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Background: High levels of dietary sugar consumption may result in dysregulated glucose metabolism and
lead to elevated cardiovascular disease risk via autonomic nervous system and cardiovascular dysfunction.
Altered cardiovascular function can be examined using perturbation tasks such as mental challenge. This
study examined the effects of controlled glucose intake on cardiovascular measures at rest and in responses
to mental challenge in a laboratory setting.
Method: Using a double blind within-subjects design, participants were monitored at baseline, following in-
gestion of a glucose or taste-control solution, during structured speech (SS), anger recall (AR) and recovery
(N=24, 288 repeated measures; age=21±2 years). Pre-ejection period (PEP), heart rate (HR), stroke
index (SI), cardiac index (CI), blood pressure and total peripheral resistance (TPR) were measured through-
out the protocol.
Results: Glucose resulted in sustained decreased PEP levels compared to control condition (Δ=11.98±9.52

vs. 3.27±7.65 m·s, Pb .001) and transient increases in resting HR (P=.011), CI (P=.040) and systolic blood
pressure (P=.009). Glucose did not result in increased cardiovascular reactivity to mental challenge tasks,
but was associated with a delayed HR recovery following AR (P=.032).
Conclusion: Glucose intake resulted in a drop in PEP indicating increased sympathetic nervous system activ-
ity. No evidence was found for glucose-related exaggerated cardiovascular responses to mental challenge.
Dysregulated glucose metabolism may result in elevated cardiovascular disease risk as a result of repeated
glucose-induced elevations of sympathetic nervous system activity.
© 2012 Elsevier Inc. Open access under the Elsevier OA license.
Introduction

The consumption of foods containing high levels of sugar is correlat-
ed with cardiovascular disease risk factors, including impaired glucose
metabolism, obesity, dyslipidemia, Type 2 diabetes, and hypertension
[1–3]. Multiple biological pathways are involved in these adverse out-
comes, including glucose related dysregulation of vascular biology and
function. Most research addressing sugar intake and cardiovascular
risk is cross sectional and based on self-reported usual dietary habits.
Little is known about the effects of systematically controlled glucose in-
gestion on autonomic nervous system and cardiovascular function.

Previous investigations of the effects of acute glucose ingestion on
resting cardiovascular function have demonstrated potent hemodynamic
effects characterized by increases in cardiac output (CO), heart rate (HR),
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systolic blood pressure (SBP), and superior mesenteric artery flow and
decreases in diastolic blood pressure (DBP) and total peripheral resis-
tance (TPR) [1,4]. These glucose-induced hemodynamic alterations re-
flect, at least in part, increased demands from the gut for blood for
digestive activities.

Evidence suggests that acute ingestion of glucose results in in-
creased mental challenge-induced hypothalamic–pituitary–adrenal
(HPA) axis activity [5,6], as well as TPR and attenuated challenge-
induced elevation of CO [1]. Other research indicates that ingestion
of a gelatin-based drink containing “complex carbohydrates” is asso-
ciated with increased CO and SBP and decreased TPR at baseline and
increased HR reactivity to mental challenge [7]. These studies are
clinically important because elevated autonomic nervous system
and cardiovascular responses to mental challenge and delayed recov-
ery have been linked to cardiovascular disease risk factors [8,9]. How-
ever, these studies did not control for perceived sweetness and the
possibility for subsequent cephalic phase insulin release in responses
to oral glucose intake. In addition, these investigations have used
mental arithmetic and reaction time tasks and such tasks may have
limited generalizability to real life stressors [10].
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The present study examined the effects of standardized oral glu-
cose ingestion versus a taste-based control condition (i.e., sucralose)
on cardiovascular responses to standardized mental challenge tasks
in a laboratory setting. The control solution was used to ensure com-
parability in the perceived sweetness of the glucose and control solu-
tions. The mental challenge protocol involved personally relevant
structured speech tasks to evoke robust emotional and cardiovascular
responses [10]. Using a fully counter-balanced within-subject design
we tested the hypothesis that: (1) oral glucose results in altered rest-
ing levels of cardiovascular measures. Specifically it was expected
that glucose would result in a reduction of the pre-ejection period
(PEP), an indicator of sympathetic nervous system activity [11–14],
(i.e., and increases in other cardiovascular measures associated with
increased cardiac demand (HR, CO, SBP, DBP and TPR)). (2) Oral glu-
cose results in exaggerated mental challenge-induced cardiovascular
responses. We also explored whether glucose resulted in delayed re-
covery from the mental challenge tasks.

Methods

Participants

Participants aged 18–26 years were enrolled from a university-
based community. Exclusion criteria were current use of medications
known to alter cardiovascular function, body mass index (BMI)
>30 kg/m2, self-reported history of cardiovascular disease, diabetes,
asthma, recent surgery/medical procedure, and any other major med-
ical disorder. The sample was restricted to men only because ade-
quate control for menstrual cycle variations was not feasible given
the within-subjects design and the overall scope of the study. Partic-
ipants with valid data for HR, blood pressure and impedance derived
variables were included (N=24/26; 92%). Demographic and average
baseline cardiovascular indices are displayed in Table 1. The protocol
was approved by the University of Maryland, Baltimore County's In-
stitutional Review Board. All participants provided written informed
consent and were paid $80 for taking part in the study.

Procedures

The protocol involved two testing sessions (one oral glucose ad-
ministration and one control administration) separated by one week
(±3 days). The glucose vs. control conditions were administered in
a double-blind fashion and the order of administration (i.e., whether
the first session involved glucose administration and the second
session the control condition, or the reverse order) was randomized
Table 1
Participant characteristics

Mean±S.D. or N (%)

Demographic measures
Age (years) 20.9±2.4
Race

Caucasian 16 (66.7%)
African American 5 (20.8%)
Asian 1 (4.2%)
Latino 2 (8.3%)

BMI (kg/m2) 24.5 (2.2)

Baseline physiological measures
PEP (m·s) 129.9±12.1
HR (bpm) 63.4±9.6
SI (mL/beat/m2) 45.7±15.7
CI (L/min/m2) 2.7±0.72
TPR (dyn/cm2/s) 1300.0±326.8
SBP (mm Hg) 114.4±5.8
DBP (mm Hg) 58.5±6.5
MAP (mm Hg) 80.6±6.6
across participants. Participants were asked to fast overnight and ab-
stain from caffeine and alcohol consumption for 24 h prior to the
study. Two mental challenge tasks were used during each session
(structured speech and anger recall).

All experimental sessions started between 0800 and 1200 h and
times of testing were kept consistent within participants (±1 h). As-
sessments were obtained in a sound-attenuated, climate controlled
room. Participants provided written informed consent prior to being
instrumented with the physiological monitoring equipment.

The protocol for each of the two sessions (glucose or control)
consisted of six phases: (I) pre-ingestion of glucose or control: “base-
line”; (II) post-ingestion resting levels; (III) SS; (IV) recovery SS; (V)
AR; and (VI) recovery AR. Thus, data were collected at 12 time-points
for each participant during two separate sessions (six glucose inges-
tions and six control-solution ingestions). During the pre-ingestion
baseline period, participants remained quietly seated for 10 min
after which participants completed baseline questionnaires. The oral
test solution (glucose or control) was then administered. Participants
were allowed 1 min to consume all of the test solution. Then, the
30-min post-ingestion resting period was started. The timing of phys-
iological measures was based on prior results indicating that serum
glucose and insulin levels are at their highest elevations after
30–60 min post glucose ingestion [1].

Physiological measures were obtained during the last 6 min of the
baseline and post-ingestion (glucose or control), resting periods, con-
tinuously throughout the mental tasks, and during the 5 min immedi-
ately following the tasks (recovery periods). Task evaluation
questionnaires were completed prior to and following each mental
task.

Glucose and control conditions

A 20% glucose solution was presented at a dose of 1 g glucose per
kg of body weight (Now Foods, Bloomingdale, IL). This dose yields
significant changes in hemodynamic function [1].

The control condition consisted of a 2.5% sucralose solution
(McNeil Nutritionals, Fort Washington, PA) at a volume matching
that of the glucose test solution (1 mL of solution per 200 g of body
weight). This 2.5% sucralose concentration was chosen based on
pilot testing, indicating that participants could not discriminate this
control solution from the glucose solution in terms of sweetness or
palatability.

The glucose and control solutions were flavored with cherry sugar
free Kool-Aid™ (2 g/L) (Kraft Foods, Rye Brook, NY). This flavor con-
centration was chosen because it was preferred from higher and
lower concentrations in pilot testing. The test solutions were pre-
pared by a research technician other than the experimenter prior to
each experimental session and served chilled in a 16 oz. plastic cup.
The test solution administrations were double blind and coded. Test
solution codes were revealed to the experimenter only after all data
collections of the project were completed.

Mental challenge tasks

Structured speech (SS)
The speech task involved presenting a speech in front of the ex-

perimenter. Speeches involved providing a convincing defense in a
hypothetical scenario where the participant was falsely accused of a
crime. Because of the repeated measures design, two scenarios were
used (one scenario during each session and the presentation order
of the scenarios was random and counterbalanced). One scenario in-
volved being falsely accused of shoplifting by a plain-clothed police-
man. The second scenario involved being stopped for speeding after
running a stop sign that was not visible due to vegetation over-
growth. Participants were instructed to read the scenario, then pre-
pare and recite a speech defending themselves to an imaginary
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judge (the experimenter). The participants had 1 min to prepare the
speech and 3 min to present it. SS tasks are well established as chal-
lenge tasks to elicit psychological distress and cardiovascular re-
sponses [15,16].

Anger recall (AR)
Participants described in detail a personally relevant anger-

provoking event that occurred in the past two weeks. Participants
were instructed to describe how they felt, what they said, did, and
how others responded during the event. Consistent with the SS task, a
unique event was recalled at each visit. One minute was given to iden-
tify the event and the verbal task lasted 3 min. This AR task was devel-
oped by Ironson et al. [17] and has been used in several studies
examiningmental-challenge induced cardiovascular reactivity [18–20].

Validation of experimental manipulations
Sweetness and hunger ratings were obtained before and after in-

gestion of glucose and control solutions using a 5-point rating scale
in order to examine whether the tasks produced the anticipated ef-
fects on perceived sweetness and reduced hunger.

To evaluate the effectiveness of the mental challenge tasks in
evoking affective responses, participants completed the Positive and
Negative Affect Schedule (PANAS) [21]. The PANAS consists of 20 ad-
jectives with the following 5-point response options: “very slightly or
not at all”, “a little”, “moderately”, “quite a bit”, and “extremely”. The
PANAS is a well established tool for the evaluation of affect responses.
For purposes of this study the Negative Affect scale was used (score
range=10–50). The PANAS Negative Affect subscale has good inter-
nal consistency (Cronbach's α ranging from 0.84 to 0.87) [21].

Physiological measures

Impedance cardiography
The electrical impedance of the thorax, ECG and heart sound data

were collected continuously throughout the baseline and task periods
using the Minnesota Impedance Cardiograph model 304B (Green-
wich, CT). A tetrapolar band electrode configuration was used [11].
Experimental and pharmacological blockade studies have shown
that the PEP can be used as a valid index of sympathetic nervous sys-
tem activity [13,14] although substantial individual differences exist
[11,14]. The participants' position was kept constant during the
tasks to minimize artifacts of posture [22]. Placement of ECG elec-
trodes was chosen to avoid interference with the impedance cardio-
graph electrodes. ECG and heart sound data were amplified and
filtered via a Grass Biological Amplifier (Warwick, RI). The ECG and
impedance wave data were sampled at 1000 samples per second in
an analog format and then digitized prior to analysis.

The following measures were derived from the impedance
cardiogram: PEP, the interval from the onset of ventricular depolar-
ization to the beginning of mechanical contraction (expressed in
m·s). HR was measured from the R–R interval of the ECG and
presented in beats/minute (bpm). The stroke index (SI) was calcu-
lated as stroke volume divided by body surface area (BSA) and mea-
sured in milliliters per beat per m2 (mL/beat/m2). The cardiac index
(CI) was defined as the blood volume ejected into the systemic cir-
culation per minute divided by BSA (in L/min/m2). TPR was used
as an index of peripheral vascular resistance and calculated as
(TPR=MAP/CO×80) expressed in dynes/cm2/s [11].

Blood pressure assessments
SBP, DBP, and mean arterial pressure (MAP) were measured

oscillometrically using a Critikon Dinamap Vital Signs Monitor
Model 8100 (Critikon, Tampa, FL). All blood pressure measurements
were obtained from the participant's non-dominant arm. Blood pres-
sure data were collected at 90 s intervals during the rest periods and
at 60 s intervals during the task and recovery periods.
Statistical analysis

Data are presented as means±standard deviations or percentages
as appropriate. Effects of glucose on resting levels were examined
using 2×2 repeated measures analysis of variance (ANOVA), with
condition (glucose vs. placebo) and pre- vs. post-ingestion as
within-subject factors. To evaluate the effects of acute glucose vs.
control ingestion on cardiovascular reactivity to mental challenge, a
2×6 repeated measures multivariate ANOVA was used with two
within-subjects factors: condition (glucose vs. control) and a 6-level
experimental period (baseline, post-glucose/control ingestion, SS, re-
covery SS, AR, and recovery AR). Dependent measures were: PEP, HR,
SI, CI, TPR, SBP and DBP (MAP was not included in the multivariate
model to avoid singularity as a consequence of mathematically relat-
ed variables). Missing values occurred in 4% of the total number of
data points and were imputed using individualized substitution for
the multivariate models only, to avoid listwise elimination of cases
with missing values. Significant multivariate main effects and interac-
tion terms were subsequently examined for 2×2 interaction terms
(glucose vs. control×baseline vs. task) and simple effects to further
explore differences between glucose vs. control on task responses
for the dependent variables separately. Imputed values were only
used for the multivariable models and the post hoc analyses were
based on the actual values without imputation. Because of the
within-subject design, standard adjustments for co-variates such as
age and race were not used as subjects serve as their own control. Be-
cause BMI may change over time, associations with BMI at the time of
glucose condition were analyzed. A P-value of .05 was considered sta-
tistically significant.

Results

Sample characteristics

Table 1 displays the participant characteristics and baseline values for the physio-
logical data. Manipulation checks were consistent with the purposes of the protocol.
Glucose resulted lower hunger ratings at 30 min following ingestion compared to par-
ticipants receiving the control solution (glucose: 2.04±1.42 vs. control: 2.58±1.14,
P=.039). The control condition was also well matched to the glucose condition in
terms of perceived sweetness (sweetness glucose: 3.67±.92 vs. control: 3.42±0.83;
t (23)=0.97, P=.34). BMI did not change during the course of the study (glucose
session BMI=24.54±2.20 kg/m2, control session BMI=24.50±2.29 kg/m2; P=.66).

The mental challenge tasks induced the anticipated emotional responses, with
increases in negative affect (from baseline=13.8±4.4 to SS=15.2±4.9 and AR=
17.6±5.1; F (2,22)=21.42 Pb .001; aggregated across glucose and control sessions).
No differential emotional responses were found for glucose vs. control (P value>.2).

The cardiovascular response patterns following glucose were significantly different
from the control condition, as indicated by the multivariate repeated measures ANOVA
for all dependent measures combined (glucose vs. control: F (7,17)=3.08, P=.027;
experimental period: F (35,565)=6.13, Pb.001; and glucose×experimental period
interaction: F (35,565)=1.74, P=.006). No effects of order of the condition (glucose
vs. control) or mental challenge task (AR vs. SS) on baseline or task-induced cardiovas-
cular measures were observed.

Effects of glucose on resting physiological measures

As shown in Fig. 1, PEP decreased following glucose ingestion (Δ=11.98±
9.52 m·s; t (23)=6.16 Pb .001). The glucose-induced decrease in PEP was larger
than the decrease following the control solution (Δ=3.27±7.65 m·s; t (23)=2.09,
P=.048; F interaction (1,23)=20.17, Pb .001). Although the baseline PEP levels were
higher in the glucose than in the control condition (130.2±11.9 vs. 125.3±
11.9 m·s, t (23)=2.65, P=.014), the stronger effects of glucose vs. control on PEP
were not attributable to these differences in baseline as reflected by the significant in-
teraction term.

Glucose also resulted in an increase in CI, which did not occur in response to the
control solution (Δ=0.25±0.41 L/min/m2; t (23)=2.97, P=.007 vs. Δ=0.03±
0.29 L/min/m2; t (23)=0.44, P=.67; F interaction (1,23)=4.72, P=.040). HR re-
sponses were also different across conditions, showing no response to glucose and a
decline in the control condition (Δ=0.69±3.91 bpm; t (23)=0.86, P=.40 vs. Δ=
1.73±3.02 bpm; t (23)=2.80, P=.010; F interaction (1,23)=7.63, P=.011). Glucose
effects on SI were non-significant.

As shown in Fig. 2, the glucose condition resulted in increased SBP whereas no effect
of the control solution was observed (Δ=3.22 mm Hg; t (23)=3.17, P=.004 vs. Δ=
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0.29 mm Hg; t (23)=0.32, P=.75; F interaction (1,23)=8.05, P=.009). No differential
effects of glucose on DBP, MAP or TPR levels were found (P interaction>.10).

The differential effects of glucose vs. control on PEP, CI, HR and SBP were not relat-
ed to the order of the conditions (i.e., glucose in the first session and control in the sec-
ond session). BMI was also not associated with the different response in glucose vs.
control in PEP (r=0.04, P=.87), CI (r=−0.09, P=.67), HR (r=0.15, P=.48) or SBP
(r=0.12, P=.57).

Effects of glucose on mental challenge-induced physiological reactivity

The effects of glucose on cardiovascular measures were primarily observed in the
initial 30-min responses to glucose vs. control and no additional mental challenge-
induced differences were noted (P values from 30-min post-ingestion to SS or AR
levels>.10 for all measures). The strongest effect was observed for HR during SS, which
tended to increase more in the glucose condition compared to control (F (1,23)=3.28.
P=.083).

Recovery pattern analyses revealed a delayed HR recovery following AR following
glucose compared to control (Δ=6.29±6.86; t (20)=4.10, P=.001 vs. Δ=10.00±
4.80; t (20)=9.54, Pb .001; F interaction (1,17)=5.48, P=.032). This difference in
HR recovery was not significantly associated with BMI (r=0.26, P=.31).

Discussion

The present investigation suggests that glucose ingestion results
in decreased PEP, increased CI, HR, and SBP during resting conditions
compared to a control condition. The PEP responses are likely to re-
flect increased sympathetic nervous system activation and the other
cardiovascular responses may reflect a combination of sympathetic
activation and parasympathetic withdrawal. Both mental challenge
tasks resulted in significant cardiovascular responses from baseline
values but the magnitude of reactivity did not differ between glucose
versus control conditions. Results further suggested that glucose
resulted in a delayed post-challenge HR recovery.

The effect of carbohydrates on SBP, HR, and CO is well docu-
mented and reflects increased demands for digestive processes
[1,23–25]. Elevations in CO and BP in response to carbohydrates
have been attributed, in part, to vasodilatation associated with insulin
secretion and sympathetically mediated increases in HR [1]. Further,
Kopp [2] has speculated that excessive sympathetic activation in re-
sponse to glucose loading may promote the development of essential
hypertension via vascular remodeling ultimately resulting in in-
creased peripheral vascular resistance. The present study did not
find effects of glucose on TPR, which may partially reflect the relative-
ly young age and good physical health of the study participants. Addi-
tional research is needed to examine responses to glucose in the
presence of sustained abnormalities in glucose metabolism, which
may reveal stronger associations between perturbation tasks and car-
diovascular dysregulation.

No differential effects of glucose versus control were found on car-
diovascular responses to the mental challenge tasks. However, HR re-
covery following the AR task was delayed after glucose ingestion.
Prolonged cardiovascular recovery from mental challenge has been
associated with risk for the development of cardiovascular disease,
as well as future subclinical alterations in cardiovascular function.
For example, delayed recovery of cardiovascular responses to mental
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challenge is associated with family history of cardiovascular disease
[26,27]. Other results indicate that slowed cardiovascular recovery
to mental challenge predicts increased blood pressure three years
later [28,29]. Poor HR recovery has also been associated with low
HR variability (HRV), decreased vagal tone and relative sympathetic
dominance in cardiac control which is characteristic of the early
stages of essential hypertension [30] as well as diabetes mellitus
[31–33]. Future studies examining both sympathetic and parasympa-
thetic responses to glucose administration are important because au-
tonomic dysregulation is associated with increased fasting glucose
and elevated HbA1c levels [34].

The present study has several strengths and limitations. The
strengths include the matching of glucose and control test solutions
for sweetness and the fully within subjects design as well as the
counterbalancing of test solution and speech scenario presentation
order. One of the limitations concerns the restriction of the study
sample to male participants. Another limitation is the lack of mea-
surement of circulating glucose and insulin levels. Participants expe-
rienced more hunger in response to glucose and despite the
successful matching for perceived sweetness it is possible that ce-
phalic phase insulin release has influenced the results. In addition,
the small sample size may further limit generalizability of the find-
ings. We conducted an a priori power analyses based on effect sizes
reported in previous studies [1], which indicated that the sample of
the present study was more than sufficient to detect the expected ef-
fects at α=0.05 with a power of >80%.

In summary, the results of this study suggest that acute glucose in-
gestion has potent effects on resting cardiac function as reflected in
decreased PEP, and increased SBP, HR, and CI. This study did not re-
veal effects of glucose on stress-induced cardiovascular responses to
mental-challenge laboratory tasks. Glucose ingestion may result in
delayed HR recovery from mental challenge. Sweet tasting foods
and liquids affect insulin release [35], but how these effects relate to
cardiovascular reactivity and recovery is still unknown. Future inves-
tigations are needed to establish the effects of acute carbohydrate in-
gestion on cardiovascular function and cardiovascular reactivity and
recovery by contrasting the effects of sugars vs. carbohydrates that
contain fiber and/or saturated and unsaturated fat. Elevated sympa-
thetic nervous system-mediated increases in resting cardiovascular
parameters following glucose intake may contribute to dysregulated
vascular biology and the development of essential hypertension and
other adverse cardiovascular health outcomes.
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