proof. By Lemma 3.1, Qn : P → P is a completely continuous operator. Suppose x ∈ P , then (1.3) and Lemma 2.7 yield that

(Qnx)(t) ≥ m
 1

0
G(t, s)ds ≥ Mtα−1, for t ∈ [0, 1], (3.8)

where M is defined by (H2) (or (H3)). Therefore ∥Qnx∥ ≥ M, ∥Qnx∥∗ ≥ M for x ∈ P . Suppose Ω1 = {x ∈ X : ∥x∥∗ < M},
then

∥Qnx∥∗ ≥ ∥x∥∗, for x ∈ P ∩ ∂Ω1. (3.9)

LetWn = p(1/n, 1/n, 1/n). Lemma 2.7 and (1.4) imply that, for x ∈ P and t ∈ [0, 1],

0 ≤ (Qnx)′′(t)

≤
1

0(α − 2)

 1

0


Wn + γ (s)h


x(s) +

1
n
,Dν

0+x(s) +
1
n
,Dµ

0+x(s) +
1
n


ds

≤
1

0(α − 2)


Wn + h


∥x∥ +

1
n
, ∥Dν

0+x∥ +
1
n
, ∥Dµ

0+x∥ +
1
n


∥γ ∥1


,

0 ≤ (Qnx)′(t)

=

 t

0
(Qnx)′′(s)ds

≤
1

0(α − 2)


Wn + h


∥x∥ +

1
n
, ∥Dν

0+x∥ +
1
n
, ∥Dµ

0+x∥ +
1
n


∥γ ∥1


,

0 ≤ (Qnx)(t)

=

 t

0
(Qnx)′(s)ds

≤
1

0(α − 2)


Wn + h


∥x∥ +

1
n
, ∥Dν

0+x∥ +
1
n
, ∥Dµ

0+x∥ +
1
n


∥γ ∥1


.

In view of (3.3) and (3.4), hence for x ∈ P ,

∥Qnx∥∗ ≤
1

0(α − 2)


Wn + h


∥x∥∗ +

1
n
,

∥x∥∗

0(3 − ν)
+

1
n
,

∥x∥∗

0(3 − µ)
+

1
n


∥γ ∥1


. (3.10)

If (H2) holds. By assumption that limx→∞ h(x, x, x)/x = 0, there exists S > M > 0 such that

1
0(α − 2)


Wn + h


S +

1
n
,

S
0(3 − ν)

+
1
n
,

S
0(3 − µ)

+
1
n


∥γ ∥1


≤ S. (3.11)

Suppose Ω2 = {x ∈ X : ∥x∥∗ < S}. Then it follows from (3.10) and (3.11) that

∥Qnx∥∗ ≤ ∥x∥∗, for x ∈ P ∩ ∂Ω2. (3.12)

Applying Lemma 3.2, we conclude from (3.9) and (3.12) that the operator Qn has a fixed point in P ∩ (Ω2 \ Ω1), hence un is
a solution of problem (1.8), (1.2), and (3.8) guarantees that un fulfills (3.7).

If (H3) holds. By assumption that limx→0 h(x, x, x)/x = 0, there exists 0 < L < M and a large enough number N1 such
that, for n ≥ N1,

1
0(α − 2)


Wn + h


L +

1
n
,

L
0(3 − ν)

+
1
n
,

L
0(3 − µ)

+
1
n


∥γ ∥1


≤ L. (3.13)

Suppose Ω3 = {x ∈ X : ∥x∥∗ < L}. Then it follows from (3.10) and (3.13) that

∥Qnx∥∗ ≤ ∥x∥∗, for x ∈ P ∩ ∂Ω3. (3.14)

By applying Lemma 3.2, we conclude from (3.9) and (3.14) that the operator Qn has a fixed point in P ∩ (Ω1 \ Ω3), hence un
is a solution of problem (1.8), (1.2) and (3.8) guarantees that un fulfills (3.7). �

In order to prove the main results, we also need the following lemmas.

Lemma 3.3. If (H1) and (H2) (or (H3)) hold. Let un be a solution of problem (1.8), (1.2). Then the sequence {un} is relatively
compact in X.
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Proof. Note that

un(t) =

 1

0
G(t, s)fn(s, xn(s),Dν

0+xn(s),D
µ

0+xn(s))ds, for t ∈ [0, 1], n ∈ N, (3.15)

and un fulfills (3.7). Moreover, Lemma 2.7 and (1.3) imply

u′

n(t) ≥ m
 1

0

∂

∂t
G(t, s)ds ≥

mtα−2

(α − 2)0(α)
, for t ∈ [0, 1], n ∈ N, (3.16)

u′′

n(t) ≥ m
 1

0

∂2

∂t2
G(t, s)ds ≥

mt(1 − t)
0(α − 1)

, for t ∈ [0, 1], n ∈ N. (3.17)

By (2.2) and (2.3),

Dµ

0+un(t) =
1

0(2 − µ)

 t

0
(t − s)1−µu′′

n(s)ds

≥
m

0(2 − µ)0(α − 1)

 t

0
(t − s)1−µs(1 − s)ds,

Dν
0+un(t) =

1
0(2 − ν)

 t

0
(t − s)1−νu′′

n(s)ds

≥
m

0(2 − ν)0(α − 1)

 t

0
(t − s)1−νs(1 − s)ds.

Since  t

0
(t − s)1−µs(1 − s)ds =

1
2 − µ

 t

0
(t − s)2−µ(1 − 2s)ds

=
1

2 − µ


t3−µ

3 − µ
−

2t4−µ

(3 − µ)(4 − µ)


=

t3−µ

2 − µ


4 − µ − 2t

(3 − µ)(4 − µ)


≥

t3−µ

2 − µ


2 − µ

(3 − µ)(4 − µ)


=

t3−µ

(3 − µ)(4 − µ)
,

and  t

0
(t − s)1−νs(1 − s)ds ≥

t3−ν

(3 − ν)(4 − ν)
.

Hence,

Dµ

0+un(t) ≥
m(2 − µ)

0(5 − µ)0(α − 1)
t3−µ, for t ∈ [0, 1], n ∈ N, (3.18)

Dν
0+un(t) ≥

m(2 − ν)

0(5 − ν)0(α − 1)
t3−ν, for t ∈ [0, 1], n ∈ N. (3.19)

As m · min{
1

(α−2)0(α+1) ,
1

(α−2)0(α)
, 1

(α−1) } = M and 0(5 − µ) < 0(4) = 6, it follows from (3.7), (3.18) and (3.19) that, for
t ∈ [0, 1], n ∈ N,

un(t) ≥ Mtα−1, Dν
0+un(t) ≥

(2 − ν)M
6

t3−ν, Dµ

0+un(t) ≥
(2 − µ)M

6
t3−µ. (3.20)

Therefore, for t ∈ [0, 1], n ∈ N,

p

un(t),Dν

0+un(t),D
µ

0+un(t)


≤ p

Mtα−1,

(2 − ν)M
6

t3−ν,
(2 − µ)M

6
t3−µ


, (3.21)
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and it follows from Lemma 2.7, (1.5) (or (1.7)), (3.3), (3.4), (3.15) and (3.21) that

0 ≤ u′′

n(t) =

 1

0

∂2

∂t2
G(t, s)fn(s, un(s),Dν

0+un(s),D
µ

0+un(s))ds

≤
1

0(α − 2)

 1

0
p

Msα−1,

(2 − ν)M
6

s3−ν,
(2 − µ)M

6
s3−µ


ds

+
1

0(α − 2)
h


∥un∥∗ +
1
n
,

∥un∥∗

0(3 − ν)
+

1
n
,

∥un∥∗

0(3 − µ)
+

1
n

 1

0
γ (s)ds

=
1

0(α − 2)


Λ + h


∥un∥∗ +

1
n
,

∥un∥∗

0(3 − ν)
+

1
n
,

∥un∥∗

0(3 − µ)
+

1
n


∥γ ∥1


,

0 ≤ u′

n(t) =

 t

0
u′′

n(s)ds

≤
1

0(α − 2)


Λ + h


∥un∥∗ +

1
n
,

∥un∥∗

0(3 − ν)
+

1
n
,

∥un∥∗

0(3 − µ)
+

1
n


∥γ ∥1


,

0 ≤ un(t) =

 t

0
u′

n(s)ds

≤
1

0(α − 2)


Λ + h


∥un∥∗ +

1
n
,

∥un∥∗

0(3 − ν)
+

1
n
,

∥un∥∗

0(3 − µ)
+

1
n


∥γ ∥1


,

where t ∈ [0, 1], n ∈ N and Λ =
 1
0 p


Msα−1, (2−ν)M

6 s3−ν,
(2−µ)M

6 s3−µ

ds.

If (H2) holds. It follows from the assumption that Λ < ∞. Hence,

∥un∥∗ ≤
1

0(α − 2)


Λ + h


∥un∥∗ +

1
n
,

∥un∥∗

0(3 − ν)
+

1
n
,

∥un∥∗

0(3 − µ)
+

1
n


∥γ ∥1


,

where n ∈ N. Since limx→∞ h(x, x, x)/x = 0, there exists L > 0 such that, for υ ≥ L,

1
0(α − 2)


Λ + h


υ +

1
n
,

υ

0(3 − ν)
+

1
n
,

υ

0(3 − µ)
+

1
n


∥γ ∥1


< υ.

Consequently, ∥un∥∗ < L for n ∈ N, so that {un} is bounded in X . We are now in a position to prove {u′′
n} is equicontinuous

on [0, 1]. Let V1 = h

L +

1
n ,

L
0(3−ν)

+
1
n ,

L
0(3−µ)

+
1
n


and

Φ(t) = p

Mtα−1,

(2 − ν)M
6

t3−ν,
(2 − µ)M

6
t3−µ


, for t ∈ (0, 1]. (3.22)

Then Λ =
 1
0 Φ(t)dt and, for a.e. t ∈ [0, 1], all n ∈ N,

fn(t, un(t),Dν
0+un(t),D

µ

0+un(t)) ≤ Φ(t) + V1γ (t)

holds. Suppose that 0 ≤ t1 < t2 ≤ 1, then

|u′′

n(t2) − u′′

n(t1)| =


 1

0


∂

∂t

2

G(t2, s) −


∂

∂t

2

G(t1, s)


fn(s, un(s),Dν

0+un(s),D
µ

0+un(s))ds


≤

1
0(α − 2)


(tα−3

2 − tα−3
1 )

 1

0
(Φ(s) + V1γ (s))ds +

 t2

t1
(t2 − s)α−3(Φ(s) + V1γ (s))ds

+

 t1

0


(t2 − s)α−3

− (t1 − s)α−3 (Φ(s) + V1γ (s))ds


≤
1

0(α − 2)


(tα−3

2 − tα−3
1 )(Λ + V1∥γ ∥1) + (t2 − t1)α−3(Λ + V1∥γ ∥1)

+

 t1

0


(t2 − s)α−3

− (t1 − s)α−3 (Φ(s) + V1γ (s))ds

.

The proof is similar with that of Lemma 3.1. We choose ε > 0. Then there exists δ0 > 0 such that tα−3
2 − tα−3

1 < ε,
(t2 − s)α−3

− (t1 − s)α−3 < ε, for any 0 ≤ t1 < t2 ≤ 1, t2 − t1 < δ0 and 0 ≤ s ≤ t1 suppose that 0 < δ < min{δ0,
α−3
√

ε}.
Then, for t1, t2 ∈ [0, 1], 0 < t2 − t1 < δ, n ∈ N, we have |u′′

n(t2) − u′′
n(t1)| ≤

3ε
0(α−2) (Λ + V1∥γ ∥1). As a result, {u′′

n} is
equicontinuous on [0, 1].
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If (H3) holds. It follows from the assumption that Λ < ∞. Hence,

∥un∥∗ ≤
1

0(α − 2)


Λ + h


∥un∥∗ +

1
n
,

∥un∥∗

0(3 − ν)
+

1
n
,

∥un∥∗

0(3 − µ)
+

1
n


∥γ ∥1


,

where n ∈ N. By limx→0 h(x, x, x)/x = 0, there exists L > 0 and a large enough number N1 such that, for n ≥ N1 and υ ≤ L,

1
0(α − 2)


Λ + h


υ +

1
n
,

υ

0(3 − ν)
+

1
n
,

υ

0(3 − µ)
+

1
n


∥γ ∥1


< υ.

Consequently, ∥un∥∗ < L for n ∈ N and n ≥ N1, so that {un} is bounded in X . Let V2 = h

L +

1
N1

, L
0(3−ν)

+
1
N1

, L
0(3−µ)

+
1
N1


.

Then Λ =
 1
0 Φ(t)dt and, for a.e. t ∈ [0, 1], all n ∈ N,

fn(t, un(t),Dν
0+un(t),D

µ

0+un(t)) ≤ Φ(t) + V2γ (t).

The proof is similar with above. As a result, {u′′
n} is also equicontinuous on [0, 1]. �

4. Main results

Theorem 4.1. Let (H1) and (H2) (or (H3)) hold. Then the problem (1.1), (1.2) has a positive solution u and, for t ∈ [0, 1],

u(t) ≥ Mtα−1, Dν
0+u(t) ≥

(2 − ν)M
6

t3−ν, Dµ

0+u(t) ≥
(2 − µ)M

6
t3−µ. (4.1)

Proof. Theorem 3.1 shows us that problem (1.8), (1.2) has a solution un ∈ P . In addition, Lemma 3.3 provides us that {un} is
relatively compact in X and satisfies inequality (3.20) for t ∈ [0, 1], n ∈ N. Now the Arzelà–Ascoli theorem can be applied.
Without loss of generality, assume that {un} is convergent in X and limn→∞ un = u. Then u ∈ P fulfills the boundary
conditions (1.2), and it follows from (2.2) and (2.3) that limn→∞ Dµ

0+un = Dµ

0+u and limn→∞ Dν
0+un = Dν

0+u in C[0, 1]. Now,
passing to the limit as n → ∞ in (3.20). Hence, u satisfies (4.1). Furthermore, since, for a.e. t ∈ [0, 1],

lim
n→∞

fn(t, un(t),Dν
0+un(t),D

µ

0+un(t)) = f (t, u(t),Dν
0+u(t),D

µ

0+u(t)).

Suppose K = sup{∥un∥∗ : n ∈ N}. Then it follows from (3.3) and (3.4) that ∥Dµ

0+un∥ ≤
K

0(3−µ)
and ∥Dν

0+un∥ ≤
K

0(3−ν)
for

n ∈ N. Hence, for a.e. (t, s) ∈ [0, 1] × [0, 1] and all un ∈ N, we have

0 ≤ G(t, s)fn(s, un(s),Dν
0+un(s),D

µ

0+un(s))

≤
1

0(α)


Φ(s) + h


K +

1
n
,

K
0(3 − ν)

+
1
n
,

K
0(3 − µ)

+
1
n


γ (s)


,

where Φ is defined by (3.22). Putting n → ∞, we can conclude

u(t) =

 1

0
G(t, s)f (s, u(s),Dν

0+u(s),D
µ

0+u(s))ds, for t ∈ [0, 1],

by the Lebesgue dominated convergence theorem. Consequently, u is a positive solution of problem (1.1), (1.2) and satisfies
inequality (4.1). �

From Theorem 4.1, we can easily derive the following theorem:

Theorem 4.2. Let (H1), (H2) and (H3) hold. Then the problem (1.1), (1.2) has at least two positive solution u1, u2 and, for
t ∈ [0, 1], i = 1, 2,

N ≤ ∥u2∥∗ ≤ M ≤ ∥u1∥∗ ≤ S, (4.2)

ui(t) ≥ Mtα−1, Dν
0+ui(t) ≥

(2 − ν)M
6

t3−ν, Dµ

0+ui(t) ≥
(2 − µ)M

6
t3−µ. (4.3)

Example 4.1. Suppose that ρ ∈ L1[0, 1] and m is a positive constant. Let a ∈ (0, 1
α−1 ), b ∈ (0, 1

3−ν
), c ∈ (0, 1

3−µ
) and

a1, b1, c1 ∈ (0, 1). Then the function

f (t, x, y, z) = x−a
+ y−b

+ z−c
+ m + |ρ(t)|(xa1 + yb1 + zc1)
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satisfies conditions (H1) and (H2) for

p(x, y, z) = x−a
+ y−b

+ z−c
+ m,

γ (t) = |ρ(t)| + m,

h(x, y, z) = xa1 + yb1 + zc1 .

Hence, Theorem 4.1 guarantees that for each α ∈ (3, 4], ν ∈ (0, 1] and µ ∈ (1, 2], the fractional differential equation,

Dα
0+u(t) = (u(t))−a

+

Dν
0+u(t)

−b
+

Dµ

0+u(t)
−c

+ m + |ρ(t)|

(u(t))a1 +


Dν
0+u(t)

b1
+

Dµ

0+u(t)
c1 ,

has a positive solution u satisfying the boundary condition (1.2) and inequality (4.1) for t ∈ [0, 1], whereM =
m

(α−2)0(α+1) .

Example 4.2. Suppose that ρ ∈ L1[0, 1] and m is a positive constant. Let a ∈ (0, 1
α−1 ), b ∈ (0, 1

3−ν
), c ∈ (0, 1

3−µ
) and

a1, b1, c1 ∈ (1, 2). Then the function

f (t, x, y, z) = x−a
+ y−b

+ z−c
+ m + |ρ(t)|(xa1 + yb1 + zc1)

satisfies conditions (H1) and (H3) for

p(x, y, z) = x−a
+ y−b

+ z−c
+ m,

γ (t) = |ρ(t)| + m,

h(x, y, z) = xa1 + yb1 + zc1 .

Hence, Theorem 4.1 guarantees that for each α ∈ (3, 4], ν ∈ (0, 1] and µ ∈ (1, 2], the fractional differential equation,

Dα
0+u(t) = (u(t))−a

+

Dν
0+u(t)

−b
+

Dµ

0+u(t)
−c

+ m + |ρ(t)|

(u(t))a1 +


Dν
0+u(t)

b1
+

Dµ

0+u(t)
c1 ,

has a positive solution u satisfying the boundary condition (1.2) and inequality (4.1) for t ∈ [0, 1], whereM =
m

(α−2)0(α+1) .
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