PCV21
PREVALENCE, AWARENESS, AND MANAGEMENT OF HYPERTENSION, DYSLIPIDEMIA, AND DIABETES UNINSURED AND INSURED ADULTS IN THE UNITED STATES

Gorsky M, Hiertz RP, Limb S, Eugenio AN
Pfizer; New York, NY, USA; Science Applications International Corporation, Reston, VA, USA

OBJECTIVES: National estimates of cardiovascular risk factor prevalence, awareness, treatment, and control among adults without health insurance are lacking. This study contributes 95% CI = 1.56, 3.51) achieved near optimal (<130 mg/dL) and 30% (OR = 1.78, 95% CI = 1.15, 2.76) achieved optimal (<100 mg/dL) LDL-C goals which are significantly higher than the rates among statin non-users (35% and 21%). Both adherent statin users and nonadherent statin users were more likely to achieve near optimal goal compared to non-adherent statin users who were not taking statins (overall p < 0.02; adherence: OR = 2.75, 95% CI 1.66, 4.55; nonadherent: OR = 1.70, 95% CI 0.884, 3.268). CONCLUSIONS: Among executives who participated in a periodic health examination, statin usage appears to be associated with improvements in LDL-C goal attainment. Appropriate medication usage and adherence to medication should be encouraged in working populations.

PCV22
VARIATION OF SEASONAL, WEEKLY AND DAILY RHYTHM OF ACUTE MYOCARDIAL INFARCTION IN DIABETIC PATIENTS

University of Pécs, Pécs, Hungary; University of Pécs, Pécs

OBJECTIVES: The purpose of this study was to examine whether there is a difference in the seasonal, weekly and daily variation of acute myocardial infarction in patients who were diabetic and who were not, and to get information about the mechanism of the background of the rhythm variations and about the trigeminal effects. METHODS: Retrospective analysis was made with acute myocardial infarction patients received in almost all hospitals in Hungary between 2005 and 2007 (n = 41,510, 23,993 male, 17,517 female). Data were collected from the database of the National Health Insurance Fund according to ICD codes: I21, I22, E100-E149. RESULTS: With regard to seasonal variation, the peak period of acute myocardial infarction was found during the months of spring, the lowest number of events is during the summer. There was a significant difference between the number of events for each season (p = 0.003). The weekly peak period of acute myocardial infarction was found on the first day of the week, on Monday, with gradually decreasing trend towards Saturday. The decrease is much higher in the weekend. Regarding the daily rhythm, the results were significant. The peak period was found in the morning hours of the day, and the lowest number of acute myocardial infarction was in the evening hours (p < 0.001). In case of patients with diabetes (51.3% of all patients), the results were similar, the seasonal variation in the occurrence of acute myocardial infarction is also significant, such as the results of the weekly and daily rhythm (p = 0.025, p = 0.000). CONCLUSIONS: In summary, it can be said that the results of our study show that the incidence of an acute myocardial infarction shows characteristic variation with regard to seasons and the days of the week, but there are no differences between diabetic and non-diabetic patients.

PCV23
SEASONAL WEEKLY AND DAILY VARIATION OF ACUTE MYOCARDIAL INFARCTION AND TRANSIENT ISCHEMIC ATTACK IN HUNGARY

University of Pécs, Pécs, Hungary; University of Pécs, Pécs

OBJECTIVES: The purpose of our study was to observe whether a seasonal change or weekly variation can be shown in the incidence of an acute myocardial infarction (AMI) and a transient ischemic attack (TIA) during a three-year study period in Hungary. We also examined whether the occurrence of an AMI or a TIA is influenced by age and sex. METHODS: We have analyzed AMI (N = 51,802) and TIA (N = 12,592) patients received at clinics and hospitals in Hungary between 2007 and 2009. Data were collected from the database of the National Health Fund of Hungary based on the International Classification of Diseases (ICD codes). RESULTS: Based on our results, a weekly and a seasonal variation can be seen in the onset of a transient ischemic attack and an acute myocardial infarction. With regard to seasonal variation, there was a significant difference between the number of events for each season (p < 0.01), and the peak period of AMI and TIA was found during the months of spring, the lowest number of events of AMI is during the summer and in the case of TIA is in autumn. In case of sexes, difference was only found in the seasonal variation of number of events of AMI (p < 0.01). The weekly peak period of infarction and cerebral