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We propose a notion of weak Bernoulli in all dimensions which generalizes the
usual definition in dimension 1. The key idea is the concept of a coupling surface.
We relate this notion to previously studied properties and discuss a number
of possible variants in dimension 1. We also show that the Ising model, at low
temperature, is weak Bernoulli with an explicit description of the coupling surface.
� 1997 Academic Press

1. INTRODUCTION

After the isomorphism problem for Bernoulli shifts in ergodic theory was
solved by Ornstein [16], conditions were sought which would guarantee
that a stationary process is isomorphic to an i.i.d. process. A stationary
process is isomorphic to another if there is a shift-invariant measure-preserv-
ing transformation between the corresponding measures on sequence space.
A process which is isomorphic to an i.i.d. process is called a Bernoulli shift.
(These definitions extend immediately to stationary random fields). In
[11], the notion of weak Bernoulli (which is a certain mixing condition)
was introduced and used to show that an irreducible aperiodic Markov
chain on a finite state space is a Bernoulli shift.

The point of this paper is to make a closer examination of the definition
of weak Bernoulli in dimension 1 and to propose a natural definition in
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dimensions larger than 1 which agrees with the usual definition in dimen-
sion 1. The results in [5] tell us that the natural naive extension of the
definition of weak Bernoulli to higher dimensions is uninteresting (this
point is described in detail later) and that something more subtle is
required. The key idea in this extension is the notion of a coupling surface.

All definitions of mixing are based on some type of approximate inde-
pendence. The notion of independence, which will play a central role here,
is given in the next lemma where three equivalent forms are given.

Lemma 1.1. Let [Xi]i # A _ B be random variables defined on the same
probability space taking values in a finite set F, where A and B are disjoint
and countable ( possibly finite). For U�A _ B, let PU denote the measure on
FU induced by the random variables [Xi]i # U . For a configuration ' # FA, let
P'

B denote the measure on FB which is the conditional distribution of the
variables [Xi]i # B given that the variables [Xi]i # A equal '. Finally let & &
denote the total variation norm of a finite signed measure. Then for all =>0,
there exists $>0 so that

(1) &PA _ B&PA_PB&�$ implies that for = most of the configura-
tions ' on A (with respect to PA), &PB&P'

B&�=.

(2) If for $ most ' on A (with respect to PA), we have that
&PB&P'

B&�$, then there exists a coupling [(X$i , X"i )]i # A _ B of [Xi]i # A _ B

with itself such that [X$i]i # A _ B and [X"i ]i # A are independent and such that

P(X$b=X"b for all b # B)�1&=.

(3) If there exists a coupling [(X$i , X"i )]i # A _ B of [Xi]i # A _ B with
itself such that [X$i]i # A _ B and [X"i ]i # A are independent and such that

P(X$b=X"b for all b # B)�1&$

then &PA _ B&PA_PB&�=.

Finally, $ can be taken to be =2�100 in (1), (2), and (3) above.

We leave the proof of the above lemma to the reader as a fairly simple
but instructive exercise. The last part of the lemma (which says that $ can
be taken to be =2�100) will only be used in the proof of Theorem 1.14.

We begin with three definitions in dimension 1 which are equivalent. It
is the first of these definitions which is usually taken as the definition of
weak Bernoulli. The third one, which looks quite complicated, will be the
one which generalizes to higher dimensions. All processes in this paper will
be assumed to take on only a finite number of values.
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Definition 1.2. A stationary process [Xn]n # Z is called one-sided weak
Bernoulli if

lim
n � �

&P(&�, 0] _ [n, �)&P (&�, 0]_P[n, �)&=0.

We mention that this condition was introduced by Kolmogorov (see
[20]) under the name absolutely regular and was discovered independently
in [11].

Definition 1.3. A stationary process [Xn]n # Z is called two-sided weak
Bernoulli if

lim
n � �

sup
k�0

&P(&�, &n] _ [0, k] _ [n+k, �)&P(&�, &n] _ [n+k, �) _P[0, k]&=0.

Definition 1.4. A stationary process [Xn]n # Z is called weak Bernoulli
(WB) if there exists a nonnegative random variable C so that for all n,
there exists a coupling (_1 , _2 , C� 1, C� 2) of two copies of the distribution of
[Xn]n # Z and two copies of the distribution of C (where we suppress the
dependence on n in the notation) so that

(1) _1 and _2 | [&n, n]c are independent (where _2 |U means the restric-
tion of _ to U) and

(2) A1 & A2 �[x : _1(x)=_2(x)] where

A1=[x # [&n, n]: C� 1�x+n]

and

A2=[x # [&n, n]: C� 2�n&x].

For each n, we call the above coupling which depends on n the n th coupl-
ing.

Motivation for this definition will come after Definition 1.6 but we men-
tion that there is some analogy between this definition and the one that
arises in Theorem 4.4.7 in [1].

Theorem 1.5. Let [Xn]n # Z be a stationary process. Then the following
are equivalent:

(i) [Xn]n # Z is one-sided weak Bernoulli.
(ii) [Xn]n # Z is two-sided weak Bernoulli.

(iii) [Xn]n # Z is weak Bernoulli.
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The notion of weak Bernoulli has been studied quite extensively and,
since it is natural to also study random fields (and their mixing properties),
it is natural as well to try to extend the notion of WB to higher dimensions.
The definition we give is the following.

Definition 1.6. A translation invariant measure + on AZd
is called

weak Bernoulli (WB) if there exists a nonnegative integer-valued stationary
process indexed by Zd&1, [Cm]m # Zd&1 , so that for all n, there exists a
coupling (_1 , _2 , [C� 1

m]m # Zd&1 , ..., [C� 2d
m ]m # Zd&1) of two copies of the dis-

tribution of + and 2d copies of the distribution of [Cm]m # Zd&1 (where we
suppress the dependence on n in the notation) so that

(1) _1 and _2 |B c
n

are independent (where Bn=[&n, n]d and _2 |U

means the restriction of _ to U ) and

(2) �2d
i=1 Ai �[x : _1(x)=_2(x)], where for i=1, 2, ..., d

Ai=[x # Bn : C� i
x̂i

�xi+n]

and for i=d+1, d+2, ..., 2d

Ai=[x # Bn : C� i
x̂i&d

�n&xi&d]

where x̂j=[x1 , ..., xj&1, xj+1, ..., xd].

For each n, we call the above coupling which depends on n the n th
coupling.

The reader may naturally wonder why our definition of WB is based
upon a generalization of Definition 1.4 rather than generalizations (which
the reader can easily come up with herself) of the much simpler Definitions
1.2 or 1.3. The reason is that the methods in [5] show that any process
which satisfies these natural generalizations are in fact finitely dependent,
also called m-dependent. This means that there is some fixed number k so
that the random variables associated to two index sets which are separated
by hyperplanes more than k apart are completely independent. (This
phenomenon is discussed further in [8].) This condition is then obviously
too strong. This is one of the motivations behind our definition of weak
Bernoulli in higher dimensions.

The idea behind the definition of WB is the following. We have two
copies of our process which are independent outside Bn and we want to
couple them inside the box. As we come inwards from the boundary of the
box, we have 2d coupling surfaces corresponding to the 2d sides of Bn . The
two processes are then coupled perfectly further inside Bn than all of the
coupling surfaces. The lower (d&1)-dimensional process corresponds to
how far these coupling surfaces are from their respective sides of Bn .
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We mention that it is quite straightforward to show that a random field,
which is WB according to the above definition, is a Bernoulli shift. The
way to do this is to prove that it is very weak Bernoulli and to use the
equivalence of this with being a Bernoulli shift (see [18]). Coupling techni-
ques have become an essential tool in recent years in studying phase trans-
itions in random fields (see [2�4]), as well as in studying mixing properties
(see [8]). We feel that the definition of WB given above ties together the
essence of these coupling techniques while extending the usual definition in
dimension 1 which has been studied extensively [5].

We now proceed to give two other variants of the above definitions in
dimension 1. We will only use the second definition when we generalize
these to higher dimensions. We feel it worthwhile to give the first and to
show the difference between these definitions because it illustrates the fact
that ``past�future'' definitions, such as Definition 1.2, do not always agree
with the corresponding ``inside�outside'' definition which is Definition 1.3
in this case.

Definition 1.7. A stationary process [Xn]n # Z is called one-sided quite
weak Bernoulli if for all =>0,

lim
n � �

&P(&�, 0] _ [=n+1, =n+n]&P(&�, 0] _P[=n+1, =n+n] &=0.

Definition 1.8. A stationary process [Xn]n # Z is called two-sided quite
weak Bernoulli if for all =>0,

lim
n � �

&P(&�, &=n] _ [0, n] _ [n+=n, �)&P (&�, &=n] _ [n+=n, �)_P[0, n] &=0.

Remark. We leave it to the reader to check that two-sided weak
Bernoulli implies two-sided quite weak Bernoulli and that two-sided quite
weak Bernoulli implies one-sided quite weak Bernoulli. Theorems 1.9 and
1.10 below tell us that the reverse implications fail.

Theorem 1.9 There exists a finite state stationary process [Xn]n # Z which
is one-sided quite weak Bernoulli but not two-sided quite weak Bernoulli.

Theorem 1.10. There exists a finite state stationary process [Xn]n # Z

which is two-sided quite weak Bernoulli but not two-sided weak Bernoulli.

We now relate the definition of weak Bernoulli to other related con-
ditions. The notion of two-sided quite weak Bernoulli generalizes easily
to higher dimensions and is studied in [8]. The notion of quite weak
Bernoulli with exponential rate, defined later, also comes from [8].

5COUPLING SURFACES AND WEAK BERNOULLI
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Definition 1.11. A translation invariant measure + on F Zd
is called

quite weak Bernoulli (QWB) if for all =>0,

lim
n � �

&+| (Zd"4n) _ 4n(1&=)
&+|Zd"4n

_+|4n(1&=)
&=0,

where 4n denotes [&n, n]d.
The next theorem tells us that (under certain moment conditions on the

lower dimensional process) weak Bernoulli implies QWB.

Theorem 1.12. Let + be a d-dimensional weak Bernoulli process with
associated (d&1)-dimensional process [Cm]m # Zd&1 . If E[|C0 | d&1]<�,
then + is QWB.

Remark. We remarked earlier that in dimension 1, WB implies two-
sided quite weak Bernoulli. This also follows from this last theorem since
the moment condition becomes vacuous. We would believe that in d�2
WB does not, in general, imply QWB and that examples of the type given
in Theorem 1.10 could be constructed which would show that QWB does
not imply WB. In addition, similar to the WB property, it can easily be
shown that the QWB property also implies that the field is a Bernoulli
shift.

A somewhat stronger condition than QWB is the following.

Definition 1.13. A translation invariant measure + on F Zd
is called

quite weak Bernoulli with exponential rate (QWBE) if for all =>0, there
exist constants #=>0, c=>1 so that

&+| (Zd"4n) _ 4n(1&=)
&+|Zd"4n

_+|4n(1&=)
&�c=e&#=n

for all n.

Various random fields satisfy the QWBE property. One of these is the
plus state for the Ising model at a variety of parameter values. Some of the
parameter values for which this property has been proved include d>2,
zero external field, and sufficiently high or sufficiently low temperature (see
[13] or combine the methods in [3] and [8]). See [15] for other
parameter values. Standard methods, together with a percolation result in
[9] show that for d=2 and zero external field, temperatures less than the
critical temperature belong to this class. Finally, it is proved in [17] that
for d=2, we are in this class if there is a zero external field and the tem-
perature is larger than the critical temperature or if there is a nonzero
external field and the temperature is arbitrary. The last two results show
that in two dimensions we always have the QWBE property, except if we
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are at the critical point where the external field is zero and the temperature
is the critical temperature.

Another collection of measures for which the QWBE property has been
established are certain measures of maximal entropy for subshifts of finite
type (see [8]). Subshifts of finite type (see [6] for a discussion) are certain
dynamical systems which arise in ergodic theory and which have connec-
tions to statistical mechanics. Such objects have natural measures
associated to them, the so-called measures of maximal entropy. In [8], it
is proved that for a certain family of subshifts of finite type, all the ergodic
measures of maximal entropy satisfy the QWBE property. Within this class
one can find, for any d and k, a subshift of finite type in d dimensions with
exactly k ergodic (and, hence, QWBE by the above) measures of maximal
entropy (see [7])

The QWBE property also implies a central limit theorem (under a non-
singularity assumption) (see [8]). In [19] it is shown that, under the
QWBE property, one can use empirical distributions to consistently
estimate the joint distribution of the random field assuming a necessary
entropy constraint.

Our next theorem relates WB to QWBE under an exponential moment
assumption.

Theorem 1.14. Let + be a d-dimensional weak Bernoulli process with
associated (d&1)-dimensional process [Cm]m # Zd&1 . If there exists $>0
such that E[e$C0]<�, then + is QWBE.

Remark. We have not discussed the notion of QWBE in dimension 1.
We believe that there is no implication between WB and QWBE in dimen-
sion 1, although we have not pursued this relationship. Note that, while the
moment condition in Theorem 1.12 is vacuous in dimension 1, this is not
the case in Theorem 1.14.

Our next theorem gives a concrete nontrivial example (the Ising model
with large interaction J and 0 external field) of a process which is weak
Bernoulli with an explicit construction of the lower dimensional process
which has a finite exponential moment. By the previous result this implies
that the process is QWBE. The fact that this process is QWBE was proved
in [8] and the methods used there will allow us to easily show that this
process is weak Bernoulli with the explicit construction of the lower dimen-
sional process. This will be the only part of the paper which is not self-con-
tained. We will not describe the Ising model here, but refer the reader to
[8] for a complete discussion. In any case, the methods and results in [8]
will be needed for the proof of Theorem 1.15.

7COUPLING SURFACES AND WEAK BERNOULLI
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Theorem 1.15. Let [Yn]n # Zd be the plus state for the ferromagnetic
Ising model with large interaction J and 0 external field. Then [Yn] is weak
Bernoulli with a lower dimensional process whose one-dimensional marginal
has a finite exponential moment.

Remark. Note that Theorem 1.15, together with Theorem 1.14, implies
that the plus state for the ferromagnetic Ising model with large interaction
J and 0 external field is QWBE.

Before concluding this introduction, we return to our earlier discussion
concerning how the natural extension of WB implies that the process is
finitely dependent. For illustrative purposes we will only do this in the case
where we are considering the ``mixing'' in the horizontal direction in two
dimensions. We now give a quick proof of one of the results in [5]; one
can certainly obtain stronger results. Since [5] assumes mixing, our result is
actually stronger. Note that &P((&�, 0] _ [n, �))_Z&P(&�, 0]_Z _P[n, �)_Z &
should be small for large n under a natural extension of the WB definition,
and that this quantity being zero means that events whose index sets are
more than n apart (horizontally) are independent. Therefore this last result
says exactly that (this natural definition of) WB implies that the process is
finitely dependent.

Theorem 1.16. Let [Xn]n # Z2 be a stationary process such that two inde-
pendent copies of it are ergodic under vertical translation (so-called weak
mixing). Then

&P((&�, 0] _ [n, �))_Z&P(&�, 0]_Z_P[n, �)_Z &

is either 0 or 2.

Proof. P((&�, 0] _ [n, �))_Z and P(&�, 0]_Z _P[n, �)_Z are both measures
on F ((&�, 0] _ [n, �))_Z (where F is the state space of the process) which are
ergodic under vertical translation. However, two ergodic measures are
either the same or mutually singular. K

The rest of the paper is devoted to proofs. In Section 2 we will prove
Theorem 1.5. In Section 3 we will prove Theorems 1.9 and 1.10. Finally in
Section 4 we prove Theorems 1.12, 1.14, and 1.15.

2. EQUIVALENCE OF DEFINITIONS

In this section we prove Theorem 1.5.

Proof of Theorem 1.5. The fact that two-sided weak Bernoulli implies
one-sided weak Bernoulli is easy and left to the reader. We first prove that

8 BURTON AND STEIF
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one-sided weak Bernoulli implies two-sided weak Bernoulli. Let =>0.
Choose N such that, for all n�N,

&P(&�, 0] _ [n, �)&P(&�, 0] _P[n, �)&�
=
3

.

Now let k�1 be arbitrary, and let A=(&�, &n], B=[0, k], and
C=[n+k, �). We then have that for all n�N,

&PA _ B _ C&PA _ C_PB&�&PA _ B _ C&PA _ B_PC&

+&PA _ B _PC&PA_PB_PC &

+&PA_PB_PC&PA _ C_PB&.

However, each of these three terms is at most =�3 and, as k is arbitrary, this
proves that the process is two-sided weak Bernoulli.

The fact that Definition 1.6 implies Definition 1.2 is trivial and left to the
reader.

For the more difficult direction we proceed as follows. We mention that
Theorem 4.4.7 in [1] is exactly a one-sided version of our Theorem 1.5 and
we refer the reader to this result. We will adapt the proof of this result to
our setting. The main idea will be to obtain a version of so-called maximal
couplings for a finite setting which is appropriate for our situation. See
[14] for an excellent treatment of the coupling method and where a main
result on maximal couplings due to Goldstein ([12]) is discussed. The sub-
probability measure + is said to dominate the subprobability measure & if
&(B)�+(B) for all measurable sets B. If \ and \$ are subprobability
measures, we let \ 7 \$ denote the maximum subprobability measure which
is dominated by both \ and \$ (see [14]).

We start off by showing how to couple two measures +1 and +2 on
X=A[ &n, ..., n] (A is a finite set) such that they are ``maximally coupled
from the inside outwards.''

Denote elements of X by ['(x), |x|�n] and for each i=0, ..., n, let Fi be
the _-algebra generated by the coordinates &i, ..., i and let F&1=[X, <].
We will now construct a coupling +1 �+2 such that, for all k=0, 1, ..., n,

1&+1 �+2(('1 , '2) : '1(x)='2(x) \|x|�k)=
&(+1)|Fk

&(+2)| Fk
&

2
.

It is easy to see [14] that for any coupling of +1 and +2 , the last
above = must be a �. Moreover, it is easy to obtain a coupling where
equality holds for a fixed k (see [14]), but the point is to construct a
coupling, such that equality holds for all k. The idea is to modify the

9COUPLING SURFACES AND WEAK BERNOULLI
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method in [12]. To do this, we first consider n+1 subprobability
measures,

(+1 , +2)(&1), (+1 , +2)(0), ..., (+1 , +2)(n)

(where (+1 , +2)(i) is defined on the measurable space (X, Fi)), which are
defined as follows.

Let (+1 , +2)(n)=+1 7 +2 and for i=&1, 0, ..., n&1, let

(+1 , +2)(i)=(+1)| Fi
7 (+2)|Fi

&((+1)|Fi+1
7 (+2)|Fi+1

)Fi
.

We leave to the reader to check that this yields a subprobability measure,
in particular, that it does not give any set negative measure. Note that
�n

i=&1 &(+1 , +2)(i)&=1. For i=0, ..., n, let &i be the probability measure on
(X, Fi) obtained by normalizing (+1 , +2)(i) to be a probability measure. As
in the proof of the maximal coupling result (see [14]), one can find prob-
ability measures [&$i]n

i=&1 on X_X such that

(1) For i=0, 1, ..., n, &$i restricted to Fi , has &i as its two marginals
and couples them perfectly (i.e., &$i (('1 , '2) : '1(x)='2(x) \|x|�i)=1), and

(2) �n
i=&1 &(+1 , +2)(i)& &$i is a coupling of +1 and +2 .

Once we have this, it follows easily that

1&+1 �+2(('1 , '2) : '1(x)='2(x) \|x|�k)=
&(+1)|Fk

&(+2)| Fk
&

2

for all k=0, 1, ..., n where

+1 �+2= :
n

i=&1

&(+1 , +2)(i)& &$i .

Returning to our stationary process, which we view as a (shift invariant)
measure + on X=AZ, we let +n be the restriction of + to the coordinates
between &n and n and, if ' # X, we let +n

' be the conditional distribution
of + on the coordinates between &n and n, given that ' is the configuration
at the other coordinates.

We next let mn be the probability measure on the nonnegative integers
N given by

mn(i)=|
X

&(+n, +n
')(n&i)& d+(').

Note that mn is concentrated on [0, ..., n+1]. Heuristically, mn(i) is the
average probability that we need to go i steps toward the origin before

10 BURTON AND STEIF
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coupling +n and +n
' perfectly. We leave to the reader to check that the two-

sided weak Bernoulli assumption implies that the family of probability
measures [mn]n�1 is tight. It is easily seen that tightness implies in turn the
existence of a probability measure m on N such that for all n and for all
i, mn([i, �))�m([i, �)). We claim that m is the zero-dimensional process
(i.e., a probability measure on N) required by Definition 1.6 to show that
our process is weak Bernoulli. To do this, one uses the measures +n�+n

' ,
together with the method of proof of Theorem 4.4.7 in [1], to complete the
proof. K

3. 1D COUNTEREXAMPLES

In this section we prove Theorems 1.9 and 1.10.

Proof of Theorem 1.9. Let [Yn]n # Z be an i.i.d. process with P(Yn=
1)= 1

2=P(Yn=0).
For M�1, we define an M-block to be a block

0111 } } } 1110

with 2M ones between 2 zeros (which has length 2M+2). We say that an
M-block is good if there are no (M+I )-blocks, I�1, between this M-block
and the preceding M-block (if one exists).

We next let [Vn]n # Z be a factor of (a function of) the process [Yn], tak-
ing values [0, 1, <], which is defined as follows. If n # Z is one of the first
M ones in a good M-block for some M�1, we then let

Vn= :
i
0

i=1

Yn&iM (mod 2),

where i0=sup [i | Yn& jM does not occur in an M-block for j=1, ..., i].
(Since n can belong to at most one M-block, Vn is well defined.) If n # Z
is not one of the first M ones in a good M-block for any M�1, we let
Vn=<. We finally consider the stationary process [Xn]n # Z defined by
[(Yn , Vn)]n # Z (which is a factor of [Yn]).

We say that a stationary process [Zn] is bilaterally deterministic (BD) if
�n�1 _(Zi , |i |�n)=_(Zi , i # Z), where the above equality is meant
modulo the probability measure. Recall that two _-algebras are equal
modulo a measure means that, for each set in the first _-algebra, there is
a set in the second _-algebra whose symmetric complement with the first
set has probability 0 and conversely.

The first step in this proof is to show that [Xn] is BD since then it will
easily follow that [Xn] is not two-sided quite weak Bernoulli, as it is

11COUPLING SURFACES AND WEAK BERNOULLI
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trivial to show that a two-sided quite weak Bernoulli process cannot be BD
unless the entire process consists of one atom.

To do this, we first leave it to the reader to check that to show BD, it
suffices to show that for all l�1, _(Xi , |i |�l)�_(Xi , |i |>l), where again
the containment is meant modulo the probability measure. We now fix
such an l.

We will show that with probability 1 for all values of M except for
finitely many, there exists a good M-block entirely to the right of l with the
next M-block to the left being entirely to the left of &l. Denote this event
by U. Assuming U has probability 1, we proceed as follows.

We need to determine the values of the Yn for |n|�l as a function of
[Xn] |n|>l . (Once we do this, we can determine the values of the Xn for
|n|�l, since the Vn 's are simply functions of the Yn 's.) This is done as
follows. Let s be the first 0 to the right of l in the [Yn] process, and t be
the first 0 to the left of &l. As P(U)=1, there is a.s. an M satisfying
2M>s&t and M�2l+1, such that there is a good M-block entirely to
the right of l whose preceding M-block is entirely to the left of &l.
We consider the smallest such M and we call the corresponding good
M-block B.

Now, let n be such that |n|�l. Let r be the unique point among the first
M ones in B with the property that r&n is a multiple of M. By construc-
tion,

Vr= :
i
0

i=1

Yr&iM (mod 2),

where i0=sup [i | Yr& jM does not occur in an M-block for j=1, ..., i].
Since r&n is a multiple of M, Yn is one of the terms in the above sum and,
in addition, Vr , i0 , and all the terms in the above sum, except for Yn , are
in _(Xi , |i |>l), since M�2l+1. Therefore, using the above sum, we see
that Yn is also in _(Xi , |i |>l). (We point out that the reason we required
that 2M>s&t is to ensure that i0 # _(Xi , |i |>l).)

We now show that U has probability 1. Let

_M=inf [i�l+1: i is the left point of an M-block]

and

bM=sup [i� &l&1: i is the right point of an M-block]

which are well defined a.s. Let 0 be the event of probability 1, such that
aM and bM exist and are finite for all M. Let EM be the event that there

12 BURTON AND STEIF
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is an M$-block between bM and aM for some M$>M. The first step is to
show that

:
M

P(EM)<�, (2.1)

a computation left to the reader. Since only finitely many M-blocks can
intersect [&l, ..., l], it is clear that 0 & [EM i.o.]c=U and so U has prob-
ability 1 by the Borel�Cantelli lemma.

The next step of the proof is to show that [Xn] is one-sided quite weak
Bernoulli. To show this, it suffices by Lemma 1.1 to show that, \=>0, there
exists N such that \n�N, there exists a coupling [(X� k , X�� k)]k # Z of
[Xk]k # Z with itself, such that

[X� k]k # Z and [X�� k]0
k=&� are independent (V)

and

P(X� k=X�� k \k # [=n+1, ..., =n+n])�1&=. (VV)

We denote by a(n) the nearest integer to log2 log2(n).
Let =>0. Choose N so that for all n�N

(1) If Wi are i.i.d. with P(Wi = 1) = 1�4 = 1 & P(Wi = 0), then
P(min[i : Wi=1]�=n�4)�1&=�4

(2) (22a(n)&1
)4�3 (2a(n)&1+2)�=n�2

(3) If we have w(22a(n)&1
)4�3x independent events, each with probabil-

ity at least 1
2

(2a(n)&1+2) of occurring, then at least one of them will occur with
probability �1&=�4,

(4) ��
j=1

1
2

(2a(n)+j+2)(2a(n)+ j+1+n)<=�4 and

(5) The probability that the first a(n)-block after 0 is good is
�1&=�8.

(A straightforward computation left to the reader is required to see that
such an N exists.) We now let n�N.

We now construct the desired coupling satisfying (V) and (VV). We first
let Mn=a(n). Let [X$k]k # Z and [X"k]k # Z be independent, each having the
same distribution as [Xk]k # Z . [X� k]k # Z and [X�� k]k # Z will now be defined
as functions of [X$k]k # Z and [X"k]k # Z . We let X� k=X$k for all k and
X�� k=X"k for all k�0. This of course implies (V) above immediately. If
n0=min[i�1: Y$i=Y"i=0]�=n�4, then let Y�� k=Y"k for all k�n0 , let

13COUPLING SURFACES AND WEAK BERNOULLI
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Y�� k=Y� k for all k>n0+Mn and, for k # [n0+1, ..., n0+Mn], let Y�� k be such
that

:

j
0

j=0

Y� k& jMn
= :

j $
0

j=0

Y�� k& jMn
(2.2)

where j0=sup [ j : Y� k&lMn
is not in an Mn-block for l=1, ..., j] and

j $0=sup [ j : Y�� k&lMn
is not in an Mn-block for l=1, ..., j]. If n0>=n�4, then

let Y�� k=Y"k for all k. The Vk 's are then simply defined as they are forced
to be. (The point of using n0 is that, after time n0 , the Yk 's are independent
of [Xk]k�n

0
, although the Vk 's are not.)

To complete the proof, we need to show that

(a) [X�� k]k # Z and [Xk]k # Z are equal in distribution and

(b) P(X� k=X�� k \k # [=n+1, =n+n])�1&=.

(a) is straightforward and left to the reader.
For (b) one proceeds as follows. Let A1=[n0�=n�4], A2 be the event

that there is an (Mn&1)-block completely contained in [=n�2+1, ..., =n]
for [X$k], A3 be the event that there is no (Mn+ j)-block ( j�1) intersect-
ing [=n+1, =n+n] for [X$k] and A4 be the event that, for both processes
[Y� k] and [Y�� k], the first a(n)-block after =n�2 is good. We now show
that P(A1 & A2 & A3 & A4)�1&= and A1 & A2 & A3 & A4�[X� k=X�� k \k #
[=n+1, =n+n]].

The inequality is obtained by noting that (1) implies that P(A1)�
1&=�4, (2) and (3), together with an easy computation, imply that P(A2)�
1&=�4, (4), together with an easy computation, implies that P(A3)�1&=�4,
and (5) implies that P(A4)�1&=�4.

Next, to show the desired containment, one first notes that if n0�=n�4,
then n0+Mn is �=n�2 (as (2) certainly implies that a(n)�=n�4); thus
Y� k=Y�� k for all k�=n�2. We need to show that V� k=V�� k for all
k # [=n+1, =n+n]. The fact that Y� k=Y�� k for all k�=n�2 and the event A2

together imply that any M-block for M�Mn&1, intersecting
[=n+1, =n+n], is good for Y� , if and only if it is good for Y�� and in this
case, one does not need to look at the Yj values for j�=n�2 to determine
the Vr values. So the Vr values in this case will be the same for X� and X�� .
The event A3 implies that there are no Mn+ j-blocks intersecting
[=n+1, =n+n] for j�1 and we need not worry about these. Finally, we
need to consider Mn-blocks intersecting [=n+1, =n+n]. We claim that for
any Mn-block for X� (or equivalently for X�� ) which is entirely to the right
of =n�2, the corresponding Vr 's in X� and X�� will be the same. (Note that any
Mn-block intersecting [=n+1, =n+n] is necessarily entirely to the right
of =n�2, since 2a(n)+2<=n�2). Letting B be the first (not necessarily good)

14 BURTON AND STEIF
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Mn-block entirely to the right of =n�2, it is clear that this is the case for all
such Mn-blocks with the possible exception of B. Finally, (2.2) together
with (5), ensures that this holds for the block B as well. K

Proof of Theorem 1.10. Let [Yn]n # Z be an i.i.d. process with P(Yn=1)
= 1

2=P(Yn=0). For M�17, we define (as in the proof of Theorem 1.9) an
M-block to be a block

0111 } } } 1110

with 2M ones between 2 zeros (and, hence, has length 2M+2). We say that
two successive M-blocks are pairwise good if there are no (M+I )-blocks,
I�1, between them.

Given a realization of the [Yn] process, we next let [Vn]n # Z be a pro-
cess taking values [0, 1, <], which is defined as follows. If r, s # Z are such
that there exist M-blocks B1 and B2 (in the [Yn] process) which are
pairwise good (with B1 being to the left of B2) and with r being the last 1
in B1 and s being the first 1 in B2 , we then let

(1, 1) with probability
1
4

+
1

- M

(Vr , Vs)=
(0, 0) with probability

1
4

+
1

- M

(1, 0) with probability
1
4

&
1

- M

(0, 1) with probability
1
4

&
1

- M
.

These pairs (Vr , Vs) are chosen independent for different pairs r, s as
above, and Vk=< for the remaining integers k. It is clear that
[Xn]n # Z=[(Yn , Vn)n # Z] is a stationary process. We claim that [Xn]n # Z

is two-sided quite weak Bernoulli, but not weak Bernoulli. We first show
the former.

Let A(n, =)=(&�, &=n] _ [=n+n, �) and B(n, =)=[0, n]. To show
that [Xn]n # Z is two-sided quite weak Bernoulli, it suffices by Lemma 1.1
to show that \=>0 there exists N such that \n�N, there exists a coupling
[(X� k , X�� k)]k # Z of [Xk]k # Z with itself such that

[X� k]k # Z and [X�� k]k # A(n, =) are independent (V)
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and

P(X� k=X�� k \k # B(n, =))�1&=. (VV)

As before, we denote by a(n) the nearest integer to log2 log2(n). Let =>0.
Choose N so that for all n�N,

(1) (22a(n)&1
)4�3(2a(n)&1+2)�=n;

(2) If we have w(22a(n)&1
)4�3x independent events, each with probabil-

ity of at least 1
2

(2a(n)&1+2) of occurring, then at least one of them will occur
with probability �1&=�8;

(3) ��
j=1

1
2

(2a(n)+j+2)(2a(n)+ j+1+3n)<=�4;

(4) P(Gn)�1&=�4, where Gn will be given later in the proof (at
which point, we will need to check that this is possible), and

(5) 4�- a(n)<=�4.

(A computation is required to see that such an N exists.) We now let
n�N. We now construct the desired coupling satisfying (V) and (VV). We
first let Mn=a(n).

Let [Y� k]k # Z , [Y�� k]k # A(n, =) be i.i.d. taking values 0 and 1 with probabil-
ity 1

2 each. For k � A(n, =), let Y�� (k)=Y� (k). Let E be the event that there is
an (Mn&1)-block completely contained in [&=n+1, 0] and an (Mn&1)-
block completely contained in [n, n+=n&1] for the process [Y� k]k # Z (or
equivalently for the process [Y�� k]k # Z ). Let F be the event that no (Mn+ j)-
block (for j�1) intersects [&=n, n+=n]. If (E & F )c occurs, we then
choose all the Vj 's for the two processes independently. However, if (E & F )
occurs, we proceed as follows. Let B1 denote the (Mn&1)-block furthest to
the right which is completely contained in [&=n+1, 0] and let B2 denote
the (Mn&1)-block furthest to the left, which is completely contained in
[n, n+=n&1]. All Vj 's for good pairs of (Mn+ j)-blocks ( j�1) are chosen
independently in the two processes [X� k]k # Z and [X�� k]k # Z . For pairs of
(Mn& j)-blocks ( j�1) which are good and which are between (or at) B1

and B2 in the two processes (recall that the Yk 's are the same in the two
process on A(n, =)c, and so these pairs would be in the same location in the
two processes), we use the same Vk 's for the two processes. For all other
pairs of (Mn& j)-blocks ( j�1) which are good, we use independent Vk 's
for the two processes. (Note that by construction such pairs necessarily do
not intersect [0, n].)

To finish the construction, we need to describe what we do for good Mn -
block pairs. If a good pair of Mn-blocks is between B1 and B2 in the two
processes, we use the same Vk 's for the two processes. For good pairs of
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Mn-blocks where neither block is between B1 and B2 , we use independent
Vk 's in the two processes. Finally, consider the leftmost Mn-block between
B1 and B2 (if one exists) in the two processes. If at least one of them is not
the right block in a good pair of Mn-blocks, then let the corresponding
Vk 's be independent (and < for at least one of them). If they are both the
right block in a good pair of Mn -blocks, then, if z denotes the location of
the left most 1 in this Mn-block, w denotes the location of the rightmost
1 in the corresponding Mn -block for the Y� process and w$ denotes the
rightmost 1 in the corresponding Mn-block for the Y�� process (of course, w
need not equal w$), we let

(1, 1, 1, 1) with probability
1
4 \

1
2

+
2

- Mn
+

(1, 0, 1, 0) with probability
1
4 \

1
2

&
2

- Mn
+

(1, 1, 0, 1) with probability
1
4 \

1
2

&
2

- Mn
+

(1, 0, 0, 0) with probability
1
4 \

1
2

&
2

- Mn
+

(V� (w), V� (z), V�� (w$), V�� (z))=

(1, 1, 0, 0) with probability
1

- Mn

(0, 1, 1, 1) with probability
1
4 \

1
2

&
2

- Mn
+

(0, 0, 1, 0) with probability
1
4 \

1
2

&
2

- Mn
+

(0, 0, 1, 1) with probability
1

- Mn

(0, 0, 0, 0) with probability
1
4 \

1
2

+
2

- Mn
+

(0, 1, 0, 1) with probability
1
4 \

1
2

&
2

- Mn
+ .

The point of the above coupling is that we must do it so that
(V� (w), V� (z)) has the correct joint distribution, (V�� (w$), V�� (z)) has the correct
joint distribution, (V� (w), V� (z)) and V�� (w$) are independent, and so that
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File: DISTIL 167618 . By:DS . Date:27:11:97 . Time:13:02 LOP8M. V8.0. Page 01:01
Codes: 3317 Signs: 2503 . Length: 45 pic 0 pts, 190 mm

V� (z) and V�� (z) are coupled in a good way. Note that the above procedure
couples V� (z) and V�� (z) correctly with probability 1&2�- Mn .

Finally, we need to proceed analogously with the rightmost Mn-block
between B1 and B2 , if one exists.

It easily follows from our construction that [(X� k , X�� k)]k # Z is a coupling
of [Xk]k # Z with itself satisfying (V) above.

To verify (VV), let Gn be the event that there is no Mn -block between B1

and B2 , or if there is at least one, then the leftmost one is the right block
in a good pair of Mn -blocks for both processes and the rightmost one is
the left block in a good pair of Mn-blocks for both processes. It is clear
that P(Gn) is �1&=�4 for large n and so (4) above holds.

It follows from the construction and the degree to which V� (z) and V�� (z)
are coupled that, conditioned on E & F & Gn occurring, [X� k=X�� k \k #
B(n, =)] has exactly probability (1&2�- Mn )2 (which is �1&=�4 by (5)).
Next, (1) and (2), together with a computation give P(E)�1&=�4, and
(3), together with a computation, implies P(F )�1&=�4. This proves (VV)
and completes the proof that [Xn] is two-sided quite weak Bernoulli.

We now proceed to show that [Xn] is not weak Bernoulli. Let == 1
2. If

[Xn] were weak Bernoulli, it would follow that there exists l such that
there exists a coupling [(X� k , X�� k)]k # Z of [Xk]k # Z with itself such that

[X� k]k # (&�, 0] _ [l, �) and [X�� k]k # (&�, 0] are independent (V)

and

P(X� k=X�� k \k # [l, �))� 1
2 . (VV)

Note that the definition of weak Bernoulli really only tells us that there
is a coupling [(X� k , X�� k)]k # (&�, 0] _ [l, �) of [Xk]k # (&�, 0] _ [l, �) with itself
with properties (V) and (VV). However, if one has the latter coupling, then
it is always possible to construct the former coupling (see Extension
Lemma 4.2.4 in [1])

We now show that for all l no such coupling exists. Let l be given and
assume we are given such a coupling. Let S be the random set of integers
s with the property that for both the processes [X� k]k # Z and [X�� ]k # Z there
is no s-block intersecting [0, l], and that there is a good pair of s-blocks
with the left one contained in (&�, 0) and the right one contained in
(l, �). If s # S, let Fs be the left s-block and let Hs be the right s-block in
the good s-block pair with the above property in the first process [X� ]k # Z

(so that Fs �(&�, 0) and Hs �(l, �)), and let F $s be the left s-block and
let H$s be the right s-block in the good s-block pair with the above property
in the second process [X�� k]k # Z . Of course, if X� k=X�� k \k # [l, �), then
Hs=H$s for all s # S.

18 BURTON AND STEIF
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Next, a computation similar to that needed to prove (2.1) shows that,
with probability 1, |n"S|<�. Enumerate S as n1 , n2 , .... Let Qk be the Vi

variable at the rightmost 1 of Fnk
in the [X� ] process, Q$k be the Vi variable

at the rightmost 1 of F $nk
in the [X�� ] process, Rk be the Vi variable at the

leftmost 1 of Hnk
in the [X� ] process, and R$k be the Vi variable at the

leftmost 1 of H$nk
in the [X�� ] process. By the assumption of the coupling,

we have that

P(Rk=R$k \k�1)� 1
2 . (2.3)

We now have the i.i.d. sequence [(Q$k , R$k)]k�1 , where each marginal
has distribution

\1
4

+
1

- nk
+ $(1, 1)+\1

4
+

1

- nk
+ $(0, 0)+\1

4
&

1

- nk
+ $(1, 0)+\1

4
&

1

- nk
+ $(0, 1) ,

and the i.i.d. sequence [(Q$k , Rk)]k�1 , where each marginal has distribu-
tion

1
4$(1, 1)+

1
4$(0, 0)+

1
4$(1, 0)+

1
4 $(0, 1) ;

(2.3) now gives us that

P((Q$k , Rk)=(Q$k , R$k) \k�1)� 1
2 .

Finally we obtain a contradiction as follows. Since there are only coun-
tably many cofinite sequences of integers (nl) and S is cofinite a.s., there
must be a cofinite sequence (n$l) such that

P([S=(n$l)] & [(Q$k , Rk)=(Q$k , R$k) \k�1])>0.

However, the Kakutani dichotomy for product measures (see [10]) and
the fact that

:
l�1

\ 1

- n$l+
2

=�

imply that the conditional distributions of (Q$k , Rk) and (Q$k , R$k) given
S=(n$l) (which are each product measures) are mutually singular. K
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4. SOME PROPERTIES OF WEAK BERNOULLI

In this section, we give the proofs of Theorems 1.12, 1.14, and 1.15.

Proof of Theorem 1.12. Let B$n=[&n, n]d&1 ([0] if d=1). We first
note that for any coupling ([C� 1

j ]j # B$n
, ..., [C� 2d

j ]j # B$n
) of 2d copies of [Cj]j # B$n

,
we have that for any =>0,

P( max
(i, j) # [1, 2d]_B$n

C� i
j�=n)�(2n+1)d&1 2d max

i # [1, 2d]
P(C0�=n)

and the latter goes to 0 as n � � by the finite (d&1)th moment assump-
tion.

For each n, let Gn be the random subset of Bn , where _1 and _2 agree
in the n th coupling given to us in the definition of weak Bernoulli. We then
have (where P denotes the nth coupling),

P(4n(1&=) �3 Gn)�P( max
(i, j) # [1, 2d]_B$n

C� i
j�=n)

which goes to 0 as n � � by the above. In view of Lemma 1.1, this proves
that + is QWB. K

Proof of Theorem 1.14. Let B$n=[&n, n]d&1 ([0] if d=1). We first
note that for any coupling ([C� 1

j ]j # B$n
, ..., [C� 2d

j ]j # B$n
) of 2d copies of [Cj]j # B$n

,
we have that for any =>0,

P( max
(i, j) # [1, 2d]_B$n

C� i
j�=n)�(2n+1)d&1 2d max

i # [1, 2d]
P(C0�=n)

and the latter is at most c=e&#=n for all n and for some positive constants
c= and #= by the exponential moment assumption.

For each n, let Gn be the random subset of Bn , where _1 and _2 agree
in the n th coupling given to us in the definition of weak Bernoulli. We then
have (where P denotes the nth coupling),

P(4n(1&=) �3 Gn)�P( max
(i, j) # [1, 2d]_B$n

C� i
j�=n)

which is at most c=e&#=n for all n by the above.
We now use the last statement in Lemma 1.1 which says that $ can be

taken to be =2�100. This implies the QWBE property with perhaps two new
constants c= and #= . K

Proof of Theorem 1.15. The lower (d&1)-dimensional stationary pro-
cess [Ck]k # Zd&1 will be a function of [(Y$n , Y"n)], where [Y$n] and [Y"n]
are independent copies of [Yn]. For k # Zd&1, let Ck be 1 plus the

20 BURTON AND STEIF



File: DISTIL 167621 . By:DS . Date:27:11:97 . Time:13:02 LOP8M. V8.0. Page 01:01
Codes: 3292 Signs: 2248 . Length: 45 pic 0 pts, 190 mm

supremum of the nonnegative integers l such that there is a path from the
(d&1)-dimensional lattice [( j1 , j2 , ..., jd&1 , 0) : ( j1 , j2 , ..., jd&1) # Zd&1]
to (k, l) such that at every point on this path, at least one of Y$ and Y"
takes the values &1. If there is no such nonnegative integer l with this
property, Ck is taken to be 0. While it is clear that [Ck]k # Zd&1 is station-
ary, it is not obvious that the value � is not obtained with positive prob-
ability. However, the fact that C0 has an exponential moment (and there-
fore of course that � is obtained with zero probability) is contained in
Proposition 2.4 in [8].

We now show that [Yn] is weak Bernoulli with respect to [Ck]. Given
n�1, we now construct a coupling [_1 , _2 , [C� 1

k]k # Zd&1 , ..., [C� 2d
k ]k # Zd&1) of

two copies of [Yn] and 2d copies of [Ck] such that

(1) _1 and _2 |Bc
n are independent, and

(2) �2d
i=1 Ai �[x : _1(x)=_2(x)], where for i=1, 2, ..., d

Ai=[x # Bn : C� i
x̂i

�xi+n]

and for i=d+1, d+2, ..., 2d

Ai=[x # Bn : C� i
x̂i&d

�n&xi&d],

where x̂j=[x1 , ..., xj&1, xj+1, ..., xd].

Our n is fixed. Let _$ and _" be independent copies of [Yn]. We will now
define _1 , _2 , [C� i

n]n # Zd&1 , i=1, ..., 2d, simply as functions of _$ and _",
which gives a coupling with (1) and (2) satisfied. We first take _1 simply
to be _$.

For i=1, 2, ..., d, let C� i
k be 1 plus the supremum of the nonnegative

integers l, such that there is a path from the (d&1)-dimensional lattice
[( j1 , ..., ji&1, &n, ji+1 , ..., jd) : ( j1 , ..., ji&1 , ji+1 , jd) # Zd&1] to (k, l&n),
such that at every point on this path at least one of _$ and _" takes the
value &1. If there is no such nonnegative integer l with this property, C� 1

k

is taken to be 0.
For i=d+1, d+2, ..., 2d, let C� i

k be 1 plus the supremum of the non-
negative integers l, such that there is a path from the (d&1)-dimensional
lattice [( j1 , ..., ji&1, n, ji+1 , ..., jd) : ( j1 , ..., ji&1 , ji+1, jd) # Zd&1] to (k, n&l),
such that at every point on this path at least one of _$ and _" takes the
value &1. If there is no such nonnegative integer l with this property, C� 1

k

is taken to be 0.
The final step is to use the notion of separating sets (see [8]). Letting

V=[x # Bn : _$(x)=_"(x)], it is easily seen that any point z # �2d
i=1 Ai

(which is now defined since the lower dimensional processes are defined) has
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the property that any path from z to the boundary of Bn necessarily inter-
sects V. Consider the set S of all subsets W of V which have the property
that for any point z # �2d

i=1 Ai , any path from z to the boundary of Bn

necessarily intersects W. (Of course, V is in S). One can show (see [8])
that there is a set W$ # S which is minimal (no proper subset of W$ is in
S) and has the property that any other set W" # S is contained within the
volume surrounded by W$, in that if b � W$ is such that there is a path
from b to the boundary of Bn not intersecting W$ (in words, b is outside
the volume surrounded by W$) then there is a path from b to the boundary
of Bn not intersecting W".

We finally let _2 be _$ on W$ and at all points with the property that any
path from them to the boundary of Bn intersects W$ (in words, those points
which are surrounded by W$), and let _2 be _" at all other points. This
gives us a coupling which clearly satisfies all the required properties, except
perhaps that _2 has the correct distribution. However, this last property
follows from the Markov property (see [8] for more details). K
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