MATHEMATICAL

Approximation properties of Gamma operators ${ }^{\text {TH }}$

Xiao-Ming Zeng
Department of Mathematics, Xiamen University, Xiamen 361005, People's Republic of China

Received 10 December 2004
Available online 31 March 2005
Submitted by H.M. Srivastava

Abstract

In this paper the approximation properties of Gamma operators G_{n} are studied to the locally bounded functions and the absolutely continuous functions, respectively. Firstly, in Section 2 of the paper a quantitative form of the central limit theorem in probability theory is used to derive an asymptotic formula on approximation of Gamma operators G_{n} for sign function. And then, this asymptotic formula combining with a metric form $\Omega_{x}(f, \lambda)$ is used to derive an asymptotic estimate on the rate of convergence of Gamma operators G_{n} for the locally bounded functions. Next, in Section 3 of the paper the optimal estimate on the first order absolute moment of the Gamma operators $G_{n}(|t-x|, x)$ is obtained by direct computations. And then, this estimate and Bojanic-Khan-Cheng's method combining with analysis techniques are used to derive an asymptotically optimal estimate on the rate of convergence of Gamma operators G_{n} for the absolutely continuous functions.

© 2005 Elsevier Inc. All rights reserved.
Keywords: Approximation properties; Locally bounded functions; Absolutely continuous functions; Gamma operators; Probabilistic methods

1. Introduction and definitions

Let f be a function defined on $[0, \infty)$ and satisfying the following growth condition:

$$
\begin{equation*}
|f(t)| \leqslant M e^{\beta t} \quad(M>0 ; \beta \geqslant 0 ; t \rightarrow \infty) \tag{1}
\end{equation*}
$$

[^0]Then, the Gamma operator G_{n} applied to f is

$$
\begin{equation*}
G_{n}(f, x)=\frac{1}{x^{n} \Gamma(n)} \int_{0}^{+\infty} f(t / n) t^{n-1} e^{-t / x} d t \tag{2}
\end{equation*}
$$

In this paper the properties of pointwise approximation of Gamma operators G_{n} will be studied to the class of locally bounded functions Φ_{B} and the class of absolutely continuous functions $\Phi_{D B}$, respectively. The two classes of functions Φ_{B} and $\Phi_{D B}$ are defined as follows:

$$
\begin{aligned}
& \Phi_{B}=\{f \mid f \text { is bounded on every finite subinterval of }[0, \infty)\} \\
& \Phi_{D B}=\left\{f \mid f(x)-f(0)=\int_{0}^{x} h(t) d t ; x \geqslant 0\right. \\
& \quad h \text { is bounded on every finite subinterval of }[0, \infty)\}
\end{aligned}
$$

Furthermore, for a function $f \in \Phi_{B}$, we introduce the following metric form:

$$
\Omega_{x}(f, \lambda)=\sup _{t \in[x-\lambda, x+\lambda]}|f(t)-f(x)|,
$$

where $x \in[0, \infty)$ is fixed, $\lambda \geqslant 0$.
It is clear that
(i) $\Omega_{x}(f, \lambda)$ is monotone non-decreasing with respect to λ.
(ii) $\lim _{\lambda \rightarrow 0} \Omega_{x}(f, \lambda)=0$, if f is continuous at the point x.
(iii) If f is bounded variation on $[a, b]$, and $\bigvee_{a}^{b}(f)$ denotes the total variation of f on $[a, b]$, then $\Omega_{x}(f, \lambda) \leqslant \bigvee_{x-\lambda}^{x+\lambda}(f)$.

The main contents of this article are organized as follows. In Section 2 a quantitative form of the central limit theorem in probability theory is used to derive an asymptotic formula on approximation of Gamma operators G_{n} for sign function. And then, this asymptotic formula combining with the metric form $\Omega_{x}(f, \lambda)$ is used to derive an asymptotic estimate on the rate of convergence of Gamma operators G_{n} for the locally bounded function $f \in \Phi_{B}$ at the point x where $f(x+)$ and $f(x-)$ exist. In Section 3 the first order absolute moment of the Gamma operators $G_{n}(|t-x|, x)$ is estimated to get

$$
\begin{equation*}
\left|G_{n}(|t-x|, x)-\sqrt{\frac{2}{n \pi}} x\right| \leqslant \frac{x}{15 n^{3 / 2}} \tag{3}
\end{equation*}
$$

Estimate (3) is the asymptotically optimal and it is better than a result of Bojanic and Khan [1, Section 3.7] that

$$
\begin{equation*}
G_{n}(|t-x|, x)=\sqrt{\frac{2}{n \pi}} x+O\left(n^{-1}\right) \tag{4}
\end{equation*}
$$

And then, the estimate (3) and Bojanic-Khan-Cheng's method combining with analysis techniques are used to derive an estimate on the rate of convergence of Gamma operators G_{n} for absolutely continuous function $f \in \Phi_{D B}$. This estimate is the asymptotically optimal.

2. Approximation for locally bounded functions

In this section we study the rate of convergence of Gamma operators G_{n} for function $f \in \Phi_{B}$. The main result of this section is as follows:

Theorem 1. Let $f \in \Phi_{B}$ and let $f(t)=O\left(e^{\beta t}\right)$ for some $\beta \geqslant 0$ as $t \rightarrow \infty$. If $f(x+)$ and $f(x-)$ exist at a fixed point $x \in(0, \infty)$, then for $n>4 \beta x$ we have

$$
\begin{align*}
& \left|G_{n}(f, x)-\frac{f(x+)+f(x-)}{2}+\frac{f(x+)-f(x-)}{3 \sqrt{2 \pi n}}\right| \\
& \quad \leqslant \frac{5}{n} \sum_{k=1}^{n} \Omega_{x}\left(g_{x}, x / \sqrt{k}\right)+O\left(n^{-1}\right), \tag{5}
\end{align*}
$$

where

$$
g_{x}(t)= \begin{cases}f(t)-f(x+), & x<t<\infty ; \tag{6}\\ 0, & t=x ; \\ f(t)-f(x-), & 0 \leqslant t<x\end{cases}
$$

We point out that Theorem 1 subsumes the case of approximation of functions of bounded variation, from Theorem 1 we get immediately

Corollary 1. Let f be a function of bounded variation on every subinterval of $[0, \infty)$ and let $f(t)=O\left(e^{\beta t}\right)$ for some $\beta \geqslant 0$ as $t \rightarrow \infty$. Then for $x \in(0, \infty)$ and $n>4 \beta x$ we have

$$
\begin{align*}
& \left|G_{n}(f, x)-\frac{f(x+)+f(x-)}{2}+\frac{f(x+)-f(x-)}{3 \sqrt{2 \pi n}}\right| \\
& \quad \leqslant \frac{5}{n} \sum_{k=1}^{n} \Omega_{x}\left(g_{x}, x / \sqrt{k}\right)+O\left(n^{-1}\right) \leqslant \frac{5}{n} \sum_{k=1}^{n} \bigvee_{x-x / \sqrt{k}}^{x+x / \sqrt{k}}\left(g_{x}\right)+O\left(n^{-1}\right) . \tag{7}
\end{align*}
$$

Corollary 2. Under the conditions of Theorem 1, if $\Omega_{x}\left(g_{x}, \lambda\right)=o(\lambda)$, then

$$
\begin{equation*}
G_{n}(f, x)=\frac{f(x+)+f(x-)}{2}-\frac{f(x+)-f(x-)}{3 \sqrt{2 \pi n}}+o\left(n^{-1 / 2}\right) . \tag{8}
\end{equation*}
$$

To prove Theorem 1, we need some preliminary results.
Lemma 1. For $x \in(0, \infty), k=0,1,2, \ldots$, there holds

$$
\begin{equation*}
G_{n}\left(t^{k}, x\right)=\frac{(n+k-1)!}{(n-1)!n^{k}} x^{k} \tag{9}
\end{equation*}
$$

Proof. Direct computation gives

$$
G_{n}(1, x)=1, \quad G_{n}(t, x)=x .
$$

Suppose that (9) holds for some non-negative integer k, then

$$
\begin{aligned}
G_{n}\left(t^{k+1}, x\right) & =\frac{1}{x^{n} \Gamma(n)} \int_{0}^{+\infty}(t / n)^{k+1} t^{n-1} e^{-t / x} d t \\
& =\frac{x(n+1)^{k}}{n^{k} x^{n+1} \Gamma(n+1)} \int_{0}^{+\infty}\left(\frac{t}{n+1}\right)^{k} t^{n+1-1} e^{-t / x} d t \\
& =\frac{x(n+1)^{k}}{n^{k}} G_{n+1}\left(t^{k}, x\right) \\
& =\frac{x(n+1)^{k}}{n^{k}} \frac{(n+1+k-1)!}{(n+1-1)!(n+1)^{k}} x^{k} \\
& =\frac{(n+k+1-1)!}{(n-1)!n^{k+1}} x^{k+1}
\end{aligned}
$$

Lemma 1 is proved.
Lemma 2. For $x \in(0, \infty)$ there holds

$$
\begin{align*}
& G_{n}\left((t-x)^{2}, x\right)=\frac{x^{2}}{n} \tag{10}\\
& \sqrt{G_{n}\left((t-x)^{4}, x\right)} \leqslant \frac{3}{n} x^{2} \tag{11}\\
& \sqrt{G_{n}\left((t-x)^{6}, x\right)} \leqslant \frac{17}{n^{3 / 2}} x^{3} \tag{12}\\
& G_{n}\left(e^{2 \beta t}, x\right) \leqslant(2 e)^{2 \beta x} \quad \text { for } n>4 \beta x . \tag{13}
\end{align*}
$$

Proof. By Lemma 1 and direct computations, we get

$$
\begin{aligned}
& G_{n}\left((t-x)^{2}, x\right)=\frac{x^{2}}{n} \\
& G_{n}\left((t-x)^{4}, x\right)=\frac{3 n+6}{n^{3}} x^{4} \\
& G_{n}\left((t-x)^{6}, x\right)=\frac{15 n^{2}+130 n+120}{n^{5}} x^{6}
\end{aligned}
$$

which derive Eqs. (10)-(12). On the other hand, if $n>4 \beta x$, putting $t=\frac{n x}{n-2 \beta x} u$, we have

$$
G_{n}\left(e^{2 \beta t}, x\right)=\frac{1}{x^{n} \Gamma(n)} \int_{0}^{+\infty} e^{2 \beta t / n} t^{n-1} e^{-t / x} d t
$$

$$
\begin{aligned}
& =\frac{(1 / x-2 \beta / n)^{-n} x^{-n}}{\Gamma(n)} \int_{0}^{+\infty} u^{n-1} e^{-u} d u \\
& =(1 / x-2 \beta / n)^{-n} x^{-n}=\left(\frac{n}{n-2 \beta x}\right)^{n} \\
& =\left(1+\frac{2 \beta x}{n-2 \beta x}\right)^{n} \leqslant(2 e)^{2 \beta x} .
\end{aligned}
$$

The following Lemma 3 is an asymptotic form of the central limit theorem in probability theory. Its proof can be found in Feller [2, pp. 540-542].

Lemma 3. Let $\left\{\xi_{k}\right\}_{k=1}^{\infty}$ be a sequence of independent and identically distributed random variables with the expectation $E \xi_{1}=a_{1}$, the variance $E\left(\xi_{1}-a_{1}\right)^{2}=\sigma^{2}>0, E\left(\xi_{1}-\right.$ $\left.a_{1}\right)^{4}<\infty$, and let F_{n} stand for the distribution function of $\sum_{k=1}^{n}\left(\xi_{k}-a_{1}\right) / \sigma \sqrt{n}$. If F_{n} is not a lattice distribution, then the following equation holds for all $t \in(-\infty,+\infty)$:

$$
\begin{equation*}
F_{n}(t)-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-u^{2} / 2} d u=\frac{E\left(\xi_{1}-a_{1}\right)^{3}}{6 \sigma^{3} \sqrt{n}}\left(1-t^{2}\right) \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}+O\left(n^{-1}\right) \tag{14}
\end{equation*}
$$

Proof of Theorem 1. Let f satisfy the conditions of Theorem 1, then f can be expressed as

$$
\begin{align*}
f(t)= & \frac{f(x+)+f(x-)}{2}+g_{x}(t)+\frac{f(x+)-f(x-)}{2} \operatorname{sign}(t-x) \\
& +\delta_{x}(t)\left[f(x)-\frac{f(x+)+f(x-)}{2}\right], \tag{15}
\end{align*}
$$

where $g_{x}(t)$ is defined in $(6), \operatorname{sign}(t)$ is sign function and

$$
\delta_{x}(t)= \begin{cases}1, & t=x \\ 0, & t \neq x\end{cases}
$$

Obviously,

$$
\begin{equation*}
G_{n}\left(\delta_{x}, x\right)=0 . \tag{16}
\end{equation*}
$$

Let $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ be a sequence of independent random variables with the same Gamma distribution and their probability density functions are

$$
P_{\xi_{i}}(t)= \begin{cases}\frac{1}{x} \exp (-t / x), & \text { if } t>0, \\ 0, & \text { if } t \leqslant 0,\end{cases}
$$

where $x \in(0, \infty)$ is a parameter. Then by direct computation we get

$$
\begin{align*}
& E\left(\xi_{1}\right)=x, \quad E\left(\xi_{1}-E \xi_{1}\right)^{2}=\sigma^{2}=x^{2} \tag{17}\\
& E\left(\xi_{1}-E \xi_{1}\right)^{3}=2 x^{3}, \quad E\left(\xi_{1}-E \xi_{1}\right)^{4}=9 x^{4}<\infty \tag{18}
\end{align*}
$$

Let $\eta_{n}=\sum_{i=1}^{n} \xi_{i}$ and F_{n} stand for the distribution function of $\sum_{i=1}^{n}\left(\xi_{i}-E \xi_{i}\right) / \sigma \sqrt{n}$. Then the probability distribution of the random variable η_{n} is

$$
P\left(\eta_{n} \leqslant y\right)=\frac{1}{\Gamma(n) x^{n}} \int_{0}^{y} t^{n-1} e^{-t / x} d t
$$

Thus

$$
\begin{align*}
G_{n}(\operatorname{sign}(t-x), x) & =\frac{1}{\Gamma(n) x^{n}} \int_{n x}^{+\infty} t^{n-1} e^{-t / x} d t-\frac{1}{\Gamma(n) x^{n}} \int_{0}^{n x} t^{n-1} e^{-t / x} d t \\
& =1-2 P\left(\eta_{n} \leqslant n x\right)=1-2 F_{n}(0) \tag{19}
\end{align*}
$$

By Lemma 3, (17), (18) combining with simple computations, we obtain

$$
\begin{equation*}
1-2 F_{n}(0)=-\frac{2 E\left(\xi_{1}-a_{1}\right)^{3}}{6 \sigma^{3} \sqrt{n}} \frac{1}{\sqrt{2 \pi}}+O\left(n^{-1}\right)=\frac{-2}{3 \sqrt{2 \pi n}}+O\left(n^{-1}\right) \tag{20}
\end{equation*}
$$

It follows from (15), (16), (19) and (20) that

$$
\begin{equation*}
\left|G_{n}(f, x)-\frac{f(x+)+f(x-)}{2}+\frac{f(x+)-f(x-)}{3 \sqrt{2 \pi n}}\right| \leqslant\left|G_{n}\left(g_{x}, x\right)\right|+O\left(n^{-1}\right) . \tag{21}
\end{equation*}
$$

We need to estimate $\left|G_{n}\left(g_{x}, x\right)\right|$. Let

$$
K_{n}(x, t)=P\left(\eta_{n} \leqslant t\right)=\frac{1}{x^{n} \Gamma(n)} \int_{0}^{t} v^{n-1} e^{-v / x} d v
$$

Then

$$
\begin{equation*}
G_{n}\left(g_{x}, x\right)=\int_{0}^{+\infty} g_{x}(t / n) d_{t} K_{n}(x, t) \tag{22}
\end{equation*}
$$

Suppose $0 \leqslant v \leqslant t<n x$, then, noting that $E\left(\eta_{n}-E \eta_{n}\right)^{2}=n x^{2}$ and by Chebyshev inequality, we have

$$
\begin{equation*}
K_{n}(x, t)=P\left(\eta_{n} \leqslant t\right)=P\left(\left|\eta_{n}-n x\right| \geqslant n x-t\right) \leqslant \frac{n x^{2}}{(n x-t)^{2}} \tag{23}
\end{equation*}
$$

Decompose the integral of (22) into four parts as

$$
\int_{0}^{+\infty} g_{x}(t / n) d_{t} K_{n}(x, t)=\Delta_{1, n}\left(g_{x}\right)+\Delta_{2, n}\left(g_{x}\right)+\Delta_{3, n}\left(g_{x}\right)+\Delta_{4, n}\left(g_{x}\right)
$$

where

$$
\Delta_{1, n}\left(g_{x}\right)=\int_{0}^{n x-\sqrt{n} x} g_{x}(t / n) d_{t} K_{n}(x, t), \quad \Delta_{2, n}\left(g_{x}\right)=\int_{n x-\sqrt{n} x}^{n x+\sqrt{n} x} g_{x}(t / n) d_{t} K_{n}(x, t),
$$

$$
\Delta_{3, n}\left(g_{x}\right)=\int_{n x+\sqrt{n} x}^{2 n x} g_{x}(t / n) d_{t} K_{n}(x, t), \quad \Delta_{4, n}\left(g_{x}\right)=\int_{2 n x}^{+\infty} g_{x}(t / n) d_{t} K_{n}(x, t) .
$$

We will evaluate $\Delta_{1, n}\left(g_{x}\right), \Delta_{2, n}\left(g_{x}\right), \Delta_{3, n}\left(g_{x}\right)$ and $\Delta_{4, n}\left(g_{x}\right)$. First, for $\Delta_{2, n}\left(g_{x}\right)$, noting that $g_{x}(x)=0$, we have

$$
\begin{equation*}
\left|\Delta_{2, n}\left(g_{x}\right)\right| \leqslant \int_{n x-\sqrt{n} x}^{n x+\sqrt{n} x}\left|g_{x}(t / n)-g_{x}(x)\right| d_{t} K_{n}(x, t) \leqslant \Omega_{x}\left(g_{x}, x / \sqrt{n}\right) \tag{24}
\end{equation*}
$$

To estimate $\left|\Delta_{1, n}\left(g_{x}\right)\right|$, note that $\Omega_{x}\left(g_{x}, \lambda\right)$ is monotone non-decreasing with respect to λ, thus it follows that

$$
\left|\Delta_{1, n}\left(g_{x}\right)\right|=\left|\int_{0}^{n x-\sqrt{n} x} g_{x}(t / n) d_{t} K_{n}(x, t)\right| \leqslant \int_{0}^{n x-\sqrt{n} x} \Omega_{x}\left(g_{x}, x-t / n\right) d_{t} K_{n}(x, t)
$$

Using integration by parts with $y=n x-\sqrt{n} x$, we have

$$
\begin{align*}
\int_{0}^{n x-\sqrt{n} x} \Omega_{x}\left(g_{x}, x-t / n\right) d_{t} K_{n}(x, t) \leqslant & \Omega_{x}\left(g_{x}, x-y / n\right) K_{n}(x, y) \\
& +\int_{0}^{y} K_{n}(x, t) d_{t}\left(-\Omega_{x}\left(g_{x}, x-t / n\right)\right) \tag{25}
\end{align*}
$$

From (25) and using inequality (23), we get

$$
\begin{align*}
\left|\Delta_{1, n}\left(g_{x}\right)\right| \leqslant & \Omega_{x}\left(g_{x}, x-y / n\right) \frac{n x^{2}}{(n x-y)^{2}} \\
& +\int_{0}^{y} \frac{n x^{2}}{(n x-t)^{2}} d_{t}\left(-\Omega_{x}\left(g_{x}, x-t / n\right)\right) \tag{26}
\end{align*}
$$

Since

$$
\begin{aligned}
\int_{0}^{y} \frac{d_{t}\left(-\Omega_{x}\left(g_{x}, x-t / n\right)\right)}{(n x-t)^{2}}= & \frac{-\Omega_{x}\left(g_{x}, x-y / n\right)}{(n x-y)^{2}} \\
& +\frac{\Omega_{x}\left(g_{x}, x\right)}{(n x)^{2}}+\int_{0}^{y} 2 \frac{\Omega_{x}\left(g_{x}, x-t / n\right)}{(n x-t)^{3}} d t
\end{aligned}
$$

from (25), (26) it follows that

$$
\left|\Delta_{1, n}\left(g_{x}\right)\right| \leqslant \frac{1}{n} \Omega_{x}\left(g_{x}, x\right)+2 n x^{2} \int_{0}^{n x-\sqrt{n} x} \frac{\Omega_{x}\left(g_{x}, x-t / n\right)}{(n x-t)^{3}} d t
$$

Putting $t=x-x / \sqrt{u}$ for the last integral, we get

$$
\int_{0}^{n x-\sqrt{n} x} \frac{\Omega_{x}\left(g_{x}, x-t / n\right)}{(n x-t)^{3}} d t=\frac{1}{2(n x)^{2}} \int_{1}^{n} \Omega_{x}\left(g_{x}, x / \sqrt{u}\right) d u .
$$

Consequently

$$
\begin{equation*}
\left|\Delta_{1, n}\left(g_{x}\right)\right| \leqslant \frac{1}{n}\left(\Omega_{x}\left(g_{x}, x\right)+\int_{1}^{n} \Omega_{x}\left(g_{x}, x / \sqrt{u}\right) d u\right) \tag{27}
\end{equation*}
$$

Using the similar method to estimate $\left|\Delta_{3, n}\left(g_{x}\right)\right|$, we obtain

$$
\begin{equation*}
\left|\Delta_{3, n}\left(g_{x}\right)\right| \leqslant \frac{1}{n}\left(\Omega_{x}\left(g_{x}, x\right)+\int_{1}^{n} \Omega_{x}\left(g_{x}, x / \sqrt{u}\right) d u\right) \tag{28}
\end{equation*}
$$

Finally, by assumption that $g_{x}(t) \leqslant M\left(e^{\beta t}\right)$ as $t \rightarrow \infty$, using Hölder inequality and the inequality (11), (13), for $n \geqslant 4 \beta x$ we have

$$
\begin{align*}
\left|\Delta_{4, n}\left(g_{x}\right)\right| & \leqslant M \int_{2 n x}^{+\infty} e^{\beta t / n} d_{t} K_{n}(x, t) \\
& \leqslant \frac{M}{x^{2}} \int_{0}^{+\infty}(t / n-x)^{2} e^{\beta t / n} d_{t} K_{n}(x, t) \\
& \leqslant \frac{M}{x^{2}}\left(\int_{0}^{+\infty}(t / n-x)^{4} d_{t} K_{n}(x, t)\right)^{1 / 2}\left(\int_{0}^{+\infty} e^{2 \beta t / n} d_{t} K_{n}(x, t)\right)^{1 / 2} \\
& \leqslant \frac{3 M(2 e)^{\beta x}}{n} \tag{29}
\end{align*}
$$

Equations (24), (27)-(29) derive

$$
\begin{align*}
\left|G_{n}\left(g_{x}, x\right)\right| \leqslant & \left|\Delta_{1, n}\left(g_{x}\right)\right|+\left|\Delta_{2, n}\left(g_{x}\right)\right|+\left|\Delta_{3, n}\left(g_{x}\right)\right|+\left|\Delta_{4, n}\left(g_{x}\right)\right| \\
\leqslant & \Omega_{x}\left(g_{x}, x / \sqrt{n}\right)+\frac{2}{n}\left(\Omega_{x}\left(g_{x}, x\right)+\int_{1}^{n} \Omega_{x}\left(g_{x}, x / \sqrt{u}\right) d u\right) \\
& +\frac{3 M(2 e)^{\beta x}}{n} \\
\leqslant & \frac{5}{n} \sum_{k=1}^{n} \Omega_{x}\left(g_{x}, x / \sqrt{k}\right)+\frac{3 M(2 e)^{\beta x}}{n} . \tag{30}
\end{align*}
$$

Theorem 1 now follows from (21) and (30).

3. Approximation for absolutely continuous functions

In this section we study the rate of convergence of Gamma operators G_{n} for function $f \in \Phi_{D B}$. The main result of this section is as follows:

Theorem 2. Let f be a function in $\Phi_{D B}$ and let $f(t) \leqslant M e^{\beta t}$ for some $M>0$ and $\beta \geqslant 0$ as $t \rightarrow \infty$. If $h(x+)$ and $h(x-)$ exist at a fixed point $x \in(0, \infty)$, then for $n>4 \beta x$ we have

$$
\begin{equation*}
\left|G_{n}(f, x)-f(x)-\frac{\tau x}{\sqrt{2 \pi n}}\right| \leqslant \frac{5 x}{n} \sum_{k=1}^{[\sqrt{n}]} \Omega_{x}\left(\phi_{x}, x / k\right)+\frac{|\tau| x+17 M(2 e)^{\beta x}}{n^{3 / 2}} \tag{31}
\end{equation*}
$$

where $\tau=h(x+)-h(x-)$, and

$$
\phi_{x}(t)= \begin{cases}h(t)-h(x+), & x<t<\infty \tag{32}\\ 0, & t=x ; \\ h(t)-h(x-), & 0 \leqslant t<x .\end{cases}
$$

Remark 1. Theorems 1 and 2 need condition $n>4 \beta x$ because Theorems 1 and 2 consider the approximation function f that satisfies the growth condition: $f(t) \leqslant M e^{\beta t}$ for some $M>0$ and $\beta \geqslant 0$ as $t \rightarrow \infty$. In particular, if $\beta=0$, that is, f is bounded on $[0, \infty)$. Then condition $n>4 \beta x$ becomes $n=1,2,3, \ldots$. From viewpoint of approximation, an approximation process is true for $n=1,2,3, \ldots$ is better than that for n sufficiently large. It should be point out that references [1,3-5,7-9] obtained a lot of approximation results (include approximation of Gamma operators) which are true for $n=1,2,3, \ldots$.

Remark 2. If f is a function with derivative of bounded variation, then $f \in \Phi_{D B}$. Thus the approximation of functions with derivatives of bounded variation is a special case of Theorem 2. In this special case Theorem 2 is better than a result of [1]. More important, the estimate of Theorem 2 has been the asymptotic optimal.

To prove Theorem 2, we need to estimate the first order absolute moment of the Gamma operators: $G_{n}(|t-x|, x)$. As concerns this research, Bojanic and Khan [1] proved that

$$
\begin{equation*}
G_{n}(|t-x|, x)=\sqrt{\frac{2}{n \pi}} x+O\left(n^{-1}\right) \tag{33}
\end{equation*}
$$

Hereinbelow, we will present an optimal estimate to $G_{n}(|t-x|, x)$.
Lemma 4. For $x \in(0, \infty)$, there holds

$$
\begin{equation*}
G_{n}(|t-x|, x)=\frac{2 x n^{n} e^{-n}}{n!} \tag{34}
\end{equation*}
$$

Proof. By the fact that $G_{n}(t, x)=x$, we have

$$
G_{n}(|t-x|, x)=\frac{1}{x^{n} \Gamma(n)} \int_{0}^{+\infty}|t / n-x| t^{n-1} e^{-t / x} d t
$$

$$
\begin{aligned}
& =\frac{1}{x^{n} \Gamma(n)}\left(\int_{0}^{n x}(x-t / n) t^{n-1} e^{-t / x} d t-\int_{n x}^{+\infty}(x-t / n) t^{n-1} e^{-t / x} d t\right) \\
& =\frac{2}{x^{n} \Gamma(n)} \int_{0}^{n x}(x-t / n) t^{n-1} e^{-t / x} d t \\
& =\frac{2 x}{\Gamma(n)} \int_{0}^{n} u^{n-1} e^{-u} d u-\frac{2 x}{\Gamma(n+1)} \int_{0}^{n} u^{n} e^{-u} d u
\end{aligned}
$$

But

$$
\int_{0}^{n} u^{n-1} e^{-u} d u=n^{n-1} e^{-n}+\frac{1}{n} \int_{0}^{n} u^{n} e^{-u} d u .
$$

Thus

$$
G_{n}(|t-x|, x)=\frac{2 x n^{n-1} e^{-n}}{\Gamma(n)}=\frac{2 x n^{n} e^{-n}}{n!} .
$$

From Lemma 4 and Stirling 's formula we get immediately
Corollary 3. For $x \in(0, \infty)$, there holds

$$
\begin{equation*}
\left|G_{n}(|t-x|, x)-\sqrt{\frac{2}{n \pi}} x\right| \leqslant \frac{x}{15 n^{3 / 2}} . \tag{35}
\end{equation*}
$$

Estimation (35) is the best possible, that is to say, it cannot be asymptotically improved.
Proof. By Lemma 4 and using Stirling's formula (cf. [6]):

$$
n!=\sqrt{2 \pi n}(n / e)^{n} e^{c_{n}}, \quad(12 n+1)^{-1}<c_{n}<(12 n)^{-1},
$$

we have

$$
\sqrt{\frac{2}{n \pi}} x-G_{n}(|t-x|, x)=\sqrt{\frac{2}{n \pi}} x\left(1-e^{-c_{n}}\right),
$$

and a simple calculation derives

$$
\begin{equation*}
\sqrt{2 / \pi} \frac{x}{15 n^{3 / 2}} \leqslant \sqrt{\frac{2}{n \pi}} x\left(1-e^{-c_{n}}\right) \leqslant \frac{x}{15 n^{3 / 2}} . \tag{36}
\end{equation*}
$$

Proof of Theorem 2. By direct computation, we find that

$$
\begin{align*}
G_{n}(f, x)-f(x)= & \frac{h(x+)-h(x-)}{2} G_{n}(|t-x|, x)-L_{n, x}\left(\phi_{x}\right) \\
& +R_{n, x}\left(\phi_{x}\right)+T_{n, x}\left(\phi_{x}\right), \tag{37}
\end{align*}
$$

where

$$
\begin{aligned}
L_{n, x}\left(\phi_{x}\right) & =\int_{0}^{n x}\left(\int_{t / n}^{x} \phi_{x}(u) d u\right) d_{t} K_{n}(x, t) \\
R_{n, x}\left(\phi_{x}\right) & =\int_{n x}^{2 n x}\left(\int_{x}^{t / n} \phi_{x}(u) d u\right) d_{t} K_{n}(x, t) \\
T_{n, x}\left(\phi_{x}\right) & =\int_{2 n x}^{+\infty}\left(\int_{x}^{t / n} \phi_{x}(u) d u\right) d_{t} K_{n}(x, t)
\end{aligned}
$$

Integration by parts derives

$$
\begin{aligned}
L_{n, x}\left(\phi_{x}\right) & =\int_{0}^{n x}\left(\int_{t / n}^{x} \phi_{x}(u) d u\right) d_{t} K_{n}(x, t) \\
& =\left.\int_{t / n}^{x} \phi_{x}(u) d u K_{n}(x, t)\right|_{0} ^{n x}+\frac{1}{n} \int_{0}^{n x} K_{n}(x, t) \phi_{x}(t / n) d t \\
& =\int_{0}^{x} K_{n}(x, n v) \phi_{x}(v) d v \\
& =\left(\int_{0}^{x-x / \sqrt{n}}+\int_{x-x / \sqrt{n}}^{x}\right) K_{n}(x, n v) \phi_{x}(v) d v
\end{aligned}
$$

Note that $K_{n}(x, n v) \leqslant 1$ and $\phi_{x}(x)=0$, it follows that

$$
\left|\int_{x-x / \sqrt{n}}^{x} K_{n}(x, n v) \phi_{x}(v) d v\right| \leqslant \frac{x}{\sqrt{n}} \Omega_{x}\left(\phi_{x}, \frac{x}{\sqrt{n}}\right) \leqslant \frac{2 x}{n} \sum_{k=1}^{[\sqrt{n}]} \Omega_{x}\left(\phi_{x}, x / k\right)
$$

On the other hand, by inequality (23) and using change of variable $t=x-x / u$, we have

$$
\begin{aligned}
\left|\int_{0}^{x-x / \sqrt{n}} K_{n}(x, n v) \phi_{x}(v) d v\right| & \leqslant \frac{x^{2}}{n} \int_{0}^{x-x / \sqrt{n}} \frac{\Omega_{x}\left(\phi_{x}, x-v\right)}{(x-v)^{2}} d v \\
& =\frac{x}{n} \int_{1}^{\sqrt{n}} \Omega_{x}\left(\phi_{x}, x / u\right) d u \leqslant \frac{x}{n} \sum_{k=1}^{[\sqrt{n}]} \Omega_{x}\left(\phi_{x}, x / k\right) .
\end{aligned}
$$

Thus, it follows that

$$
\begin{equation*}
\left|L_{n, x}\left(\phi_{x}\right)\right| \leqslant \frac{3 x}{n} \sum_{k=1}^{[\sqrt{n}]} \Omega_{x}\left(\phi_{x}, x / k\right) \tag{38}
\end{equation*}
$$

A similar evaluation gives

$$
\begin{equation*}
\left|R_{n, x}\left(\phi_{x}\right)\right| \leqslant \frac{3 x}{n} \sum_{k=1}^{[\sqrt{n}]} \Omega_{x}\left(\phi_{x}, x / k\right) \tag{39}
\end{equation*}
$$

Finally, by the assumption that $f(t) \leqslant M e^{\beta t}(M>0, \beta \geqslant 0)$, and using inequality (12) and (13) we have

$$
\begin{align*}
\left|T_{n, x}\left(\phi_{x}\right)\right| & \leqslant M \int_{2 n x}^{+\infty} e^{\beta t / n} d_{t} K_{n}(x, t) \\
& \leqslant \frac{M}{x^{3}} \int_{2 n x}^{+\infty}(t / n-x)^{3} e^{\beta t / n} d_{t} K_{n}(x, t) \\
& \leqslant \frac{M}{x^{3}}\left(\int_{0}^{+\infty}(t / n-x)^{6} d_{t} K_{n}(x, t)\right)^{1 / 2}\left(\int_{0}^{+\infty} e^{2 \beta t / n} d_{t} K_{n}(x, t)\right)^{1 / 2} \\
& \leqslant \frac{17 M(2 e)^{\beta x}}{n^{3 / 2}} \tag{40}
\end{align*}
$$

Theorem 2 now follows from (35), (37)-(40) combining with a simple calculation.
In the final paragraph we show that the estimate of Theorem 2 is asymptotically optimal. By direct computation, we find that

$$
|t-x|-|0-x|=\int_{0}^{t} \operatorname{sign}(u-x) d u, \quad t \in[0, \infty)
$$

In Theorem 2, taking $f(t)=|t-x|$, then $h(t)=\operatorname{sign}(t-x), \tau=h(x+)-h(x-)=2$, $\phi_{x} \equiv 0$. Hence from (31), (36) and by simple computation, we obtain

$$
\begin{equation*}
\sqrt{2 / \pi} \frac{x}{15 n^{3 / 2}} \leqslant\left|G_{n}(|t-x|, x)-\sqrt{\frac{2}{n \pi}} x\right| \leqslant \frac{2 x+17 M(2 e)^{\beta x}}{n^{3 / 2}} \tag{41}
\end{equation*}
$$

Therefore (31) cannot be any further asymptotically improved.

Acknowledgments

The author thanks the associate editor and the referee for several important comments and suggestions which improved the quality of the paper.

References

[1] R. Bojanic, M.K. Khan, Rate of convergence of some operators of functions with derivatives of bounded variation, Atti Sem. Mat. Fis. Univ. Modena 29 (1991) 153-170.
[2] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York, 1971.
[3] S. Guo, M.K. Khan, On the rate of convergence of some operators on functions of bounded variation, J. Approx. Theory 58 (1989) 90-101.
[4] M.K. Khan, On the rate of convergence of Bernstein power series for functions of bounded variation, J. Approx. Theory 57 (1989) 90-103.
[5] M.K. Khan, Approximation at discontinuity, Rend. Circ. Mat. Palermo (2), Suppl. 68 (2002) 539-553.
[6] V. Namias, A simple derivation of Stiring's asymptotic series, Amer. Math. Monthly 93 (1986) 25-29.
[7] H.M. Srivastava, V. Gupta, A certain family of summation-integral type operators, Math. Comput. Modelling 37 (2003) 1307-1315.
[8] X.M. Zeng, A. Piriou, On the rate of convergence of two Bernstein-Bézier type operators for bounded variation function, J. Approx. Theory 95 (1998) 369-387.
[9] X.M. Zeng, F. Cheng, On the rates of approximation of Bernstein type operators, J. Approx. Theory 109 (2001) 242-256.

Further reading

[10] E. Omey, Operators of probabilistic type, Theory Probab. Appl. 41 (1996) 219-225.
[11] P. Pych-Taberska, Some properties of the Bézier-Kantorovich type operators, J. Approx. Theory 123 (2003) 256-269.
[12] A.N. Shiryayev, Probability, Springer-Verlag, New York, 1984.

[^0]: 4. The work was supported by National and Fujian provincial Science Foundation of China.

 E-mail address: xmzeng@jingxian.xmu.edu.cn.

