
ELSEVIF_R 

An International Journal 
Available online at www.sciencedirect.com computers & 

. = ,  . . c -  r ? ~  o , -  = = . -  m a t h e m a t i c s  
with applications 

Computers and Mathematics with Applications 49 (2005) 1101-1112 
www.elsevier.com/locate/camwa 

The Tanh and the  Sine-Cosine  M e t h o d s  
for the  C ompl ex  Modif ied K dV 

and the  General ized K dV Equat ions  

A.-M. WAZWAZ 
Department of Mathematics and Computer Science, 
Saint Xavier University, Chicago, IL 60655, U.S.A. 

(Received and accepted August 200,~) 

A b s t r a c t - - T h e  complex modified K dV (CMK dV) equation and the generalized K dV equation 
are investigated by using the tanh method and the sine-cosine method. A variety of exact travelling 
wave solutions with compact and noncompact structures are formally obtained for each equation. 
The study reveals the power of the two schemes where each method complements the other. (~ 2005 
Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

In this work, we aim to cast light on the complex modified K dV equation, 

--0, 

where w is a complex valued function of the spatial coordinate x and the time t, c~ is a real 
parameter.  This equation has been proposed as a model for the nonlinear evolution of plasma 
waves [1-5]. The physical model (1) incorporates the propagation of transverse waves in a molec- 
ular chain model [1-5], and in a generalized elastic solid. 

The two-dimensional steady-state distribution of lower-hybrid waves [1] is governed by the 
C M K d V  equation (1). In [1], two types of solitary waves are obtained: one is a constant phase 
pulse, whereas the other is an envelope solitary wave. 

The CMK dV equation (1) is completely integrable by the inverse scattering method and it 
admits sech-shaped soliton solutions whose amplitudes and velocities are free parameters [5]. 

Yang [5] handled this equation by using a soliton perturbat ion theory which shows tha t  a con- 
tinuous family of sech-shaped embedded solitons exist and are nonlinearly stable. The results 
obtained in [5] showed that  embedded solitons can be robust despite being in resonance with the 
linear spectrum. 

We also aim to investigate generalized forms of the modified K dV equation given by 

Ct % n ~ ¢ n - l c x  4- ¢ ~ =  --- 0, (2) 
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and 

Ct + n~¢-~-1¢~  + ¢ ~  = 0, (3) 

where ¢ is a real valued function. For n = 2, equation (2) becomes the famous K dV equation 
from soliton theory [6], 

¢~ + ~ (¢2)x + ¢~x~ = 0, (4) 

that describes long nonlinear waves of small amplitude on the surface of inviscid ideal fluid. 
The K dV equation is known to have infinitely many polynomial conservation laws. The K dV 
equation (4) is integrable by the inverse scattering transform and gives rise to solitons, that exist 
due to the balance between the weak nonlinearity and dispersion of that equation. Soliton is a 
localized wave that  has an infinite support or a localized wave with exponential tails. 

Karney et al. [1] formally examined the close relation between the complex modified K dV 
equation and the modified K dV equation. They showed that (4) is closely related to (1) by 
rewriting the CMK dV equation in two ways and then examined the phase variation of w. 

There has been an enormous number of examples of solitons equations, verifying that the 
K dV is not just a freak equation [5-15]. The complexity of the nonlinear wave equations made it 
impossible to establish one unified method to find all solutions of these equations. Several meth- 
ods, analytical and numerical, such as Backlund transformation, the inverse scattering method, 
bilinear transformation, the tanh method [16-18], the homogeneous balance method, and the 
sine-cosine ansatz, are used to treat these topics. 

The K(n, n) equation, 

u, + a (un)~ + (U~),~x = 0, n > 1, (5) 

introduced in [13], gives rise to the so-called compactons: solitons with the absence of infinite 
wings. The delicate interaction between nonlinear convection (u~)x with genuine nonlinear dis- 
persion (u~)x~ in the K(n, n) equation (5) generates solitary waves with exact compact support 
that  are termed compactons. Unlike the K dV equation, the K(n, n) equations have only a finite 
number of local conservation laws. Solitons and compactons have been receiving considerable 
attention in mathematical physics. 

For more details about solitons and compactons phenomena, the reader is advised to read the 
works in [1-12] for solitons, and the works in [13-15,19-34] for compactons. 

The aim of the present work is to obtain travelling wave solutions the CMK dV equation (1). 
Two strategies will be pursued to achieve our goal, namely, the tanh method [16-18] and the 

sine-cosine method [19-34]. 
In what follows,the sine-cosine ansatz and the tanh method will be reviewed briefly because 

details can be found in [16-18] and in [19-34]. 

2. T H E  T W O  M E T H O D S  

2.1. R e v i e w  of  t he  S ine-Cos ine  M e t h o d  

The features of this method can be summarized as follows. A PDE, 

P (u, ~t, ux, ~x~, u x ~ , . . . )  = 0, (6) 

can be converted to an ODE, ( . . . . . .  ) 
Q u , u , u , u  , . . .  = 0 ,  (7) 

upon using a wave variable ~ = (x - ct). Then, equation (7) is integrated as long as all terms 
contain derivatives where integration constants are considered zeros. The solutions of the reduced 
ODE equation can be expressed in the form, 

7r 

{ ~ c o s ~ ( , ~ ) } ,  I~l< G' (8) 
u (x,  t)  

[ 0, otherwise, 
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or in the form, 7r { - '  u ( x , t )  {)~sin~ (#()} '  I(l-< = ~ (9) 
0, otherwise, 

where A, #, and 13 are parameters that will be determined, # and c are the wave number and the 
wave speed, respectively. These assumptions give 

(un) '' = -n2#2/32A n cos n/3 (#~) + n#2)~nfl (n~3 - 1) cos n~-2 (#~) (10) 

and 
(?An) ' '  -~ - -n2~2~2)~  n s i n  no  (#~)  + n~2~n~ (nil  - 1) sin =~3-2 (#~). (11) 

Using (8)-(11) into the reduced ODE gives a trigonometric equation of cosR(#~) or sinR(g~) 
terms. Then, the parameters are determined by first balancing the exponents of each pair of 
cosine or sine to determine R. Next, we collect all coefficients of the same power in cosk(#~) 
or sink(#~), where these coefficients have to vanish. This gives a system of algebraic equations 
among the unknowns/3, A and # that will be determined. The solutions proposed in (8) and (9) 
follow immediately. 

2.2. Rev iew of  the  Tanh  M e t h o d  

The tanh method is developed by Malfliet [16-18]. Malfliet [16-18] used the tanh technique 
by introducing tanh as a new variable, since all derivatives of a tanh are represented by a tanh 
itself. 

Introducing a new independent variable, 

Y = tanh(#~), (12) 

leads to the change of derivatives, 

d (1 y2) d 
" ~  = ~ - d Y '  

_ ( d: = . 2  (1 - v2)  - 2 v  + (1 - v2)  ~ 
d~ 2 

Then, we apply the following series expansion, 

M 

u (#~) = S (V )  = ~ a k V  k, (14) 
k=0 

where M is a positive integer, in most cases, that will be determined. However, if M is not an 
integer, a transformation formula is usually used to overcome this difficulty. Substituting (13) 
and (14) into the simplified ODE results in an equation in powers of Y. 

To determine the parameter M, we usually balance the linear terms of highest-order in the 
resulting equation with the highest-order nonlinear terms. With M determined, we collect all 
coefficients of powers of Y in the resulting equation where these coefficients have to vanish. This 
will give a system of algebraic equations involving the parameters ak (k = 0 , . . . ,  M), #, and c. 
Having determined these parameters, knowing that M is a positive integer in most cases, and 
using (14), we obtain an analytic solution u ( x , t )  in a closed form. 

3. T H E  C O M P L E X  M O D I F I E D  K d V  E Q U A T I O N  

In this section, the CMK dV equation, 

+ ~ . . .  + .  (1~,12 ~ ) .  = o, (15) "//.;t 

will be investigated by using the two schemes presented before. 
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3.1. U s i n g  the  S ine -Cos ine  M e t h o d  

We begin our analysis by decomposing w into its real and imaginary parts, where we set 

w = u + i v ,  i 2 = - 1 ,  (16) 

to obtain the coupled pair of the modified K dV (MK dV) equations 

~ + ~ =  + a [ ( ~  + v~) ~]~ = o, 

~ , + v =  + a [ (~  + ~ )  ~L = 0 
(1~) 

These two coupled nonlinear equations describe the interaction of two orthogonaUy polarized 
transverse waves [3], where u and v represent y-polarized and z-polarized transverse waves re- 
spectively, propagating in the x-direction in an x y z  coordinate system. 

Using the wave variable ~ = x - ct into system (17) and integrating, we obtain 

t! 

- - c u  -t- a u  g + v~u2v  -t- u ---- O, 

--cv + o~v 3 + a u v  2 -4- v = O. 
(18) 

Then, we use (8) in the form, 

into (18) to get 

(~, t) = A cos~ ( ~ ) ,  

(z, t) = i c o ~  ( ~ ) ,  
(19) 

-cA cos~ (g~) + aA 3 cos sz (g~) + aA2X cos 2z (g~) cos3 (g~) 

-g~AZ: cos~ ( ~ )  + ,2AZ (Z - 1) cos ~-2 (g~) = o, 

-cX cos3 (g~) + aX 3 cos 3~ (g~) + aAX 2 cos z~ (g~) cos~ (g~) 

_#2X~2 cos 3 (#~)q_ .2X~ (~_ i) cos ~-2 (.~) =0. 

(20) 

Using the balance method, by equating the exponents and the coefficients of cosJ, we get 

~-I#0, 

3 ~ = 2 f l + ~ = ~ - 2 ,  

g2~2 = - c ,  

~A 3 + aA2X = - A ~ 2 ~  (/3 - 1),  

~ - 1 # 0 ,  

3/~ = / 3 +  2]~ = ~ -  2, 
]£2~2 = --C, (21) 

Solving system (21) leads to the results, 

= ~ = --1, 

g = vC--Z, 

A = X  

c < 0 ,  (22) 

consequently, for c < 0, we obtain the following periodic solutions, 

( ~ , t )  = v ( ~ , t )  = V/-~ csc (,/-:z (~ - ~t)), o < ~ (~  - ~t)  < ~ ,  (23) 
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and 

~(x,t)  = , ( ~ , t )  = V/-~sec(v~(~-~t)) ,  
?r 

I ~ ( x  - ~t)l < ~-. (24) 

Noting that w(x,  t) = u(x, t) + iv(x,  t), the solutions of the CMK dV equation read 

w (x, t )  = (1 + i) ~/-~csc (x/-~ (x - ct)),  0 < u (x - ~ )  < . ,  (25) 

and 

w (x, t) ~- ( I  + i) ~ f ~  sec (%/~-c (x -- at)),  

However, for c > 0, we obtain the complex solution, 

71" 
[ t t ( x -  ct)l < ~. (26) 

~o (x,t) = (1 + i) ~ - ~ c s c h  (v~(x  - ~t)) (27) 

and 

w ( x , t ) = ( l + i ) v ~ s e c h ( x / c ( x - c t ) ) .  (28) 

3.2. Using the  tanh Method  

In this section, we will use the tanh method as presented by Malfliet [16-18] to handle the 
(CMK dV) equation. It was shown before that the CMK dV equation takes the form of two 
coupled nonlinear equations of the system, 

~t + ~ = .  + -  [(~2 + v~) . ]~  = 0, 

vt + v=~ + . [ ( ~ 2  + v~) , ]~  = 0  
(29) 

The tanh method admits the use of finite series 

M 

(z,t) = s (Y) = Z amYm' 
m----0 

Ma 

v (x, t) = ~ (Y) = ~ bray m, 
m=O 

(30) 

to express the solutions u(x, t )  and v(x , t ) ,  where Y = tanh(/z~). Substituting (30) into the 
ODE (29) gives 

- c S  + a S  3 + a S S  2 + #2 ( 1 -  y2) ( - 2 Y S '  + ( 1 -  y 2 ) S " )  =0 ,  

- c S  + a S  3 + aS2S + #2 (1 - y2) ( -2YS '  + (1 - y2) ~")  =0 .  
(31) 

Balancing the linear term of highest order with the nonlinear term in both equations, we find 

3M = M + 2M1 = 4 + M - 2 ,  

3M1 = 2M + M1 = 4 q- M1 - 2, 
(32) 

which gives M = M1 = 1. This means that 

(z ,  t) = ao + alV,  

v (x, t) = bo + blY. 
(33) 
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Substituting (33) into the two components of (31), and collecting the coefficients of Y gives the 
following two system of algebraic equations for a0, al,  b0, bl, and/~, 

y3 coeff. : 

y2 eoeff. : 

y1 coeff. : 

yO coeff. : 

and 
ya  coeff. : 

y2  coeff. : 

y1  coeff. : 

y0  coeff. : 

Solving these systems gives 

2#2al 4- aa a 4- aalb21 = O, 

2aalbobl + 3aaoa~ + aaob~ = O, 

-ca1 4- 3aa2oal + aalb2o 4- 2aaobobl - 2tt2al -- O, 

aa] + aaob~ - cao = O, 

2#2bl + ab 3 + abla~ = 0, 

2ablaoal 4- 3abob 2 4- aboa~ --- O, 

-cb l  + 3ab]bl + abla2o + 2aboaoal - 2#2bl = O, 

ab 3 4- aboa~ - cbo = O. 

ao = bo = O, 

al = bl = v / 7 / 2 ~  

, =  ~/---~/2,c < o. 

The kink solitons solutions for c < 0 take the forms, 

u ( x , t )  = v ( x , t )  = x / ~ t a n h  ( x / ' Z - ~ ( x - c t ) ~  
\ ]  

and 

This means that the solutions of the CMK dV equation take the forms, 

w ( x , t )  = (1 + i ) ( ~ t a n h  ( X / ~ ( x - c t ) ) )  

and the form 

However, for c > 0, we find the periodic solutions, 

u (x , t )  = v ( x , t )  = ~ / - ~ t a n  ( v / ~  (x -- ct))  

and 

and as a result, we get 

and the form 

(34) 

u ( x , t ) = v ( x , t ) =  ~ c o t ( v f ~ ( x - c t ) ) ,  

(35) 

(36) 

(37) 

(38) 

(ag) 

(40) 

(41) 

(42) 

(43) 

=(1 ÷i) ( cot ct))) (44) 
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4. THE GENERALIZED K dV 

In this section, the generalized K dV equation, 

Ut -'[- nOtun-lUx -~" Uxxx = O, 

will be investigated by using the two proposed methods. 

EQUATION 

1107 

(45) 

4.1 Using the  Sine-Cosine Method  

Using the wave variable ~ = x - ct into system (45) and integrating, we obtain 

ip 
- c u  + a u  '~ + u = 0 .  

Substituting (8) into (46) gives 

-cA cos ~ (p~) + aA = cos ~ (#() - #2Aft2 cos ~ (#~) + #2Aft (fl - 1) cos f~-2 (#~) = 0. 

Using the balance method as applied before yields 

f l - I  =~0, 
n# = f l - 2 ,  

#2f~2 = --C, 

-~" = - ~ d Z  (Z - 1). 

Solving this system, we find 
2 

f l--  n - l '  
n - 1  ~= -V-v~, c<0, 
(c(n+i)) 1/°-~ 

a=k G 
Consequently, for c < O, we obtain the following periodic solutions 

, a (X, t ) :  ( c ( n 2 m )  ( _ ~  ))1/n-1 
\ 2~ csc2 4 - ~ ( x - ~ )  , 

and 

u ( x , t ) = ( c ( n + l )  ( ~ 2 1  \\il~-i 
k. ~-a s e e 2  X / ~ Z ~ ( x - c t ) J )  ' 

However, for c > 0, we obtain the solitons solutions, 

0 < ~ (x  - c t )  < ~r, 

7r 

and 

( (~2 1 ))1/n-1 u (x, t) = c (n + 1) csch 2 ~ (x - ct) 
2a 

u (x't) = (c(n + 1)sech~ ( ~ 4 : 7 ( x -  ~t))) 1 / " - 1 2 ~  

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 
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4.2 Us ing  the  Tanh M e t h o d  

I t  remains to use the tanh  method to investigate the generalized K dV equation, 

U t -~- ~ o ~ u n - - l u x  -~- Uxx x ~--- O, (54) 

tha t  will be carried into 

Using the tanh  method 

gives 

ss 
- c u  + a u  n + u = 0 .  (55) 

M 
u (x, t) = S ( Y )  = Z a m Y ' ~  (56) 

m = 0  

- c S  + a S  n + #2 (1 - r 2 )  ( - 2 Y S '  + (1 - Y2)S" )  = O. (57) 

Balancing the linear term of highest-order with the nonlinear term in both  equations, we find 

n M =  4 + M - 2. (58) 

which gives 
2 

M = ~ (59) 
n - l "  

To obtain a closed form solution, then M should be an integer. This means tha t  M = 1 for n = 3 

and M = 2 for n - 2. This means that  

u (x, t) = S ( Y )  = ao + al Y, 

u (x,  t) = S ( Y )  = bo + b l Y  + b2Y 2. (60) 

CASE I FOR M = 1. 
of Y to find 

Solving this system gives 

We first substitute S = ao + a l Y ,  n -- 3 into (57) and collect the coefficients 

a a l  3 + 2#2al = 0, 

3aa0a l  2 ---- 0, 

- 2 # 2 a l  - ca1 + 3aa~al  = O, 

-cao  + aa~ = O. 

y3  coeff. : 

y 2  coeff. : 

y1  coeff. : 

y 0  coeff. : 

a0 = O, 

a 1 = V / ~ ,  

# = v ~ / 2 .  
Consequently, for c < O, we obtain the solutions, 

u ( . , , ) -   tanh ( x -  

(61) 

(62) 

(63) 

and 

However, for c > 0 we find the solutions, 

(64) 

(65) 

and 
=  cot (66) 
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CASE II  FOR M = 2. We first substitute S = bo + blY + b2Y 2, n = 2 into (57) and collect the 

coefficients of Y to find 

y 4  coeff. : 6#2b~ + ab~ = O, 

y 3  coeff. : 2ablb2 -F 2#2bl -- 0, 

y 2  coeff. : 2abob2 - cb2 + ab~ - 8#262 = O, (67) 

y1  coeff. : -cbl - 2#261 + 2abobl = 0, 

yO coeff. : ab 2 + 2#2b2 - cbo = O. 

Solving this system gives two sets of solutions, 

3c 
bo = 2 a '  

bl = 0, 

3c (cs )  
b2 = 2 a '  

v~ 
c > O ,  

# - - 2 '  

and 
¢ 

bo - 2 a '  

bl = O, 

3c (69) 
b 2 -  

2 a '  
v ~  

# =  2 ' c < 0 .  

The first set gives, for c > 0, the solitons solutions, 

u (x, t) = - ~ c s c h  (x - ~t) , (70) 

) (~,  t) = ~ s e c h  (x - ~t) , (71) 

and, for c < 0, we find the periodic solutions, 

) (x, t) = ~ csc (x - a )  , (72) 

- ) (~,  t) = ~ sec (~  - a )  . (73) 

The second set, for c < 0, gives the solutions, 

u ( x , t ) = - ~ a  1 - 3 t anh  2 ( x - c t )  (74) 

and 

u(x , t )=-~-d~ 1 - 3coth  2 ( x - c t  , (75) 

and for c > 0, the solutions, 

u ( x , t ) = - - ~ a  1 + 3 t a n  2 (x - ct) (76) 

and 

u(x , t )  =- -~a  ( l + 3 c o t 2  ( - -~ ( x - c t ) l )  . (77) 
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5. T H E  G E N E R A L I Z E D  K d V  W I T H  N E G A T I V E  E X P O N E N T  

We now consider the generalized K dV equation with negative exponent, 

ut ÷ n a u - ' ~ - l u ~  + u=x= = O, n > 1. (78) 

This equation will be examined only by using the sine-cosine method. Using the tanh method 
to handle this equation requires a transformation formula, therefore, it will be examined in a 
forthcoming work. 

Proceeding as before, we get 
-cat  - a u  - ~  + u" = 0. (79) 

Substituting (8) into (79) gives 

-cA c o J  (#~) - aA -~ cos - ~  (#~) - #2Aft2 cos ~ (tt~) + #2Aft (fl - 1) cos s~-2 (#~) = O. (80) 

The balance technique gives the system, 

Z-l#0, 
- n p  = p - 2, 

t~fl 2 = - c ,  

a A  - n  = A # 2 f l ( f l  - 1) ,  

(81)  

from which we find 
2 

n + l '  

n + 1 ~'L--~, c < O, 
# - -  2 
,,~=( 2C___(~ - ~ 1/n+l 

1 ) 2  " 

Consequently, for c < 0, we obtain the following compactons solutions, 

{{ ) F  +' c(n_l) s in2 V/-~(z-ct) , I~1 <~,  u (x ,  t )  = 
0, otherwise, 

c < O ,  
(83)  

and 

{ 2a 
u (x,t) = c (~ - -  1) 

0, 

( _ ~  V/-~( x ) } 1/nq-1 
- -  cos  ~ - ct)  , I ~ 1  < ~-~, 

otherwise. 

However, for c > 0, we obtain the solitary patterns solutions, 

2a ( n  + 1 r ,  }1/n-I-1 
U ( x , t )  = c ( n  -- 1) sinh2 t - - - 2  - - - V c i x  -- c t ) )  

e < O ,  
(84)  

(85)  

and 
{ 2a ( _ ~  \~1/,~+1 

=  cosh2 (86) 

It is interesting to point out that compactons are generated as a result of the interaction between 
nonlinear convection and the nonlinear dispersion. From the previous results it is clear that 
compactons solutions (83) and (84) were generated although the dispersion is linear. The physical 
explanation of this result is beyond the scope of this work. 



Complex Modified K dV 1111 

6.  D I S C U S S I O N  

In this work, we have extended the well-known works in [1-5] to obtain a variety of exact 
travelling wave solutions for the CMK dV and the generalized K dV equations. Our analysis rests 
mainly on the sine-cosine method and the tanh method. The performance of the two schemes has 
been monitored in that some of the results are in agreement with other results reported in the 
literature, and new results were formally established. The study revealed that the two methods 
are reliable and one complements the other. The two strategies can be applied to a large number 

of models. 
Using the tanh method for the case where M is not an integer, a transformation formula is 

needed. This is the case, in addition to the case of negative exponent, that will be pursued in a 

further work. 
Many types of exact solutions with distinct physical structures have been found. Periodic solu- 

tions, solitons solutions, kink solitons, and compactons were established. The results demonstrate 
that, contrary to previous conclusions, compactons solutions can be generated despite dispersion 
being linear as shown in the last section. 
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