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Relationships between the orthogonal direct sum decomposition of a vector space
over a finite field and the existence of the generalized inverses of a linear transforma-
tion over the finite field are analyzed. Necessary and sufficient conditions for judging
the existence of the generalized inverses of a linear transformation over a finite field
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1. INTRODUCTION

It is known that linear transformations can usually be represented by
matrices. The study of generalized inverses of linear transformations can to
some extent be converted to the study of matrices. Since the 1970s the theory
of generalized inverse of matrices has been systematically developed [1], but
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most results were obtained over the field of real numbers. With the develop-
ment of digital communications and computer science, algebraic methodo-
logy over finite fields has been more and more extensively exploited. For the
essential difference between the field of real numbers and finite fields, some
properties of matrices over the field of real numbers cannot be analogized
over finite fields. This paper will present a study of generalized inverses over
finite fields. Sufficient and necessary conditions for judging the existence of
generalized inverse of linear transformations over finite fields are given.

2. PRELIMINARIES

Let p be a prime, q"pm with m51. Denote by F
q

the finite field with
q elements. Let M

m]n
be the set of all matrices over F

q
of order m]n. When

m"n all matrices in M
n]n

are square. We denote by I
n
the identity matrix of

order n]n, i.e., all ones on its main diagonal and all zeros elsewhere. It is
known that any A3M

m]n
corresponds uniquely to a linear mapping !

A
from

Fn
q

to Fm
q

given by

!
A
(x)"Ax, ∀x3Fn

q
. (1)

In addition AT, the transposed matrix of A, corresponds uniquely to a linear
mapping !

AT from Fm
q

to Fn
q
given by

!
AT (y)"ATy"(yTA)T, ∀x3Fm

q
. (2)

Conversely, let !
A

be a linear mapping from Fn
q
to Fm

q
; then there must exist an

unique matrix A3M
m]n

such that Eq. (1) holds for every x3Fn
q
. This means

that we can always use A and AT to describe the mappings of (1) and (2).

DEFINITION 1. Let A3M
m]n

. A matrix B3M
n]m

is called the general-
ized inverse of A if

ABA"A (3)

is satisfied. This is denoted B"A~
g

. Such a matrix B is called a reflexive
generalized inverse of A if the equation

BAB"B (4)

is satisfied as well. This is denoted B"A~
r

. A reflexive generalized inverse
A~

r
of A is called a Moore—Penrose (M-P) generalized inverse if it also satisfies
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the following two properties:

(A~
r
A)T"A~

r
A, (5)

(AA~
r
)T"AA~

r
. (6)

An M-P generalized inverse of A is usually denoted by A`.

DEFINITION 2. In the forthcoming discussion we shall use the following
abbreviations:

Rank(A): the rank of matrix A.
DA D: determinant of matrix A.
Im(A): image vector space of A (or !

A
).

Ker(A): kernel vector space of A (or !
A
).

dim(»): dimension of vector space ».

DEFINITION 3. Let »LFn
q
, x"(x

1
, 2 , x

n
) and y"(y

1
, 2 , y

n
) be two

vectors of Fn
q
. Then

px, yz"xTy"yTx"
n
+
i/1

x
i
y
i

(mod p)

is called the inner product of x and y, and »
o
"My 3 Fn

q
: px, yz"0 holds

for every x3»N is called the orthogonal vector space of ». It should be noted
that all additions here are over the finite field F

q
.

DEFINITION 4. Let » be a vector subspace of Fn
q
. Then Fn

q
is said to be able

to be decomposed into the direct orthogonal sum of », denoted

Fn
q
"» =»

o,

if for any x3Fn
q
, there exists a unique x

1
3» and a unique x

2
3»

o such that
x"x

1
#x

2
. In this case »

o is called the orthogonal complement of ».

3. EXISTENCE OF GENERALIZED INVERSES

The following lemma shows the existence of a generalized inverse and
a reflexive generalized inverse of an arbitrary matrix over F

q
as we have in the

case of real-number field.

LEMMA 1. For any matrix over an arbitrary field, there exists a reflexive
generalized inverse matrix.
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Over the real-number field, there always exists an M-P generalized inverse
for an arbitrary matrix. However, this is not the case over finite fields. For
example the matrix A"[1 1

0 0
] over the binary field has only four reflexive

generalized inverses, namely [1 0
0 0

], [1 1
0 0

], [0 0
1 0

], and [0 0
1 1

]. It is easy to check
that only B"[1 0

0 0
] satisfies that AB is symmetric and none satisfies that BA

is symmetric as well. In the following we discuss the circumstances in which
there exists a reflexive generalized inverse which satisfies (5) and/or (6). The
following three well-known lemmas will be used in this paper.

LEMMA 2. ¸et » be a vector subspace of Fn
q
. ¹hen Fn

q
can be decomposed into

the orthogonal direct sum of » if and only if »W»
o
"M0N.

LEMMA 3. ¸et A3M
m]n

, A~
r

be a reflexive generalized inverse of A. ¹hen
we have

Ker(A~
r
A)"Ker(A), (7)

Im(AA~
r

)"Im(A), (8)

Rank (A)"Rank (A~
r
)"Rank(A~

r
A)"Rank (AA~

r
). (9)

Notice that (5) and (6) mean that A~
r
A and AA~

r
are symmetric, respect-

ively. We next describe further when a matrix is symmetric.

LEMMA 4. ¸et A3M
n]n

. ¹hen A is symmetric, i.e., AT"A, if and only if for
any x, y3Fn

q
we have

pAx, yz"px, Ayz.

LEMMA 5. ¸et A3M
n]n

and A2"A. ¹hen A is symmetric if and only if

(Ker (A))o"Im (A).

Proof. Necessity: For x3Im (A) and y3Ker (A) , since A is symmetric, by
Lemma 4 we have

pAx, yz"px, Ayz"px, 0z"0.

Thus Im (A)-(Ker (A))o. But dim (Ker (A))#dim (Im (A))"n, so
(Ker (A))o"Im (A).

Sufficiency: Suppose we have A2"A and (Ker (A))o"Im (A). Let
x
1
, x

2
3Fn

q
. Then they can be written as

x
1
"Ax

1
#(I

n
!A)x

1
and x

2
"Ax

2
#(I

n
!A) x

2
.
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Note that (I
n
!A)x

i
3Ker (A)"(Im(A))o, i"1, 2. We then have

pAx
1
, x

2
z"pAx

1
, Ax

2
#(I

n
!A) x

2
z"pAx

1
, Ax

2
z.

In the same way it can be shown that px
1
, Ax

2
z"pAx

1
, Ax

2
z. Thus

pAx
1
, x

2
z"px

1
, Ax

2
z. By Lemma 4 we know that A is symmetric. j

THEOREM 1. ¸et A3M
m]n

. ¹hen a necessary and sufficient condition for
the existence of a reflexive generalized inverse A~

r
of A which satisfies Eq. (5) is

that Fn
q
has the following orthogonal direct sum decomposition:

Fn
q
"Ker (A)= (Ker (A))o. (11)

Proof. Necessity: Let A~
r

be a reflexive generalized inverse which satisfies
Eq. (5). Then by Lemma 5 we have

(Ker (A~
r
A)) o

"Im (A~
r
A).

For any x3Ker (A~
r
A) W Im(A~

r
A) , since x3Im (A~

r
A), there exists y3Fn

q
such

that x"A~
r

Ay. Thus we have

A~
r
Ax"A~

r
AA~

r
Ay"A~

r
Ay"x.

On the other hand, x3Ker (A~
r
A) implies that A~

r
Ax"0, i.e., x"0. There-

fore Ker (A~
r
A) W Im (A~

r
A)"M0N and hence Fn

q
"Ker (A~

r
A)#Im (A~

r
A)"

Ker (A~
r
A)#(Ker (A~

r
A))o. By Lemma 3 we then have Eq. (11).

Sufficiency: Assume the validity of Eq. (11). Denote by M"(Ker (A))o,
N"Ker (A). Then we can write

S"MAx :x3Fn
q
N"MAx :x3MN.

For any y3S, there must exist an x3M such that y"Ax. Moreover the
existence of x is unique, as otherwise we would have Ax

1
"Ax

2
for some

x
1
, x

2
3M and consequently x

1
!x

2
3Ker (A)WKer(A))o. By the assumption

this leads to a contradiction of Lemma 2. Since S is a vector subspace of Fm
2
,

we denote by ¹ its complement (not necessary orthogonal) subspace; i.e., ¹ is
a subspace of Fm

2
such that S W¹"M0N, and any y3Fm

2
can uniquely be

written as y
1
#y

2
, where y

1
3S and y

2
3¹. Now define a mapping !

B
from

Fm
2

to Fn
2
as follows: for an arbitrary y"y

1
#y

2
3Fm

2
, where y

1
"Ax3S with

x3M and y
2
3¹, !

B
(y)"x. The linearity of !

B
is shown as follows: Let

y"y
1
#y

2
and z"z

1
#z

2
be two arbitrary vectors of Fm

2
, where y

1
"Ax

1
,

z
1
"Ax

2
, and y

2
, z

2
3¹. By definition we have !

B
(y#z)"x

1
#x

2
"!

B
(y)

#!
B
(z) . Thus !

B
corresponds uniquely to a matrix B3M

n]m
such that for
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every y"y
1
#y

2
3Fm

q
, By"x for some x3M such that y

1
"Ax. For any

x3Fn
q
this can be written as x"x

M
#x

N
, where x

M
3M and x

N
3N. Thus

ABAx"ABAx
M
"Ax

M
"Ax .

Thus we get ABA"A. For any y"y
1
#y

2
3Fm

q
, where y

1
"Ax3S and

y
2
3¹, we have BABy"BAx"x"B½. This shows that B is a reflexive

generalized inverse of A. By the initial assumption and Ker (A)"Ker (BA)
from Lemma 3 we have

Fn
q
"Ker (BA)= (Ker (BA))o"Ker (BA) = Im (BA).

Notice that (BA)2"BA; by Lemma 5 we then have (BA)T"BA. j

An alternative of the above condition is as follows:

THEOREM 2. ¸et A3M
m]n

. ¹hen a necessary and sufficient condition for
the existence of a reflexive generalized inverse of A which satisfies (5) is that for
any x3Fm

q
, ATx"0 if and only if AATx"0.

Proof. By Theorem 1, a necessary and sufficient condition for the exist-
ence of a reflexive generalized inverse of A satisfying (5) is

Fn
q
"Ker (A)= (Ker (A))o.

It is known that the preceding decomposition is equivalent to

Rank (A)"Rank (AAT ),

and the conclusion follows. j

THEOREM 3. ¸et A3M
m]n

. ¹hen a necessary and sufficient condition for
the existence of a reflexive generalized inverse A~

r
of A which satisfies Eq. (6) is

that Fm
q

has the following orthogonal direct sum decomposition:

Fm
q
"Im (A)= (Im (A))o. (12)

Proof. Necessity: Let A~
r

be a reflexive generalized inverse of A satisfying
Eq. (6). Notice that the matrix A is a reflexive generalized inverse of A~

r
satisfying Eq. (5). By Theorem 1 we have

Fm
q
"Ker (A~

r
)= (Ker (A~

r
))o.
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For any y3Ker (A~
r

) and Ax3Im (A), since (AA~
r

)T"AA~
r
, we have

pAx, yz"pAA~
r
Ax, yz"pAx, AA~

r
yz"pAx, 0z"0.

Thus Ker (A~
r

)-(Im (A))o. Notice that dim (Ker (A~
r

))#dim (Im (A))"m .
This implies that Ker (A~

r
)"(Im(A))o and we then have Eq. (12).

Sufficiency: Assume the validity of Eq. (12). Denote by S"Im (A) and
¹"(Im (A))o. Any y3Fm

q
can uniquely be written as y"y

S
#y

T
, where

y
S
3S and y

T
3¹. Define a mapping !

B
from Fm

q
to Fn

q
which satisfies

!
B
(y

S
#y

T
)"x, where y

S
"Ax3S. Similar to the proof of Theorem 1, it can

be proven that !
B

is a linear mapping corresponding uniquely to a matrix
B3M

n]m
. Moreover B is a reflexive generalized inverse of A and

Im (AB)"MABy : y3Fm
q
N"MABy : y3SN. For any y3¹, by definition we have

By"0, so y3Ker (B) . But it is noticed that dim(¹)"dim (Ker (B)). Thus
¹"Ker (B)"Ker (AB) and consequently by Lemma 3 we have Ker (AB)
"(Im (AB))o. By Lemma 5 and the fact that (AB)2"AB, we have
(AB)¹"AB. j

Likewise we have another alternative of Theorem 3.

THEOREM 4. ¸et A3M
m]n

. ¹hen a necessary and sufficient condition for
the existence of a reflexive generalized inverse of A which satisfies (6) is that for
any y3Fn

q
, Ay"0 if and only if ATAy"0.

Proof. Similar to the proof of Theorem 2. j

If there exists an M-P generalized inverse of A, by Theorems 1 and 3 we
know that the orthogonal direct sum decompositions (11) and (12) are both
true simultaneously. It might be asked whether the converse is true as well;
i.e., if decompositions (11) and (12) both hold simultaneously for some matrix
A3M

m]n
, does there exist a reflective generalized inverse of A which satisfies

(5) and (6) simultaneously? The following theorem gives a positive answer.

THEOREM 5. ¸et A3M
m]n

. ¹hen a necessary and sufficient condition for
the existence of an M-P generalized inverse of A is that both Eqs. (11) and (12)
hold simultaneously.

Proof. Necessity is obvious from Theorems 1 and 3. Now the sufficiency
is proved as follows. Denote by M"(Ker (A))o, N"Ker (A), S"Im (A),
and ¹"Im (A))o. Then MAx :x3Fn

q
N"MAx : x3MN. Define a mapping

!
B
: Fm

q
PFn

q
such that for any y"y

S
#y

T
, where y

S
"Ax3S and y

T
3¹,

!
B
(y)"x. Then !

B
is linear and corresponds uniquely to a matrix B3M

n]m
.

It is easy to check that
1. for any x3M we have BAx"x, and
2. for any y3S we have ABy"y.
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By a deduction similar to that of Theorems 1 and 3 it can be proved that the
constructed matrix B is indeed an M-P generalized inverse of A. j

COROLLARY 1. ¸et A3M
m ] n

. ¼e have
1. A necessary and sufficient condition for the existence of a reflexive

generalized inverse of A satisfying (5) is that Rank (A)"Rank (AAT).
2. A necessary and sufficient condition for the existence of a reflexive

generalized inverse of A satisfying (6) is that Rank (A)"Rank (ATA).
3. A necessary and sufficient condition for the existence of an M-P

generalized inverse of A is that Rank(A)"Rank (AAT)"Rank (ATA).

LEMMA 6. ¸et A~
r

be a reflexive generalized inverse of A3M
m ] n

. ¹hen
AA~

r
is symmetric if and only if

(Ker (A~
r

))o"Im (A). (13)

Proof. Necessity: Assume that AA~
r

is symmetric, i.e., (AA~
r
)T"AA~

r
.

Then for any x3Ker (A~
r

), A~
r

x"0; and for any y3Im (A), there must exist
a z such that y"Az. Thus AA~

r
y"AA~

r
Az"Az"y. Therefore

px, yz"px, AA~
r
yz"pAA~

r
x, yz"p 0, yz"0.

This implies that (Ker (A~
r
))o-Im (A). By dim ((Ker (A~

r
)) o)"dim (Im (A))

we have (Ker (A~
r

))o"Im (A).
Sufficiency: Assume (Ker (A~

r
))o"Im(A). Then by Lemma 3 it follows

that (Ker(AA~
r

))o"Im (AA~
r
). Since (AA~

r
)2"AA~

r
, by Lemma 5 we have

(AA~
r

)T"AA~
r
. j

LEMMA 7. ¸et A3M
m]n

, A~
r

be a reflexive generalized inverse of A. ¹hen
A~

r
A is symmetric if and only if

(Ker (A))o"Im (A~
r
). (14)

Proof. Similar to the proof of Lemma 6. j

By Lemmas 6 and 7 we have

THEOREM 6. ¸et A3M
m]n

, A~
r

be a reflexive generalized inverse of A.
¹hen A~

r
is an M-P generalized inverse of A if and only if the following

conditions hold:
1. Im (A~

r
)"(Ker (A))o;

2. Ker (A~
r
)"(Im (A))o;

3. For any x3(Ker (A))o, A~
r
Ax"x;

4. For any y3Im (A), AA~
r

y"y.
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THEOREM 7. Let A3M
m]n

. If there exists an M-P generalized inverse of A,
then the generalized inverse must be unique.

4. CONCLUDING REMARKS

It is shown that the existence of generalized inverses of a linear transforma-
tion depends on the orthogonal direct sum decomposition. Necessary and
sufficient conditions are presented for the existence of generalized inverses
over finite fields. It should be noted that the theory of generalized inverses
over finite fields can be a useful tool for cryptographic design. Based on the
large number of generalized inverses of a matrix, a public key cryptosystem
was proposed in [2]. We have recently designed a key agreement scheme
based on the theory of generalized inverses of matrices over finite fields [3]. It
is anticipated that further applications of the theory of generalized inverses of
matrices over finite fields are possible.
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