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Abstract

In this paper the approximation properties of Gamma operatorsGn are studied to the locall
bounded functions and the absolutely continuous functions, respectively. Firstly, in Section 2
paper a quantitative form of the central limit theorem in probability theory is used to derive an a
totic formula on approximation of Gamma operatorsGn for sign function. And then, this asymptot
formula combining with a metric formΩx(f,λ) is used to derive an asymptotic estimate on the
of convergence of Gamma operatorsGn for the locally bounded functions. Next, in Section 3 of t
paper the optimal estimate on the first order absolute moment of the Gamma operatorsGn(|t −x|, x)

is obtained by direct computations. And then, this estimate and Bojanic–Khan–Cheng’s metho
bining with analysis techniques are used to derive an asymptotically optimal estimate on the
convergence of Gamma operatorsGn for the absolutely continuous functions.
 2005 Elsevier Inc. All rights reserved.

Keywords:Approximation properties; Locally bounded functions; Absolutely continuous functions; Gamm
operators; Probabilistic methods

1. Introduction and definitions

Let f be a function defined on[0,∞) and satisfying the following growth condition:∣∣f (t)
∣∣ � Meβt (M > 0; β � 0; t → ∞). (1)
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Then, the Gamma operatorGn applied tof is

Gn(f, x) = 1

xnΓ (n)

+∞∫
0

f (t/n)tn−1e−t/x dt. (2)

In this paper the properties of pointwise approximation of Gamma operatorsGn will be
studied to the class of locally bounded functionsΦB and the class of absolutely continuo
functionsΦDB , respectively. The two classes of functionsΦB andΦDB are defined as
follows:

ΦB = {
f | f is bounded on every finite subinterval of[0,∞)

}
,

ΦDB =
{

f

∣∣∣∣ f (x) − f (0) =
x∫

0

h(t) dt; x � 0;

h is bounded on every finite subinterval of[0,∞)

}
.

Furthermore, for a functionf ∈ ΦB , we introduce the following metric form:

Ωx(f,λ) = sup
t∈[x−λ,x+λ]

∣∣f (t) − f (x)
∣∣,

wherex ∈ [0,∞) is fixed,λ � 0.
It is clear that

(i) Ωx(f,λ) is monotone non-decreasing with respect toλ.
(ii) lim λ→0 Ωx(f,λ) = 0, if f is continuous at the pointx.

(iii) If f is bounded variation on[a, b], and
∨b

a(f ) denotes the total variation off on
[a, b], thenΩx(f,λ) �

∨x+λ
x−λ(f ).

The main contents of this article are organized as follows. In Section 2 a quant
form of the central limit theorem in probability theory is used to derive an asymp
formula on approximation of Gamma operatorsGn for sign function. And then, this as
ymptotic formula combining with the metric formΩx(f,λ) is used to derive an asymptot
estimate on the rate of convergence of Gamma operatorsGn for the locally bounded func
tion f ∈ ΦB at the pointx wheref (x+) andf (x−) exist. In Section 3 the first orde
absolute moment of the Gamma operatorsGn(|t − x|, x) is estimated to get∣∣∣∣Gn

(|t − x|, x) −
√

2

nπ
x

∣∣∣∣ � x

15n3/2
. (3)

Estimate (3) is the asymptotically optimal and it is better than a result of Bojanic and
[1, Section 3.7] that

Gn

(|t − x|, x) =
√

2
x + O(n−1). (4)
nπ
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And then, the estimate (3) and Bojanic–Khan–Cheng’s method combining with an
techniques are used to derive an estimate on the rate of convergence of Gamma
torsGn for absolutely continuous functionf ∈ ΦDB . This estimate is the asymptotical
optimal.

2. Approximation for locally bounded functions

In this section we study the rate of convergence of Gamma operatorsGn for function
f ∈ ΦB . The main result of this section is as follows:

Theorem 1. Let f ∈ ΦB and letf (t) = O(eβt ) for someβ � 0 as t → ∞. If f (x+) and
f (x−) exist at a fixed pointx ∈ (0,∞), then forn > 4βx we have∣∣∣∣Gn(f, x) − f (x+) + f (x−)

2
+ f (x+) − f (x−)

3
√

2πn

∣∣∣∣
� 5

n

n∑
k=1

Ωx(gx, x/
√

k) + O(n−1), (5)

where

gx(t) =
{

f (t) − f (x+), x < t < ∞;
0, t = x;
f (t) − f (x−), 0� t < x.

(6)

We point out that Theorem 1 subsumes the case of approximation of functio
bounded variation, from Theorem 1 we get immediately

Corollary 1. Let f be a function of bounded variation on every subinterval of[0,∞) and
let f (t) = O(eβt ) for someβ � 0 as t → ∞. Then forx ∈ (0,∞) andn > 4βx we have∣∣∣∣Gn(f, x) − f (x+) + f (x−)

2
+ f (x+) − f (x−)

3
√

2πn

∣∣∣∣
� 5

n

n∑
k=1

Ωx(gx, x/
√

k) + O(n−1) � 5

n

n∑
k=1

x+x/
√

k∨
x−x/

√
k

(gx) + O(n−1). (7)

Corollary 2. Under the conditions of Theorem1, if Ωx(gx,λ) = o(λ), then

Gn(f, x) = f (x+) + f (x−)

2
− f (x+) − f (x−)

3
√

2πn
+ o(n−1/2). (8)

To prove Theorem 1, we need some preliminary results.

Lemma 1. For x ∈ (0,∞), k = 0,1,2, . . . , there holds

Gn(t
k, x) = (n + k − 1)!

(n − 1)!nk
xk. (9)
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Proof. Direct computation gives

Gn(1, x) = 1, Gn(t, x) = x.

Suppose that (9) holds for some non-negative integerk, then

Gn(t
k+1, x) = 1

xnΓ (n)

+∞∫
0

(t/n)k+1tn−1e−t/x dt

= x(n + 1)k

nkxn+1Γ (n + 1)

+∞∫
0

(
t

n + 1

)k

tn+1−1e−t/x dt

= x(n + 1)k

nk
Gn+1(t

k, x)

= x(n + 1)k

nk

(n + 1+ k − 1)!
(n + 1− 1)!(n + 1)k

xk

= (n + k + 1− 1)!
(n − 1)!nk+1

xk+1.

Lemma 1 is proved. �
Lemma 2. For x ∈ (0,∞) there holds

Gn

(
(t − x)2, x

) = x2

n
; (10)

√
Gn((t − x)4, x) � 3

n
x2; (11)

√
Gn((t − x)6, x) � 17

n3/2
x3; (12)

Gn(e
2βt , x) � (2e)2βx for n > 4βx. (13)

Proof. By Lemma 1 and direct computations, we get

Gn

(
(t − x)2, x

) = x2

n
,

Gn

(
(t − x)4, x

) = 3n + 6

n3
x4,

Gn

(
(t − x)6, x

) = 15n2 + 130n + 120

n5
x6,

which derive Eqs. (10)–(12). On the other hand, ifn > 4βx, puttingt = nx
n−2βx

u, we have

Gn(e
2βt , x) = 1

xnΓ (n)

+∞∫
e2βt/ntn−1e−t/x dt
0
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d

distrib-
= (1/x − 2β/n)−nx−n

Γ (n)

+∞∫
0

un−1e−u du

= (1/x − 2β/n)−nx−n =
(

n

n − 2βx

)n

=
(

1+ 2βx

n − 2βx

)n

� (2e)2βx. �
The following Lemma 3 is an asymptotic form of the central limit theorem in probab

theory. Its proof can be found in Feller [2, pp. 540–542].

Lemma 3. Let {ξk}∞k=1 be a sequence of independent and identically distributed ran
variables with the expectationEξ1 = a1, the varianceE(ξ1 − a1)

2 = σ 2 > 0, E(ξ1 −
a1)

4 < ∞, and letFn stand for the distribution function of
∑n

k=1(ξk − a1)/σ
√

n. If Fn is
not a lattice distribution, then the following equation holds for allt ∈ (−∞,+∞):

Fn(t) − 1√
2π

t∫
−∞

e−u2/2 du = E(ξ1 − a1)
3

6σ 3
√

n
(1− t2)

1√
2π

e−t2/2 + O(n−1). (14)

Proof of Theorem 1. Let f satisfy the conditions of Theorem 1, thenf can be expresse
as

f (t) = f (x+) + f (x−)

2
+ gx(t) + f (x+) − f (x−)

2
sign(t − x)

+ δx(t)

[
f (x) − f (x+) + f (x−)

2

]
, (15)

wheregx(t) is defined in (6), sign(t) is sign function and

δx(t) =
{

1, t = x,

0, t �= x.

Obviously,

Gn(δx, x) = 0. (16)

Let {ξi}∞i=1 be a sequence of independent random variables with the same Gamma
ution and their probability density functions are

Pξi
(t) =

{ 1
x

exp(−t/x), if t > 0,

0, if t � 0,

wherex ∈ (0,∞) is a parameter. Then by direct computation we get

E(ξ1) = x, E(ξ1 − Eξ1)
2 = σ 2 = x2, (17)

E(ξ1 − Eξ1)
3 = 2x3, E(ξ1 − Eξ1)

4 = 9x4 < ∞. (18)
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Letηn = ∑n
i=1 ξi andFn stand for the distribution function of

∑n
i=1(ξi −Eξi)/σ

√
n. Then

the probability distribution of the random variableηn is

P(ηn � y) = 1

Γ (n)xn

y∫
0

tn−1e−t/x dt.

Thus

Gn

(
sign(t − x), x

) = 1

Γ (n)xn

+∞∫
nx

tn−1e−t/x dt − 1

Γ (n)xn

nx∫
0

tn−1e−t/x dt

= 1− 2P(ηn � nx) = 1− 2Fn(0). (19)

By Lemma 3, (17), (18) combining with simple computations, we obtain

1− 2Fn(0) = −2E(ξ1 − a1)
3

6σ 3
√

n

1√
2π

+ O(n−1) = −2

3
√

2πn
+ O(n−1). (20)

It follows from (15), (16), (19) and (20) that∣∣∣∣Gn(f, x) − f (x+) + f (x−)

2
+ f (x+) − f (x−)

3
√

2πn

∣∣∣∣ �
∣∣Gn(gx, x)

∣∣ + O(n−1). (21)

We need to estimate|Gn(gx, x)|. Let

Kn(x, t) = P(ηn � t) = 1

xnΓ (n)

t∫
0

vn−1e−v/x dv.

Then

Gn(gx, x) =
+∞∫
0

gx(t/n)dtKn(x, t). (22)

Suppose 0� v � t < nx, then, noting thatE(ηn − Eηn)
2 = nx2 and by Chebyshev in

equality, we have

Kn(x, t) = P(ηn � t) = P
(|ηn − nx| � nx − t

)
� nx2

(nx − t)2
. (23)

Decompose the integral of (22) into four parts as

+∞∫
0

gx(t/n)dtKn(x, t) = ∆1,n(gx) + ∆2,n(gx) + ∆3,n(gx) + ∆4,n(gx),

where

∆1,n(gx) =
nx−√

nx∫
0

gx(t/n)dtKn(x, t), ∆2,n(gx) =
nx+√

nx∫
√

gx(t/n)dtKn(x, t),
nx− nx
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∆3,n(gx) =
2nx∫

nx+√
nx

gx(t/n)dtKn(x, t), ∆4,n(gx) =
+∞∫

2nx

gx(t/n)dtKn(x, t).

We will evaluate∆1,n(gx), ∆2,n(gx), ∆3,n(gx) and∆4,n(gx). First, for∆2,n(gx), noting
thatgx(x) = 0, we have

∣∣∆2,n(gx)
∣∣ �

nx+√
nx∫

nx−√
nx

∣∣gx(t/n) − gx(x)
∣∣dtKn(x, t) � Ωx(gx, x/

√
n). (24)

To estimate|∆1,n(gx)|, note thatΩx(gx,λ) is monotone non-decreasing with respect toλ,
thus it follows that

∣∣∆1,n(gx)
∣∣ =

∣∣∣∣∣
nx−√

nx∫
0

gx(t/n)dtKn(x, t)

∣∣∣∣∣ �
nx−√

nx∫
0

Ωx(gx, x − t/n)dtKn(x, t).

Using integration by parts withy = nx − √
nx, we have

nx−√
nx∫

0

Ωx(gx, x − t/n)dtKn(x, t) � Ωx(gx, x − y/n)Kn(x, y)

+
y∫

0

Kn(x, t)dt

(−Ωx(gx, x − t/n)
)
. (25)

From (25) and using inequality (23), we get

∣∣∆1,n(gx)
∣∣ � Ωx(gx, x − y/n)

nx2

(nx − y)2

+
y∫

0

nx2

(nx − t)2
dt

(−Ωx(gx, x − t/n)
)
. (26)

Since
y∫

0

dt (−Ωx(gx, x − t/n))

(nx − t)2
= −Ωx(gx, x − y/n)

(nx − y)2

+ Ωx(gx, x)

(nx)2
+

y∫
0

2
Ωx(gx, x − t/n)

(nx − t)3
dt,

from (25), (26) it follows that

∣∣∆1,n(gx)
∣∣ � 1

n
Ωx(gx, x) + 2nx2

nx−√
nx∫

Ωx(gx, x − t/n)

(nx − t)3
dt.
0
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e

Puttingt = x − x/
√

u for the last integral, we get

nx−√
nx∫

0

Ωx(gx, x − t/n)

(nx − t)3
dt = 1

2(nx)2

n∫
1

Ωx(gx, x/
√

u)du.

Consequently

∣∣∆1,n(gx)
∣∣ � 1

n

(
Ωx(gx, x) +

n∫
1

Ωx(gx, x/
√

u)du

)
. (27)

Using the similar method to estimate|∆3,n(gx)|, we obtain

∣∣∆3,n(gx)
∣∣ � 1

n

(
Ωx(gx, x) +

n∫
1

Ωx(gx, x/
√

u)du

)
. (28)

Finally, by assumption thatgx(t) � M(eβt ) as t → ∞, using Hölder inequality and th
inequality (11), (13), forn � 4βx we have

∣∣∆4,n(gx)
∣∣ � M

+∞∫
2nx

eβt/ndtKn(x, t)

� M

x2

+∞∫
0

(t/n − x)2eβt/ndtKn(x, t)

� M

x2

( +∞∫
0

(t/n − x)4dtKn(x, t)

)1/2( +∞∫
0

e2βt/ndtKn(x, t)

)1/2

� 3M(2e)βx

n
. (29)

Equations (24), (27)–(29) derive∣∣Gn(gx, x)
∣∣ �

∣∣∆1,n(gx)
∣∣ + ∣∣∆2,n(gx)

∣∣ + ∣∣∆3,n(gx)
∣∣ + ∣∣∆4,n(gx)

∣∣
� Ωx(gx, x/

√
n) + 2

n

(
Ωx(gx, x) +

n∫
1

Ωx(gx, x/
√

u)du

)

+ 3M(2e)βx

n

� 5

n

n∑
k=1

Ωx(gx, x/
√

k) + 3M(2e)βx

n
. (30)

Theorem 1 now follows from (21) and (30).�
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3. Approximation for absolutely continuous functions

In this section we study the rate of convergence of Gamma operatorsGn for function
f ∈ ΦDB . The main result of this section is as follows:

Theorem 2. Let f be a function inΦDB and letf (t) � Meβt for someM > 0 andβ � 0
ast → ∞. If h(x+) andh(x−) exist at a fixed pointx ∈ (0,∞), then forn > 4βx we have

∣∣∣∣Gn(f, x) − f (x) − τx√
2πn

∣∣∣∣ � 5x

n

[√n ]∑
k=1

Ωx(φx, x/k) + |τ |x + 17M(2e)βx

n3/2
, (31)

whereτ = h(x+) − h(x−), and

φx(t) =
{

h(t) − h(x+), x < t < ∞;
0, t = x;
h(t) − h(x−), 0� t < x.

(32)

Remark 1. Theorems 1 and 2 need conditionn > 4βx because Theorems 1 and 2 consi
the approximation functionf that satisfies the growth condition:f (t) � Meβt for some
M > 0 andβ � 0 as t → ∞. In particular, if β = 0, that is,f is bounded on[0,∞).
Then conditionn > 4βx becomesn = 1,2,3, . . . . From viewpoint of approximation, a
approximation process is true forn = 1,2,3, . . . is better than that forn sufficiently large.
It should be point out that references [1,3–5,7–9] obtained a lot of approximation r
(include approximation of Gamma operators) which are true forn = 1,2,3, . . . .

Remark 2. If f is a function with derivative of bounded variation, thenf ∈ ΦDB . Thus
the approximation of functions with derivatives of bounded variation is a special ca
Theorem 2. In this special case Theorem 2 is better than a result of [1]. More impo
the estimate of Theorem 2 has been the asymptotic optimal.

To prove Theorem 2, we need to estimate the first order absolute moment of the G
operators:Gn(|t − x|, x). As concerns this research, Bojanic and Khan [1] proved tha

Gn

(|t − x|, x) =
√

2

nπ
x + O(n−1). (33)

Hereinbelow, we will present an optimal estimate toGn(|t − x|, x).

Lemma 4. For x ∈ (0,∞), there holds

Gn

(|t − x|, x) = 2xnne−n

n! . (34)

Proof. By the fact thatGn(t, x) = x, we have

Gn

(|t − x|, x) = 1

xnΓ (n)

+∞∫
|t/n − x|tn−1e−t/x dt
0
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oved.
= 1

xnΓ (n)

( nx∫
0

(x − t/n)tn−1e−t/x dt −
+∞∫
nx

(x − t/n)tn−1e−t/x dt

)

= 2

xnΓ (n)

nx∫
0

(x − t/n)tn−1e−t/x dt

= 2x

Γ (n)

n∫
0

un−1e−u du − 2x

Γ (n + 1)

n∫
0

une−u du.

But
n∫

0

un−1e−u du = nn−1e−n + 1

n

n∫
0

une−u du.

Thus

Gn

(|t − x|, x) = 2xnn−1e−n

Γ (n)
= 2xnne−n

n! . �
From Lemma 4 and Stirling ’s formula we get immediately

Corollary 3. For x ∈ (0,∞), there holds∣∣∣∣Gn

(|t − x|, x) −
√

2

nπ
x

∣∣∣∣ � x

15n3/2
. (35)

Estimation (35) is the best possible, that is to say, it cannot be asymptotically impr

Proof. By Lemma 4 and using Stirling’s formula (cf. [6]):

n! = √
2πn(n/e)necn, (12n + 1)−1 < cn < (12n)−1,

we have√
2

nπ
x − Gn

(|t − x|, x) =
√

2

nπ
x(1− e−cn),

and a simple calculation derives

√
2/π

x

15n3/2
�

√
2

nπ
x(1− e−cn) � x

15n3/2
. (36)

Proof of Theorem 2. By direct computation, we find that

Gn(f, x) − f (x) = h(x+) − h(x−)

2
Gn

(|t − x|, x) − Ln,x(φx)

+ Rn,x(φx) + Tn,x(φx), (37)

where



X.M. Zeng / J. Math. Anal. Appl. 311 (2005) 389–401 399
Ln,x(φx) =
nx∫

0

( x∫
t/n

φx(u)du

)
dtKn(x, t),

Rn,x(φx) =
2nx∫

nx

( t/n∫
x

φx(u)du

)
dtKn(x, t),

Tn,x(φx) =
+∞∫

2nx

( t/n∫
x

φx(u)du

)
dtKn(x, t).

Integration by parts derives

Ln,x(φx) =
nx∫

0

( x∫
t/n

φx(u)du

)
dtKn(x, t)

=
x∫

t/n

φx(u)duKn(x, t)

∣∣∣∣
nx

0
+ 1

n

nx∫
0

Kn(x, t)φx(t/n)dt

=
x∫

0

Kn(x,nv)φx(v) dv

=
( x−x/

√
n∫

0

+
x∫

x−x/
√

n

)
Kn(x,nv)φx(v) dv.

Note thatKn(x,nv) � 1 andφx(x) = 0, it follows that∣∣∣∣∣
x∫

x−x/
√

n

Kn(x,nv)φx(v) dv

∣∣∣∣∣ � x√
n
Ωx

(
φx,

x√
n

)
� 2x

n

[√n ]∑
k=1

Ωx(φx, x/k).

On the other hand, by inequality (23) and using change of variablet = x − x/u, we have

∣∣∣∣∣
x−x/

√
n∫

0

Kn(x,nv)φx(v) dv

∣∣∣∣∣ � x2

n

x−x/
√

n∫
0

Ωx(φx, x − v)

(x − v)2
dv

= x

n

√
n∫

1

Ωx(φx, x/u)du � x

n

[√n ]∑
k=1

Ωx(φx, x/k).

Thus, it follows that

∣∣Ln,x(φx)
∣∣ � 3x

n

[√n ]∑
Ωx(φx, x/k). (38)
k=1
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timal.

ns which

unded
A similar evaluation gives

∣∣Rn,x(φx)
∣∣ � 3x

n

[√n ]∑
k=1

Ωx(φx, x/k). (39)

Finally, by the assumption thatf (t) � Meβt (M > 0, β � 0), and using inequality (12
and (13) we have

∣∣Tn,x(φx)
∣∣ � M

+∞∫
2nx

eβt/ndtKn(x, t)

� M

x3

+∞∫
2nx

(t/n − x)3eβt/ndtKn(x, t)

� M

x3

( +∞∫
0

(t/n − x)6dtKn(x, t)

)1/2( +∞∫
0

e2βt/ndtKn(x, t)

)1/2

� 17M(2e)βx

n3/2
. (40)

Theorem 2 now follows from (35), (37)–(40) combining with a simple calculation.
In the final paragraph we show that the estimate of Theorem 2 is asymptotically op

By direct computation, we find that

|t − x| − |0− x| =
t∫

0

sign(u − x)du, t ∈ [0,∞).

In Theorem 2, takingf (t) = |t − x|, thenh(t) = sign(t − x), τ = h(x+) − h(x−) = 2,
φx ≡ 0. Hence from (31), (36) and by simple computation, we obtain

√
2/π

x

15n3/2
�

∣∣∣∣Gn

(|t − x|, x) −
√

2

nπ
x

∣∣∣∣ � 2x + 17M(2e)βx

n3/2
. (41)

Therefore (31) cannot be any further asymptotically improved.�
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