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INTRODUCTION

Let (X, Y) be a pair of real normed linear spaces and let T be in general
a nonlinear mapping of D C X into Y. The purpose of this paper is twofold:
first, to establish two basic existence theorems for the equation

() T(x)=f (xeD,feY)
under various “boundary” and/or “‘at infinity”’ conditions, where T is either
pseudo-A-proper' (Theorem 1) or a uniform limit of a special sequence of
such mappings (Theorem 2); second, to apply Theorems 1 and 2 to the study
of the solvability of Eq. (i) involving various special classes of mappings in
Banach spaces.

Suppose (X, Y) has an oriented admissible scheme I', = {.X,,, ¥, P, , O,}.
In trying (see, for example, [24, 26, 33]) to obtain the constructive existence
of solutions x € D of Eq. (i) as strong limits of solutions x, € D, of the finite-
dimensional Galerkin-type approximate equations

(ii) Tn(xn) = Qn(f), (Tn = QnT ‘D,Z y D= DN Xn)

the author has been led in [27-29] to the class of 4-proper mappings [i.e.,
maps satisfying condition (H)] which later was further studied by the author
[31, 34, 35], Browder and Petryshyn [8, 9], Browder [4, 6], Nussbaum [23],
Wong [40], Deimling [11], Fitzpatrick [15], and others. Although the class
of A-proper mappings, under suitable continuity assumptions, includes
many types of mappings [e.g., compact displacements, P-compact, strongly
K-monotone, §-k-set-contractions, mappings of type (S) and of modified
type (S)], there are existence theorems for Eq. (i) involving, for example,

* Supported in part by the National Science Foundation Grant GP-20228 and in
part by the Research Council of Rutgers University while the author was on the
faculty fellowship.

1 For the definitions of various concepts and the precise statements of the results
mentioned in the Introduction see the succeeding sections.
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weakly continuous (see, for example, [38, 1, 13, 39]) or coercive demi-
continuous monotone or pseudo-monotone mappings (see, for example, [21,
5, 2, 3]) for which the theory of A-proper mappings is not directly applicable.

However, a closer look at this theory suggests that if instead of its con-
structive we are primarily interested in its existential aspect, then the same
approach can still be used to obtain existence theorems for Eq. (i) involving
a much wider class of the so-called pseudo-A-proper mappings [or maps
satisfving condition (c) for reflexive Banach spaces [26, 36] and condition (h)
for general Banach spaces [30]] and their uniform limits under the “bound-
ary” and/or the “‘at infinity” conditions which are more general than the
K-coerciveness condition.

The basic results summarized below were announced in our note [25].

In Section 1 we introduce various concepts and establish the two basic
existence theorems for Eq. (i): Theorem 1 for fa-continuous pseudo-A-proper
mapping T of D C X into Y which is of K-coercive type and Theorem 2 for
T of X into Y which is a uniform limit on bounded sets in X of pseudo-A-
proper mappings and which satisfies a condition “at infinity” which is more
general than the K-coerciveness condition. As our first application, we obtain
new results for weakly closed mappings T of D C X into Y, which for the
case when ¥ = X (see Section 5) includes the basic fixed point theorem of
Schauder [38] for weakly continuous T and its extensions [1, 13, 16].

In Section 2, assuming here and in succeeding sections that X and Y are
Banach spaces with X reflexive, we apply Theorems 1 and 2 to obtain
surjectivity results (Theorems 3 and 4) for Eq. (i) involving demicontinuous
and weakly continuous K-monotone and K-coercive mappings 7 of X into Y.
As special cases (see Section 5A for the case when ¥ = X*) we obtain the
basic surjectivity theorem of Minty-Browder [21, 5] for demicontinuous
monotone mappings T' of X into X*, of Browder-De Figueiredo [7] for
J-monotone maps as well as other results. We also discuss the conditions and
give new arguments which guarantee the A-properness of certain K-mono-
tone mappings T of X into ¥ which need not be bounded.

In Section 3 we first apply Theorems 1 and 2 to obtain new results for T of
type (PKM) (Theorems 5 and 6) and then apply Theorem 1 to T quasi-K-
monotone (Theorem 7). As special cases (see Section 5B for the case when
Y = X*) we obtain the surjectivity theorem of Brezis [2] for T pseudo-
monotone and of Kachurowsky [16] for T; quasi-monotone.

In Section 4 we use Theorems 1 and 2 in the study of the solvability of
Eq. (i) for the case when T : X — Y is of type (KM) (Theorems 8 and 9).
As a special case of Theorem 8 when ¥ = X* we deduce the result
of Brezis {2] for T of type (M). The result of Theorem 9 and its special cases
are all new.

Note that the definitions of a pseudo-monotone and of type (M) mappings
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given in [2] are somewhat different from those given in this paper (cf. [20]).
Our definitions involve only sequences while those of Brezis are given in
terms of filters. However, since X employed in Sections 2-5 is necessarily
separable and reflexive, the results of Brezis [2] are also valid for pseudo-
monotone maps and maps of type (M) as defined here but without the addi-
tional condition that 7' be bounded. In this paper, whenever a reference is
made to these maps, it is understood that they are defined in terms of sequen-
ces. We add that our arguments are different from those in [2].

In Section 5 we discuss in more detail the various special classes of map-
pings T of DC X into X* and T of DC X into X, some of which have
already been mentioned. Here we deduce a number of known results as well
as some new ones from Theorems 10 and 11 in Section 5A for mappings T
of D C X into X* and from Theorems 12 and 13 in Section 5B for mappings
T of DC X into X which are the corresponding analogoues of Theorems |
and 2 in Section 1. In particular, from Theorem 12 we deduce the fixed
point theorem for P-compact mappings established in Petryshyn [24, 33] (see
also [32]) which includes the fixed point theorem of Schauder [38] and
Rothe [37] for compact mappings and of Kaniel [17] for quasi-compact
mappings. We also indicate the connection between the class of pseudo-A-
proper mappings and the class of G-operators T of D C X into X studied by
De Figueiredo [13]. For other contributions see Section 5.

1. Equations InvoLvING Fa-CoNTINUOUS PsEuDO-A-PrROPER IMAPPINGS

A pair (X, Y) of normed real spaces is said to have an admissible pro-
jectional scheme I, ={X,,Y,,P,,Q,} if there exist two sequences
{X,}CX and {Y,}CY of monotonically increasing finite-dimensional
subspaces with dim X, = dim Y/, for each 7 and two sequences of bounded
linear projections {P,} and {Q,} with P,(X) = X, and Q,(Y) = Y, such that
P,(x) — x and Q,(y) >y for each x in X and y in Y (here and in what
follows > denotes the strong convergence; we will also use — to denote the
weak convergence in X and the weak* convergence in X*, the adjoint of X).

DEerFiNITION 1 [27, 29). A mapping T of DC X into Y is said to be
Approximation-proper (A-proper) with respect to I, if it satisfies the follow-
ing condition (H): if for any sequence {n;} of positive integers with n; — o
as j — o0 and a corresponding bounded sequence {x, | ¥, € Dn]_} such that
T, (x, )~ g for some g in Y, there exists a subsequence {x, .} and an ele-
ment x in D such that v, = — x as k— o0 and T(x) = g, where

D,=DNX and T,=0Q,T|p,

for each n.
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We recall (see [26, 31]) that the equation
T@)=f (veDfe¥) ()

is said to be strongly (resp. feebly) projectionally-solvable if there exists an
integer N >> 1 such that for each » >> N the approximate equation

has a solution x, € D, such that x, — x with x in D (resp. Xy, —> X as j — o0
with x in D for some subsequence {x, } of {x,}) and T(x) = f. It has been
shown in [29, 31] that, under certain conditions on T, the A-properness of T
is not onlv sufficient be also a necessary condition for Eq. (1) to be strongly
projectionally-solvable.

It is known that in order to obtain certain existence and/or approximation
results for Eq. (1) we need to impose certain continuity conditions on 7. The
standard assumption on T is that it be either continuous, demicontinuous,
hemicontinuous or weakly continuous. We recall that T is demicontinuous at
ueD if {u,} CD and u,—»u in X imply T(u,)— T(w) in Y; T is hemi-
continuous at ueD if veX, t,>0, t,—0 and u 4 t,veD imply
T(u+ t,o)— T(w) in Y; T is weakly continuous at ue D if {u,} C D and
u,— u in X imply T'(u,) — T() in Y. Recently, considerable attention has
been given to finitely continuous mappings which in our setting can be
defined as follows. T:DC X~ Y is finitely continuous if for any finite-
dimensional subspace 7 of X and any sequence {x;} C DN I such that
x,—>xc DNV as k— o0 we have (T(x,), y*) — (T(x), y*) for each y* in
Y* ie., T(x;)— T(x) in Y. In what follows we use B(o, r) and B(o,7) to
denote an open ball about 0 € X and its boundary, respectively.

In this section we consider Eq. (1) involving mappings T which are finite
approximation-continuous (for short, fa-continuous) with respect to a given
scheme T, .

DeFiniTION 2. A mapping Tof DC X into Y is said to be fa-continuous
with respect to I, if for each # the finite approximation T, : D, C X, into
Y, is continuous.

In [24] and in his other papers the author imposed the fa-continuity as a
part of the notion of a P-compact mapping. It turns out that the fa-continuity
is a rather weak assumption. In fact, the following simple observation is true.

ProposiTioN 1. Let T be a mapping of D C X into Y which is either
continuous, demicontinuous, weakly continuous or finitely continuous, then T
is fa-continuous.
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Proof. Since for finite-dimensional Banach spaces strong and weak con-
vergence coincide, it follows that if 7 is either continuous, demicontinuous
or weakly continuous, then it is automatically fa-continuous with respect to
I', . Thus, to prove Proposition 1, it suffices to show that finite continuity
implies fa-continuity.

Let T be finitely continuous. For each fixed 7 let {x,} be a sequence in
D, =X,NnD such that v, >x as k— % and v D,. To show that
T (x3)— T.(x) in Y, as k—> 0, it suffices to show that T,(x;) — T (v) in
Y, , ie, (T,(x;), ¥) = (T(x), ) for each ¥ in ¥,*. Since Y, is a subspace
of Y, the Hahn-Banach Theorem implies that to each y in Y, * there corre-
sponds a y* in Y *such that (2, v) = (2, y*) forallzin ¥, and | v. = | y*] .
Hence, since T,(x,) € Y, , we have for each y in ¥ * the existence of y* € Y*
such that (7,(x,), ¥) = (T.(x.), ¥*). Since T is finitely continuous for every
finite dimensional subspace " of X it is so when I” == X, . This and the last
equality imply that for each fixed n and any y in Y, * there exists y~e }'*
such that as £ — o0 we have

(Ta(xi) ¥) = (Talxn), 37) = (T(x2), Q¥ (3™) = (T(x), Q. *(5)) = (T0(%), ¥)-

Consequently, T,(x;) — T,{(x) in Y,, as k— oo, i.e., T is fa-continuous.

We note in passing that every linear mapping 7 of X into Y is fa-continu-
ous even when T is unbounded.

For the sake of convenience and completeness we state here without
proof the following result obtained by the author (see Theorem 3.1 in [31])
which, in its extended form, will play an essential role in our present dis-
cussion.

THEOREM A. Let (X, Y) be a pair of normed linear spaces with an oriented
admissible scheme I', , D a bounded open convex subset of X with oe D, K a
(nonlinear in general) mapping of X into Y* and K, a (nonlinear in general)
mapping of X, into Y,' = R(Q,*) C Y* such that K(x) + 0 if x == 0 and for
each n

(On(g), Ki(x)) = (g, K(x)) ™)

for all x in X, and g in Y. For each n, let M, be a linear isomorphism of X, onto
Y, such that (M,(x), K,(x)) > 0 for all x £ 0 n X, .

If T is an fa-continuous A-proper mapping of the closure D into ¥ and f is a
given vector in Y such that

(T(x), K(x)) = (f, K(*)) (HA)

for all x on the boundary D, then Eq. (1) is feebly projectionally-solvable in D
for N = 1, i.e., for each n, Eq. (2) has a solution x,, in D, such that x,,—> xin X
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for some subsequence {x,} of {x,} and some element x in D with T(x) = f.
[In particular, Eq. (1) has a solution x in D for each f in Y satisfying (HA).]
If additionally we assume that, for f satisfying (HA), Eq. (1) has at most one
solution in D, then it is strongly projectionally solvable.

It follows from the proof in [31] of Theorem A that, under its conditions on
(X, Y),I,, D, K, K, and M, , for any fa-continuous mapping 7" of D into ¥
and each given f in Y for which (HA) holds, the approximate equation (2) has
a solution x, in D, for each #. Hence we may relax somewhat the conditions
defining the A-properness of 7" if our primary concern is not so much con-
struction as the existence of solutions of Eq. (1) for f satisfying (HA). Indeed,
for latter purposes it suffices to assume that 7 satisfies condition (h) defined
as follows.

DErINITION 3. A mapping T of D into Y is said to satisfy condition (h)
with respect to I', on D if for any sequence {n;} of positive integers with
n; — oo and a corresponding bounded sequence {x, |, € X, N D} such
that T, (v, ) — g for some g in Y, there exists an element x in D such that
T(x) =g.

The class of maps given by Definition 3 was introduced by the author (see
condition (c) in [26, 36] for reflexive Banach spaces and condition (h) in [30]
for general Banach spaces). Further studies of such maps were carried by the
author [28, 31, 25] and Wong [40]. In what follows we shall refer to mappings
satisfying condition (h) as pseudo-A-proper. We add in passing that for the
case when ¥ = X the concept of an fa-continuous pseudo-A-proper mapping
is related to the concept of 2 G-operator introduced in [13]. We shall dwell
on this connection more fully in Section 5B. It turns out that the existence
part of Theorem A remains valid for pseudo-A-proper mappings T defined
on D C X with D not necessarily convex. This result is contained in Theo-
rem 1 below.

Tueorem 1. Let (X, Y), I,, K, K, and M, satisfy the conditions of
Theorem A and let D be a bounded open subset of X with o € D,

(@) If T is an fa-continuous pseudo-A-proper mapping of D into Y and if f
is a given element in Y for which the inequality (HA) of Theorem A holds on D,
then Eq. (1) is solvable for each such fin Y.

(b) If T is an fa-continuous pseudo-A-proper mapping of X into Y which
satisfies either the condition

(i) to each fin Y there corresponds a number r; > 0 so that
(T(x), K(x)) = (f, K(x))  for all x in B(o, r,) (HA)

or the condition.
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(i) T is K-coercive, i.e., there exists a real-valued function c(r) defined on
reals R such that c(r)— oc as v — oo and

(T(x), K(x)) == e« [) | K@) forall xin X, ()

then the mapping T is surjective, ie., T(X) =Y.

Proof. For the sake of completeness we first give a short proof of the
following known (see [22]) finite-dimensional fixed point theorem which plays
an essential role in our proof.

LEraAY-ScHAUDER THEOREM. Let V' be an oriented real finite-dimensional
Banack space, D an open bounded set in V with o€ D and A a continuous
mapping of D into V such that

(m =) If A(x) = ax holds for some x in D then o << 1.
Then A has a fixed point in D.

Proof. Consider the homotopy H(x) of Dxf0, 1] into I~ defined by
Hx) = x — tA(x) for xe D and t [0, 1]. Without loss of generality we
may assume that H;(x) # 0 on D. Then our condition (<) implies that

H) = t (1 x — () #0

for all t€(0, 1)and all x € D while o € D implies that Hy(x) % O forall x € D.
Thus, Hy(x) # 0 for all xeD and t€[0, 1], under the assumption that
Hy(x) = x — Ax # 0 on D. Hence the Brouwer degree? of H; on D over 0,
deg(H, , D, 0), is constant in t € [0, 1]. Since

deg(H, , D, 0) = deg(l, D, 0) = 1,
it follows that

1 = deg(H, , D, 0) = deg( — A, D, 0) = deg(H, D, o)

and, therefore, there exists a,€ D such that x, — A4(x,) =0, i.e.,, 4 has a
fixed point in D.

Proof of Theorem 1 Continued. (a) For each fixed » and every x in D,
consider the mapping A,(x) = T {x) — O.(f),

T,=0.TIp,: Dy~ Y,.

2 For the definition and the properties of Brouwer degree see [10, 22].
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Our conditions imply that for all x in D, C X,, © D and each n

(A %), Ko(x)) = (0uT(x), K(%)) — (0l F)» Ki())
= (T(x), K(x)) — (f, K(x)) = 0

Now, since M, is a linear isomorphism of X, onto Y, , V,, = M, (D,) is a
bounded open set in Y, with o€ V,, V,nV, = @ and M, maps D,
homeomorphically onto V,, . Let G, be the mapping of ¥, into Y, defined by
G,=1,— A,L, with L, = M, and I, the identity in Y, . Since, for each
fixed n, y, € V,, is a fixed point of G, if and only if x, =L,(y,) (¢ D,) is a
solution of Eq. (2) [i.e., of T,{(x,) = O,(f)], to establish the solvability of
the latter equation for each 7, in view of the finite-dimensional Leray-
Schauder Theorem, it suffices to show that G, satisfies the condition (; <)
on V,, ie., if G,(3,) = ay, holds for some y, in ¥, , then a << 1. Now,
suppose that G,(y,) = ay, for some y, in ¥, . If we let x, be a point in D, so
that xy = L,(y,) then, by (1.1),

a(]l/[,,(xo), Kn(xo)) = (¥ » Kn(xo)) = (Gn(yo)’ Kn("”ﬂ))
= (J’o ’ Kn(xo)) (AnLn(Jl) n(xo))
= (M), Ku(0)) — (Au(x0), Ku(0)) < (Mp(0), Kn(0))-

Since (M, (xg), K, (%)) > 0, it follows that « < 1. Hence, for each #, there
exists x,, € D, such that T, (x,) = Q,(f). Since {x, | x, € D,} is bounded, T is
pseudo-A-proper on D, and T,(x,) =Q,(f)—f in Y as n— o0, there
exists an element x* in D such that T'(x*) = f.

(L.

(b) To prove (b) we first show that the coerciveness condition (=) implies
the condition (HA). Indeed, if f is any given vector in ¥ then, since ¢(r) — oo
as 7 — o0, there exists a number 7, > 0 such that || f|| <C ¢(r;). Hence, for all
x € B(o, r;) the condition (HA) holds on B = B(o, r,) since

(T(x), K(x)) — (f, K(x)) = () — I f) | K@)| >0  forallxe B.

Now, since for each f in Y there exists 7, > o such that (HA) holds on B,
the assertion (b) follows from (a) for D = B(o, r,). Q.E.D.

We remark in passing that Theorem 1 represents essentially a global
existence result in the sense that if 7' is pseudo-A-proper on D and if
T,(x,)—>g in Y for some bounded sequence %, | %, € X, ﬂD} then
the equatlon T{x) = g is necessarily solvable in D. Clearly 1f for a given
fin Y, the equation T'(x) = fis not solvable in D and if T is pseudo-A-proper
on D, then we cannot find a bounded sequence {x,,j | %, € X, n, O D} such that
T, (x J)—fin Y. On the other hand, the proof of Theorem 1 suggests the

409/38/3-10
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possibility of obtaining local existence results for 7 which is only point-wise

nxmldn--\-nrnnpr in the Fn”n\ung sense.

DeriNiTION 3", A mapping T of D into 1" is said to be pseudo-A-proper
at fin Y if for any bounded sequence {%a, | ¥ € X, nD, such that
T,(x,}—fin Y, there exists an element x in "D such that T(x) = f.

i #
Looking over the proof of Theorem | we see that it also implies the validity
of the following local result.

Tueorem 1. Let (X, Y), I,,, K, K,, M,, and D be as in Theorem I
and let T be an fa-continuous mapping of D into Y. If f is an element in Y such
that T is pseudo-A-proper at f and

(T'(x), K(x)) = (f, K(x))  forxinD,

then the equation T(x) = f is solvable in D.

As an illustration of the generality of Theorem 1, we shall apply it to the
problem of solvability of equations involving quasi-K-monotone maps (see
Theorem 7 below).

Below we apply Theorem 1 to establish a basic surjectivity theorem for an
fa-continuous mapping T of X into ¥ which is a uniform limit on bounded
subsets of X of a special sequence of pseudo-A-proper mappings and which
is not K- coercive In fact, the “at infinity” condition (c5) below is more
general than the K-coerciveness condition (r). Before stating Theorem 2 we
first recall that a mapping F of X into Y is said to be bounded if F maps
bounded sets from its domain D(F)C X into bounded sets in ¥"

Turorem 2. Let (X, Y) be a pair of normed real spaces with an oriented
admissible projectional scheme I, , K a mapping of X into Y*, K, a mapping of
X, into Y, and M, a linear isomorphism of X, onto Y, such that for each n all
x#%0in X, and gin'Y

(Ou9) Ku*)) = (g, K(x))  and  (M,(x), Ky(x)) > 0. (%)
Let T be an fa-continuous mapping of X into Y and suppose also that there exists a
bounded fa-continuous mapping F of X into Y such that
(c]) T(G)is closed in Y if G is a bounded closed convex set in X.
(c2y T, = T + uF is pseudo-A-proper for each pu > o.

(c3) F is positively homogeneous of order o 2= 1 (i.e., F(tx) = t*F(x) for all x
in X, t = o0 and some integer « == 1).
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(c4) (Tu(x) — T.(o), K(x) = (ublix|> — C) | K()li for each given
p >0 and all % in X with b > o and C > o some constants independent of x
and p.

(c3) I T(x)l| — o as || x[f— co.

Then, under the above conditions, T s surjective.

Proof. To apply Theorem 1 in the proof of Theorem 2, we first note that
for each given fin ¥ and u > o and all ¥ in X we have, in view of (c4) and
the equality F(o) = o, the relation
(Tu(x) — £, Kx) = (T,(x) — T.(0). K(x)) + (T..(0) — f, K(x))

(1.2)
=(pbllx)—C— | T() — fIN I K(x)il -

Hence, since r* - o0 as ¥ — c0, to each given f in Y and p > o there cor-
responds a positive real number 7,; > o such that the right-hand side in the
inequality (1.2) is positive for all x in B(o, 7,;) and, therefore,

(T.(x), K(x)) = (f, K(x)) for all x in B(o, 7,).

Since, by our assumptions, 7, is an fa-continuous pseudo-A-proper mapping
of X into ¥, Theorem 1 implies that, in view of the last inequality, to each
fixed pz > o (with p; — 0 as k— o0) and f in Y there exists a vector
x; € B(o, 1, ;) such that

T,(w)=f or T(xy) = f — k(). (1.3)
The equation (1.3) and (c4) imply that for each &
(Tfx) — To(0) K(x)) = (f — T(0), K(x)) = (wid [l i | — C) | K]l -

Hence, using the Schwartz-Buniakovsky inequality, we get the relation
C 4\l f — T = b(|| y. 1) with y; = u}°x, for each k from which it
follows that {y,} is bounded. Since F is bounded and w,F(x;) =F(y,), it
follows that {F(y,)} is also bounded and so is the sequence

(T = {f — F(y:)}-

Hence (c5) implies that {x,} is bounded and thus there exists a ball
B(o, d) C X such that {x,} C B(o, d). This and the fact that F is bounded and
pr— 0 as k— co imply that

Tx)=f—pfx)—f inYask—

from which, on account of (cl), it follows that there exists an x, in B(o, d)
such that T(x) = f. Since f was arbitrary, it follows that T(X) =Y.
Q.E.D.
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Remark 1. Note the qualitative difference between the assertion of
Theorem A and that of Theorems 1 and 2. Theorem A yields an essentially
constructive existence of solutions of Eq. (1) involving A-proper mappings
while Theorems 1 and 2 yield only the existence of solutions of Eq. (1)
involving pseudo-A-proper mappings. Nevertheless, as we shall see later,
for many types of pseudo-A-proper maps our approach provides also the
possibility of obtaining solutions of Eq. (1) as weak limit points of construc-
tible sequences {x, | x, € D,} with the entire sequence {x,} converging weakly
to a solution in case of its uniqueness. In this sense our results are more
constructible than at first glance they appear to be.

We continue this section with the following observation. It follows from
Definition 3 that every A-proper mapping is pseudo-A-proper but the con-
verse is not true, in general. Indeed, if (X, Y') is a pair of reflexive Banach
spaces with an admissible projectional scheme I, , then under certain condi-
tions on K (see Proposition 2 below) it is not hard to show that every bounded
linear mapping of X into Y is pseudo-A-proper, but examples were given by
the author which show that even bounded linear mappings which satisfy the
Fredholm Alternative need not be A-proper. Furthermore, under the above
conditions on (X, 1) and K, every bounded nonlinear weakly closed mapping
of the closure D of an open subset D of X into Y is pseudo-A-proper where
T:D— Y is said to be weakly closed if {x,} C D is a sequence such that
x, — %,in X and T(x,) — hin Y, then x, lies in D and T(x,) = h. If Dis also
assumed to be convex, then every weakly continuous mapping 7 of D C X’
into Y is pseudo-A-proper even when Y is not complete. This is established
in the following proposition.

ProrosiTiON 2. Let (X, Y') be a pair of real normed spaces with an admis-
sible projectional scheme I, and with X reflexive, K a demicontinuous mapping of
X onto Y* and K,, a mapping of X, into Y, such that for each n

(Qn(8), Kn(2)) = (8, Kix)) (")

Jorallxin X, and gin Y.

(a) If Y is reflexive, D an open subset of X, and T a bounded weakly closed
mapping of D into Y, then T is pseudo-A-proper.

(b) If D is an open convex subset of X and T a weakly continuous mapping
of D into Y, then T is pseudo-A-proper.

Proof. Let {x, | x, € X, N D} be a bounded sequence and let {x,,} be any

of its subsequences so that T}, (x, ) — g for some gin Y.

(a) Since the sequence {x, } is bounded in X, T'is bounded, and X and ¥
are reflexive, there exist a subsequence {, } and an element ¥, in X such
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that x, . — % in X and T(x, )— — h as k— oo for some £ in Y. Since T
is weakly closed on D, it follows that xy€ D and T(x,) = h. To show that
h = g note that, in view of (*), for any fixed ¥ in X,  with e fixed and
n;gy > 1;(,) for & > e we have

(T(xnj(k)): K(x)) = (Tnj(k)(xnj(k)), K(x))

Hence, since
T(xn,) =k and T \(xn,) >

in Y, the passage to the limit in the above equality as & — co yields the
equality (, K(x)) = (g, K(x)) for all x in X,, | and each ﬁxed e. Hence, for
any z in X, we have the equality (%, KP, )(z)) = (g KP,, (%)) for each e.
Since K is demicontinuous and P, )(z) — z in X, the latter equality implies
that (, K(z)) = (g, K(2)) for all 2 in X. This and the fact that K maps X
onto Y'* yields the looked for equality & = g.

(b) Suppose now that T is weakly continuous on D with D convex.
Since {x, | x, € X,, N D} is bounded, X is reflexive and D is weakly closed in
X, there exists a subsequence {x, } and an element x, in D such that Do, = g
in X and Tx, — Tx, in ¥ by the weak continuity of 7' From this, as above,
we obtain the equality Tx, = g for Y not necessarily complete, i.e., T is
pseudo-A-proper. Q.E.D.

In view of Proposition 2, Theorem 1 implies the validity of the following
corollary which we state here as an illustration of the generality of Theorem 1
since, as will be seen in Section 5, our Corollary 1 below includes, on the one
hand, the results of Altman [1], De Figueiredo [13] and Kachurowsky [16]
for weakly closed and weakly continuous mappings and, on the other hand,
Corollary 1 extends to nonlinear weakly continuous mappings T of X into ¥’
(with Y not necessarily reflexive) the Lax-Milgrain Lemma for bounded
linear mappings as well as the result of Kachurowsky [16] for coercive weakly
continuous mappings 7" of X into X*.

CoroLLarY 1. Let (X, Y) be a pair of real normed spaces with an oriented
admissible projectional scheme I, and with X reflexive, K a demicontinuous
mapping of X onto Y*, K, a mapping of X, into Y, and M, a linear isomor-
phism of X, onto Y, such that

(Qn(8), Kn(x)) = (g, K(%))  and  (M,(x), Ky(x)) >0 (")
Jorallx #0in X, and gin Y.

(a) If Y is reflexive, D an open bounded subset of X with oe D and T an
fa-continuous, bounded, weakly closed mapping of D into Y such that
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(T(x), K(x)) 2= (f, K(x)) for all x in D and some f in Y, then there exists a
point xy€ D such that T(x,) = f.

(b) If T is a weakly continuous and K-coercive mapping of X into Y, then T
maps X onto Y.

Remark 2. It follows from the proof of Proposition 2 that in Corollary 1
we can not only assert that Eq. (1) has a solution but that it can be obtained as
a weak limit point of a constructible sequence {x, | x,€ D,} forn =1, 2, 3....
Consequently, if it is known that, for a given f, Eq. (1) has at most one solu-
tion, then the entire sequence {x,} converges weakly to the unique solution.
In this sense our result is more constructive than it appears to be.

An easy consequence of Theorem 2 is the following new result for weakly
closed mappings which will prove to be useful in various applications. Indeed,
our Corollary 2 below establishes the surjectivity theorem for weakly closed
mappings T of X into Y under a condition “at infinity”’ which is more
general than the coerciveness condition.

CorOLLARY 2. Let (X, Y) be a pair of normed real spaces with an oriented
admissible projectional scheme I, and with X reflexive, K a mapping of X into
Y*, K, a mapping of X, tnto Y, and M, a linear isomorphism of X, onto Y,
such that (*+) of Corollary 1 holds. Let F be a bounded fa-continuous mapping of
X into Y such that F is positively homogeneous of order o« > 1 and for some
constant b >0

(F(x), K(x)) = bl x|* || K(x)l (ED)

for all x in X.
If T is an fa-continuous weakly closed mapping of X into Y such that
T, = T + pF is pseudo-A-proper on X for each p. > 0,

(T(x), K(x)) = (T(0), K(x)) — (T(0), K(x))| (E2)

for all x in X, and || T(x)|}— oo as || x| — oo, then T maps X onto Y.

Proof. In view of our hypotheses, to prove Corollary 2, it suffices to show
that our present conditions imply the validity of (c1) and (c4) of Theorem 2
since (c2), (c3) and (c5) are true by assumption. Now, the condition (cl)
follows from the fact that X is reflexive and T is a weakly closed mapping
of X into Y while the condition (c4) follows from (El) and (E2) with
C =1 TE) - QED.

We add in passing that, as will be seen in Sections 2 and 3, the somewhat
strange condition (E2) is, in fact, a considerable weakening of the require-
ment that T be a quasi-K-monotone and, in particular, a K-monotone map-
ping of X into Y.
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In view of Theorem A and of Theorems 1 and 2, it is important to find
also other conditions on 7" and F as well as on X and Y which would insure
the A-properness or at least the pseudo-A-properness of T andfor of
T, = T + pF as well as the closedness of T'(G) in Y for each bounded closed
convex subset G of X. The next three sections are essentially devoted to this
problem.

2. K-MoNoTONE MAPPINGS

We recall (see [18, 31]) that 7, mapping D C X into YV, is said to be
K -monotone on D if

(T(x) — T(y), K(x —3)) = 0 (K)

for all x and y in D.

Our first two propositions in this section provide sufficient conditions for a
K-monotone mapping to satisfy the hypotheses (c¢1) and (c2) of Theorem 2,
respectively.

ProposiTioN 3. Let (X, Y) be a pair of real Banach spaces with an admis-
sible projectional scheme I, and with X reflexive. Let K be a weakly continuous
mapping of X onto Y* such that K is positively homogeneous of order 8 = 1
with B an integer. Let D be an open convex subset of X and T a K-monotone
mapping of D into Y which is either hemicontinuous or finitely continuous on D.
Then, for every bounded closed convex subset G of D, the set T(G) is closed in Y.

Proof. Let {f;} C T(G) be a sequence so that f;— fin Y as j — 0. To
show that f e T(G), let {x;} C G be a sequence such that T'(x;) = f; for each
7. Since X is reflexive and G is a closed bounded convex subset of X, without
loss of generality we may assume that x; — x, in X for some ¥, in G. Since,
by the K-monotonicity of T on D,

(T(y) — T(x;), K{(y — x;)) >0  forallye Dandallj,

K is weakly continuous, and T'(x;) — f, the passage to the limit in the above
inequality implies that

(T(»)—f, K(y — %)) =0 forally e D. 2.1
The inequality (2.1) implies that T'(x,) = f. Indeed, if not, then because K

is onto, there exists 2 in X such that (T(x,) — f, K(2)) < 0. Since D is open,
G CD and x, lies in G, for sufficiently small ¢+ > o the element
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¥, = %, + tz€ D and hence, since K(t2) == t*K(2), setting y, for y in (2.1)
vields the inequality

(T(x + 1) — f, K(2)) > 0.

Because z is fixed and T is assumed to be either hemicontinuous or finitely
continuous on D, the passage to the limit in the last inequality as £ — 0 yields
the relation (T'(x,) — f, K(?)) = 0, contradicting the assumption that
(T(xy) — f, K(2)) < 0. Q.E.D.

Remark 3. Proposition 3 is certainly true when T is assumed to be either
continuous, demicontinuous or weakly continuous. It follows from the proof
of Proposition 3 that instead of requiring that K(¢tx) = t*K(x) for some 8 > 1
it suffices to assume that to each ¢ 2> 0 and x € X there exists n,(¢) > 0 such
that K(tx) = 7,(2) K(x) with 7,(¢) > 0 for ¢ > 0 and 7,(0) = 0.

ProprosiTION 4. Let (X, Y) be a pair of real Banach spaces with an admis-
sible projectional scheme I', and with X reflexive. Let K be both a weakly
continuous and a continuous mapping of X onto Y* such that K is positively
homogeneous of order B = 1 or to each t = 0 and x in X there exists n,(t) > 0
such that K(tx) = n,(t) K(x) with 1,(¢) > O for t > 0 and 5,(0) = 0. Let K,
be a mapping of X, into Y, such that

(Qn(8), Kn(x)) = (g, K(%)) ™)

forall xin X, , ge Y and each n.
If A is a demicontinuous K-monotone mapping of X into Y, then under the
above conditions the mapping A is pseudo-A-proper.

Proof. Let {x, | x, € X,} be a bounded sequence and let {x, } be an arbi-
trary subsequence so that A, (x, ) — g for some g in Y. Since X is reflexive
and {x, } bounded, without loss of generality we may assume that x, — x,
for some x, in X. Let j > 1 be an arbitrary but fixed integer and let y be any
element in X; . Since {X,} is monotonically increasing and 4 is K-monotone,
it follows from (*) that for all n, > j we have

(Qni‘4(xn¢) - Qn,-A(y)’ Kn‘(xn‘ ~— )
= (OnA(xn) — On,A(9), K20, — 3)) = 0.
Now, since x,, — y — %y — y in X, Q, A(x,) — O, A(y) >g — A(y)in Y,

and K is weakly continuous, the passage to the limit in the above inequality
as £ — oo implies that

(g — A(y), K(zg — ) =0 for all y in X; and any j.
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Hence for any « in X we have the relation
(g — APj(x), K(xg — P{{x))) =20  forallxin X

and each fixed j. Since A4 is demicontinuous and K is also continuous, the
passage to the limit in the last inequality as j — co yields the relation

(g —A(x), K(xy — x)) =0  forallxin X.

From this and the properties of K, as before, we deduce the equality A(x,) =g
and thus the pseudo-A-properness of 4. Q.E.D.

Remark 4. 1f it is also assumed that K is uniformly continuous on a unit
ball in X, then in view of the results of Kato [18], Proposition 4 remains also
valid for hemicontinuous mappings 4 of X into Y.

We add in passing that Proposition 4 provides important examples of
pseudo-A-proper mappings which need not be A-proper. On some occasion,
however, it may be necessary to provide the constructive solvability of the
equation T,(x) = T'(x) + pF(x) = f, where T is a given K-monotone map-
ping of X into Y. In this case the pseudo-A-properness of T, will not suffice
in general. Thus, in this case, we need to find conditions which will guarantee
the A-properness of T, for a given p > 0. Our Proposition 5 below treats this
problem.

ProOPOSITION 5. Let (X, Y) be a pair of Banach spaces with an admissible
projectional scheme I, and with X reflexive. Let K be both a weakly continuous
and a continuous mapping of X onto Y* and K,, a mapping of X, into Y, such
that K(0) =0 and

(Qn(8), Kn(*)) = (& K(%)) @

for all xe X, and each n, and T a demicontinuous (or weakly continuous)
K-monotone mapping of X into Y. Suppose that F is a demicontinuous K-mono-
tone mapping of X into Y such that for all x and y in X

Fx) —F(y) Kx—y) Z (=1, 121, 1s =y 1) =z p),  (F)

where y(x, y) Is a continuous real-valued nomnegative function on X X X such
that the following conditions (a) and (b) hold :

(@) If {x: | % € X3} is a sequence so that x; — x, in X, then to any given
€ > o there exists o(€) > O such that if | y — x,|| << o then

Pyl T2 1 o — 3 1) — vl ol % ] [ 2 — % [)] < eV A
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(by If{x,  x, €.} is a sequence so that x; — x, and
liin Y xedl Hxls lx — 2 ) = 0,

then xp — xyin X,
Under the above conditions, for any fixed u > o, the mapping T, = T 4- pF
s A-proper.

Proof. Let {x,|x,€X,} be a bounded sequence and let {x,} be an
arbitrary subsequence of {x,} so that T,,(x,) — g for some ge Y. Since X is
reflexive and {x,,} bounded, without loss of generality we may assume that
x, — x, in X. Let j > 0 be an arbitrary but fixed integer and let y be any
element in X; . Since {X,} is monotonically increasing and T is K-monotone,
the relations (*) and (F) imply that for each fixed p > o, all y in X, and
m > j we have

(Qm Tu(xm) - Q’mTu(y)v KM(xm - y))
= (Tulrm) — Tu(y), K@xw — 2)) = py(l % |, I 31 [T 20 — 31) = 0.

NOW, since Xm — 3' - xo -y and QmTu(xm) - QmTu(_y) "’g - Tu(y) il'l Yr
and Q,,% = Q,, , the weak continuity of K and (*) imply that, as m — co, the
left-hand side of the above inequality converges to the real-valued function

7(y) = (g — Tu(y): K(xo —)), e, forany fixed j.
Consequently, to any given € > o there exists m, = mye, y) such that

py(li % L Lyl Tam —y 1) <n(3) 4 ¢ forallm=m,.  (2.2)

Since T is demicontinuous (or weakly continuous), F is demicontinuous, K is
continuous and P;(2) — 2 as j — o for each 2 in X, it follows that 5(y) is a
continuous function in y € X and obviously n(y) 22 0 for all ¥ in X with
n(x,) = 0. This implies that to each given e > o there exists o, > o0 such that
o < m(y) < e whenever || x, — y| < g5. Now, because I', is admissible
to any given o > o there corresponds y € X; for j sufficiently large so that
I ¥, — ¥ |l << 0. Since ¥, — ¥ in X, our condition (a) implies that to the
same e > o there corresponds g; > 0 such that

Lyl e | o Nl Lo — 2o 1) — w1 Ey I T — Y1) <eVm (2.3)

if | ¥ — x|l < 8, . Thus, if for a given ¢ >> o0, we take § = min{§,, 3}, then
in addition to (2.3) we also have o < 5(y) < e whenever || x, — y|| <.
Then, for this choice of y, (2.2) and (2.3) imply that for all m = my(e, y) we
have

0 < lW(H xm H k) H x() H ] ” xm - x() ”) <\ M’(H xm H ] H y H ) H xm — y H) + €

< 7(y) + 26 < 3e.
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This shows that x,, — x; in X and (|| %, [,/ %], || xn — %) =0 as
m — oo whence, in virtue of our condition (b}, it follows that x,, — x, in X.

To prove the A-properness of T, , it remains to show that T,(x,} = g.
To establish this note that for each x in X and y = P;(x)e X; we have

() = (& — Tu(Pi(x)), K(xy — Pyx)) =0
from which, on passage to the limit as j — oo, we get
(g — Tu(x), K(xg—x)) 20  forallxin X.

Since K is a weakly continuous mapping of X onto Y* and 7, is certainly
hemicontinuous, the above inequality implies that 7, (%) = g. Hence T, is
an A-proper mapping of X into Y. Q.E.D.

Remark 5(a). It follows from our conditions on 7 and F that

(T.(%) — T.(3), K(x — 3)) = wyl =11, 11311, |2 — ¥

for all ¥ and y in X. Hence, in case T and F are continuous and

el 1yl —pl) = el = — 1D,

where ¢(r) is a continuous function of Rt ={r >0} into R* such that
¢(0) = o, ¢(r) > o for r > 0 and r; — 0 whenever ¢(r;) — 0, Proposition 5
reduces essentially to our Theorem 2.3 in [31].

(b) It follows from our proof above that the assertion of Proposition 5
concerning T, = T + pF remains valid for the case when T'=0and p = 1.
Consequently, every demicontinuous K-monotone mapping F of X into Y,
which satisfies the inequality (F) with y satisfying the conditions (a) and (b),
is A-proper. In particular, every demicontinuous strongly K-monotone
mapping of X into Y is A-proper. We add in passing that even the last
assertion represents a new result since the A-properness is established
without the condition that the mapping be bounded.

(c) Finally we remark that our arguments in the proof of Proposition 5
are similar to those used in [12].

We add, that, in view of Propositions 1 and 4, Theorem 1 implies the
validity of the following result for K-monotone mappings T of X into V.

TueorREM 3. Let (X, Y) be a pair of real Banach spaces with an oriented
admissible projectional scheme I', and with X reflexive. Let K be both strongly
and weakly continuous map of X onto Y* such that either K(tx) = t8K(x) for
some B =1 or K(tx) = 7,(t) K(x) with n,() >0 for t >0, xe X. Let K,
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be a mapping of X, into Y’ and M, a linear isomorphism of X, onto Y, such
that for each n and all x in X, and g in Y

(On(2) Kn(x)) = (g, K(»)) and  (My(x), Ky(x)) >0 forx #0. (*)

If T is a demicontinuous (or a weakly continuous) K-monotone mapping of X
into Y which satisfies either condition (i) or the K-coerciveness condition (ii) of
Theorem 1, then T maps X onto Y.

We note in passing that, in view of Proposition 4, Remark 2 concerning
the constructive aspect of our proof applies also to Theorem 3.

In order to obtain the surjectivity theorem for a K-monotone mapping
under a condition “at infinity”’ which is weaker than the K-coerciveness
condition (ii), we make use of Theorem 2 which, in virtue of Proposition 3
and 4, implies the validity of the following new and thus for the most general
result for K-monotone mappings.

Tueorem 4. Let (X, Y), K, K, and M,, satisfy the conditions of Theorem 3.
Let T be a demicontinuous K-monotone mapping of X into Y and suppose there
exists a bounded demicontinuous K-monotone mapping F of X into Y such that F
is positively homogeneous of order « > | and

(F(x), K(x)) = b(| x{l)* [| K(x)] (H4)

for all x in X and some b > o.
If in addition to the above conditions we also assume that

| T(x)|| - o0 as || x || — oo, then T maps X onto Y.

Proof. In view of Proposition 1 and Theorem 2, to prove Theorem 4 it
suffices to show that the conditions of Theorem 4 imply the validity of the
hypotheses (c1)—(c5) of Theorem 2.

Now, because T is a demicontinuous K-monotone mapping of X into Y,
(c1) follows from Proposition 3 while (c2) follows from Proposition 4 since
for each p > o the mapping 4 = T, is K-monotone and demicontinuous.
The conditions (¢3) and (c5) follow from our assumptions while (c4) with
C = 0 follows from the K-monotonicity of 7, the equality F(o) =0 and
the condition (H4). Q.E.D.

Remark 6. We note that Theorems 3 and 4 remain valid if instead of
demicontinuity we assume that 7 is continuous or weakly continuous or even
hemicontinuous provided that in the latter case we also assume that K is
uniformly continuous on a unit ball in X.
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3. Mappings ofF Type (PKM) anp Quasi-K-MoNOTONE MAPPINGS

In [2] Brezis introduced and studied a class of pseudo-monotone mappings
T of DC X into X* which turned out to be more general than the class of
hemicontinuous monotone mappings. Further studies of bounded continuous
pseudo-monotone mappings were carried out by Lions [20], Browder [6],
Brezis, the author [35] and others (see [20]). In [35] the author observed that
when the theory of A-proper mappings is to be applied to the study of Eq. (1)
involving continuous mappings T of D C X into Y, the concept of a pseudo-
monotone mapping as defined in [2] is not quite satisfactory especially when
T is not bounded and/or when Y == X*. Consequently, in [35] the author
introduced and studied a related class of continuous, not necessarily bounded,
mappings 7" of D C X into Y with the so-called pm-property, which turned
out to be a more suitable condition for the applicability of the theory of
A-proper mappings.

However, when T is not continuous and/or when instead of the theory of
A-proper mappings we apply the theory of pseudo-A-proper mappings, then
instead of mappings with the pm-property we may consider fa-continuous
mappings 1" of D into ¥ which formally extend the concept of a pseudo-
monotone map but defined here in terms of sequences rather than filters
as in {2].

DeriniTiON 4. Let D be an open convex subset of a reflexive Banach
space X. A mapping T of D into Y is said to be of type (PKM) if for any
sequence {2;} C D such that z;— 2z in X with z€ D and

lim sup(T#, , K(z; — 2)) <0,
7

we have

(Tz, K(z — v)) < lim inf(T%; , K(z; — v)) forallveD. (PKM)
i

In [35] we referred to such a mapping as “Pseudo-K-monotone” to signify
its occasional connection to a K-monotone mapping. It has been noted in [35]
that if K is nonlinear, then a K-monotone mapping will not be of type
(PKM). Consequently, K-monotone mappings 7" and mappings T of type
(PKM) of X into Y have to be studied separately, which we do in this section.

We recall (see [6]) for later use that T is said to satisfy condition (S) on D
if for any sequence {z;}CD such that z;— 2 in X with zeD and
(Tz; — Tz, K(z; — 2)) — 0 we have 2, — 2 in X as j — o0; a Banach space X
is said to be an w,-space if there exists a sequence of finite dimensional sub-
spaces {X,} in X and a sequence of bounded linear projections {P,} such that
P(X)=X,, X,CX,,,,and | P,|| <« (=]) for each #n, |J, X, is dense



692 PETRYSHYN

in .\ and P P, = P, for n = j. It is easy to see that if .Y is an =_-space, then
the scheme I", = (X P,} is admissible for the pair (X, X). Moreover, it is

®?

also not hard to show, that if .X is a reflexive w,-space, then the scheme
I*={&,, X, P,, P,*} is admissible for the pair (X, X*), where P,*
is the adjoint of P, and

X'n’ = R(P'n*) = Pn*(X*)'

We begin this section with the proof of the following two propositions
concerning mappings of type (PKM).

ProPoSITION 6. Let (X, Y) be a pair of real Banach spaces with an admis-
stble scheme I, and with X reflexive. Let K be a weakly continuous mapping of X
onto Y* such that either K(ix) = tPK(x) for all x in X, all t > 0 and some
integer B = 1 or K(tx) = n,(t) K(x) with n,(t) > 0 for t > o0 and n,(0) = 0.
Let D be an open convex subset of X and T a mapping of D into Y of type
(PKM) on D. Then, for each bounded convex closed subset G of D, the set T(G)
is closed in Y.

Proof. Let {f;} C T(G) be a sequence so that f; -~ f in Y. To show that
f€ T(G), let {x;} C G such that T(x;) = f; for each j. Since X is reflexive and
G is a bounded convex closed subset of D C X, we may assume that x; — x,
with x, € G. This, the relation T'(x;) — f and the weak continuity of K imply
that

lim sup(T'(x;), K(x; — x,)) = 1i§n(T(xj), K(x; — x0)) = 0.
J

Hence, since T is of type (PKM), it follows that

(T(xo), K(xy — 9)) < lim inf(7(x,), K(x; —2)) VoeD

K
from which, since
lim inf(T(,), K(x; — ©)) = lim(T(x;), K(x; — 2)) = (f, K(xo — 2)),
J
it follows that
(T(x0), Ko — ©)) < (f, K(zy—v))  VoeD. 3.0)

Since D is open and xy€ D, it follows from the above inequality and the
assumed properties of K and K|, that T'(x;) = f. Indeed, if T(x,) # f, then

since K is onto there would exist a vector z in X such that

(T(xy) — f, K(2)) > 0.
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Since (3.1) is true for all v in the open set D and x, € D, for each ¢ > 0 and
sufficiently small, the vector ¢, = xy — tz € D and, by (3.1),

(T(x0), K(22)) < (f, K(12))

or, by the assumed properties of K, (T(x,) — f, K(2)) < 0, in contradiction
to our assumption on 2. Hence, T(G) is a closed set in I . Q.E.D.

ProposiTiON 7. Let (X, Y) be a pair of Banach spaces with an admissible
scheme I, and with X reflexive. Let K be a positively homogeneous mapping of
order B = 1 of X onto Y* which is both weakly continuous on X and uniformly
continuous on each bounded set in X. Let K, be a mapping of X, into Y, such that
for each n

(On(g), Kn(x)) = (&, K(x)) forallxim X, andgin Y. @

If T is a bounded mapping of type (PKM) of X into Y, then T is pseudo-A-
proper.

Proof. Let {x,|x,€X,} be a bounded sequence and let {x,} be an
arbitrary subsequence such that T, (x, ) — ¢ for some g in Y. Since X is
reflexive and {,} is bounded, we may assume that {x, } C B(o, 7) for some
r >0 and x, — %, in X with %y € B(o, r). Without loss of generality we
may assume that x, 7 0. To prove Proposition 7, we first show that (T'(x, ),

K(x, — %)) > 0as j— o0. To obtain this, note first that if for each s > o
we define the function #, (s) by

$,(s) = sup{|| K(x) — K(»)ll [ | ¥ — y || < s for x, y € B(o, 1)},

then, since K is uniformly continuous on B(o, r), the function t,(s) is non-
decreasing in s, {,(s) — 0 as s > 0 and

I K(x) — K <¢({x —yl)  forallx,yeBlo,r).  (3.2)
Since K(ix) = t8K(x) for all x in X all # > 0 and some integer B > 1, we
have

(T(xn,-)’ K(xn,- — X)) = (T(xn]—)! K(xn,- - yn,»))

+ 23{(T(x'n,»)1 K(%(xn, - xo)) - K(%(xnj - ynj)))}’

(3.3)
where
Vo, = |l %o [l Pn,»(xo)”~1 Pn,-(xo) € Xn, N B(o, r)

with y, — x, as j — c0. Since

0 _
n, =

Ry = %‘("n, — %) and Ry, = %('xn, —yn,-)
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lie in B(o, r) for each j, {T'(x,); is bounded by some M > 0, and

128, — %, | = [ 3a, — %l >0

as j — 00, in view of (3.2), it follows
(T(xn,), K(2n,) — K(2)) | < M| 2, — 2, ) >0

as j — c0. On the other hand, by our conditions on K and K, ,
(T(%n,), K%, — ¥u,)) = (To(%n,), K (%0, — In,)
= (T (%n ) K(xn, — ¥n,)
and, therefore, since T, (x, ) —> g in ¥ and K(x,, — yn ) — 0in Y, it follows

that (T'(x, ), K(%,, — ¥ )) — 0 as j — 0. In vittue of the equality (3.3), the
above observatlons 1mply that

lim sup(7(s, ), K(sa, — ) = H(T (), K, — %)) = 0

as j — o0. Since T is of type (PKM), it follows that
(T(x), K(xg — ) < llm inf(T(x,,), K(x,, —v))  forallvin X. 3.4)

Let v be any element in B{o, d) with d > r and set
Up, = o Pn,(v)“-I Pn,(v)
for each j. Since

ng == 2 (xn, 7)) and wn,— = % (xnj - 'z)ﬂj)

lie in B(o, d) for each j and
| wn, — wp, Il = $ll0p, — 0| —>0

as j — o0, an argument similar to the one used above shows that

l(T(xnl)’ K(xn, — ) — (T(xﬂj)’ K(xn, - '”n,-))l
(3.5)
< 2% [(T(xn,), K(wn)) — K(wn )l < 2°Mify(ll wp, — g, [) =0

as j—co0. Since x, — v, — % —v in X, T,(x)—>¢g in Y and
K(%,, — va,) = K(xp — 0), the equality (*+) satisfied by K and K, imply that
for each v in B(o, d)

(T(%4,), K(n, — 'vn,-)) — (8, K(xo — v)) as Jj— .
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This and the relation (3.5) imply that for each v in B(o, d)

11;1'1 lnf(T(‘xn])3 K(xnj —v)) = hgn(T(xn,)’ K(xn,- — ) = (g K(x, — 7"))

whence, in view of (3.4), it follows that
(T(x), K(xyg — ) < (g, K(xg — ) for all v in B(o, d).

From this, as in the proof Proposition 6, we obtain the equality T(x,) =g,
i.e.,, T is pseudo-A-proper. Q.E.D.

In virtue of Propositions 6 and 7, Theorem | implies the validity of the
following theorem for mappings of type (PKM) which is analogous to
Theorem 3 for K-monotone mappings.

Tueorem 5. Let (X,Y) be a pair of Banach spaces with an oriented
admissible scheme I, and with X reflexive. Let K be a positively homogeneous
mapping of order B > 1 of X onto Y* which is both weakly continuous on X and
uniformly continuous on each bounded set in X. Let K, be a mapping of X, into
Y, and M, a linear isomorphism of X, onto Y, such that for each n and all
xin X, and gin Y

(Ou(g), Ku(%)) = (8, K(x)) and (M, (x), K\(x)) >0  for x = 0. (*)

If T is a bounded fa-continuous mapping of type (PKM) of X into Y such that
either the condition (i) or the K-coerciveness condition (ii) of Theorem | holds,
then for each f in Y the equation T(x) = f has a solution x in X which can be
obtained as a weak limit point of a constructable sequence {x, | x, € X,}.

To obtain a result for mappings of type (PKM) which would be analogous
to Theorem 4 for K-monotone mappings we first have to establish the follow-
ing propositions.

ProposiTiON 8. Let (X, Y) be a pair of Banach spaces with an admissible
scheme I, and with X reflexive. Let K be a weakly continuous mapping of X
onto Y* such that K is positively homogeneous on X and uniformly continuous
on each bounded set of X. Let K,, be a mapping of X, into Y, such that (*)
holds, i.e., (Qn(g), K,(x)) = (g, K(x)) for all x in X,, , g€ Y and each n. Let T
be a bounded mapping of X into Y which is of type (PKM) and let F be a bounded
K-monotone mapping of X into Y which is also of type (PKM). Then, for each
real yp > o, the mapping T, = T + pF is pseudo-A-proper on X.

Proof.  Let {, | x, € X,} a bounded sequence and let {x, } be any sub-
sequence of {x,} so that T, (%,)) —> g for some g in ¥ with u > o any fixed

409/38/3-11
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number. Since .Y is reflexive and {x, ] is bounded we may assume that
. 4 . - . .
{x, } C B(o, r) for some r > o0 and Ny, &g I X with x, € B(o, 7).
To prove Proposition § we first note that, under our conditions, the same
arguments as those used in the proof of Proposition 7 show that,
(Tu(xy)) — Tulwo)y K(vy, — %)) >0 as  j—>c0 (3.6)

for each fixed p > 0.
Now, since p >> o, F is K-monotone and T, = T + pF, it follows that for
each j we have

(Tulxn) — Tulo)s K(¥, — x0)) 2 (L)) — Txo), Klan, — x))-
In virtue of the relation (3.6), the latter inequality implies that

lign sup(T'(xy ) — T(xg), K5, — %)) < O. 3.7

Because (T'(x), K(x, — o)) —> 0 as j — co, the last inequality implies that

li}n sup(T'(x,,), K(xn, — %)) <0,

from which, since T is of type (PKM), it follows that
(T(xo), K(xo — 2)) < liminf(T'(x, ), K(x, —<)) forallve X. (3.8)
] 1 7
Again, since (T'(x,), K(x,, — %)) —> 0 as j — oo, the relation (3.8) for v = ¥,
implies that
lim inf(T'(x, ) — T(xg), K(x,, — X))
; , j
— i inf(Tx, ), K3, — %) = (T(sg), K(o)) = 0.

J 7
This together with (3.7) shows that

lim(T(sy,) — T(), K(za, — %) = 0.

j 4 1
The latter relation together with (3.6) imply that
(F(x,) = F(so) K(xy, — 5) 0 a5 j—>o0

from which, since K is weakly continuous and x, — x,— 0, we get

(F(xo), K(3n; — %)) >0
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and
lim sup(F(x, ), K(x,, — %)) = lim (F(x, ), K(x,, — %)) = 0.
J J ’ ’

In view of this and the assumption that F is of type (PKNM) it follows that

(F(xo), K(xg — 2)) < li§n inf(F(xy,), K(x,, — v)) forallee X.  (3.9)

Multiplying (3.9) by u > o and then adding the corresponding sides of (3.8)
and (3.9) and using certain properties of lim inf’s we obtain the looked for
Inequality

(T, Ky — 0)) < lim inf(T(w), K, — ©))
+ lim inf(uF(x), K(x, — 0)) (3.10)

< lim inf(T,(x, ), K(x,,, — 2)) forallve X.
7 7 J

Since T,, (x,)— g in ¥ and K is both weakly continuous on X" and uni-
formly continuous on B(o, d) for each d > o, the same arguments as those
used in the proof of Proposition 7 show that for each v in B(o, ) with d > r
we have the equality

li}n inf(Ty(xn,), K(xn, — 9)) = Iim(T,(x ), K(x, — 0)) = (g, K(%p — ©)-
J
It follows from this and (3.10) that
(T(xy), K(xg — 1)} < (g, K{xg — ©)) for all  in B(o, 4)

whence, as before, we obtain the equality T, (x,) = g. Hence T, = T + uF
is pseudo-A-proper for each u > o. Q.E.D.

It turns out that if we strengthen somewhat the conditions on F, then the
mapping T, = T + uF will actually be A-proper. Indeed, the following
result holds.

ProrosiTiON 9. Let (X, Y), K and K, be as in Proposition 8. Let T be a
bounded mapping of type (PKM) of X into Y. Let F be a bounded K-monotone
mapping of X into Y which satisfies condition (S) on X. Suppose further that
either F is demicontinuous and Q,*(y*)— y* in Y* for each y* in Y* or F
is continuous. Then, for each real u > o, T, = T + uF is A-proper.

Proof. Let {x,|«,€ X,} be a bounded sequence and let {2, } be any
subsequence of {x,} so that Tunj(xnj) — g for some g in Y. It was shown in the
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proof of Proposition 8 that, under our conditions, we have the relation
x, — x, in .\ with x, € B(o, r), the inequality

i
]

(T(xp). K(x, — 1)) < hm inf(T(x, ), K(x, —v)) foralloinX, (3.11)

and the equality
Hm(F(x, ) — F(xe), K(x, — %)) = 0.
J g

In view of the condition (S) satisfied by F, the last equality implies that
&y > X in X as j — oo.
Finally, to show that T},(x,) = g, assume first that F is demicontinuous and
Q. *(¥*) — ¥* in Y'* for each y* in Y*. Since x, — ¥, in X, the preceding
assumptlon implies that F(x, ) — F(x,) and Q, F(x ) —F(xo) in Y. Conse-
quently,

Tn,-(xn,) = Tun,(xnj) - :“'Fn,-(xnj) — g — pF(x)
in Y. Let v be any element in B(o, d) with d > r and set

=lolll Pyoimt Py (o)

for each j. Since v, — v, —>x, — v in X, K(x, — v, )—> K(xy — ) in Y*
and T,,](rn) g— ,u,F(xO) in Y, the propertles of K and K, imply that

(T(xn,)’ K(xn,- - r‘Un,-)) — (g — pF(x,), K(xy — v))

for each v in B(o, d). This and the properties of K and K, , as above imply
that for each v in B(o, d) we have the equality

lim int(T(x,, ), K(x,. — ©)) = hm(T(x, ), K(x,, — 2y,))
j i i 7 7 p) )
= (g — nF(xp), K(xy — v))
whence, in virtue of (3.11), it follows that
(T(xo), Kl — 0)) < (g — nF(xo), K(% —0))  VveB(o,d). (3.12)
Hence, the same arguments as before show that T(x,) = g — uF(x), i.e.,
T, is A-proper.
Suppose now that F'is continuous. Then, since x,, — X in X, F(x, ) — F(x)

and, therefore, Q,,)F (xn,) — F(x,) in Y. Consequently,

Tn,-(xnj) = Tun,-(‘xn,-) - “Fnj('x'n,-) g — pF(xg) in Y.
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As before, this implies that for each v in B(o, d)
im(7 (x, ), K(x,, — v))
7

= Hm(T, (xn), Ko, — 2 ))) = (¢ — uF(x0), K(x — 0))-

In view of (3.11), the last relation implies also in this case the validity of
(3.12) and, thus, the equality T,(x;) = g, 1.e., T, is also A-proper. Q.E.D.

In virtue of Propositions 6, 7 and 8, 9, Theorem 2 implies the validity of
the following new result for the mappings of type (PKM).

THEOREM 6. Let (X, Y) be a pair of Banach spaces with an oriented
admissible projectional scheme I, and with X reflexive. Let K be a weakly
continuous mapping of X onto Y* such that K(tx) = t*K(x) for all x in X, all
t = 0 and some integer B >> | and such that K is uniformly continuous on bounded
sets in X. Let K, be a mapping of X, into Y,” = R(Q,*) and M, a linear
isomorphism of X, onto Y, such that

(Onl8) Kn(*)) = (&, K(x))  and  (M,(x), K,(x)) >0  (*)

forx £ 0in X, andgin Y. Let F be a bounded K-monotone mapping of X into Y
such that F is positively homogeneous of order o > 1. Suppose further that F
satisfies either one of the following two conditions :

(I) Fis an fa-continuous mapping of type (PKM) on X.

(I) F satisfies condition (S) on X and either F is demicontinuous and
O, *(¥*) — y* in Y* for each y* in Y* or F is continuous on X.

If, under the above condtions, T is a bounded fa-continuous mapping of type
(PKM) of .\ into Y such that for each fixed u > o and some constants b > o
and C >0

(c4) (Tu(x) — T.(0), K(x)) > (ub| x> — C) | K()| for all x in X
and

(c3) [ T(x)| > o as || x]| - oo,
then T maps X onto Y.

Remark 7. The condition (c4) holds, in particular, if

(c4a) (Tx, Kx) = (T(o), Kx) — |(T(0), Kx)| for all x in X
and

(cdb) (Fx, Kx) = b(|| x|)*{| Kx || for all x in X and some b > o.
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We complete this section by deducing from our Theorem 1’ a generaliza-
tion of Kachurowsky's result (see Theorem 4 in [16]) stated in [16] without
proof for bounded finitely-continuous coercive mappings 7 of X into .\™* such
that

(T(x) — T(3)yx — 3+ (T(»),x — ¥ =0  forallxandyin X.

In what follows we shall say that a mapping 7 of X into Y is quasi-K-monotone?
if forallxand y in X

(T(x) — T(y), K(x — )) + (T(»), K(x — ¥))| = 0. (qm)

It follows that every K-monotone mapping is also quasi-K-monotone but the
converse is not true in general (see [16]).

ProrosiTioN 10. Let (X, Y) be a pair of real Banach spaces with an
oriented admissible projectional scheme I, and with X reflexive. Let K be a
weakly continuous and positively homogeneous of order B = 1 mapping of X onio
Y* and let K, be a mapping of X, into Y, such that (*) of Proposition 8 holds.
If T is a mapping of X into Y such that T; = T — f is quasi-K-monotone for
given fin Y, then T is pseudo-A-proper at f provided it satisfies any one of the
Jollowing conditions :

(a) T is continuous.
(b) T is demicontinuous and K is also continuous.

(c) T is bounded and finitely continuous (or hemicontinuous) and K is also
uniformly continuous on bounded sets in X.

Proof. Let{x, |, € X,} be a bounded sequence so that T,,j(xn]) —finY
for given f in Y. To establish the existence of an element x; in X such that
T(xy) = f, we note first that since X is reflexive, {x,,j} is bounded and
Q.(f) — f, we may assume that x, — ¥, for some x, in X and

Tf"j(xnj) = Tnj(x"j) — Q’Il](f) g 0 as ]_) 0.

(a) Suppose that T'is continuous. Then since x, — %o in X, T,,Lj(xnj) —0
in Y, Q, T,P, (x) > Ty(x) for each x in X, K is weakly continuous and 7} is

3 We refer to mappings T satisfying the inequality (qgm) for ¥ = X* and K = I as
quasi-monotone instead of pseudo-monotone, as referred to by Kachurowsky, to
distinguish them from pseudo-monotone mappings as defined and used by Brezis,
Browder, Lions, the author, and others.
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quasi-K-monotone, it follows from this and (*) that for each x in X we have
the inequality
(Qn,Tan,-(x) - Tfn,(xn,-), Kn,(Pn,(x) - "‘n))
+ (T (0n,)s K (Prf(x) — 20 )))l 20

and hence the passage to the limit as j — o0 in the above inequality yields
the relation

(Ti(x), K(x — %)) =0  forallxin X.

For any 2 in X, letting ¥ = x, + £z with ¢ > o and using the positive homo-
geneity of K we get (T{x, + tz), K(2))} > 0 for each t > 0 and each z in X.
Taking the limit as £ — 0 we obtain the inequality (T(x,), K(2)) = 0 for
each 2z in X from which it follows that Ty(x)) = 0, i.e., T(xy) = f.

(b) Let T be demicontinuous and K also continuous. Let & be an arbitrary
but fixed integer and let x be any element in X, . Since {X,, } is monotonic-
ally increasing and T is quasi-K-monotone, it follows from (*) that for all
n; > n; we have

(anTf(x) - Tfnj(xn,-)r Kn,—(x - xn,)) + |(Tfn,- » Knj(x - xn,—))l =0
from which, on the passage to the limit as j — oo, we obtain

(To(x), K(x — %)) =0  forallxe X, (3.13)

and each fixed 4. Since P, (y) — y for each y in X as k— o0, T} is demi-
continuous and K is continuous, the inequality (3.13) also holds for all x in X
and consequently we get the equality T'(x,) = f.

() Suppose now that T is bounded and finitely continuous (or hemi-
continuous) and that K is uniformly continuous on bounded sets in X. Since

(Tfnj(xnj)y Kn/(PnJ(x) - x’ﬂj)) 0
for every fixed & in X and

!(Tf(xn,)) K(:" - x'n,)) - (Tfn,-(xn,-)’ Kn,(Pn,-(x) - xn,—))'
< BMY(| § (P fx) — %)) — 0

as j — oo, it follows that (T(x, ), K(x — %, )) — O for each fixed x in X. In
view of the above relation and the inequality

(THx) — Ty(mn), K(x — 5)) + |(Town), K(x — ,))| =0, (3.14)
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the passage to the limit in (3.14) as j — 20 yields the relation

(T50), K(x — xp)) =

for each x in X. From the latter inequality we derive, as before, the equation
T'(x,) = f. Thus, in each case, T is pseudo-A-proper at f. Q.E.D.

In virtue of Proposition 10, Theorem 1" implies the validity of the following
theorem for quasi-K-monotone mappings which is a generalization of Theo-
rem 3 for K-monotone mappings.

TreOREM 7. Let (X, Y), K and K, satisfy the conditions of Proposition 10
and let M, be a linear isomorphism of X, onto Y, such that (*++) of Theorem 6
holds. For a given fin Y let T be a mapping of X into Y such that Ty == T — f
15 quasi-K-monotone, T satisfies any one of the conditions (a), (b) or (c) of
Proposition 10, and T is K-coercive. Then the equation T(x) = f is solvable
n X.

Proof. 1In virtue of the hypotheses of Theorem 7, Propositions 1 and 10
imply that in either case T is a fa-continuous mapping of X into 1" which is
pseudo-A-proper at f. Since f is a fixed element of ¥ and T is K-coercive,
there exists a number r > 0 such that

(T(x), K(x)) > (f, K(x))  forall xin B(o, r).

Hence, by Theorem 1, there exists an element v, in B(o, r), such that
T(xo) = 1- QE.D.

Since, for each fin Y, Ty = T — fis quasi-K-monotone if 7" is a K-mono-
tone mapping of X into Y, we see that Theorem 7 is indeed a generalization
of Theorem 3. We add that Theorem 4 in {16] is deduced from Theorem 7
by setting ¥ = X* and K = 1.

4. Marrings oF Type (KM)

In this section we show that mappings T of D C X into Y of type (KM)
defined below and, in particular, the mappings 7 of X into X* of type (M),
defined here in terms of sequences rather than filters as in Brezis [2], form a
subclass of the class of pseudo-A-proper mappings. Consequently, Theo-
rems | and 2 of Section 1 are applicable to mappings of type (KM). In parti-
cular, Brezis’ basic existence results (Theorem 10 and Corollary 14 in [2])
for mappings T of type (M) defined in terms of sequences follow from our
Theorem 1 for pseudo-A-proper mappings or more precisely they will be
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deduced as special cases of our Theorem 8. Theorem 9 below is new even
for the mappings of type (M). We add in passing that, unless K is linear, a
mapping of type (PKM) need not be of type (KM) when ¥ # X* and K is
nonlinear. Consequently, the mappings T of D C X into Y of type (KM)
have to be discussed as a separate subclass of pseudo-A-proper mappings.

DerINITION 5. Let D be an open convex subset of a reflexive Banach
space X. A mapping 7 of D into Y is said to be of type (KM) if for any
sequence {z;} C D such that z;— z in D, T(2;)— f for some f in Y and
lim; sup(T'(2;), K(z;)) < (f, K(2)) we have T(z) = f.

When YV = X* and K = I, a map of type (KM) becomes, except for the
continuity assumption, a map of type (M) studied in [2] if fillers are replaced
by sequences. We add in passing that, as was shown in [2], in general a sum
of two mappings of type (M) need not be a mapping of type (M). We first
prove the following two useful propositions for mappings of type (KM).

ProposiTioN 11. Let (X, Y) be a pair of real Banach spaces with an admis-
sible projectional scheme I', and with X reflexive. Let K be a weakly continuous
mapping of X into Y*, D an open convex subset of X and T a mapping of D into
Y of type (KM) on D. Then, for each bounded convex closed subset G of D, the
set T(G) s closed in Y.

Proof. Let {x;} C G be a sequence so that T'(x;) — f for some fin Y. To
show that f € T(G), note that since X is reflexive and {x;} is bounded, without
loss of generality we may assume that x; — x, with xy€ G. Thus, since K
is weakly continuous and x; — xy in X, T(x;)— fin Y and K(x;) — Kx, in
Y* and, therefore,

lim sup(T(x), K(x,) = m(T(x), K(xy) = (f, K(x)-
Since T is of type (KM), it follows that T(x,) = f, i.e., T(G) is a closed set
in Y. Q.E.D.
To establish the pseudo-A-properness of 7 we assume additionally that T

is bounded.

ProrosiTioN 12. Let (X, Y) be a pair of Banach spaces with an admissible
projectional scheme I, and with X reflexive. Let K be a mapping of X onto Y*
which is both continuous and weakly continuous. Let K, be a mapping of X, into
Y,' such that for each n

(0.(0), Ko(®)) = (g, K(x)) forallxin X, ,ginY. )

If D is a convex subset of X and if T is a bounded mapping of type (KM) of D
into Y, then T is pseudo-A-proper.
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Proof. Let {x,|x,eD,} be a bounded sequence and let {x,,)} be an
arbitrary subsequence such that T, (x, ) —¢ for some ge Y. Since X is
reflexive, { o ) ' C D is bounded and D 18 weaklv closed, we may assume that
X, Xy in X with x,in D. It is easy to see that since K is onto, T is bounded
and T, (x,, ) — g, we have the relation T'(x, )ég in Y, 1.e., for each y*in ¥'*
we have (T(x,ll) %) — (g, ¥*). Indeed, note first that since K is onto, to any
y* in Y'* there exists an ¥ in A" such that y* = K(¥). Now, consider the
equality

(T(x,), K()) — (& K(5)) = (T(xn)), K(3)) — (T(xn,))s K(Pr (¥))
+ (T (xn)), KPy () — (8 K(9)).
Since P,,j( y)—y in X, {T(x,,j)} is bounded and, by (*) and the continuity
of K,
(T(xn,-)! K(y)) - (T(x'n,-)’ K(Pnj(}')) -0 as ]_) ©
and
(T(xnj)’ KP"J(DC)) = (Tn,-(xn,)! KPn,(x)) — (g, K(x)),
it follows from the above equality that for each y* in Y'*

(T(%n)), %) = (T(xn,), K(3)) — (& K(3)) = (8 ¥¥)-

Furthermore, since K is weakly continuous, x, — x,in X and T, (x, ) — g,
. . 7 7
the relation (*) also implies that

li}n sup(T(x, ), K(xy))) = li]r_n sup(Ty (%), K(xn,))
- lig.n(Tm(xn,)v K(xn,)) = (g, K(xo))-

In view of the above discussion and the fact that T is of type (KM), it
follows that T(x,) = g, i.e., T is pseudo-A-proper. Q.E.D.

In view of Proposition 12, Theorem 1 implies the validity of the following
theorem for fa-continuous bounded mappings of type (KM).

THEOREM 8. Let (X, Y) be a pair of Banach spaces with an oriented admis-
sible projectional scheme I, and with X reflexive, D a bounded open convex
subset of X with o € D, K a mapping of X onto Y* which is both continuous and
weakly continuous, K, a mapping of X, into Y, and M, a linear isomorphism
of X,, onto Y, such that for each n and all x in X, and g in Y.

(0ule), Knl®) = (& K(x)  and  (M,(x), K,(x)) > 0, ¥x # 0.
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(@) If T is a bounded fa-continuous mapping of D into Y of type (KM) and
if f is a given element in Y such that (T(x), K(x)) = (f, K(x)) for all x in D,
then Eq. (1) has a solution in D.

(b) If T'is a bounded fa-continuous mapping of X into Y of type (KM) such
that either to each fin Y there corresponds an r; > 0 so that

(T(x), K(x)) = (f, K(x))  for all x in B(o, r;)
or T is K-coercive, then T maps X onto Y.

In view of Proposition 12, Remark 2 concerning the constructive aspect
of our proof applies also to Theorem 8.

To obtain an analogue of Theorem 2 for mappings 7 of type (KM) we
have first to establish the pseudo-A-properness of the mapping T, = T + pF
of X into Y for a suitable mapping F of X into Y and each ¢ > 0. This we
do in Proposition 13 under rather restrictive conditions on F.

ProrosiTiON 13. Let (X, Y) be a pair of real Banach spaces with an
admissible projectional scheme T, and with X reflexive. Let K and K, be as in
Proposition 12. If T' is a bounded mapping of type (KM) of X into YV and
if F is a weakly continuous mapping of X into Y such that the functional
f(x) = (F(x), K(x)) of X into R' is weakly lower semicontinuous, then

v = T - uF is pseudo-A-proper for each p > 0.

Proof. In view of Proposition 12, it suffices to show that T, is of type
(KM) for each fixed . > 0. To prove the latter, let u > o be any fixed number
and let {x;} C X be any sequence so that

x,—x in X, T(¢)—g in Y

and

1i§n sup(T,(x,), K(x;)) < (g, K(xp)) for some x,in Xand gin Y.

Hence it follows from the weak continuity of F, the weak lower semicontinuity
of f(x) = (F(x), K(x)) and the equality

(T(xy), K(x;)) = (Tu(%)), K(;)) — p(F(x;), K(y))
that
T(x;)) = Tyu(x;) — pF(x;) — g — pF(x)
and

lim sup(7(x;), K(x)) < lim sup(7, (%), K(x)) — p lim inf(F(x,), K(x),

< (8 Ki(xo)) — p(F(xo), K(xp))
= (g — uF(xy), K(xp)).
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Since T is of type (KM), it follows from the above that T'(x,) = g — uF(x,)
or T,(x,)) = g, 1.e., T, is pseudo-A-proper. Q.E.D.

In virtue of Propositions 11 and 13, Theorem 2 implies the validity of the
following new result for mappings of tvpe (KM) and, in particular, for
mappings of tvpe (M).

Tueorem 9. Let (X, Y) be a pair of Banach spaces with I, an oriented
admissible scheme and with X reflexive, K a mapping of X onto Y * which is both
continuous and weakly continuous, K,, a mapping of X, into Y," and M, a linear
isomorphism of X, onto Y, such that for x in X, and g in Y.

(Qu(g), Knlx)) = (8, K(x))  and  (M,(¥), Ky(x)) > 0, Y 7 0. (*¥)

If T is a bounded fa-continuous mapping of X into Y of type (KM) and F
is a weakly continuous mapping of X into Y such that the functional
f(x) = (F(x), K(x)) of X inte R' is weakly lower semicontinuous and F is
positively homaogeneous of order o > 1 and if the conditions (c4) and (c5) of
Theorem 2 hold, then T maps X onto Y.

5. SpeciAL CASES

In this section we discuss the applicability of the preceeding theorems to
various classes of mappings T of DC X into X* and to mappings T of
D C X into X by specifying ¥, Y, ,0,, K, K,,, M, , and F. From our results
for fa-continuous pseudo-A-proper mappings (Theorems 10 and 12 below)
and their extensions (Theorem 11 and 13 below) we deduce most of the
known fixed point and surjectivity theorems as well as some new ones for
various classes of mappings such as P-compact, weakly closed, monotone,
pseudo-monotone, J-monotone as well as mappings of types (JPM), (M),
(JM) and others. In case T is continuous and A-proper some of the results or
their variants were obtained by the author in [35].

A. Existence Theorems for Mappings T from X to X*

Let X be a real reflexive Banach space with a Schauder basis

{‘/Jl » ‘/’2 ) ‘/’3 ’} C X, Xy = SPan{‘/& FIXEN) ‘/’n})

and P, the projection of X onto X,,. To deduce the corresponding results
for mappings T of D C X into X* from those obtained in the preceeding
sections, we set ¥ = X* and Q, = P,* with Y,, = R(P,*) = X,/ C X* and
observe that in this case it is known that I, = {X, , X/, P,, P,*} is an
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admissible projectional scheme for the pair (X, X*); we recall that
P*: X*— X, is the adjoint of the linear mapping P, . Since X is reflexive
and Y = X*, it follows that ¥* = X and hence the simplest choice for
K:X—>Y*=Xand K,: X, =Y, =RO,*) = R(P,) = X, is to take
K =1 and K, =1I,, where I and I, denote the identities in X and X, ,
respectively. To construct a suitable linear isomorphism M, of X, onto
Y, = X/, let { f;} be the sequence in X* which satisfies the biorthogonality
relation ( f; , ¢;) = 8;; (1,7 = |, 2, 3,...). Then, for each n,

X, = Span{fl ’f2 "")fn}

and, therefore, M, : X, »> X, defined by M,(x) = Y, fi{*) f; for each x
in X, is linear, one-to-one, onto, and such that for each n

(M(x), K (x)) = (Mp(x), x) = Zn: fHx) >0 for each x € X,

with & 5= 0. Clearly, the mappings K, K, and M, thus chosen satisfy all the
corresponding conditions used in Sections 1-4. Consequently, for mappings
T of X into X*, Theorem 1 reduces to the following new result for pseudo-A-
proper mappings T of D C X into X*.

TueorREM 10. Let X be a real reflexive Banach space with a Schauder
basis and D a bounded open subset of X witho e D.

(a) If T'is an fa-continuous pseudo-A-proper mapping of D into X* such that
(T(x), ) = (f, x) for all x in D and some f in X*, then the equation T(x) = f

has a solution in D.

(b) If T is an fa-continuous pseudo-A-proper map of X into X* such that
either (i): to each f in X* there corresponds r; > o such that (T(x), x) = (f, x)
Sor all x in B(o, r,) or (ii): T is coercive (te., (T(x), 2y = c(]| x|)) || x || for all x
tn X with ¢(r) — o0 as r — 00), then T maps X onto X*.

Now, for the case when ¥ = X* and K = I, the class of K-monotone
mappings reduces to the class of monotone mappings T of X into X*, the
class of mappings T of type (PKM) reduces to the class of pseudo-monotone
mappings 7 of X into X*, while the class of fa-continuous mappings of
type (KM) reduces to maps of type (M) in the sense of Brezis if sequences
replace filters. Furthermore, by Propositions 1 and 4, every demicontinuous
monotone map T of X into X* is an fa-continuous pseudo-A-proper map
while, by Propositions 7 and 12, every bounded pseudo-monotone and every
bounded of type (M) map T of X into X* is a bounded pseudo-A-proper map
which is also fa-continuous by the results of Brezis [2]. Consequently, as a
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corollary of our Theorem 10(b) (or a special case of Theorems 3, 5 and 8§,
respectively) we obtain the following basic existence results for the three
special classes of mappings.

CoroLLARY 3. If X is a real reflexive Banach space with a Schauder basis
and T is a mapping of X into X* which satisfies either the condition (1) or the
coerciveness condition (i1) of Theorem 10, then the following three assertions are
valid :

(A) If T is also demicontinuous (or weakly continuous) and monotone, then
T(X)=X*

(BY If T is also bounded and pseudo-monotone, then T(X) = X*.

(C) If T is also bounded and of type (M) then T(X) = X*,

Remark 9. Corollary 3(A), which is the basic surjectivity theorem for
monotone mappings T of X into X*, has been obtained independently by
Minty [21] and Browder [5] for T demicontinuous and coercive (see also
[41]) and by Kachurowsky [16] for T weakly continuous and coercive.
Corollaries 3(B) and (C) have been established by Brezis [2]. The above
authors used different methods and obtained their results for reflexive spaces
not necessarily having Schauder bases.

To obtain an analogue of Theorem 2 for mappings T of X into X™* we
assume additionally that X* is strictly convex and then take F : X — X * to be
the duality mapping F = J, : X — X* defined as follows:

Jolo) =0

and

Jox) ={o |we X* (0, %) = [ w|illx], | ol = ¢ ) (n

where (r) = r> for r > o with « some positive integer. Since A is reflexive
and X* strictly convex, it is known [6] that J, is a single-valued demi-
continuous mapping of X onto X* which is clearly bounded and positively
homogeneous of order a >> 1; furthermore, J, is monotone and, in fact,

(Jo) — Jo(3) x — ) = @l =) — gAly i) (1= — NIy} for x,yin X.
(J2)

Now, Theorem 2 yields the validity of the following new result for a mapping
T of X into X* which is a uniform limit of pseudo-A-proper mappings on
bounded subsets of X and which satisfies a condition “‘at infinity” that is
more general than the coerciveness condition (it} of Theorem 10.
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THEOREM 11. Let X be a real reflexive Banach space with a Schauder
basis and with X* strictly convex. Let T be an fa-continuous mapping of X into
X* such that

(clA) T(G) is closed in X* for each bounded closed convex set G in X.
(2A) T, =T + nJ, is pseudo-A-proper for each p > o.

(c4A) (T(x),x) = — Cllx||+ (T(0), %) for all xe X and some C = 0.
(c5A) || T()l— oo as || x]| - co.

Then T is surjective, i.e., T(X) = X*.

Now, in case T is a hemicontinuous monotone mapping of X into X*, the
conditions (c1A) and (c4A) follow from Proposition 3 and the monotonicity
of T with C = 0 while, since ], is monotone and p > o, (¢2A) follows from
Proposition 4 for 4 = T, . Consequently, from Theorem 11 (or from Theo-
rem 4 for ¥ = X* and K =1I) we deduce the validity of the following
general result for monotone mappings which was essentially obtained in [5]
under the additional condition that X is locally uniformly convex.

CoroLLARY 4. Let X be a reflexive Banach space with a Schauder basis
and with X* strictly convex. If T is a hemicontinuous monotone mapping of X
into X* such that || T(x)|| — oo as || & || — o0, then T maps X onto X*.

Remark 10. If, as in [14], we assume the existence of a function ¢(r) of
R+ to R* with ¢(r) — 00 as 7 — oo such that for some r > o

| T() — tT(—x)| = (| x[)  forall2in {0, 1]and fix| >,

then, for ¢ =0, || T(x)l = ¢(]| ])) and, consequently, Theorem 2 in [14]
follows from our Corollary 4 without the assumption that T is bounded or
even continuous.

If T is a bounded pseudo-montone map of X into X*, then Theorem 11
(or Theorem 6 for Y = X* and K = I) is also applicable. Thus, if for F in
Theorem 6 we take the duality mapping F = J,, then F thus chosen is
bounded, demicontinuous, positively homogeneous of order « > 1 and
monotone. Hence, the results in [2] imply that F satisfies the condition (I) of
Theorem 6. In view of the above remarks, Theorem 6 or 11 yields the validity
of the following new surjectivity theorem for bounded pseudo-monotone

mappings.

CoroLLARY 5. Let X be a reflexive Banach space with a Schauder basis
and with X* is strictly convex. If T is a bounded pseudo-monotone map of X
tnto X* which satisfies the conditions (c4A) and (c5A) of Theorem 11, then T
maps X onto X*.
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We note that Theorem 11 (or Theorem 9 for ¥ == X* and K - - I) is also
applicable to mappings of type (M) if we assume additionally that
Jo: XY — X* is also weakly continuous, set F = J, and observe that the
functional f(x) = (J(x), x) is weakly lower semicontinuous. Thus under the
above more restrictive condition on F' we have the following new result for
mappings of type (M).

CoroLLARY 6. Let X be a reflexive Banach space with a Schauder basis
such that X* is strictly convex and the duality mapping J,: X — X* is also
weakly continuous. If T is a bounded fa-continuous mapping of X into X* of
type (M) which satisfies the conditions (c4A) and (c5A) of Theorem 11, then T
maps X onto X*.

We conclude Section 5A by establishing the A-properness of certain
mappings 7" of X into X* by utilizing the assertion of Proposition 5. We
first recall that X is said to have Property (H) if X is strictly convex and if
{x,} is a sequence in X such that x, = v in Xand || x, | —| x|/, then x, > &
in X.

ProposITION 14. Let X be a real reflexive Banach space with a Schauder
basis and such that X has Property (H) and X* is strictly convex. Let
Jo 1 X — X* be the duality map corresponding to a given strictly increasing
real-valued function Y(r) of R+ into R+ such that (o) = 0 and y(r) — o as
r — oo. If T is a demicontinuous (or a weakly continuous) monotone mapping of
Xinto X*, then T, = T + u], is an A-proper mapping of X into X* for each
Sfixed p > o.

Proof. If in Proposition 5 for the case when } = X* K =1, and
K, =1I, we choose F' = J,; , then since [, is a demicontinuous mapping of X
into X* which satisfies the inequality (F) of Proposition 5 in the form

(Jol®) — Jul3) & — ) = i =) — dlly i) (=l — 1y ])

for all ¥ and y in X, it suffices to show that the function y, defined in our
case by

(el Iy 1) =@l — Uy INUixli—iyl)  (xyed)

is nonnegative and satisfies conditions (a) and (b) of Proposition 5. To
simplify the notation weset# == | x ||, s = |y ||, t, = || 2 || for k =0, 1, 2,...,
and (2, 5) = (H(t) — #(s) (¢ — s). Now, since  is strictly increasing,
y(t,s) = o for all t =2 0 and s > o, i.e., for all ¥ and y in X. Condition (a)
follows from the easily established equality

Y 8) — vty o) = (1) (B — ) + Hf(te) — () + $(s) (s — o) (5.1)
+ to((20) — $(5))- '
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Indeed, to prove (a) we have to show that if {x; | x, € X} is a sequence so that
X, — %, , in X, then to any given € > o there exists 8 = 8(¢) > o such that

Pt s) — vt to)l = Lyl % 1, 1y 1) — vl 1% ID0 <e  (5.2)

for all & if || x, — y1| <C 8. Since {|| ;. |} and {¢(| »; )} are bounded by some
M > o, it follows from (5.1) that for all £ and each s >0

Lyt s 8) — ¥k, t)l < (M + ()l 4y — s | + (M + &) [ (k) — 4(s)I .

Let B(o, d,) be a ball in X such that {x;} and x, lie in B(o, d). It suffices to
restrict our attention to ¥ in X such that ||x; — y| < 1. Hence we may
assume that all elements under consideration belong to the ball B(o, d) for
d=d,+ 1. Let (] y1) < M, for all ¥ in B(o, d) and let

C = max{M, | x, ||, My}.
Then for any {x,} with x;, — x, and all y in B(o, d)
Lyt s s) — (e, 1) < 2C [ fg — s 1+ 2C [ (o) — ¥(s)i  forall &.

Now, to any given € > o there exists 8; = 8,(¢) > o such that
€ . -
lte) =40 <7z i Tl—s] <8y

On the other hand, the function 7(s) = | t, — s | is continuous, 5(t,} = o and
7(s) = o. Hence to the same ¢ > o, there corresponds a 8, = 8,(¢) > o such
that

o<nle) = It — ) S5z i = <.

Hence, since ||| %]l — | ¥[l| <[ — y |/, to any given ¢ > o there cor-
responds a 8 = min(8, , 8,) such that

Aty ) — A, 1)) 2 gm +20zm=¢  if  [x—yl <3,

i.e., (5.2) and, consequently, (a) holds.
To verify (b), suppose x; — x, in X and

Lim (|| 25 11, | 2o I1) = Lim(eh(ll 2 1) — (11 2 D) (Il 2 [| — 1 %0 [)) = 0.

Since i is strictly increasing, it follows from the above equality and Lemma
2.1 in [3] that || x; || — || %, || whence, since &, — x, in X and X has Property
(H), it follows that x; — x, in X, i.e., (b) holds.

409/38/3-12
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Remark 11. In case T and J, are continuous, Proposition 14 reduces
essentially to our Theorem 2.3 in [31].

B. Existence Theorems for Mappings T of X into X

Let A" be a real Banach m-space with X* strictly convex. In this case
I, = {X,, P, is an admissible projectional scheme for the pair (X, X). To
deduce the corresponding results for mappings 7 of X into X from those
obtained in Sections 1-4 for mappings 7 of X into Y, we set ¥V = X,
Y, =.X,, and O, = P, and note that, since }* = X*, one of the simplest
possible choices for

K:X>X* K,:\,— X,/ =R(P,*CX*

and
M,: X,— X,
is to take
K=]:X—>X% K,—P*|g:X,—~X,
and

‘TL[n - In : ‘Xvn - Xn ’

where I, is an identity on X, and [ is the single-valued duality map of X into
X* (with either | = [, or | = J,) which is known [6] to be continuous from
the strong topology of X to the weak™* topology of X* and for which

P*J(x) = J(x) for all x in X, and each » [13].
It follows that for this choice of K, K, and M, we have
(Pu(8), Kilx)) = (Pulg), P¥J(®) = (&, J(x))  VveX,, ged,
and for all x in X, with v 52 0
(M (%), Ky(x)) = (%, P, *J(x)) = (x, J(%)) =l %[l J(x)| > 0.

Consequently, Theorem 1 reduces to the following new existence theorems
for pseudo-A-proper mappings T of D into X.

TuroreM 12. Let X be a real Banach my-space with X* strictly convex, | a
duality mapping of X into X*, and D a bounded open subset of X with o€ D.

(@) If T is an fa-continuous pseudo-A-proper mapping of D into X and f
an element in X such that

(T(x), J@) = (f, Jx)  forallxinD,
then Eq. (1), T(x) = f, has a solution in D.
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(b) If T is an fa-continuous pseudo-A-proper mapping of X into X such
that either the condition (i) or the coerciveness condition (ii) of Theorem 1(b)
holds, then T(X) = X.

We observe that if D is also assumed to be convex and f = o, then Theo-
rem 12(a) reduces essentially to the fixed point theorem established in [13] for
G-operators since it Is easy to see in this case that if T is an fa-continuous
pseudo-A-proper map of D into X such that (T(x), J(x)) > O for all x in D,
then the map T =1 — T is a G-operator of D into X such that
(T'(x), J(x)) < (x, J(x)) for all x in D and consequently T (see [13]) has a
fixed point in D or equivalently the equation T(x) = 0 has a solution in D.
We recall (see [13]) that T : D — X is said to be a G-operator if T is fa-con-
tinuous and if 7 has a fixed point in D whenever T, has a fixed point in D,
for each n.

An immediate consequence of Theorem 12(a) is the following fixed point
theorem for projectionally-compact (P-compact) operators established in
Petryshyn [24] for D = B(o,r) (see also Petryshyn-Tucker [32] and
Browder—Petryshyn [9] for a slightly more general result). We recall (see
[24]) that T : D — X is said to be P-compact if T is fa-continuous on D and
T; = T — dI is A-proper for each d > o.

CorOLLARY 7. Let X be a Banach m-space with X* sirictly convex and
with ] a given duality mapping of X into X*. If D is a bounded open subset of X
and T a P-compact map of D into X which satisfies the boundary condition
(T(x), J(*)) < (x, J(x)) for all x in D, then T has a fixed point in D. The above
conclusion holds, in particular, when D = B(o, r) and T(B) C B.

Proof. Since T =1 — T is obviously an fa-continuous A-proper map of
D into X, and in particular, pseudo-A-proper and (T'(a), J(x)) = O for all »
in D, the first part of Corollary 7 follows from Theor=m 12(a). To prove the
second part, it suffices to show that T(B)C B implies the relation
(T(%), J(x)) = O for all x in B. Now, since T'(x) € B for each x in B, it follows
that || T(x)]| << r = |} x| and, therefore,

(T), J) <IETEIH TN < T il J&) = (%, J@) forall xin B,

Le.,
(T(x), J(x)) =0 for all x in B.
Q.E.D.

Since every compact mapping T of D into X as well as every quasi-
compact mapping in the sense of Kaniel [17] is P-compact, the fixed point
theorem of Schauder [38], Rothe [37] and Kaniel for D = B(o, r) follow
from Corollary 7 and thus from Theorem 12(a).
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It is casy to see that if 7" is a weakly closed map of D into X with X reflex-
ive, then T =T — Tis also weakly closed; moreover, if D is also assumed to
be convex and T is a weakly continuous map of D into X, then T is also
weakly closed. Hence, in view of Proposition 2, Theorem 12(a) implies also
the validity of the following corollary whose special cases are due to
Schauder [38] for T a weakly continuous map of B(o,r) into B(o,r), to
Altman [1] for X a Hilbert space and T a bounded weakly closed map of B
into X with (Tx, x) .< || x| for all x in B (see also Shinbrot [39]), and to
De Figueiredo [13] for D a bounded open convex subset of .X with o€ D
and T a weakly continuous map of D into X with

(T(x), J(x) < (v, J(x)) forallxeD.

CoroLLARY 8. Let X be a reflexive my-space with X* strictly convex. If D
is a bounded open subset of X and T a bounded fa-continuous, and weakly closed
map of D into X such that (T(x), J(x)) < (x, J(x)) for all x in D, then T has a
fixed point in D.

If the duality mapping J of X into X* is assumed to be both strongly and
weakly continuous, then it follows from Proposition 4 for the case when
Y = X and K = ] that every demicontinuous J-monotone map of X into X
is pseudo-A-proper. Consequently, Theorem 12 implies the validity of the
following corollary which includes Theorems 1, 2, and 3 established in
Browder—De Figueiredo [7].

CoroLLARY 9. Let X be a reflexive m~space with X* strictly convex and
with a duality map [ of X into X* which is both strongly and weakly continuous.
Let T be a demicontinuous J-monotone mapping of X into X.

(a) If D is a bounded open subset of X with o € D such that (T(x), [(x)) =0
for all x in D, then T(x) = 0 has a solution in D.

(b) If Tis J-coercive, then T maps X onto X.

We note in passing that for the mapping ] to be strongly continuous it
suffices to assume that X* has Property (H). Hilbert spaces, uniformly
convex and locally uniformly convex Banach spaces are examples of such
spaces. It is also known that Hilbert spaces and Banach 1, spaces with
1 < p < o possess duality mappings which are both strongly and weakly
continuous. Consequently, Corollary 9 is certainly true for the latter spaces.

If we strengthen further the conditions on J, then the assertion analogous
to Corollary 9 also holds for mappings of type (PJM). Thus we get the follow-
ing new result.
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CoroLLarY 10. Let X be a reflexive wy-space with X* strictly convex and
with a duality map | of X into X* which is both weakly continuous on X and
uniformly continuous on bounded subsets of X. Let T be a bounded fa-continuous
mapping of type (PJM) of X into X.

(a) If D is a bounded open subset of X with o € D such that
(T(x), J(x)) =0  forallxin D,

then T(x) = O has a solution in D.
(b)Y If T is J-coercive, then T maps X onto X.

For the sake of completeness we also state the following corollary for
mappings T of type (JM) as a special case of Theorem 8 or 12.

CoroLLARY 11. Suppose that X, X* and ] satisfy the conditions of
Corollary 9.

() If Dis a bounded open convex subset of X with o € D and T is a bounded
fa-continuous mapping of D into X of type (JM) such that (T(x), J(x)) = O for
all x in D, then T(x) = O has a solution in D.

(b) If T is a bounded fa-continuous map of X into X of type (JM) such that T
is J-coercive, then T maps X onto X.

To obtain an analogue of Theorem 2 for a mapping T of X into X which
on bounded sets in X is a uniform limit of a special sequence of pseudo-A-
proper mappings and which satisfies the “at infinity” condition that is more
general than the coerciveness condition (i), we take for F : X — X the
identity I(== F) on X and observe that in this case the corresponding con-
ditions (c3) and (c4) of Theorem 2 are certainly satisfied, in view of our
choice of K = J, if we assume that (T'(x), J(x)) = — C| J(®)| + (T(o), J(x))
for all x in X and some C > 0. Consequently, we have the following new
result for mappings T of X into X.

TueorREM 13. Let X be a Banach w-space with X* strictly convex and
with [ : X — X* a given duality mapping. Let T be an fa-continuous mapping
of X into X such that

(c1B) T(G) is closed in X whenever G is a bounded closed convex set in X.

(c2B) T, = T + pl is pseudo-A-proper for each p > o.

(c4B) (T(x), J(x)) = — C| J(x)| 4+ (T(0), J(x)) for all x in X and some
C>o.

(cSB) || T(x)]| — oo as || x]| > co.
Then T maps X onto X.
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Now Theorem 13 (or Theorem 4 for ¥ = X, K = J and F = I) yields
immediately the validity of the following new and to our knowledge the most
general result for J-monotone mappings.

CoroLLARY 12. Let X be a reflexive m-space with X* strictly convex and
with the duality mapping | of X into X* which is both strongly and weakly
continuous. If T is a demicontinuous J-monotone map of X into X such that
(c5B) of Theorem 13 holds, then T maps X onto X.

To obtain a similar result for mappings T of type (PJM) we need to
strengthen somewhat the conditions on X and J.

CoroLLARY 13. Let X be a reflexive my-space with Property (H) and with
X* strictly convex. Suppose that the duality map | of X into X* given by (J1)
1s both weakly continuous on X and uniformly continuous on bounded sets in X.
If T is a bounded fa-continuous mapping of type (PJM) of X into X such that
(c4B) and (c5B) of Theorem 13 hold, then T maps X onto X.

Proof. Since K = J: X — X* to prove Corollary 13, it suffices to
verify that, under our conditions on X and J, the mapping F = I satisfies
all the conditions of Theorem 6 for ¥ = X. Since F = I is obviously J-mono-
tone, bounded, and positively homogeneous of order « = 1, we need only to
verify either the condition (I) or the condition (II).

We shall show that when F' = I, then F satisfies condition (S) on X, i.e.,
we verify (II). Let {x,} be any sequence in X such that x, — x; in X and
(%, — %9, J(x, — x9)) > 0 as n— o0. In view of the inequality (]J2) satisfied
by J, it follows that || x, || — | x, || as # — oo from which, since x, — x, in
X with X having Property (H), it follows that x, — %, in X ie., F=1T
satisfies condition (S) on X and, therefore, Corollary 13 follows from Theo-
rem 6 or 13. Q.E.D.

We add in passing that in view of Proposition 9 we have in effect shown
that T, = T + plis an A-proper map of X into X for each u > 0. We remark
also that, using essentially the arguments of Kato [19], it has been shown by
the author in [34] that a sufficient condition for ] given by (J1) to be uniformly
continuous on bounded subsets of X is that X* be uniformly convex.

As our final application of Theorem 13 (or Theorem 9 for ¥ = X, K = |,
and F = I) under the assumption that ] is both strongly and weakly continu-
ous on X we obtain the following new result for mappings T of type (JM).

COROLLARY 14. Suppose that X, X* and ] satisfy the conditions of Corol-
lary 12. If T is a bounded fa-continuous mapping of type (JM) of X into X such
that the conditions (c4B) and (c5B) of Theorem 13 hold, then T maps X onto X.
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We continue this section by deducing from Proposition 5 for a J-monotone
mapping 7 of X into X the analogue of Proposition 14.

ProposiTION 15. Let X be a reflexive Banach my-space with X* strictly
convex and let |, be the duality mapping of X into X* corresponding to the
gauge function (r) which is both strongly and weakly continuous on X. If T
is a demicontinuous (or a weakly continuous) J-monotone mapping of X into X,
then the mapping T, = T + ul is an A-proper mapping for each p > o (i.e.,
— T is P-compact).

Proof. To deduce Proposition 15 from Proposition 5 for the case when
Y=X,K=Jand K, =P, *:] Ix, it suffices to show that the J-mono-
tone map F = I of X into X which satisfies the inequality (F) of Proposition 5
in the form

(F(x) — F(y), J(x — 3) = (x — 3, J(x — 3))
=lx—yldllx—yl) VryeX

is such that the nonnegative function y defined by

el Iyl e —yl) =lx—ylg0lx—i)

satisfies the conditions (a) and (b) of Proposition 5. But the latter fact has
been established in [12] and so we omit its proof here.

Remark 12. Some special cases of Proposition 15 have been proved
earlier by the writer in [30] for T assumed also bounded and in [31] for T
continuous. Proposition 15 for unbounded demicontinuous 7' as stated here
follows from Lemma 2 in [12].

We conclude this section by observing that, in view of Theorem A, Theo-
rem 3 in [33] obtained there for Hilbert spaces remains also valid for Banach
spaces.

THEOREM 14. Let X be a Banach =,-space with X* strictly convex and
with | a duality map of X into X*. If T is an fa-continuous P-compact mapping
of X into X such that

(T(x), J()) < (T(o), Jx)  forallxin X, ()

then for any p > o the equation px — T(x) =f is feebly projectionally-
solvable for each fin X and, in particular, (uI — T) is onto.

Proof. Since T is P-compact, T, = ul — T is A-proper for each fixed
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g > 0. Let f be any given element in X. Then it follows from the inequality
(k) that for each given p > o and all x in X

(Tu(x), J() = (f, J(»))
= pl, J(x)) — (T(x) — T(0), J(*)) + (f -+ T(0), J(x))
= ply, J@®) — (f+ T(o), J(x))
Zplxl —1f+ TN JI.

This shows that if we take

ST
l.L
then

(T.(x), J@&) = (f, J@x))  forallxe B(o,r,,)

and consequently the conclusion of Theorem 14 follows from Theorem A
for the case when

Y=X, K=J], K,=P*iy, ad M, =I,.

Q.E.D.
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