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The oral bioavailability of pharmacologically ac-

tive drugs is often limited by first-pass bio-

transformation.1–5 Being able to quantify the

magnitude of the contributions made by the in-

testines and by the liver to first-pass metabolism

is certainly of academic and clinical importance.

The differentiation of intestinal and hepatic 

impacts may facilitate delineating the basic mech-

anisms underlying absorption, developing suit-

able oral drug-delivery formulations, predicting

inter- and intra-individual variability, and optimiz-

ing drug therapy. Quantification of the respective

magnitudes of gut and hepatic drug-eliminating

effects has been attempted by using cyclosporine6
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and midazolam7 as probe drugs in humans. How-

ever, the results of these trials are questionable,

as they involved indirect measurements, which

either assessed discrete intestinal and hepatic 

extraction by comparing the pharmacokinetic

disparity between oral and intravenous adminis-

tration routes, or which were obtained by per-

forming supplementary in vitro experiments and

using a theoretical paradigm.

Direct measurements of compound absorp-

tion in humans are not always feasible for obvi-

ous reasons.8 Many researchers therefore use rats

for their preclinical oral absorption studies. The

in situ single-pass perfusion animal model, which

is used to measure the disappearance of test sub-

stances from the perfused intestinal segment, has

long been used for studies of drug absorption.9–11

Assessments of intestinal membrane permeabil-

ity have shown that this model provides pre-

dictive values for in vitro absorption of drugs in

humans.8,12,13 Nevertheless, the amount of the

drug that disappears from the intestinal lumen

may not exactly reflect the amount that emerges

in the systemic blood because drug retention, ab-

sorption and metabolism are likely to take place

before it reaches the systemic circulation. Hence,

it is essential that serial blood drainage from mes-

enteric veins, portal vein or other systemic blood

vessels be incorporated into the perfusion model

in order to measure true bioavailability subsequent

to drug passage through the intestines and liver.

The primary objectives of the present study,

therefore, were to: (1) develop an in vivo system for

the simultaneous quantitative sampling of portal

and hepatic venous blood using an in situ single-

pass intestinal perfusion technique; and (2) in-

vestigate the effects of perfusion flow rates on

indinavir absorption and presystemic metabolism.

Methods

Materials
Indinavir sulfate 400 mg capsules (MK-639, L-

735,524, Crixivan®) for intestinal perfusion were

obtained from Merck & Co., Inc. (Elkton, VA,

USA). The reference standard of indinavir sulfate

was kindly supplied by Merck Research Laborato-

ries (Rahway, NJ, USA). Carboxymethyl cellulose

sodium salt (CMC-Na) and sodium pentobarbital

were purchased from Sigma (St. Louis, MO, USA).

All other reagents, including high-performance

liquid chromatography (HPLC)-grade acetonitrile,

n-hexane, methanol and methyl tert-butyl ether

(MTBE), were obtained from Merck (Darmstadt,

Germany). Highly purified water produced by a

Millipore Direct-Q5 system (Billerica, MA, USA)

was used for all preparations.

Preparation of standard and perfusion
solutions
The stock solution (200 µg/mL) of indinavir sul-

fate reference standard was prepared by dissolv-

ing an accurately weighed amount of the drug in

methanol. This was then further diluted in nor-

mal saline to produce various standard working

solutions. The intestinal perfusion solution was

prepared by suspending 400 mg of indinavir in a

0.5% CMC-Na dispersion and then diluting this

with normal saline to achieve a final indinavir

concentration of 1 mg/mL.

Animals
Male Wistar rats, weighing 366.4 ± 13.5 g (mean ±
SD), were obtained from the Laboratory Animal

Center of the College of Medicine at the National

Taiwan University, Taipei, Taiwan. The animals

had free access to water and a standard labora-

tory rodent diet (#5001; Purina Mills, Richmond,

IN, USA) and were housed under conditions of

controlled temperature (20–22°C) and lighting

(12 hours light/dark cycle, light on at 08:00

hours). The Institutional Animal Care and Use

Committee of the College of Medicine, National

Taiwan University, reviewed and approved the

experimental protocol.

In situ single-pass intestinal perfusion
The perfusion procedure (Figure 1) was adapted

from Yu et al with minor modifications as de-

scribed herein.14 Rats, having fasted for 24 hours

with free access to water prior to the perfusion
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study, were anesthetized with 3.5% pentobarbi-

tal solution (1 mL/kg, i.p.). After a gentle midline

incision, the small intestine segment (which was,

on average, 72 cm in length) was selected for inlet

(proximal end of duodenum) and outlet (distal

end of ileum) cannulation with silicone tubes.

First, the intestinal lumen was cleaned by iso-

tonic saline (37°C) perfusion via the inlet until

the effluent from the outlet was judged to be free

of feces and clear. The inlet tubing was then filled

with warmed (37°C) indinavir perfusion solu-

tion, which was pumped at flow rates of either

0.05, 0.1, 0.5 or 1 mL/min using a peristaltic

pump (Minipuls 3, Gilson, Villiers le Bel,

France). The initial 10-minute drug-perfusion

period was considered to be the lag time phase.

The collection of venous blood was not initiated

until the end of the lag time period. During the

perfusion experiment, the exposed intestines

were covered with a gauze that had been mois-

tened by frequent applications of warm (37°C)

saline, and kept warm by a small lamp placed

over the area. The small intestine remained vi-

able throughout the experimental period.

Pharmacokinetic studies and sample
preparation
The blood-drawn design adapted from Kukan’s

liver perfusion procedure is illustrated in Figure 1.15

The surgical procedure for intravenous (i.v.) cath-

eter implantation, for use when sampling portal

and hepatic venous blood, was completed before

the initiation of the perfusion study. A 24-gauge

i.v. catheter (Surflo, Terumo Corp., Tokyo, Japan)

was inserted into the portal vein, whereas an 18-

gauge i.v. catheter (Jelco, Ethicon Endo-Surgery,

Cincinnati, OH, USA) was inserted into, and se-

cured at, the junction of the hepatic vein and the

inferior vena cava (IVC). The tip of the 18-G i.v.

catheter was inserted into the IVC from just be-

neath the liver and gently guided proximally to the

hepatic vein junction. The length of the 18-G i.v.

catheter embedded in the vessel was 2.3 cm. At the

end of the lag time period, 0.4-mL aliquots of

blood were withdrawn via alternate syringes from

both catheters over a total time period of 2 hours,

at the following times: 0, 5, 15, 30, 60, 90 and

120 minutes. Plasma samples were obtained by

centrifuging the blood samples at 9000g for 15

minutes at 4°C, and were immediately frozen in a

deep freezer at −80°C until analysis was carried out.

The plasma specimens were further extracted

using procedures modified from reported meth-

ods.16,17 The following were added to 10-mL glass

tubes: 150 µL of plasma sample, 150 µL of work-

ing internal standard solution (1 µg/mL propyl-

paraben in methanol), 500 µL of 10% NH4OH

and 5 mL of MTBE. The tube was closed with 

Hepatic vein

Portal vein
(inserted with
24-G i.v. catheter)

Peristaltic pump

Inferior vena cava
(inserted with 18-G
i.v. catheter)

Blood sampling

Figure 1. Illustration of the experimental set-up for in situ single-pass intestinal perfusion with cannulations for portal
and hepatic (via inferior vena cava) venous collections. A 24-gauge i.v. catheter was inserted into the portal vein, whereas
the tip of an 18-gauge i.v. catheter was implanted and secured into the junction of the inferior vena cava and hepatic vein
for blood collection. The arrows indicate the flow directions of either intestinal perfusate or blood sampling. Please refer
to the Methods section for details of the surgical and experimental procedures.



a Teflon-seated plastic cap. After shaking vigor-

ously for 5 minutes, the samples were subse-

quently centrifuged at 2100 rpm for 10 minutes

at 4°C. The upper organic layer was transferred to

a clean glass tube and evaporated to dryness under

clean air at room temperature. The residue was

dissolved in 500 µL of the starting mobile phase

(50 mM phosphate buffer, pH 4.8/acetonitrile:

68/32%) and 3 mL of n-hexane. The mixture was

then vortexed for 5 minutes and then centrifuged

(4°C, 12000g, 20 minutes). The upper organic

layer was discarded and the eluent was used for

HPLC analysis of indinavir.

Liquid chromatography
Indinavir in rat plasma was assayed using a

Shimadzu HPLC system (Kyoto, Japan) equipped

with two solvent delivery pumps (LC-10AD), a sys-

tem controller (SCL-10AVP), an automatic injector

(SIL-10A), a UV-VIS detector (SPD-10AV) and an

EverSeiko Gastorr GT-102 degasser (Tokyo, Japan).

Instrument control and data analysis were carried

out using Shimadzu CLASS-VP software (version

6.12) run through Windows 2000. The chromato-

graphic conditions were adapted from Hugen 

et al and Yamada et al.16,17 The column used was

a Phenomenex LUNA C18(2) (150× 4.6 mm, 5µm

particle size [Torrance, CA, USA]), with a small

guard column containing the same material

(Phenomenex SecurityGuard, 4.0 × 3.0 mm).

Chromatographic analysis was performed at

room temperature with gradient elution at a wave-

length of 215 nm. Mobile phase A was acetoni-

trile; phase B was 50 mM Na2HPO4 adjusted to

pH 4.8 with 85% H3PO4. The gradient conditions

were as follows: 0–11.5 minutes, 68% B; 11.5–

13.5 minutes, 68–57% B; 13.5–32 minutes, 57% B;

32–34 minutes, 57–68% B; 34–40 minutes, 68% B.

The injection volume was 50 µL. The total run

time of the analysis was 40 minutes at a flow rate

of 1.5 mL/min.

Pharmacokinetic analysis
Pharmacokinetic calculations were performed

on each individual animal’s data using the phar-

macokinetic calculation software WinNonlin

Enterprise version 4.1 (Pharsight Corp., Mountain

View, CA, USA) by a non-compartmental method.

The area under the curve (AUC) of the plasma

concentration–time curve after oral administra-

tion from time zero to 2 hours (AUC0–2h) was

calculated using the linear trapezoidal rule. The

maximal concentration (Cmax) and the time to

achieve Cmax (Tmax) were observed. The absolute

bioavailability (F) is defined as a product of FG

(fraction of unmetabolized drug absorbed and

passed through the gut into the portal blood)

and FH (the hepatic first-pass availability). The

hepatic extraction ratio (EH) and hepatic clearance

(ClH) were determined as follows:

EH = (Cin − Cout)/Cin

ClH = QH·EH = QH·[(Cin − Cout)/Cin]

The concentrations of indinavir in portal and he-

patic venous blood were designated as Cin and

Cout, respectively. The hepatic blood flow (QH) used

when calculating ClH was 65 mL/min/kg.18,19

Statistical analysis
The statistical analysis was performed using SPSS

version 11.5 (SPSS Inc., Chicago, IL, USA). The

paired t test was used to examine statistical dif-

ferences between portal and hepatic venous blood

concentrations, and one-way ANOVA with post hoc

analysis to compare the various perfusion flow

rates of groups. All values are expressed as mean ±
standard deviation. Means were assumed to be

statistically significant when p < 0.05.

Results

Figure 2 shows the rat portal and hepatic (sys-

temic) plasma concentration–time profiles of 

indinavir, obtained through in situ single-pass

intestinal perfusion at 1 mg/mL under four dif-

ferent flow rates (0.05, 0.1, 0.5 and 1.0 mL/min).

Mean indinavir concentrations were all higher in

portal veins than they were in hepatic veins at

different time points at various flow rates. At the

1.0 mL/min flow rate in particular, the indinavir

Y.F. Ho, et al

40 J Formos Med Assoc | 2008 • Vol 107 • No 1



Presystemic extraction of indinavir by perfusion model

J Formos Med Assoc | 2008 • Vol 107 • No 1 41

concentrations of the two venous groups were

significantly different (p < 0.05) at all time points

studied, indicating considerable presystemic me-

tabolism of indinavir in the liver. The basal plasma

concentration recorded at time zero was due to

an initial 10-minute lag time period before venous

blood collections began.

Additionally, the extent (AUC0–2h) and maxi-

mal concentration (Cmax) of indinavir absorption

between the portal and hepatic venous groups

were significantly different at the flow rates of 0.5

and 1.0 mL/min (0.5 mL/min: AUC0–2h = 6077.8±
413.6 vs. 3419.6 ± 272.6 µg/min/mL, Cmax = 66.9 ±
3.0 vs. 42.7 ± 4.3 µg/mL; 1.0 mL/min: AUC0–2h =
5570.4 ± 388.3 vs. 3587.7 ± 590.0 µg/min/mL,

Cmax = 53.3 ± 4.5 vs. 40.6 ± 3.8 µg/mL; p < 0.05;

Table 1). Further comparative analyses of AUC0–2h,

Cmax and Tmax at various flow rates within the same

venous groups were also performed (Table 1).

There were no statistical differences within the

hepatic group. However, comparisons of the

AUC0–2h at flow rates 0.05 mL/min and 1.00 mL/

min within the portal group did reach statistical

difference (7437.2 ± 975.5 vs. 5570.4 ± 388.3 µg/

min/mL, p < 0.05).

Within both portal and hepatic groups, the

absorption process seemed to be deferred at higher

flow rates because a lower Cmax (Figure 3A) and 

a longer Tmax (Figure 3B) were observed. In addi-

tion, the magnitude of AUC0–2h (Figure 3C),

which was evaluated using the linear trapezoidal

method, and absolute bioavailability (Table 1)

were also apparently correlated inversely with

perfusion flow rate—that is, a higher amount of
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Figure 2. Portal (�) and hepatic (�, at the junction of hepatic vein and inferior vena cava) plasma concentration–time
profiles after in situ single-pass intestinal perfusion of indinavir (1 mg/min) to anesthetized rats at various flow rates.
Venous blood collection was not started during the initial 10-minute drug-perfusion period (lag time). *Concentrations
between portal and hepatic (systemic) veins were significantly different (p < 0.05, paired t test). Results are given as
mean ± standard deviation (n = 3).
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absorption at lower rates. These data imply 

that the indinavir intestinal absorption process 

is flow-rate-dependent and that a considerable

presystemic metabolization exists.

To quantify the extent of this presystemic 

metabolization, EH and ClH at various flow rates

were assessed (Table 2). Basically, both EH and

ClH gradually decreased with time, perhaps due

to intestinal viability, circulatory integrity, and

enzyme saturation under conditions of continu-

ous perfusion. The statistical comparison between

various flow rates of EH and ClH at respective 

perfusion times revealed no difference except at

15 minutes after perfusion, at which EH and ClH

Table 1. Pharmacokinetic parameters of indinavir after in situ single-pass intestinal perfusion of indinavir (1 mg/min) to
anesthetized rats at various flow rates

Flow rate
Portal venous blood Hepatic venous blood Availability

AUC0–2h,P Cmax,P Tmax,P AUC0–2h,H Cmax,H Tmax,H FG* FH
† F‡

(mL/min)
(µg/min/mL) (µg/mL) (min) (µg/min/mL) (µg/mL) (min) (= FG × FH)

0.05 7437.2 ± 975.5§ 74.9 ± 8.9 70.0 ± 17.3 5099.8 ± 1,229.2 58.6 ± 14.3 70.0 ± 17.3 0.062 0.686 0.043
0.10 6420.9 ± 390.7 66.0 ± 2.6 70.0 ± 17.3 4487.9 ± 772.7 50.7 ± 6.4 60.0 ± 0.0 0.053 0.699 0.037
0.50 6077.8 ± 413.6¶ 66.9 ± 3.0|| 90.0 ± 0.0 3419.6 ± 272.6¶ 42.7 ± 4.3|| 80.0 ± 17.3 0.051 0.563 0.029
1.00 5570.4 ± 388.3§¶ 53.3 ± 4.5|| 90.0 ± 0.0 3587.7 ± 590.0¶ 40.6 ± 3.8|| 100.0 ± 17.3 0.046 0.644 0.030

*FG = fraction of drug absorbed and passed through the gut into the portal blood unmetabolized, calculated by AUC0–2h,P/AUCGI, where AUCGI is the 
product of indinavir concentration (1000 mg/mL) and perfusion time (120 min); †FH = the hepatic first-pass availability, calculated by AUC0–2h,P/AUC0–2h,H;
‡F = absolute bioavailability, the product of FG and FH, results are mean ± standard deviation of three rats per group; §p < 0.05, comparison of AUC0–2h,P

between flow rates of 0.05 and 1.00 mL/min within the portal venous group; ||p < 0.05, comparison of Cmax between portal and hepatic groups under the
same flow rates—that is, 0.50 and 1.00 mL/min, respectively; ¶p < 0.05, comparison of AUC0–2h between portal and hepatic groups under the same flow
rates—that is, 0.50 and 1.00 mL/min, respectively.
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between 0.10 and 0.50 mL/min were found to be

statistically different (EH: 0.34 ± 0.07 vs. 0.63 ±
0.07, p < 0.05; ClH: 8.3 ± 1.7 vs. 15.2 ± 1.5, p < 0.05;

Table 2).

Discussion

An in vivo intestinal absorption animal model

may provide intact blood circulation and neural

connections for solute uptake and waste product

disposal with reasonable tissue viability. Barr

and Riegelman pioneered the mesenteric venous

blood collection technique for the analysis of

salicylamide absorption across rabbit intestines

using both perfused-loop and closed-loop meth-

ods.10 Likewise, another closed-loop method in-

volving in situ rat intestinal techniques has also

been modified and combined with blood sam-

pling, via the jejunal vein, in order to study car-

benoxolone absorption characteristics.20,21

To further determine the first-pass metabo-

lism of pharmaceuticals traversing the liver as

well as the intestines, Doluisio’s closed-loop

model20 has been modified to include either se-

quential portal-jugular or portal-femoral dual

venous drainage, or to incorporate an additional

rat intraportal infusion technique with femoral

artery sampling.22–24 Examples of such phar-

maceuticals include haloperidol, fenoctimine,

tolmetin, tolmetin glycine amide and tacrolimus

in rats, and GTS-21 in beagles. Despite these ad-

vances, however, Doluisio’s closed-loop model

has been reported to be, in comparison with the

single-pass perfusion model, inherently less reli-

able in terms of its ability to determine the 

absorption kinetics of theophylline.11

The experimental system of this study not

only used the more stable in situ single-pass in-

testinal perfusion technique, but also designed

and integrated a more juxtahepatic approach 

to obtain portal and hepatic (systemic) venous

blood simultaneously. It is well known that drug-

metabolizing enzymes such as cytochrome P450

may localize in organs other than the intestines

and the liver—for example, in the lung and car-

diovascular systems.25–28 As a result, direct blood

sampling from or via the hepatic vein may be 

superior to that from jugular or femoral blood

vessels in order to obtain unambiguous data that

can be used to assess first-pass extraction through

the liver. In this way, the confounding data that

occurs as a result of the extrahepatic systemic

metabolism that occurs during the movement of

a drug between the hepatic vein and commonly

used blood collection sites, such as the jugular vein,

femoral vein or femoral artery, can be avoided.

Indinavir is an HIV protease inhibitor that is

metabolized by both the intestines and liver.29,30

Although pharmacokinetic studies of indinavir

Table 2. Hepatic extraction ratio (EH) and clearance (ClH) of indinavir (1 mg/min) after in situ single-pass intestinal 
perfusion in rats at various flow rates*

Flow rate (mL/min) 0 min 5 min 15 min 30 min 60 min 90 min 120 min Average

Hepatic extraction ratio (EH)
0.05 0.64 ± 0.09 0.57 ± 0.19 0.58 ± 0.14 0.43 ± 0.20 0.22 ± 0.16 0.32 ± 0.15 0.30 ± 0.10 0.44 ± 0.20
0.10 0.47 ± 0.11 0.31 ± 0.21 0.34 ± 0.07† 0.36 ± 0.13 0.23 ± 0.12 0.36 ± 0.23 0.18 ± 0.06 0.32 ± 0.15
0.50 0.62 ± 0.07 0.61 ± 0.07 0.63 ± 0.07† 0.63 ± 0.06 0.42 ± 0.10 0.37 ± 0.04 0.21 ± 0.11 0.50 ± 0.17
1.00 0.61 ± 0.07 0.60 ± 0.13 0.57 ± 0.09 0.48 ± 0.13 0.35 ± 0.08 0.24 ± 0.01 0.23 ± 0.09 0.44 ± 0.18

Clearance (ClH)
0.05 15.4 ± 2.6 13.9 ± 5.1 13.9 ± 3.9 10.3 ± 4.8 5.3 ± 4.0 7.6 ± 4.1 7.2 ± 2.7 10.7 ± 5.0
0.10 11.5 ± 2.6 7.7 ± 5.0 8.3 ± 1.7† 8.6 ± 3.1 5.6 ± 2.8 8.7 ± 5.6 4.4 ± 1.5 7.8 ± 3.6
0.50 14.9 ± 1.4 14.8 ± 1.7 15.2 ± 1.5† 15.2 ± 1.1 10.1 ± 2.5 8.8 ± 0.9 5.0 ± 2.7 12.0 ± 4.2
1.00 14.7 ± 2.0 14.7 ± 3.5 13.7 ± 2.6 11.6 ± 3.4 8.6 ± 2.1 5.8 ± 0.3 5.6 ± 2.4 10.7 ± 4.4

*Results are presented as mean ± standard deviation of three rats per group; †p < 0.05, comparison between flow rates of 0.10 and 0.50 mL/min.
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in rats have been published elsewhere,19,31–34 our

study model provides a means for directly analyz-

ing presystemic metabolism by comparing differ-

ences between portal and hepatic concentrations

at various perfusion flow rates. Our data demon-

strated significant venous concentration differ-

ences between portal and hepatic veins, especially

at 0.5 and 1.0 mL/min (see Figures 2 and 3), in-

dicating considerable presystemic extraction of

indinavir in the liver.

Our experimental design could also be used to

study how different perfusion rates influence the

pharmacokinetic profiles of indinavir. The flow

rates used in the study were in the range of

0.05 mL/min to 1.0 mL/min, encompassing the re-

ported optimal flow rate for minimizing variability

in in situ absorption studies of iopanic acid.35 Our

results implied that the absorption pace and the

amount absorbed were inversely correlated with

flow rates—that is, a faster speed and a greater

amount of absorption at lower flow rates (Figures 2

and 3, Table 1). Previous literature has specified

that a rapid intestinal transit tends to result in a

decrease in steroid absorption due to insufficient

physical contact between the drug in question and

the intestinal mucosa.36 Our data provide the

first evidence to show that indinavir absorption

is also affected by luminal fluid rate. This obser-

vation may imply that it might be appropriate

for preclinical pharmaceutical researchers to ad-

just the flow rates of luminal administration in

order to identify optimal absorption kinetics.

However, the model developed here may un-

derestimate the true value of Cout, due to a lack 

of practical rat liver physiology values. This will

lead to EH overestimation because it is well known

that the human liver receives blood via both the

portal vein (roughly 78% of its supply) and the

hepatic artery.37 It must also be noted that our

study approach does not take into account drug

dissolution, stomach emptying and biliary secre-

tion. These factors should be taken into consid-

eration in future research.

In summary, an in vivo system for the analysis

of portal–hepatic concentration differences was

developed by using in situ single-pass intestinal

perfusion combined with direct sampling of por-

tal and hepatic venous blood. The system offers

means to evaluate, as a function of drug perfusion

flow rate, the respective plasma concentration–

time profiles of indinavir after absorption from

rat intestine. Integration of corroborative evidence

from several different experimental systems is

unwaveringly essential in ensuring that animal

absorption data are of predictive value to hu-

mans.38 We hope that the near-physiologic in vivo

approach described in this study will be another

useful tool for improving the basic understand-

ing and clinical applications of the absorption

kinetics and presystemic metabolism (including

hepatic involvement) of pharmaceuticals under

development.
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