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Let (X, Y) be a pair of real normed linear spaces and let T be in general 
a nonlinear mapping of D C X into I’. The purpose of this paper is twofold: 
first, to establish two basic existence theorems for the equation 

(i) T(x) =f (x E D,~G Y) 

under various “boundary” and/or “at infinity” conditions, where T is either 
pseudo-A-proper1 (Theorem 1) or a uniform limit of a special sequence of 
such mappings (Theorem 2); second, to apply Theorems 1 and 2 to the study 
of the solvability of Eq. (i) involving various special classes of mappings in 
Banach spaces. 

Suppose (X, I;) has an oriented admissible scheme r,i == {1I-;1 , Ill , P,, , Q,J. 
In trying (see, for example, [24, 26, 331) to obtain the constructive existence 
of solutions .t^ E D of Eq. (i) as strong limits of solutions .‘c, E D, of the finite- 
dimensional Galerkin-type approximate equations 

(ii) T,(G) = Q,(f), (T, =&T ID,, , D, == D n A-J 

the author has been led in [27-291 to the class of A-proper mappings [i.e., 
maps satisfying condition (H)] which later was further studied by the author 
[31, 34, 351, Browder and Petryshyn [8, 91, Browder [4, 61, Nussbaum [23], 
Wong [40], Deimling [I 11, Fitzpatrick [15], and others. Although the class 
of A-proper mappings, under suitable continuity assumptions, includes 
many types of mappings [e.g., compact displacements, P-compact, strongly 
K-monotone, y-k-set-contractions, mappings of type (S) and of modified 
type (S)], there are existence theorems for Eq. (i) involving, for example, 

* Supported in part by the National Science Foundation Grant GP-20228 and in 
part by the Research Council of Rutgers University while the author was on the 
faculty fellowship. 

1 For the definitions of various concepts and the precise statements of the results 
mentioned in the Introduction see the succeeding sections. 
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weakly continuous (see, for example, [38, 1, 13, 391) or coercive demi- 
continuous monotone or pseudo-monotone mappings (see, for example, [21, 
5, 2, 31) for which the theory of A-proper mappings is not directly applicable. 

However, a closer look at this theory suggests that if instead of its con- 
structive we are primarily interested in its existential aspect, then the same 
approach can still be used to obtain existence theorems for Eq. (i) involving 
a much wider class of the so-called pseudo-d-proper mappings [or maps 
satisfying condition (c) for reflexive Banach spaces [26, 361 and condition (h) 
for general Banach spaces [30]] and their uniform limits under the “bound- 
ary” and/or the “at infinity” conditions which are more general than the 
K-coerciveness condition. 

The basic results summarized below were announced in our note [25]. 
In Section 1 we introduce various concepts and establish the two basic 

existence theorems for Eq. (i): Theorem 1 for fa-continuous pseudo-A-proper 
mapping T of D C X into Y which is of K-coercive type and Theorem 2 for 
T of X into I’ which is a uniform limit on bounded sets in X of pseudo-A- 
proper mappings and which satisfies a condition “at infinity” which is more 
general than the K-coerciveness condition. As our first application, we obtain 
new results for weakly closed mappings T of D _C X into Y, which for the 
case when Y = X (see Section 5) includes the basic fixed point theorem of 
Schauder [38] for weakly continuous T and its extensions [l, 13, 161. 

In Section 2, assuming here and in succeeding sections that X and Y are 
Banach spaces with X reflexive, we apply Theorems 1 and 2 to obtain 
surjectivity results (Theorems 3 and 4) for Eq. (i) involving demicontinuous 
and weakly continuous K-monotone and K-coercive mappings T of X into Y. 
As special cases (see Section 5A for the case when Y = X*) we obtain the 
basic surjectivity theorem of Minty-Browder [21, 51 for demicontinuous 
monotone mappings T of X into X*, of Browder-De Figueiredo [7] for 
J-monotone maps as well as other results. We also discuss the conditions and 
give new arguments which guarantee the A-properness of certain K-mono- 
tone mappings T of X into I- which need not be bounded. 

In Section 3 we first apply Theorems 1 and 2 to obtain new results for T of 
type (PKM) (Theorems 5 and 6) and then apply Theorem 1’ to T quasi-K- 
monotone (Theorem 7). As special cases (see Section 5B for the case when 
Y = S*) we obtain the surjectivity theorem of Brezis [2] for T pseudo- 
monotone and of Kachurowsky [16] for Tf quasi-monotone. 

In Section 4 we use Theorems 1 and 2 in the study of the solvability of 
Eq. (i) for the case when T : X+ Y is of type (KM) (Theorems 8 and 9). 
As a special case of Theorem 8 when Y = X* we deduce the result 
of Brezis [2] for T of type (M). The result of Theorem 9 and its special cases 
are all new. 

Note that the definitions of a pseudo-monotone and of type (M) mappings 
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given in [2] are somewhat different from those given in this paper (cf. [20]). 
Our definitions involve only sequences while those of Brezis are given in 
terms of filters. However, since X employed in Sections 2-5 is necessarily 
separable and reflexive, the results of Brezis [2] are also valid for pseudo- 
monotone maps and maps of type (RI) as defined here but without the addi- 
tional condition that T be bounded. In this paper, whenever a reference is 
made to these maps, it is understood that they are defined in terms of sequen- 
ces. We add that our arguments are different from those in [2]. 

In Section 5 we discuss in more detail the various special classes of map- 
pings T of DC X into X* and T of DC X into S, some of which have 
already been mentioned. Here we deduce a number of known results as well 
as some new ones from Theorems 10 and 11 in Section 5A for mappings T 
of D _C X into X* and from Theorems 12 and 13 in Section 5B for mappings 
T of D C X into X which are the corresponding analogoues of Theorems 1 
and 2 in Section I. In particular, from Theorem 12 we deduce the fixed 
point theorem for P-compact mappings established in Petryshyn [24, 331 (see 
also [32]) which includes the fixed point theorem of Schauder [38] and 
Rothe [37] for compact mappings and of Kaniel [17] for quasi-compact 
mappings. We also indicate the connection between the class of pseudo-A- 
proper mappings and the class of G-operators T of D C X into X studied by 
De Figueiredo [13]. F or other contributions see Section 5. 

1. EQUATIONS INVOLVING FA-CONTINUOLIS PSEUDO-A-PROPER MAPPINGS 

A pair (X, Y) f o normed real spaces is said to have an admissible pro- 
jectional scheme r, = {X, , Yn , P, , QJ if there exist two sequences 
{Xn} C X and {Y,} C Y of monotonically increasing finite-dimensional 
subspaces with dim X, = dim E;, for each n and two sequences of bounded 
linear projections {P,} and {Qn} with P,(X) = X, and QJY) = Y,, such that 
P,(x) -+ x and QJy) -+y for each N in X and y in Y (here and in what 
follows ---f denotes the strong convergence; we will also use - to denote the 
weak convergence in X and the weak* convergence in X*, the adjoint of X). 

DEFINITION 1 [27, 291. A mapping T of DC X into Y is said to be 
Approximation-proper (A-proper) with respect to r, if it satisfies the follow- 
ing condition (H): if for any sequence {nj} of positive integers with nj + co 
as j + co and a corresponding bounded sequence {x,, 1 x,, E Dni} such that 
Tmj(x,,) -+ g for some g in Y, there exists a subsequence {xntcB,) and an ele- 
ment x m D such that ~~~~~~~ 4 5 as k + co and T(x) = g, where 

for each n. 

D, = D nX and Tn = QnT ID, 
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We recall (see [26, 311) that the equation 

T(x) =f (x E D,fE Y) (1) 

is said to be strongly (resp. feebly) projectionally-solvable if there exists an 
integer N 2 1 such that for each n 3 IL’ the approximate equation 

has a solution xTL E D, such that x,~ -,xwith~inD(resp..r,~+xasj+c~ 
with x in D for some subsequence {.xnj} of {jcn}) and T(x) = f. It has been 
shown in [29, 311 that, under certain conditions on T, the A-properness of T 
is not only sufficient be also a necessary condition for Eq. (1) to be strongly 
projectionally-solvable. 

It is known that in order to obtain certain existence and/or approximation 
results for Eq. (1) we need to impose certain continuity conditions on T. The 
standard assumption on T is that it be either continuous, demicontinuous, 
hemicontinuous or weakly continuous. We recall that T is demicontinuous at 
u E D if {II,~} C D and u, + u in X imply T(u,) - T(u) in Y; T is hemi- 
continuous at u E D if v E X, t, > 0, t, -+ 0 and u + t,,v E D imply 
T(u + t,v) - T(u) in Y; T is weakly continuous at u ED if {un} CD and 
u,, - u in X imply T(uJ - T(u) in Y. Recently, considerable attention has 
been given to finitely continuous mappings which in our setting can be 
defined as follows. T : D _C X--+ Y is finitely continuous if for any finite- 
dimensional subspace V of X and any sequence {x~} C D n V such that 
Nfi~.~EDn~ask~cowehave(T(x,),y*)-t(T(x),y*)foreachy*in 
Y*, i.e., T(s,J - T(x) in Y. In what follows we use B(o, r) and B(o, r) to 
denote an open ball about o E X and its boundary, respectively. 

In this section we consider Eq. (1) involving mappings T which are Jinite 
approximation-continuous (for short, fa-continuous) with respect to a given 
scheme r,, . 

DEFINITION 2. A mapping T of D C X into Y is said to be fa-continuous 
with respect to T, if for each n the finite approximation T,, : D,, Z X, into 
Y, is continuous. 

In [24] and in his other papers the author imposed the fa-continuity as a 
part of the notion of a P-compact mapping. It turns out that the fa-continuity 
is a rather weak assumption. In fact, the following simple observation is true. 

PROPOSITION 1. Let T be a mapping of D C X into I,’ zuhich is either 
continuous, demicontinuous, weakly continuous OY finitely continuous, then T 
is fa-continuous. 
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Proof. Since for finite-dimensional Banach spaces strong and weak con- 
vergence coincide, it follows that if T is either continuous, demicontinuous 
or weakly continuous, then it is automatically fa-continuous with respect to 
r, . Thus, to prove Proposition I, it suffices to show that finite continuity 
implies fa-continuity. 

Let T be finitely continuous. For each fixed n let (~~1 be a sequence in 
D, = S,, n D such that s,, - s as k + T’ and s E D, . To show that 
T,(x~) --f T,,(s) in I-,, as k -+ CO, it suffices to show that T,,(s,) - T,,(s) in 
E’, , i.e., (T,,(s,), y) --L (T,(x), y) for each y in I’,“. Since I’, is a subspace 
of I’, the Hahn-Banach Theorem implies that to each y in I;,* there corre- 
spondsay*inI’*suchthat(z,_2’)=(z,4’*)forallzinI~,,and1/~, -,!JJ*~I. 
Hence, since T,(x,) E I-‘,, , we have for each y in I’,,* the existence ofy* E I-* 
such that (TJmrC), y) : (T,,(s,:), y*). S’ mce T is finitely continuous for every 
finite dimensional subspace T,? of X, it is so when I,- = X,, . This and the last 
equality imply that for each fixed n and any y in I’,,” there esists yx E I’* 
such that as k - CYZ we have 

(T,(sk),y) = (T&Y&~*) = (T(.c), Q,l*(y*)) + (T(s), Q,,*(Y*)) = (T~),Y). 

Consequently, T,,(xk) ---f T,(s) in Y,, as k + 00, i.e., T is fa-continuous. 
We note in passing that every linear mapping T of X into I’ is fa-continu- 

ous even when T is unbounded. 
For the sake of convenience and completeness we state here without 

proof the following result obtained by the author (see Theorem 3.1 in [31]) 
which, in its extended form, will play an essential role in our present dis- 
cussion. 

THEOREM A. Let (X, EJ be a pair of normed linear spaces with an oriented 
admissible scheme I?,, , D a bounded open convex subset of As with o E D, K a 
(nonlinear in general) mapping of X into I’* and K,, a (nonlinear in general) 
mapping of Xr, illto I;,’ = R(Qn*) C I’* such that K(x) f 0 if x F 0 and for 
each n 

(Q&9, K&N = kv K(4) (‘) 

for all x in X, and g in Y. For each n, let M, be a linear isomorphism ofx3& onto 
I’, such that (MrJx), K,(x)) > 0 for all x # 0 in X, . 

If T is an fa-continuous A-proper mapping of the closure D into lV and f is a 
given vector in 1’ such that 

(T(x), K(s)) > (f, K(x)) FW 

for all x on the boundary D, then Eq. (1) is feebly projectionally-solvable in D 
for N = 1, i.e., for each n, Eq. (2) has a solution x,, in D,, such that x,,, 4 x in X 
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for some subsequence {,~~i) of ix,) and some element .x in D ulith T(s) = f. 
[In particular, Eq. (1) has a solution x in D for each f in Y satisfying (HA).] 
If additiona& we assume that, for f satisfring (HA), Eq. (1) has at most one 
solution in D, then it is strongly projectionally solvable. 

It follows from the proof in [31] of Theorem A that, under its conditions on 
(X, Y), I’,, , D, K, k’, and M, , for any fa-continuous mapping T of D into Y 
and each given f in Y for which (HA) holds, the approximate equation (2) has 
a solution x,, in 4, for each n. Hence we may relax somewhat the conditions 
defining the A-properness of T if our primary concern is not so much con- 
struction as the existence of solutions of Eq. (1) for f satisfying (HA). Indeed, 
for latter purposes it suffices to assume that T satisfies condition (h) defined 
as follows. 

DEFINITION 3. A mapping T of ij into Y is said to satisfy condition (h) 
with respect to r, on D if for any sequence {nj> of positive integers with 
ni + UL and a corresponding bounded sequence {:rrrj 1 x~? E Xnjm_” ij} such 
that Trlj(s,, ) 4 g for some g in I, there exists an element x in D such that 
T(x) = g. ’ 

The class of maps given by Definition 3 was introduced by the author (see 
condition (c) in [26, 361 for reflexive Banach spaces and condition (h) in [30] 
for general Banach spaces). Further studies of such maps were carried by the 
author [ZS, 3 1, 251 and Wong [40]. In what follows we shall refer to mappings 
satisfying condition (h) as pseudo-rl-proper. We add in passing that for the 
case when Y7 = X the concept of an fa-continuous pseudo-A-proper mapping 
is related to the concept of a G-operator introduced in [13]. We shall dwell 
on this connection more fully in Section 5B. It turns out that the existence 
part of Theorem A remains valid for pseudo-A-proper mappings T defined 
on ij C S with D not necessarily convex. This result is contained in Theo- 
rem 1 below. 

THEOREM 1. Let (X, I-), r,, , K, K,, and M,l satis& the conditions of 
Theorem A and let D be a bounded open subset of X with o E D. 

(a) If T is an fa-continuous pseudo-A-proper mapping of D into I’ and ;f f 
is a given element in Y for which the inequality (HA) qf Theorem A holds on a, 
then Eq. (1) is solvable for each such f in Y. 

(b) If T is an fa-continuous pseudo-A-proper mapping of X into I’ which 
satisfies either the condition 

(i) to each f in Y there corresponds a number yf > 0 so that 

(T(x), K(x)) 3 (f, K(x)) fey alZ x in &o, Ye) (HAI 

or the condition. 
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(ii) T is X-coer&e, i.e., there exists a real-valued function c(r) defined on 
reals R1 such that c(r) -+ K, as r 4 CC and 

(T(s), K(x)) 2 c(il N 11) 11 K(x)\! for alf x in X, (4 

then the mapping T is surjective, i.e., T(X) = I’. 

Proof. For the sake of completeness we first give a short proof of the 
following known (see [22]) fi m e ‘t -d’ lmensional fixed point theorem which plays 
an essential role in our proof. 

LERAY-SCHAUDER THEOREM. Let F be an oriented real finite-dimensional 
Banach space, D an open bounded set in Fr with o E D and A a continuous 
mapping of n into 1,’ such that 

(rlG) i-f A(x) = OLV o s orsomexinfithenol-sl. h ld f 

Then A has a fixed point in D. 

Proof. Consider the homotopy H,(x) of &[O, l] into I’ defined by 
H,(x) = x - tA(x) f or N E D and t E [0, 11. Without loss of generality we 
may assume that H,(x) f 0 on I>. Then our condition (rr&) implies that 

H,(x) = t (+- Y - a(+)) f 0 

for all t E (0, 1) and all s E D while o E D implies that H,(X) + 0 for all .Z E a. 
Thus, H,(x) # 0 for all x E B and t E [0, 11, under the assumption that 
H,(x) - x - Ax # 0 on B. Hence the Brouwer degreea of Ht on D over 0, 
deg(H, , D, 0), is constant in t E [0, 11. Since 

it follows that 

deg(HO , D, 0) = deg(l, D, 0) =z 1, 

1 = deg(H, , D, 0) = deg(1 - &,I, D, 0) = deg(H, D, o) 

and, therefore, there exists x0 E D such that x0 - 4(x,) = 0, i.e., -4 has a 
fixed point in a. 

Proof of Theorem 1 Continued. (a) For each fixed n and every s in & 
consider the mapping An(x) == T,,(X) -- Qn(f), 

? For the definition and the properties of Brouwer degree see [lo, 221. 
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Our conditions imply that for all x in fin C X, n D and each n 

Now, since &In is a linear isomorphism of X,, onto Y-n , I?,, = ilr,(D,) is a 
bounded open set in Y, with o E V., , IL n va = o and A& maps & 
homeomorphically onto vn . Let G, be the mapping of vn into Y, defined by 
G, = I, - A,L, with Ln = M;’ and I, the identity in Y,l . Since, for each 
fixed n, yn E F,, is a fixed point of G, if and only if .1c, = L,(y,) (E &) is a 
solution of Eq. (2) [i.e., of T,(x,J = Qn(f)], to establish the solvability of 
the latter equation for each n, in view of the finite-dimensional Leray- 
Schauder Theorem, it suffices to show that G, satisfies the condition (nr<) 
on Vn, i.e., if G,(y,,) = ayO holds for some yu in I:g , then a < 1. Now, 
suppose that G,(y,) = aya for somey,, in pn . If we let x,, be a point in & so 
that x0 = L,(y,,) then, by (l.l), 

Since @2,(x,,), K,(x,,)) > 0, it follows that iy < 1. Hence, for each n, there 
exists x, E D, such that Tn(&x,J = QJf). Since {JC, ) ZC~ E DJ is bounded, T is 
pseudo-A-proper on D, and T,(x,) = QIE(f) ---t f in I’ as n -+ co, there 
exists an element x* in B such that T(x*) = f. 

(b) To prove (b) we first show that the coerciveness condition (rr) implies 
the condition (HA). Indeed, if f is any given vector in Y then, since C(T) --f co 
as y---f co, there exists a number rr > 0 such that I[ f [I < c(Y~). Hence, for all 
x E &(a, rf) the condition (HA) holds on J? = B(o, rf) since 

G”(x), K(x)) - (fx K(x)) 2 (C(TI) - !!flO I! Wll > 0 for all x E B. 

Now, since for each f in Y there exists yf > o such that (HA) holds on &, 
the assertion (b) follows from (a) for D = B(o, rf). Q.E.D. 

We remark in passing that Theorem 1 represents essentially a global 
existence result in the sense that if T is pseudo-A-proper on a and if 
T&c,,) -+g in Y for some bounded sequence (2nj ) “r,l E Xn, n s}, then 
the equation T(X) = g is necessarily solvable in D. Clearly if, for a given 
fin Y, the equation T(x) = f is not solvable in D and if T is pseudo-A-proper 
on B, then we cannot find a bounded sequence (xn, 1 x,,, E Xnj n a) such that 
T,,(q) -+ f in Y. On the other hand, the proof of Theorem 1 suggests the 

409/38/3-10 
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possibility of obtainmg local existence results for T which is only point-wise 
pseudo--%-proper in the following sense. 

DEFINITION 3’. A mapping T of D into 1’ is said to be pseudo-A-proper 
at f in 1’ if for any bounded sequence {.Y,~~I.Y~~ E Snj n D> such that 
T,li(x,,,) -f in I*, there exists an element s in D such that T(x) =J 

Looking over the proof of Theorem I we see that it also implies the validity 
of the following local result. 

THEOREM 1’. Let (X, Y), r, , K, K,, , M, , and D be as in Theorem I 
and let T be an fa-continuous mapping of D- into Y. If f is an element in Y such 
that T is pseudo-A-proper at f and 

(T(.v), K(x)) 3 (f, K(X)) for x in B, 

then the equation T(x) = f is solvable in B. 

As an illustration of the generality of Theorem l’, we shall apply it to the 
problem of solvability of equations involving quasi-K-monotone maps (see 
Theorem 7 below). 

Below we apply Theorem 1 to establish a basic surjectivity theorem for an 
fa-continuous mapping T of X into 1’ which is a uniform limit on bounded 
subsets of X of a special sequence of pseudo-A-proper mappings and which 
is not K-coercive. In fact, the “at infinity” condition (~5) below is more 
general than the K-coerciveness condition (7~). Before stating Theorem 2 we 
first recall that a mapping F of X into Y is said to be bounded if F maps 
bounded sets from its domain D(F) C X into bounded sets in I-. 

THEOREM 2. Let (X, Y) be a pair of normed real spaces with an oriented 
admissible projectional scheme I’, , K a mapping of X into Y*, K, a mapping of 
Xn into Y,,’ and n& a linear isomorphism of Xr, onto I;, such that for each n all 
x + 0 in S,, and g in I’ 

Let T be an fa-continuous mapping of X into Y and suppose also that there exists a 
bounded fa-continuous mapping F of X into Y such that 

(cl) T(G) is closed in I* if G is a bounded closed convex set in X. 

(~2) T, = T + PF is pseudo-A-proper for each p > o. 

(~3) F is positively homogeneous of order 01 > 1 (i.e., F(tx) = taP(x) all x 
in X, t > o and some integer CL 3 1). 
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(~4) (T,(x) - Tu(o), K(x)) 3 (pb [I x !I* - C) (1 K(x)11 for each given 
p > o and all x in X with b > o and C 3 o some constants independent of x 

and p. 

(~5) 11 T(x)l/ -h co as I/ s 1) --f co. 

Then, under the above conditions, T is surjective. 

Proof. To apply Theorem 1 in the proof of Theorem 2, we first note that 
for each given f in Y and p > o and all .v in X we have, in view of (~4) and 
the equality F(o) = o, the relation 

(T,(x) - f> K.4 = (T,,(4 - T,(o). Q)) + (T,(o) - f, QN 

3 W II x II> - C - II T(o) -f II> II K(x)lI . 
(1.2) 

Hence, since P -+ co as Y + co, to each given f in Y and p > o there cor- 
responds a positive real number ruf > o such that the right-hand side in the 
inequality (1.2) is positive for all .T in B(o, r,,uf) and, therefore, 

G”,h>, W)) 2 (ft JW) for all .1c in B(o, ruf). 

Since, by our assumptions, T, is an fa-continuous pseudo-A-proper mapping 
of X into Y, Theorem 1 implies that, in view of the last inequality, to each 
fixed pk > o (with pk --f o as K -+ co) and f in Y there exists a vector 
xii E B(o, rGcif) such that 

T&4 =f or T(.Q) = f - prF(x,). (1.3) 

The equation (1.3) and (~4) imply that for each k 

CC&4 - Tu&>, f&J) = (f - T(o), Wd) > h-4 II .rk II2 - C) II K(x,)ll . 

Hence, using the Schwartz-Buniakovsky inequality, we get the relation 
C + IIf- T(o)11 > b(lly, II&) with ys = t@xx: for each k from which it 
follows that {yli} is bounded. Since F is bounded and psF(xk) = F(y,), it 
follows that {F(J),)} is also bounded and so is the sequence 

m%Jl = if - F(Y4. 

Hence (~5) implies that {.v~} is bounded and thus there exists a ball 
B(o, d) C X such that (+} C B(o, d). Th is and the fact that F is bounded and 
pk --f o as k + cc imply that 

T(x,) = f - p$yxJ -+f in Y as k -+ ,x) 

from which, on account of (cl), it follows that there exists an LI+, in B(o, d) 
such that T(.x,,) = f. Since f was arbitrary, it follows that T(X) = I’. 

Q.E.D. 
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Remark I. Sate the qualitative difference between the assertion of 
Theorem -4 and that of Theorems 1 and 2. Theorem A yields an essentially 
constructive existence of solutions of Eq. (1) involving A-proper mappings 
while Theorems 1 and 2 yield only the existence of solutions of Eq. (1) 
involving pseudo-A-proper mappings. Nevertheless, as we shall see later, 
for many types of pseudo-A-proper maps our approach provides also the 
possibility of obtaining solutions of Eq. (1) as weak limit points of construc- 
tible sequences {.T,, ( .1c, E 0,) with the entire sequence 1~~) converging weakly 
to a solution in case of its uniqueness. In this sense our results are more 
constructible than at first glance they appear to be. 

We continue this section with the following observation. It follows from 
Definition 3 that every A-proper mapping is pseudo-A-proper but the con- 
verse is not true, in general. Indeed, if (X, 1) is a pair of reflexive Banach 
spaces with an admissible projectional scheme r, , then under certain condi- 
tions on K (see Proposition 2 below) it is not hard to show that every bounded 
linear mapping of X into I7 is pseudo-A-proper, but examples were given by 
the author which show that even bounded linear mappings which satisfy the 
Fredholm Alternative need not be A-proper. Furthermore, under the above 
conditions on (X, I’) and K, every bounded nonlinear weakly closed mapping 
of the closure B of an open subset L> of X into Y is pseudo-A-proper where 
T : D --f E- is said to be weakly closed if {.r,,} C D is a sequence such that 
xn - .Q in X and T(s,) - R in Y’, then .T,, lies in B and T(xa) = h. If D is also 
assumed to be convex, then every weakly continuous mapping T of DC S 
into Y is pseudo-A-proper even when I’ is not complete. This is established 
in the following proposition. 

PROPOSITION 2. Let (X, Y) be a pair of real normed spaces with an admis- 
sible projectional scheme r,, and with X reflexive, K a demicontinuous mapping of 
X onto Y* and K,, a mapping of X:, into Y,’ such that for each n 

(Q&9, K(x)) = k, K(x)) (‘) 

for all x in Xn and g in Y. 

(a) If k’ is rejexive, D an open subset of X, and T a bounded weakly closed 
mapping of ii into I’, then T is pseudo-A-proper. 

(b) If D is an open convex subset of X and T a weakly continuous mapping 
of D into Y, then T is pseudo-A-proper. 

Proof. Let (x, ( x, E X, n D} be a bounded sequence and let (~~~1 be any 
of its subsequences so that T,,(xnj) -+ g for some g in Y. 

(a) Since the sequence {x,,} is bounded in X, T is bounded, and X and Y 
are reflexive, there exist a subsequence {xnjlh-,} and an element x0 in X such 
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that xnjck) 
- x,, in X and Z’(X,~~~,) - h as k + cc for some h in Y. Since T 

is weakly closed on D, it follows that x0 E a and T(x,,) = h. To show that 
h =g note that, in view of (f), for any fixed x in Xn,(,) with e fixed and 
njtl,) > njce) for K > e we have 

Hence, since 

in I’, the passage to the limit in the above equality as k + co yields the 
equality (h, K(x)) = (g, K(x)) for all x in Xn,(,) and each fixed e. Hence, for 
any z in X, we have the equality (h, Kp”,td,(z)) = (g, KP,,Jz)) for each e. 
Since K is demicontinuous and P, (.,(z) -+ z in X, the latter equality implies 
that (h, KG+) = (g, K(4) f or all z’ in X. This and the fact that K maps X 
onto Y* yields the looked for equality h = g. 

(b) Suppose now that T is weakly continuous on D with D convex. 
Since {x,, 1 x,, E X,, n D} is bounded, X is reflexive and n is weakly closed in 
X, there exists a subsequence {xn,} and an element x0 in D such that z~, - x0 
in X and Tx,,~ - TX, in Y by the weak continuity of T. From this, as above, 
we obtain the equality TX,, = g for Y not necessarily complete, i.e., T is 
pseudo-A-proper. Q.E.D. 

In view of Proposition 2, Theorem 1 implies the validity of the following 
corollary which we state here as an illustration of the generality of Theorem 1 
since, as will be seen in Section 5, our Corollary 1 below includes, on the one 
hand, the results of Altman [ 11, De Figueiredo [ 131 and Kachurowsky [ 161 
for weakly closed and weakly continuous mappings and, on the other hand, 
Corollary 1 extends to nonlinear weakly continuous mappings T of X into Y 
(with Y not necessarily reflexive) the Lax-Milgrain Lemma for bounded 
linear mappings as well as the result of Kachurowsky [16] for coercive weakly 
continuous mappings T of X into X*. 

COROLLARP 1. Let (X, Y) be a pair of real normed spaces with an oriented 
admissible projectional scheme r, and with X rejlexive, K a demicontinuous 
mapping of X onto Y*, K,, a mapping of X, into Y,’ and RI,, a linear isomor- 
phism of Xm onto Y, such that 

K?n(g)s K&9) = (g, K(x)) and Wn(x), K(x)) > 0 (++) 

for all x # 0 in X, andg in Y. 

(a) If Y is rejlexive, D an open bounded subset of X with o E D and T an 
fa-continuous, bounded, weakly closed mapping of D into Y such that 
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(T(x), K(x)) 2: (f, K(x)) for all s in B and some f in Y, then there exists a 
point x0 E D such that T(q)) = f, 

(b) If T is a weakly continuous and K-coercive mapping of X into II, then T 
maps X onto I?. 

Remark 2. It follows from the proof of Proposition 2 that in Corollary 1 
we can not only assert that Eq. (1) h as a solution but that it can be obtained as 
a weak limit point of a constructible sequence (xn / x, E D,} for n = I, 2, 3... . 
Consequently, if it is known that, for a given f, Eq. (1) has at most one solu- 
tion, then the entire sequence {.v,} converges weakly to the unique solution. 
In this sense our result is more constructive than it appears to be. 

An easy consequence of Theorem 2 is the following new result for weakly 
closed mappings which will prove to be useful in various applications. Indeed, 
our Corollary 2 below establishes the surjectivity theorem for weakly closed 
mappings T of X into Y under a condition “at infinity” which is more 
general than the coerciveness condition. 

COROLLARY 2. Let (X, Y) be a pair of normed real spaces with an oriented 
admissible projectional scheme T,, and with X reflexive, K a mapping of X into 
Y”, K, a mapping of X, into Y,’ and M,, a linear isomorphism of X,i onto k;, 
such that (++) of Corollary 1 holds. Let F be a bounded fa-continuous mapping of 
X into Y such that F is positively homogeneous of order 01 3 1 and for some 
constant b > 0 

for all x in X. 

(F(x), K(w)) 3 b II x IIn II W)lI (El) 

If T is an fa-continuous weakly closed mapping of 5 into E- such that 
T, == T -+ ELF is pseudo-A-proper on X for each u > 0, 

(T(4, K(x)) 2 (T(o), K(x)) - l(W), k’(x))1 w 

for all s in X, and 11 T(r)\; ---f co as 11 s II+ co, then T maps X onto Y. 

Proof. In view of our hypotheses, to prove Corollary 2, it suffices to show 
that our present conditions imply the validity of (cl) and (~4) of Theorem 2 
since (c2), (~3) and (~5) are true by assumption. Now, the condition (cl) 
follows from the fact that X is reflexive and T is a weakly closed mapping 
of X into Y while the condition (~4) follows from (El) and (E2) with 

C = II T(o)11 . Q.E.D. 

We add in passing that, as will be seen in Sections 2 and 3, the somewhat 
strange condition (E2) is, in fact, a considerable weakening of the require- 
ment that T be a quasi-K-monotone and, in particular, a K-monotone map- 
ping of X into Y. 
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In view of Theorem A and of Theorems 1 and 2, it is important to find 
also other conditions on T and F as well as on X and Y which would insure 
the A-properness or at least the pseudo-A-properness of T and/or of 
T,=T+ PF as well as the closedness of T(G) in Y for each bounded closed 
convex subset G of X. The next three sections are essentially devoted to this 
problem. 

2. K-nlONOTONE MAPPINGS 

We recall (see [18, 311) that T, mapping D C X into Y, is said to be 
K-monotone on D if 

(T(.r) - T(y), K@ - y)) 2 0 w 
for all x and y in D. 

Our first two propositions in this section provide sufficient conditions for a 
K-monotone mapping to satisfy the hypotheses (cl) and (~2) of Theorem 2, 
respectively. 

PROPOSITION 3. L&(X, Y)b e a p air of real Banach spaces with an admis- 
sible projectional scheme I’, and with X reflexive. Let K be a weakly continuous 
mapping of X onto Y* such that K is positively homogeneous of order /3 > 1 
with ,d an integer. Let D be an open convex subset of X and T a K-monotone 
mapping of D into Y which is either hemicontinuous or finitely continuous on D. 
Then, for every bounded closed convex subset G of D, the set T(G) is closed in I’. 

Proof. Let {fj} C T(G) b e a sequence so that fi -+ f in Y as j - co. To 
show that f E T(G), let {xj} C G be a sequence such that T(xj) = fj for each 
j. Since X is reflexive and G is a closed bounded convex subset of X, without 
loss of generality we may assume that xj - x,, in X for some x0 in G. Since, 
by the K-monotonicity of T on D, 

(T(Y) - T(xj), K(Y - xj)) > 0 for ally E D and all j, 

K is weakly continuous, and T(xj) + f, the passage to the limit in the above 
inequality implies that 

G’-(Y) -f, WY - xd 2 0 for ally E D. (2.1) 

The inequality (2.1) implies that T(x,) = f. Indeed, if not, then because K 
is onto, there exists z in X such that (T(x,,) -f, K(z)) < 0. Since D is open, 
G C D and x0 lies in G, for sufficiently small t > o the element 
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yt = .z’,, + tz E D and hence, since K(k) == tsK(z), setting yt for y in (2.1) 
yields the inequality 

Because z is fixed and T is assumed to be either hemicontinuous or finitely 
continuous on D, the passage to the limit in the last inequality as t + 0 yields 
the relation (T(x,) - f, K(z)) 3 0, contradicting the assumption that 

G%l) - f, K(4) < 0. Q.E.D. 

Remark 3. Proposition 3 is certainly true when T is assumed to be either 
continuous, demicontinuous or weakly continuous. It follows from the proof 
of Proposition 3 that instead of requiring that K(t.lc) = taK(x) for some fl > 1 
it suffices to assume that to each t > o and x: E X there exists r]&t) 3 0 such 
that K(tx) = 7Jt) K(x) with ?Jt) > 0 for t > 0 and v*(o) = 0. 

PROPOSITION 4. Let (X, Y) be a pair of real Banach spaces with an admis- 
sible projectional scheme P, and with X reJEexive. Let K be both a weakly 
continuous and a continuous mapping of X onto Y* such that K is positively 
homogeneous of order /3 > 1 or to each t > 0 and x in X there exists q+(t) >, 0 
such that K(tx) = TX(t) K(x) with Tz(t) > 0 for t > 0 and Q.(O) = 0. Let K, 
be a mapping of X7, into Y,’ such that 

(Q&d, K(x)) = k, K(x)) (‘) 

forallxinX,,gEYandeachn. 
If A is a demicontinuous K-monotone mapping of X into Y, then under the 

above conditions the mapping A is pseudo-A-proper. 

Proof. Let {xn 1 JZ,, E X,} be a bounded sequence and let {x~,} be an arbi- 
trary subsequence so that Aai(zc,,) +g for some g in Y. Since k is reflexive 
and {xn.} bounded, without loss of generality we may assume that xni - x,, 
for somk x0 in X. Let j > 1 be an arbitrary but fixed integer and let y be any 
element in Xi . Since (X,z} is monotonically increasing and A is K-monotone, 
it follows from (+) that for all ni > j we have 

(Q,&nJ - Q~/J(YI, K&n, - YN 

= (Qni~4bzJ - Q,@(Y), Wn, -Y>> 3 0. 

Now, since xn, - y - x,, - Y in X Qni4xni) - Qni4~> -g - A(Y) in Y, 
and K is weakly continuous, the passage to the limit in the above inequality 
as i+ 0~) implies that 

k - A(Y), Kc% - Y)) 3 0 for ally in X9 and any j. 



PSEUDO-A-PROPER MAPPINGS 687 

Hence for any x in X we have the relation 

for all x in X 

and each fixed j. Since A is demicontinuous and K is also continuous, the 
passage to the limit in the last inequality as j- co yields the relation 

(g - A(x), K(x, - x)) 3 0 for all x in X. 

From this and the properties of K, as before, we deduce the equality A(x,) = g 
and thus the pseudo-A-properness of A. Q.E.D. 

Remark 4. If it is also assumed that K is uniformly continuous on a unit 
ball in X, then in view of the results of Kato [18], Proposition 4 remains also 
valid for hemicontinuous mappings A of X into Y. 

We add in passing that Proposition 4 provides important examples of 
pseudo-A-proper mappings which need not be A-proper. On some occasion, 
however, it may be necessary to provide the constructive solvability of the 
equation T,(x) = T(x) + pF(x) =f, where T is a given K-monotone map- 
ping of X into Y. In this case the pseudo-A-properness of T,, will not suffice 
in general. Thus, in this case, we need to find conditions which will guarantee 
the A-properness of T, for a given p > 0. Our Proposition 5 below treats this 
problem. 

PROPOSITION 5. Let (X, Y) be a pair of Banach spaces with an admissible 
projectional scheme I’, and with X rejlexive. Let K be both a weakly continuous 
and a continuous mapping of X onto Y* and K, a mapping of X,, into Y,,’ such 
that K(o) = 0 and 

for all x E X,, and each n, and T a demicontinuous (OY weakly continuous) 
K-monotone mapping of X into Y. Suppose that F is a demicontinuous K-mono- 
tone mapping of X into Y such that for all x and y in X 

(F(x) - F(Y), W - Y)) 3 14 x II > II Y II 3 II x - Y II) = Y(X, Y), (F) 

where y(x, y) Is a continuous real-valued nonnegative function on X x X such 
that the following conditions (a) and (b) hold: 

(a) If {x~ 1 xk E X,} is a sequence so that xk - x0 in X, then to any given 
E > o there exists U(E) > 0 such that ;f[l y - x0 [I < 0 then 

I r(ll xii II > II Y II > II xk - Y II) - All xk II , II x,, II , II xlc - x,, II)1 < e V k. 
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(b) If .(s,, ; x,, i- -Y,:j is u sequence so that s,, - x0 and 

Under the above conditions, for any jked p > o, the mapping T, = T + pF 
is A-proper. 

Proof. Let {x,( 1 s,, E X,} be a bounded sequence and let {xm} be an 
arbitrary subsequence of (x,J so that T,(x,,,) +g for some g E I’. Since X is 
reflexive and {x,,J bounded, without loss of generality we may assume that 
A,, - .qJ in X. Let j > o be an arbitrary but fixed integer and let y be any 
element in Xj . Since {X,) is monotonically increasing and T is K-monotone, 
the relations (+) and (F) imply that for each fixed p > o, all y in Xj and 
m 2 j we have 

(QntTu(xm) - QmTu(~)r Kn(xrn - Y)) 

= (T,hrn> - T,(Y), fh, - Y)) 2 Wll x,n II 7 II y II , II xri, - y II) 3 0. 

Now, since x,, - y - x0 - Y and QmTubA - Q,,,T,(y) -g - T,(Y) in 1’ 
and Q,,,a = Qnl , the weak continuity of K and (+) imply that, as m --f co, the 
left-hand side of the above inequality converges to the real-valued function 

17(Y) = k - T,(Y), wil -- YN, y E -‘i, for any fixed j. 

Consequently, to any given E > o there exists m, = m,(c, y) such that 

Py(II % II , IIY II 9 II &it - y II) < T(Y) + E for all m 2 m0 . (2.2) 

Since T is demicontinuous (or weakly continuous), F is demicontinuous, K is 
continuous and Pj(x) + x as j - CO for each a in X, it follows that q(y) is a 
continuous function in y E X and obviously 7(y) > 0 for all y in X with 
7(x,,) = 0. This implies that to each given E > o there exists ou > o such that 
o <y(y) <E whenever jl x0 - y /I <us . Now, because r, is admissible 
to any given (T > o there corresponds y E Xj for j sufficiently large so that 
II 50 - y /I < u. Since xmi - x0 in X, our condition (a) implies that to the 
same E > o there corresponds or > 0 such that 

I ru x7n II , II x0 II 9 II x7n - x0 II) - r(ll .h II , II 3’ II , II -T,,, - Y III < 6 v m (2.3) 

if jl y - x0 11 < 6, . Thus, if for a given E > o, we take 6 = min(6, , S,>, then 
in addition to (2.3) we also have o < q(y) < E whenever I( x0 - y 11 < 6. 
Then, for this choice of y, (2.2) and (2.3) imply that for all m 3 m,(c, y) we 
have 
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This shows that x,,- x,, in X and ~(11 x, 11 , )/ x,, I/ ,/I xm - x,, 11) -+ 0 as 
m + cc whence, in virtue of our condition (b), it follows that x, + x0 in X. 

To prove the A-properness of T, , it remains to show that T,(x,) = g. 
To establish this note that for each x in X and y = Pj(x) EX~ we have 

from which, on passage to the limit asj -+ cc, we get 

(g - Tu(x), K(x,, - x)) > 0 for all .x in X. 

Since K is a weakly continuous mapping of X onto Y* and T, is certainly 
hemicontinuous, the above inequality implies that T,,(x,) =g. Hence T,, is 
an A-proper mapping of X into Y. Q.E.D. 

Remark 5(a). It follows from our conditions on T and F that 

(T,(x) - T,(Y), K(x - YN 2 w(ll x II 3 IIY II > II x - Y II) 

for all x and y in X. Hence, in case T and F are continuous and 

r(ll .2” II 9 II Y II t II x - Y II) = 4 x - y IO, 

where C(Y) is a continuous function of Rf = {Y > 0} into R+ such that 
c(o) = o, C(Y) > o for Y > o and rj + o whenever C(YJ + 0, Proposition 5 
reduces essentially to our Theorem 2.3 in [31]. 

(b) It follows from our proof above that the assertion of Proposition 5 
concerning T,, = T + PF remains valid for the case when T = 0 and p = 1. 
Consequently, every demicontinuous K-monotone mapping F of X into Y, 
which satisfies the inequality (F) with y satisfying the conditions (a) and (b), 
is A-proper. In particular, every demicontinuous strongly K-monotone 
mapping of X into Y is A-proper. We add in passing that even the last 
assertion represents a new result since the A-properness is established 
without the condition that the mapping be bounded. 

(c) Finally we remark that our arguments in the proof of Proposition 5 
are similar to those used in [ 121. 

We add, that, in view of Propositions 1 and 4, Theorem 1 implies the 
validity of the following result for K-monotone mappings T of X into Y. 

THEOREM 3. Let (X, Y) be a pair of real Banach spaces with an oriented 
admissible projectional scheme r,, and with X reflexive. Let K be both strongly 
and weakly continuous map of X onto Y* such that either K(tx) = PK(x) for 
some /3 > 1 OY K(tx) = TX(t) K(x) with r].Jt) > 0 for t > 0, .v E X. Let K, 
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be a mapping of-Y,, into 1,’ and M,,, a linear isomorphism of X,! onto I;, such 
that for each n and all N in X,, and g in 1 

K?&), KM) = (g, K(4) and (A&(x), K,(x)) > 0 for x # 0. (++) 

If T is a demicontinuous (or a weakly continuous) K-monotone mapping of X 
into I’ which satisfies either condition (i) or the K-coerciveness condition (ii) of 
Theorem 1, then T maps X onto T--. 

We note in passing that, in view of Proposition 4, Remark 2 concerning 
the constructive aspect of our proof applies also to Theorem 3. 

In order to obtain the surjectivity theorem for a K-monotone mapping 
under a condition “at infinity” which is weaker than the K-coerciveness 
condition (ii), we make use of Theorem 2 which, in virtue of Proposition 3 
and 4, implies the validity of the following new and thus for the most general 
result for K-monotone mappings. 

THEOREM 4. Let (X, I’), K, K, and A& satisfy the conditions of Theorem 3. 
Let T be a demicontinuous K-monotone mapping of X into Y and suppose there 
exists a bounded demicontinuous K-monotone mapping F of X into Y such that F 
is positively homogeneous of order 01 >, 1 and 

(4% K(x)) 2 411 x II)” II K(x)ll (H4) 

for all x in X and some b > o. 
If in addition to the above conditions we also assume that 

II Wll - 00 as II x II 4 co, then T maps X onto Y. 

Proof. In view of Proposition 1 and Theorem 2, to prove Theorem 4 it 
suffices to show that the conditions of Theorem 4 imply the validity of the 
hypotheses (cl)-(~5) of Theorem 2. 

Now, because T is a demicontinuous K-monotone mapping of X into Y, 
(cl) follows from Proposition 3 while (~2) follows from Proposition 4 since 
for each p > o the mapping d = T,, is K-monotone and demicontinuous. 
The conditions (~3) and (~5) follow from our assumptions while (~4) with 
C = 0 follows from the K-monotonicity of T, the equality F(o) = 0 and 
the condition (H4). Q.E.D. 

Remark 6. We note that Theorems 3 and 4 remain valid if instead of 
demicontinuity we assume that T is continuous or weakly continuous or even 
hemicontinuous provided that in the latter case we also assume that K is 
uniformly continuous on a unit ball in X. 
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3. MAPPINGS OF TYPE (PKiq AND QUASI-K-MONOTONE im4PPINGS 

In [2] Brezis introduced and studied a class of pseudo-monotone mappings 
T of D C S into X* which turned out to be more general than the class of 
hemicontinuous monotone mappings. Further studies of bounded continuous 
pseudo-monotone mappings were carried out by Lions [20], Browder [6], 
Brezis, the author [35] and others (see [20]). In [35] the author observed that 
when the theory of A-proper mappings is to be applied to the study of Eq. (1) 
involving continuous mappings T of D C X into I’, the concept of a pseudo- 
monotone mapping as defined in [2] is not quite satisfactory especially when 
T is not bounded and/or when Y f X *. Consequently, in [35] the author 
introduced and studied a related class of continuous, not necessarily bounded, 
mappings T of D C X into I’ with the so-called pm-property, which turned 
out to be a more suitable condition for the applicability of the theory of 
A-proper mappings. 

However, when T is not continuous and/or when instead of the theory of 
A-proper mappings we apply the theory of pseudo-A-proper mappings, then 
instead of mappings with the pm-property we may consider fa-continuous 
mappings T of D into Y which formally extend the concept of a pseudo- 
monotone map but defined here in terms of sequences rather than filters 
as in [2]. 

DEFINITION 4. Let D be an open convex subset of a reflexive Banach 
space X. A mapping T of D into Y is said to be of type (PKM) if for any 
sequence (.aJ C D such that zj - z in X with x E D and 

lim sup(Tz, , K(zi - a)) < 0, 
j 

we have 

(TX, K(a - v)) < lim inf( Tzj , K(zj - v)) for all v E D. ww 

In [35] we referred to such a mapping as “Pseudo-K-monotone” to signify 
its occasional connection to a K-monotone mapping. It has been noted in [35] 
that if li’ is nonlinear, then a K-monotone mapping will not be of type 
(PKM). Consequently, K-monotone mappings T and mappings T of type 
(PKM) of X into Y have to be studied separately, which we do in this section. 

We recall (see [6]) for later use that T is said to satisfy condition (S) on D 
if for any sequence {zj} CD such that z+- x in X with .a ED and 
( Tzj - TX, K(z+ - a)) + 0 we have zj -+ .a in X asi + co; a Banach space X 
is said to be an “,-space if there exists a sequence of finite dimensional sub- 
spaces {X-,} in X and a sequence of bounded linear projections {Pn} such that 
P,(X) = -Gz , -%I c x,, , and 11 P, 11 < (11 (al) for each n, (Jn X, is dense 
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in S and P,P,, = P, for n 3 j. It is easy to see that if S is an r&-space, then 
the scheme If, = [-17,t , P,} is admissible for the pair (X, X). Moreover, it is 
also not hard to show, that if ;Y is a reflexive rr,-space, then the scheme 
r,* = {X,, , X,‘, P, , P,*} is admissible for the pair (X, X*), where P,* 
is the adjoint of P,, and 

X,’ = R(P,*) = Prt*(x*). 

We begin this section with the proof of the following two propositions 
concerning mappings of type (PKM). 

PROPOSITION 6. Let (X, Y) be a pair of real Banach spaces with an admis- 
sible scheme r, and with X reflexive. Let K be a weakly continuous mapping of X 
onto Y* such that either K(tx) = teK(x) for all x in X, all t 3 0 and some 
integer /3 3 1 OY K(tx) = TX(t) K(x) with TX(t) > 0 for t > o and Q(O) = 0. 
Let D be an open convex subset of X and T a mapping of D into Y of type 
(PKM) on D. Then, f or each bounded convex closed subset G of D, the set T(G) 
is closed in Y. 

Proof. Let (f$ C T(G) b e a sequence so that fj -+ f in Y. To show that 
f E T(G), let {xj} C G such that T(.r,) = fj f or each j. Since X is reflexive and 
G is a bounded convex closed subset of D C X, we may assume that xj - x0 
with x0 E G. This, the relation T(xj) 4 f and the weak continuity of K imply 
that 

lim sup(T(xj), E;(xi - x0)) = li$T(xJ, K(xj - x0)) = 0. 
i 

Hence, since T is of type (PKM), it follows that 

(T(x,), K(r,, - v)) < lim inf(T(xJ, K(ri - v)) Vv E D 

from which, since 

li,m inf(T(xj), K(xj - v)) = li,m(T(xi), K(xj - v)) = (f, K(x, - v)), 

it follows that 

(T(x,), W, - 4) < (f, K(x,, - v)) Vv E D. (3.1) 

Since D is open and x0 E D, it follows from the above inequality and the 
assumed properties of K and K, that T(x,) =f. Indeed, if T(x,) f f, then 
since K is onto there would exist a vector z in X such that 

(T&J - f, K(4) > 0. 
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Since (3.1) is true for all v in the open set D and 2c0 E D, for each t > o and 
sufficiently small, the vector z!t = x0 - tz ED and, by (3.1), 

( Woo), W-4) < ( f, K(W) 

or, by the assumed properties of K, (T(s,) -f, K(z)) < 0, in contradiction 
to our assumption on a. Hence, T(G) is a closed set in I’. Q.E.D. 

PROPOSITION 7. Let (X, Y) be a pair of Banach spaces with an admissible 
scheme r,, and with X reflexive. Let K be a positively homogeneous mapping of 
order /3 2 1 of X onto Y* which is both weakly continuous on X and uniformly 
continuous on each bounded set in X. Let K, be a mapping of-E;, into Y, such that 
-for each n 

(Qn(g), K,(x)) = (g, K(x)) for all .x in X, andg in Y. (+) 

If T is a bounded mapping of type (PKM) of X into Y, then T is pseudo-A- 
proper. 

Proof. Let {sn 1 ,r, E X,} be a bounded sequence and let {“Y:~} be an 
arbitrary subsequence such that Tnj(xnj) -g for some g in Y. Smce X is 
reflexive and {.v~} is bounded, we may assume that {acne} C B(o, r) for some 
r > o and .vnj - x0 in X with x’~ E B(o, r). Without loss of generality we 
may assume that x0 # 0. To prove Proposition 7, we first show that (T(xnj), 
K(q. - xJ) + 0 asj -+ 00. To obtain this, note first that if for each s > o 
we dkfine the function #r(s) by 

A(S) = sup{I/ k’4 - K(r)ll I II J - y II < s for .T, Y E B(o, r>>, 
then, since K is uniformly continuous on B(o, r), the function 4,.(s) is non- 
decreasing in s, #r(s) + 0 as s + 0 and 

II fW - Wf)ll G Mll x: -Y II) for all N, y E B(0, r). (3.2) 

Since K(tx) = tsK(x) f or all x in X, all t 3 0 and some integer /3 > 1, we 
have 

( T(x,zj), K(xnj - ~0)) = (T&nj), I+,aj - vn,)) 

where 

+ ~W(.G~), KWnj - -TO)) - KWn, - any)))), 

(3.3) 

ynj = II .ro II II pnj(~~oN-’ pnjbo) E X, f-7 Ro, r> 

with yn, -+ x0 as j + co. Since , 

“ij EE g (xnj - x0) and %, = ; (&I, - rnj) 
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lie in B(o, r) for each j, (T(xrlj)J. is bounded by some M > 0, and 

II “ij - znni II = $ II yn, - x0 II+ 0 

as j --, cc, in view of (3.2), it follows 

IKWJ wj) - ~(%I,)> I G Wr(ll xi - %zj II) --f 0 

as j-+ CO. On the other hand, by our conditions on K and K, , 

G%l,), J4%j - Yn,)> = Gcjhj), K&nj - YnJla,)) 

= K,(%J %lj - Yn,>) 

and, therefore, since T,,(xnj) -+ g in I’ and K(xn - m,) - 0 in E’*, it follows 

that (W,i), Kkj - m,)) -+ 0 as .I ‘+ 00. In vitue of the equality (3.3), the 
above observations imply that 

li? sup(T(x,,), K(xnj - x0)) = lim(T(x,,), K(xnj - x0)) = 0 

as j + co. Since T is of type (PKM), it follows that 

(T(G), K(xo - 4) < liy infP’(xnj), Q,, - v)) for all 2, in X. (3.4) 

Let ZI be any element in B(o, d) with d > r and set 

for each j. Since 

w:, = g (xn, - v) and %zj = B (x78, - %,I 

lie in B(o, d) for each j and 

II “li - wnj II = s II vnj - ‘0 II --, 0 

as j -+ co, an argument similar to the one used above shows that 

I(T(x,,), Wn, - 4) - (Wnj), %a, - ~,))l 
(3.5) 

as j -+ 00. Since x,, - vnj - x0 - v in X, T,,l(x,l) + g in Y and 
K(%, - o,,) - K(r, - v), the equality (+) satisfied by K and Kn imply that 
for each v kr B(o, d) 

(T(xnj), Gmj - vnj>) - (g, O. - 4) as 
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This and the relation (3.5) imply that for each z’ in B(o, d) 

IiF inf(T(xnj), K(xnj - v)) = lim(T(x,,), K(x,~ - v)) = (g, X(x, -- n)) 

whence, in view of (3.4), it follows that 

(T(xJ, K(x, - v)) e (g, Iqx, - v)) for all zi in B(O, d). 

From this, as in the proof Proposition 6, we obtain the equality T(.v,) = g, 
i.e., T is pseudo-A-proper. Q.E.D. 

In virtue of Propositions 6 and 7, Theorem 1 implies the validity of the 
following theorem for mappings of type (PKM) which is analogous to 
Theorem 3 for K-monotone mappings. 

THEOREM 5. Let (X, I’) be a pair of Banach spaces with an oriented 
admissible scheme P,, and with X reflexive. Let k’ be a positivetjv homogeneous 
mapping of order /3 3 1 of X onto Y* which is both weakly continuous on X and 
uniformly continuous on each bounded set in X. Let K, be a mapping of X,, into 
Y,,’ and iI&, a linear isomorphism of X,, onto Y, such that for each n and all 
.x in ;kr, and g in Y 

K?n(gh KM) = (g, K(x)) and (M?,,(x), K,(x)) > 0 for x + 0. (‘+) 

If T is a bounded fa-continuous mapping of type (PKM) of X into I; such that 
either the condition (i) or the K-coerciveness condition (ii) of Theorem 1 holds, 
then for each f in Y the equation T(x) = f has a solution x in X which can be 
obtained as a weak limit point of a constructable sequence {s, 1 -Y,~ E /I;,}. 

To obtain a result for mappings of type (PKM) which would be analogous 
to Theorem 4 for K-monotone mappings we first have to establish the follow- 
ing propositions. 

PROPOSITION 8. Let (X, Y) be a pair of Banach spaces with an admissible 
scheme P,L and with X reflexive. Let K be a weakly continuous mapping of X 
onto Y* such that K is positively homogeneous on X and unsformly continuous 
on each bounded set of X. Let K, be a mapping of X,t into I’,’ such that (+) 

holds, i.e., (IQ&), K(x)) = (g, K(x))f or a 11 x in X,, , g E Y and each n. Let T 
be a bounded mapping of X into Y which is of type (PKM) and let F be a bounded 
K-monotone mapping of X into Y which is also of type (PKM). Then, for each 
real TV > o, the mapping T,, = T + ~.LF is pseudo-A-proper on X. 

Proof. Let {x, 1 zc, E X,} a bounded sequence and let {xni) be any sub- 
sequence of {.xn} so that T,,,(x,,) -g for some g in Y with p > o any fixed 
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number. Since S is reflexive and {s,~ 1 is bounded we may assume that 
(s,, ) C B(o, r) for some r ; o and x’,, ,L x0 in S with x0 E B(o, Y). 

‘I’0 prove Proposition 8 we first note that, under our conditions, the same 
arguments as those used in the proof of Proposition 7 show that, 

(TJs,,,) - Tu(xo), K(.v,, - x0)) - 0 as j - co (3.6) 

for each fixed p > 0. 
Now, since p > o, F is K-monotone and T,, = T + pF, it follows that for 

each j we have 

(T&n,) - T&i,), K(.vnj - x0)) > (T(xnj) - T&J, K(m,, - x0)). 

In virtue of the relation (3.6), the latter inequality implies that 

lim sup(T(x,j) - T(.r,J, K(x,~ - N,,)) <. 0. (3.7) 

Because (T(x,,), K(s,,, - x0)) --f 0 as j--f 00, the last inequality implies that 

lim sup( T(x,J, K(xnj - x0)) d 0, 

from which, since T is of type (PKM), it follows that 

(T(q), K(x, - u)) < lim inf(T(s,,), K(x~, - u)) for all zI E X. V-8) 

Again, since (T(x,), kr(.~,,~ - x0)) ---f 0 asj-+ co, the relation (3.8) for v = x,, 
implies that 

lim inf(T(xYz,) - T(x,), K(x,,~ - s,,)) 

= lijminf( T(x,I), K(xn, - x,,)) 3 (T(x,),K(o)) = 0. 

This together with (3.7) shows that 

liy(T(xnj) - T(x,), K(xnj - x0)) = 0. 

The latter relation together with (3.6) imply that 

(F(s,j) -F(q), K(.T,, -~ x0))+ 0 as j- CC, 

from which, since K is weakly continuous and .T,~~ - x,, - 0, we get 

(F(s,), K(xnj - x,,)) 4 0 
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In view of this and the assumption that F is of type (PKhI) it follows that 

(F(x,), K(x, - v)) < lim inf(F(xnj), K(s,, - zt)) for all c E X. (3.9) 

Multiplying (3.9) by p > o and then adding the corresponding sides of (3.8) 
and (3.9) and using certain properties of lim inf’s we obtain the looked for 
inequality 

(T,(xJ, K(x, - V)) < liJm inf( T(xnj), K(.r,, - v)) 

+ lim inf(pF(xnj), kr(s,, - =u)) (3.10) 

< lim inf( T,(s,]), K(xnj - V)) for all v E X. 

Since Tun,(xnj) -+g in Y and K is both weakly continuous on X and uni- 
formly continuous on B(o, d) for each d > o, the same arguments as those 
used in the proof of Proposition 7 show that for each v in B(o, d) with d > r 
we have the equality 

lim inf(TU(x,j), K(.xnj - v)) = lim(T,(.v,J K(xnj - v)) = (g, K(x, - v). 

It follows from this and (3.10) that 

(T&d, Kc% - 4) G (6 Kc% - 74) for all z’ in B(o, d) 

whence, as before, we obtain the equality T,(x,) = g. Hence T,, = T + PF 
is pseudo-A-proper for each p > o. Q.E.D. 

It turns out that if we strengthen somewhat the conditions on F, then the 
mapping T, = T + PF will actually be A-proper. Indeed, the following 
result holds. 

PROPOSITION 9. Let (X, Y), K and K, be as in Proposition 8. Let T be a 
bounded mapping of type (PKM) of X into Y. Let F be a bounded K-monotone 
mapping of X into Y which satisjies condition (S) on X. Suppose further that 
either F is demicontinuous and Qn*(y*) ---f y* in Y* for each y* in Y* or F 
is continuous. Then, for each real p > o, T,, = T + PF is A-proper. 

Proof. Let {x, 1 .r, E X,} be a bounded sequence and let (.z~,) be any 
subsequence of {xn} so that Tunj(xnj) --f g for some g in Y. It was shown in the 
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proof of Proposition 8 that, under our conditions, we have the relation 
x,, -~I x,, in S with x0 E B(o, Y), the inequality 

(2(x,). K(s,, - et)) 5; lim inf(T(s,l,), K(xn, - zy)) for all 2’ in X, (3.11) 

and the equality 

lim(F(.xnJ) - F(.r,), K(3c,, - x0)) = 0. 

In view of the condition (S) satisfied by F, the last equality implies that 

%, +x0 in X asj+ ccj. 
Finally, to show that T,,(x,) = g, assume first that F is demicontinuous and 

QZn*(~*) -f~l* in Y* for each y* in E’*. Since .T,,~ 4 s,, in X, the preceding 
assumption implies that F(qlj) - F(x,) and Qn,F(xnI) - F(x,) in Y. Conse- 
quently, 

in I’. Let @ be any element in B(o, d) with d > Y and set 

for each j. Since s,,~ - z’,,, - x0 - v in dX, K(x,, - v,,) -+ K(r, - ZJ) in Y* 

and T,,(.u,,,) -g - CLF(-TJ in I’, the properties of K and K,, imply that 

(T(.b,), K(“%; - %j)) - (g - PFc%), ml - $1 

for each ZJ in B(o, d). This and the properties of K and K, , as above imply 
that for each w in B(o, d) we have the equality 

lim inf(T(x,i), K(snj - v)) = li$(T(xnj), K(xnj - vnj)) 
i 

= (R - PF(-Q), %I - 4) 

whence, in virtue of (3.11), it follows that 

(T&J, K-(x0 -- a)) < (g - pF(x,,), K(x,, - w)) VW E B(o, d). (3.12) 

Hence, the same arguments as before show that T(x,) = g - @(x,,), i.e., 
T, is A-proper. 

Suppose now that F is continuous. Then, since xRi -+ x0 in X, F(.v,,) + F(+,) 
and, therefore, Qn,F(xnj) --, F(x,) in Y. Consequently, 

T,j(x,j) = T&X,,> - pFnj(xnj) ---f g - @(x0) in I;. 
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As before, this implies that for each ZI in B(o, d) 

In view of (3.1 l), the last relation implies also in this case the validity of 
(3.12) and, thus, the equality T,,(x,) =g, i.e., T, is also A-proper. Q.E.D. 

In virtue of Propositions 6, 7 and 8, 9, Theorem 2 implies the validity of 
the following new result for the mappings of type (PKM). 

THEOREM 6. Let (X, Y) be a pair of Banach spaces with an oriented 
admissible projectional scheme r, and with X reflexive. Let K be a weakly 
continuous mapping of X onto Y* such that K(tx) = t*K(x) for all x in X, all 
t > 0 and some integer /3 >, 1 and such that K is uniformly continuous on bounded 
sets in X. Let K, be a mapping of X, into Y,,’ = R(Qn*) and M, a linear 
isomorphism of X,, onto Y, such that 

(Q&h K(x)) = (g, W) and (MJx), K,(x)) > 0 (++) 

for x f 0 in -&, andg in Y. Let F be a bounded K-monotone mapping of X into Y 
such that F is positively homogeneous of order OL > 1. Suppose further that F 
satisfies either one of the following two conditions: 

(I) F is an fa-continuous mapping of type (PKM) on X. 

(II) F satisfies condition (S) on X and either F is demicontinuous and 
Qr,*( y*) ---f y* in Y* for each y* in Y* or F is continuous on X. 

If, under the above condtions, T is a bounded fa-continuous mapping of type 
(PKM) of S into I; such that for each fixed TV > o and some constants b > o 
and C > 0 

(~4) (T,(x) - T,,(O), K(x)) 3 (pb 11 x /ia - C) 11 K(x)11 for all x in X 

and 

(~5) II WI + 00 as II x II + ~0, 
then T maps X onto Y. 

Remark 7. The condition (~4) holds, in particular, if 

(c4a) (Tm, Kx) 3 (T(o), Kx) - /(T(o), &)I for all x in X 

and 

(c4b) (Fx, Kx) 2 b(ll .r IIF // Kx I/ for all x in X and some b > o. 
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ii7l:e complete this section by deducing from our Theorem 1’ a generaliza- 
tion of Kachurowsky’s result (see Theorem 4 in [16]) stated in [16] without 
proof for bounded finitely-continuous coercive mappings T of 2X into S” such 
that 

(T(x) ~ T(y), .Y - y) + I(T(y), .r - y)/ 3 0 for all s and y in S. 

In what follows we shall say that a mapping T of X into 1’ is quasi-K-monotone3 
if for all x and y in X 

(T(N) - T(y), K(x - y)) + I(T(y), K(” - y))i 2 0. (P) 

It follows that every K-monotone mapping is also quasi-K-monotone but the 
converse is not true in general (see [16]). 

PROPOSITION 10. Let (X, I’) be a pair of real Banach spaces with an 
oriented admissible projectional scheme P, and with X reJEexive. Let K be a 
weakly continuous and positively homogeneous of order /3 > 1 mapping of X onto 
E’* and let I(, be a mapping of X,, into I’,,’ such that (+) of Proposition 8 holds. 
If T is a mapping of X into I7 such that Tf = T - f is quasi-K-monotone for 
given f in I’, then T is pseudo-A-proper at f provided it satis$es any one of the 
following conditions : 

(a) T is continuous. 

(b) T is demicontinuous and K is also continuous. 

(c) T is bounded and finitely continuous (or hemicontinuous) and K is also 
uniformly continuous on bounded sets in X. 

Proof. Let {xn ) xa E X,J be a bounded sequence so that T,i(.r,l) + f in I 
for given f in Y. To establish the existence of an element x0 m X such that 
T(x,) = f, we note first that since X is reflexive, {x~,} is bounded and 
Qn( f) + f, we may assume that x,, - .rO for some m, in X and 

T~n,(xnJ = L,(xnJ - On,(f) - 0 as j+ 00. 

(a) Suppose that T is continuous. Then since .T,,) - x0 in X, Tfn ,(N, ,) - 0 

in Y Qn,TPnj( x + T,(x) for each N in X, K is weakly continuous’and Tt is ) 

3 We refer to mappings T satisfying the inequality (qm) for Y = X* and K = I as 
quasi-monotone instead of pseudo-monotone, as referred to by Kachurowsky, to 
distinguish them from pseudo-monotone mappings as defined and used by Brezis, 
Browder, Lions, the author, and others. 
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quasi-K-monotone, it follows from this and (+) that for each .V in X we have 
the inequality 

and hence the passage to the limit as j + co in the above inequality yields 
the relation 

(Tr(x), K(x - x0)) 3 0 for all x in X. 

For any .a in X, letting x = x,, + tz with t > o and using the positive homo- 
geneity of k’ we get (Tf(xO + tz), K(z)) 3 0 for each t > o and each z in X. 
Taking the limit as t -+ 0 we obtain the inequality (Tf(xO), K(z)) > 0 for 
each x in X from which it follows that T,(x,) = 0, i.e., T(~c,) =f. 

(b) Let T be demicontinuous and K also continuous. Let k be an arbitrary 
but fixed integer and let .T be any element in Xn, . Since (Xnj} is monotonic- 
ally increasing and T is quasi-K-monotone, it follows from (+) that for all 
nj > n, we have 

from which, on the passage to the limit as j- 03, we obtain 

for all x E Xnk (3.13) 

and each fixed k. Since P,,(y) my for each y in X as K -+ co, Tf is demi- 
continuous and K is continuous, the inequality (3.13) also holds for all x in X 
and consequently we get the equality T(x,,) =f. 

(c) Suppose now that T is bounded and finitely continuous (or hemi- 
continuous) and that K is uniformly continuous on bounded sets in X. Since 

for every fixed N in X and 

as j + co, it follows that ( Tf(xnj), K(x - x,,)) + 0 for each fixed x in X. In 
view of the above relation and the inequality 

(T,(x) - T&J, K(.v - .~j>) + l(T,(.r,J, K(x - .Q)l 3 0, (3.14) 
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the passage to the limit in (3.14) as;+ m yields the relation 

( Tf(S), K(x - x0)) ;;c 0 

for each x in S. From the latter inequality we derive, as before, the equation 
T(xO) =f. Thus, in each case, T is pseudo-A-proper at f. Q.E.D. 

In virtue of Proposition 10, Theorem 1’ implies the validity of the following 
theorem for quasi-K-monotone mappings which is a generalization of Theo- 
rem 3 for K-monotone mappings. 

THEOREM 7. Let (X, E-), K and k’, satisfy the conditions of Proposition 10 
and let M, be a linear isomorphism of Xn onto Y,, such that (++) of Theorem 6 
holds. For a given f in Y let T be a mapping of X into Y such that Tf = T - f 
is quasi-K-monotone, T satisfies any one of the conditions (a), (b) or (c) of 
Proposition 10, and T is K-coercive. Then the equation T(x) = f is solvable 
in X. 

Proof. In virtue of the hypotheses of Theorem 7, Propositions 1 and 10 
imply that in either case T is a fa-continuous mapping of X into I’ which is 
pseudo-A-proper at f. Since f is a fixed element of Y and T is K-coercive, 
there exists a number Y > 0 such that 

(T(x), K(x)) 3 (f, K(s)) for all .v in B(0, r). 

Hence, by Theorem I’, there exists an element .y,, in B(o, Y), such that 

Wo) = f. Q.E.D. 

Since, for each f in Y, T, = T - f is quasi-K-monotone if T is a K-mono- 
tone mapping of X into Y, we see that Theorem 7 is indeed a generalization 
of Theorem 3. We add that Theorem 4 in [16] is deduced from Theorem 7 
by setting I- = X* and K = I. 

4. MAPPINGS OF TYPE (KM) 

In this section we show that mappings T of D C X into Y of type (KM) 
defined below and, in particular, the mappings T of X into X* of type @I), 
defined here in terms of sequences rather than filters as in Brezis [2], form a 
subclass of the class of pseudo-A-proper mappings. Consequently, Theo- 
rems 1 and 2 of Section 1 are applicable to mappings of type (KM). In parti- 
cular, Brezis’ basic existence results (Theorem 10 and Corollary 14 in [2]) 
for mappings T of type (M) defined in terms of sequences follow from our 
Theorem 1 for pseudo-A-proper mappings or more precisely they will be 
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deduced as special cases of our Theorem 8. Theorem 9 below is new even 
for the mappings of type (M). We add in passing that, unless K is linear, a 
mapping of type (PKM) need not be of type (KM) when Y f X* and K is 
nonlinear. Consequently, the mappings T of D C X into E’ of type (KM) 
have to be discussed as a separate subclass of pseudo-A-proper mappings. 

DEFINITION 5. Let D be an open convex subset of a reflexive Banach 
space X. A mapping T of D into Y is said to be of type (KM) if for any 
sequence {zj} C D such that .zj -z in D, T(zj) -f for some f in Y and 
limj sup(T(z,), I+,)) < (f, K(z)) we have T(z) = f. 

When Y = X* and K = I, a map of type (KM) becomes, except for the 
continuity assumption, a map of type (M) studied in [2] if fillers are replaced 
by sequences. We add in passing that, as was shown in [2], in general a sum 
of two mappings of type (M) need not be a mapping of type (M). We first 
prove the following two useful propositions for mappings of type (KM). 

PROPOSITION 11. Let (X, Y) be a pair of real Banach spaces with an admis- 
sible projectional scheme r, and with X refEexive. Let K be a weakly continuous 
mapping of X into Y*, D an open convex subset of X and T a mapping of D into 
Y of type (KM) on D. Then, for each bounded convex closed subset G of D, the 
set T(G) is closed in Y. 

Proof. Let (.vj} C G be a sequence so that T(wj) + f for some f in Y. To 
show that f E T(G), note that since X is reflexive and {xj} is bounded, without 
loss of generality we may assume that xj - .r,, with *2’,, E G. Thus, since K 
is weakly continuous and *rj - x,, in X, T(xj) +-f in Y and K(xj) - Kx,, in 
Y* and, therefore 

lim supiT( K(.zj)) = lijm( T(q), K(xj)) = (f, K(x,)). 
i 

Since T is of type (KM), it follows that T(x,,) = f, i.e., T(G) is a closed set 
in Y. Q.E.D. 

To establish the pseudo-A-properness of T we assume additionally that T 
is bounded. 

PROPOSITION 12. Let (X, Y) be a pair of Banach spaces with an admissible 
projectional scheme r, and with X reflexive. Let K be a mapping of X onto Y* 
which is both continuous and weakly continuous. Let K,, be a mapping of X,, into 
Y,’ such that for each n 

(QJg), K,(x)) = (g, K(x)) for all x in X, , g in I-. (‘1 

If D is a convex subset of X and if T is a bounded mapping of type (KM) of D 
into Y, then T is pseudo-A-proper. 
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Proqf. Let {.Y,~ / x,, E O,,j be a bounded sequence and let (s,~,] be an 
arbitrary subsequence such that T?(.Y,>) +g for some g E I’. Since X is 

reflexive, (s,! )- C D is bounded and D is weakly closed, we may assume that 
.ql - so in i with x,, in B. It is easy to see that since k’ is onto, T is bounded 
an’d T,, .(N,, .) ---) g, we have the relation T(s,, ,) - g in E-, i.e., for each -Y* in I-* 
we ha& ( ?(.Y,~ ), y*) -+ (g, y*). Indeed, not: first that since R is onto, to any 
y* in E-* the;e exists an y in X such that y* = K(y). Now, consider the 
equality 

(T(q), K(Y)) - k WY)) = (Wnj), K(Y)) - (Wn,), V’nj(~))) 

+ (Wnj), KP,,(Y)) - (g, K(Y)). 

Since Pnj(y)+y in X, {T(xnj)} is b ounded and, by (+) and the continuity 
of K, 

and 

(T(xnj), K(Y)) - (T(G~), Vnj(y)) -+ 0 as 

(Wnj), KPmj(x)) = (T&$, K&+9) - (g, K(4), 

it follows from the above equality that for each y* in E’* 

(Thj)> Y*) = (Wnj), K(Y)) - (st K(Y)) = (g> y*). 

Furthermore, since K is weakly continuous, xTzj - x,, in S and Tn,(xnj) -g, 
the relation (+) also implies that 

lim sup( T(x,,), K(xnj)) = l$n sup( Tn,(xnJ, K(x~~)) 

= l;T(Tn,(.qJ Ktxnj)) = (g, K(G)). 

In view of the above discussion and the fact that T is of type (KM), it 
follows that T(m,,) = g, i.e., T is pseudo-A-proper. Q.E.D. 

In view of Proposition 12, Theorem 1 implies the validity of the following 
theorem for fa-continuous bounded mappings of type (KM). 

THEOREM 8. Let (X, Y) be a pair of B anach spaces with an oriented admis- 
sible projectional scheme r,, and with X reflexive, D a bounded open convex 
subset of X with o E D, K a mapping of X onto 1 ‘* which is both continuous and 
weakly continuous, K, a mapping of ;k;, into Y,’ and Mn a linear isomorphism 
of X, onto Y, such that for each n and all x in Xn and g in Y. 

and (M,(x), K,(x)) > 0, Vx f 0. 
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(a) If T is a bounded fa-continuous mapping of D into Y of type (KM) and 
if f is a given element in Y such that (T(x), K(x)) > (f, K(s)) for all x in a, 
the-n Eq. (1) has a solution in D. 

(b) If T is a bounded fa-continuous mapping of X into Y of type (KM) such 
that either to each f in I’ there corresponds an r, > 0 so that 

(T(x), K(x)) 3 (f, K(x)) for all x in B(o, rf) 

or T is K-coercive, then T maps X onto Y. 

In view of Proposition 12, Remark 2 concerning the constructive aspect 
of our proof applies also to Theorem 8. 

To obtain an analogue of Theorem 2 for mappings T of type (KM) we 
have first to establish the pseudo-A-properness of the mapping T, = T + p”F 
of X into Y for a suitable mapping F of X into Y and each p > 0. This we 
do in Proposition 13 under rather restrictive conditions on F. 

PROPOSITION 13. Let (X, Y) be a pair of real Banach spaces with an 
admissible projectional scheme r,, and with X rejexive. Let K and K, be as in 
Proposition 12. If T is a bounded mapping of type (KM) of X into Y and 
if F is a weakly continuous mapping of X into Y such that the functional 
f(x) = (F(x), K(x)) of X into R1 is weakly lower semicontinuous, then 
T, = T f PF is pseudo-A-proper for each p > 0. 

Proof. In view of Proposition 12, it suffices to show that T, is of type 
(KM) for each fixed p > o. To prove the latter, let p > o be any fixed number 
and let {xi} C X be any sequence so that 

xj - x0 in X, TU(xj) -g in Y 
and 

“7 sup(T&), K(s)) G (g, K(G)) for some x,, in X and g in Y. 

Hence it follows from the weak continuity of F, the weak lower semicontinuity 
off(x) = (F(x), K(x)) and the equality 

(T(.vj), KC”,)) = (Tu(xj), K(xj)) - p(F(xj), K(xj)) 
that 

and 
T(xj) = Tu(xj) - IIF(xJ -g - pF(s,) 

lim sup(T(xj), k-(xj)) < liy sup( T,(x,), K(xj)) - p lim inf(F(xJ, K(xJ), 
J 

G kv K(G)) - PL(%A K(4) 

= k - PF(xJ, K&J). 
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Since T is of type (KM), it follows from the above that T(x,) = g - pF(xJ 
or T,(x,) = g, i.e., T, is pseudo-A-proper. Q.E.D. 

In virtue of Propositions 11 and 13, Theorem 2 implies the validity of the 
following new result for mappings of type (Kbl) and, in particular, for 
mappings of type (M). 

THEOREM 9. Let (X, Y) be a pair of Banach spaces with F,, an oriented 
admissible scheme and with X reflexive, K a mapping of X onto I’* which is both 
continuous and weakly continuous, K,, a mapping of X,, into Y,,’ and Mn a linear 
isomorphism of X,, onto ETn such that for x in X, and g in I’. 

(Qn(g>> KM) = (g, K(x)) and (hfVz(x), KJx)) > 0, Vx # 0. (++) 

If T is a bounded fa-continuous mapping of X into I’ of type (KM) and F 
is a weakly continuous mapping of X into 1’ such that the functional 

f (4 = (F(x), K(x)) of X into R1 is weakly lower semicontinuous and F is 
positively homogeneous of order (Y 3 1 and ;f the conditions (~4) and (~5) of 
Theorem 2 hold, then T maps X onto I’. 

5. SPECIAL CASES 

In this section we discuss the applicability of the preceeding theorems to 
various classes of mappings T of D C X into X* and to mappings T of 
D C X into X by specifying Y, Y, , Q,n , K, K, , Al,, , and F. From our results 
for fa-continuous pseudo-A-proper mappings (Theorems 10 and 12 below) 
and their extensions (Theorem 11 and 13 below) we deduce most of the 
known fixed point and surjectivity theorems as well as some new ones for 
various classes of mappings such as P-compact, weakly closed, monotone, 
pseudo-monotone, J-monotone as well as mappings of types (JPM), (M), 
(JM) and others. In case T is continuous and A-proper some of the results or 
their variants were obtained by the author in [35]. 

A. Existence Theorems for Mappings T from X to X* 

Let X be a real reflexive Banach space with a Schauder basis 

+A 7 $2 Y $3 ,...> c x’, J& = wn@, ,..., A>, 

and P, the projection of X onto X, . To deduce the corresponding results 
for mappings T of D C X into Xi* from those obtained in the preceeding 
sections, we set Y = X* and Qn = P,,* with Y,, = R(P,*) = X,’ C X* and 
observe that in this case it is known that r,i = {X, , Xn’, P, , P,,*) is an 
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admissible projectional scheme for the pair (X, X*); we recall that 
P,* : x* + Xn’ is the adjoint of the linear mapping P, . Since X is reflexive 
and I’ = Y*, I it follows that Y* = X and hence the simplest choice for 
k’ : X - I.* = X and K,, : X,, 4 Y,,’ = R(Qn*) = R(P,) = Xr, is to take 
K = I and A-, = I, , where I and I, denote the identities in X and ri, , 
respectively. To construct a suitable linear isomorphism lu,fn of X:, onto 
Y, = ,U,‘, let {fj} be the sequence in X* which satisfies the biorthogonality 
relation ( fi , I/~) = ajj (i,i = 1, 2, 3 ,... ). Then, for each n, 

X, = v4fl ,fi2 ,...,f,J 

and, therefore, IcCr, : X,, + X,,’ defined by nir,(x) = E’y=,fi(~)fi for each x 
in X-, is linear, one-to-one, onto, and such that for each n 

for each 3c E X,, 

with .T f 0. Clearly, the mappings K, K,, and II& thus chosen satisfy all the 
corresponding conditions used in Sections l-4. Consequently, for mappings 
T of X into X*, Theorem 1 reduces to the following new result for pseudo-A- 
proper mappings T of D C X into X*. 

THEOREM 10. Let X be a real rejlexive Banach space with a Schauder 
basis and D a bounded open subset of X with o E D. 

(a) If T is an fa-continuouspseudo-A-proper mapping of D into X* such that 
(T(x), x) > (f, x) for ah x in D and some f in X*, then the equation T(x) = f 
has a solution in D. 

(b) If T is an fa-continuous pseudo-A-proper map of X into X* such that 
either (i): to each f in X* there corresponds Y, > o such that (T(x), x) > (f, x) 
for all x in B(o, yf) OY (ii): T is coercive (i.e., (T(x), x) 3 ~(11 x 11) I/ x I/ for all N 
in X with c(r) --j CO as Y - CO), then T maps X onto X*. 

Now, for the case when E’ = X* and K = I, the class of K-monotone 
mappings reduces to the class of monotone mappings T of X into X*, the 
class of mappings T of type (PKM) reduces to the class of pseudo-monotone 
mappings T of X into X*, while the class of fa-continuous mappings of 
type (KM) reduces to maps of type (M) in the sense of Brezis if sequences 
replace filters. Furthermore, by Propositions 1 and 4, every demicontinuous 
monotone map T of X into X* is an fa-continuous pseudo-A-proper map 
while, by Propositions 7 and 12, every bounded pseudo-monotone and every 
bounded of type (M) map T of X into X* is a bounded pseudo-A-proper map 
which is also fa-continuous by the results of Brezis [2]. Consequently, as a 
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corollary of our Theorem 10(b) ( or a special case of Theorems 3, 5 and 8, 
respectively) we obtain the following basic existence results for the three 
special classes of mappings. 

COROLLARY 3. If S is a real rejesive Banach space ulith a Schauder basis 
and T is a mapping of X into S* which satisfies either the condition (i) or the 
coercizjeness condition (ii) of Theorem 10, then the following three assertions are 
valid : 

(A) If T is also demicontinuous (or u~eakly continuous) and monotone, then 
T(X) = X*. 

(B) If T is also bounded and pseudo-monotone, then T(X) = S*. 

(C) If T is also bounded and of type (M) then T(X) = X*. 

Remark 9. Corollary 3(A), which is the basic surjectivity theorem for 
monotone mappings T of X into X*, has been obtained independently by 
Minty [21] and Browder [5] f or T demicontinuous and coercive (see also 
[41]) and by Kachurowsky [16] f or T weakly continuous and coercive. 
Corollaries 3(B) and (C) have been established by Brezis [2]. The above 
authors used different methods and obtained their results for reflexive spaces 
not necessarily having Schauder bases. 

To obtain an analogue of Theorem 2 for mappings T of X into .Y* we 
assume additionally that X* is strictly convex and then take F : X+ X* to be 
the duality mapping F = Jn : X - 9* defined as follows: 

J&o) = o 

and 

I&.) = {w I w E x’*, (w, 4 = II w II II x II > II w II = +(ll x IlEt (JI) 

where C(r) = ra for r >, o with 01 some positive integer. Since X is reflexive 
and X* strictly convex, it is known [6] that Jo is a single-valued demi- 
continuous mapping of X onto X* which is clearly bounded and positively 
homogeneous of order ti > 1; furthermore, J,, is monotone and, in fact, 

(J&x) - J,,(y), x - Y) 3 (1cI(lI .1c II) - YVII Y II)) (II x II - II Y II> for T Y in x 
(J2) 

Now, Theorem 2 yields the validity of the following new result for a mapping 
T of X into X* which is a uniform limit of pseudo-A-proper mappings on 
bounded subsets of X and which satisfies a condition “at infinity” that is 
more general than the coerciveness condition (ii) of Theorem 10. 
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THEOREM Il. Let X be a real reflexive Banach space with a Schaudev 
basis and with X* strictly convex. Let T be an fa-continuous mapping of X into 
X* such that 

(clA) T(G) is closed in X7* f or each bounded closed convex set G in S. 

(c2A) T,, = T + ~1~ is pseudo-A-proper for each p > o. 

(c4A) (T(x), x) 3 - C (1 .x jj + (T(o), x) for all x E X and some C 3 0. 

(c5A) Ij T(N)// -+ co as 11 x II+ co. 

Then T is surjective, i.e., T(X) = 2X*. 

Now, in case T is a hemicontinuous monotone mapping of X into X*, the 
conditions (CIA) and (c4A) follow from Proposition 3 and the monotonicity 
of T with C = 0 while, since Jo is monotone and TV > o, (c2A) follows from 
Proposition 4 for A = T, . Consequently, from Theorem 11 (or from Theo- 
rem 4 for I7 = X* and K = 1) we deduce the validity of the following 
general result for monotone mappings which was essentially obtained in [5] 
under the additional condition that X is locally uniformly convex. 

COROLLARY 4. Let X be a rejlexive Banach space with a Schauder basis 
and with X* strictly convex. If T is a hemicontinuous monotone mapping of X 
into X* such that 11 T(x)/1 -+ co as I/ x II -+ co, then T maps X onto X*. 

Remark 10. If, as in [14], we assume the existence of a function C(Y) of 
R+ to Rf with C(Y) + co as r + 03 such that for some r > o 

!I T(s) - tT(--x)ll >, 4 3~ II) for all t in [0, l] and I/ .r /I > r, 

then, for t = 0, I/ T(x)// 3 ~(11 x 11) and, consequently, Theorem 2 in [14] 
follows from our Corollary 4 without the assumption that T is bounded or 
even continuous. 

If T is a bounded pseudo-montone map of X into X*, then Theorem 11 
(or Theorem 6 for Y = X* and K = I) is also applicable. Thus, if for F in 
Theorem 6 we take the duality mapping F = J,, , then F thus chosen is 
bounded, demicontinuous, positively homogeneous of order 01 3 1 and 
monotone. Hence, the results in [2] imply that F satisfies the condition (I) of 
Theorem 6. In view of the above remarks, Theorem 6 or 11 yields the validity 
of the following new surjectivity theorem for bounded pseudo-monotone 
mappings. 

COROLLARY 5. Let X be a refEesive Banach space with a Schauder basis 
and with X* is strictly convex. If T is a bounded pseudo-monotone map of X 
into X* which satisjies the conditions (~4.4) and (c5A) of Theorem II, then T 
maps S onto X*. 
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T\le note that Theorem I1 (or Theorem 9 for I7 ::- S* and K : I) is also 
applicable to mappings of type (M) if we assume additionally that 
JO : S- LY* is also weakly continuous, set F = JO , and observe that the 
functionalf(s) = (j(s) :) , x IS weakly lower semicontinuous. Thus under the 
above more restrictive condition on F we have the following new rcault for 
mappings of type (Al). 

COROLLARY 6. Let X be a reflexive Ranach space with a Schauder basis 
such that S” is strictly convex and the duality mapping J,, : -Y + S” is also 
weakly continuous. If T is a bounded fa-continuous mapping of S into S* of 
type (R/I) which satisfies the conditions (c4A) and (c5A) of Theorem 11, then T 
maps X onto X*. 

We conclude Section 5A by establishing the A-properness of certain 
mappings T of X into X* by utilizing the assertion of Proposition 5. We 
first recall that X is said to have Property (H) if X is strictly conves and if 
{x,>} is a sequence in X such that s,, - s in .Y and 11 s, ,/ + 1~ .v 1~ , then s,, --f x 
in X. 

PROPOSITION 14. Let S be a real rejexive Banach space with a Schauder 
basis and such that X has Property (11) and X* is strictly convex. Let 
J* : X-t X* be the duality map corresponding to a given strictly increasing 
real-valued function #(r) of Rf into R+ such that 4(o) = o and #(r) - co as 
r ---f CO. If T is a demicontinuous (or a weakly continuous) monotone mapping of 
X into X*, then T,, == T + TV J,,, is an A-proper mapping of X into S* ,for each 
fixed TV > o. 

Proof. If in Proposition 5 for the case when I- = S*, h* = I, and 
K, = I, we choose F = J* , then since 1,‘ is a demicontinuous mapping of X 
into X* which satisfies the inequality (F) of Proposition 5 in the form 

(I&+) - Jdu), .v - Y) is (#(II .r Ii) - $JIIY ii)) (II x II - 11 Y I’) 

for all N and y in ,Y, it suffices to show that the function y, defined in our 
case by 

r(ll *I! II? II Y II) == w4II x II) - WY II)) (II x I/ - l/Y IO (x, y E A-), 

is nonnegative and satisfies conditions (a) and (b) of Proposition 5. To 
simplify the notation we set t = 11 x 11 , s = 11 y 11 , tk = 11 xk II for k =-= 0, 1, 2,..., 
and y(t, s) = (#(t) - $(s) (t - s). Now, since 4 is strictly increasing, 
y(t, s) 3 o for all t > o and s > o, i.e., for all .v and y in X. Condition (a) 
follows from the easily established equality 

ytt, 4 - @I 9 to) = w (to - 4 + Wto) - W)) + w (s - to) 
+ uwo> - $w 

(5.1) 
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Indeed, to prove (a) we have to show that if {xk 1 xk E X,} is a sequence so that 
xk - x,, , in X, then to any given E > o there exists 6 = S(E) > o such that 

I r(tk ,s) - y(h , to)1 = I r(ll xk II , II Y II) - r(ll x3; Ii , II x0 III < 6 (5.2) 

for all k if jj x0 - y /I < 6. Since (11 xk I/} and {$(I1 xk II)} are bounded by some 
M > o, it follows from (5.1) that for all k and each s > o 

I 74, 9 4 - Ah Y toll G w + swl to - s I + w + to) I $(to) - $4)l * 

Let B(o, do) be a ball in X such that {+} and x0 lie in B(o, d). It suffices to 
restrict our attention to y in X such that I/ x0 - y 11 < 1. Hence we may 
assume that all elements under consideration belong to the ball B(o, d) for 
d = do + 1. Let (cl(\/ y 11) < iW1 for all y in &o, d) and let 

C = max(iV1, /I x0 11 , Mi}. 

Then for any {xk} with xp - x0 and ally in B(o, d) 

I y(t, , s) - At,, 44 < 2c I 4l - s I + 2c I Wo) - w for all k. 

Now, to any given E > o there exists 6, = S,(e) > o such that 

I vVo) - WI < & if 1 to - s 1 < s, . 

On the other hand, the function T(S) = 1 to - s / is continuous, v(to) = o and 
T(S) > o. Hence to the same E > o, there corresponds a 6, = S,(E) > o such 
that 

0 < 77(s) = I rl(t,) - rl(4l < & if / to - s j < 6,. 

Hence, since I II x0 II - II Y II I < II x0 - y Ij , to any given E > o there cor- 
responds a S = min(6, , 6,) such that 

1 y(t, , s) - y(t, , to)1 < 2C$ + 2”s = E if 11x0 -YIl <a, 

i.e., (5.2) and, consequently, (a) holds. 
To verify (b), suppose xp - x0 in X and 

"F r(li xk 11 , 11 xO 11) = li$#(ll xk iI) - #(II xO 11)) (11 xk 11 - 11 xO 11) = OS 

Since # is strictly increasing, it follows from the above equality and Lemma 
2.1 in [3] that 11 xk (I + ]I x0 \I whence, since xk - x0 in X and X has Property 
(H), it follows that xk -+ x0 in X, i.e., (b) holds. 

409/38/3-12 
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RCWUW~ 11. In case T and J& are continuous, Proposition 14 reduces 
essentially to our Theorem 2.3 in [31]. 

R. Existence Theorems for JIappings T qf ,Y into S 

T* Let ,I- be a real Banach r,-space with X strictly convex. In this case 
If, -: {s, , P,; is an admissible projectional scheme for the pair (X, X). To 
deduce the corresponding results for mappings T of X into X from those 
obtained in Sections 1-4 for mappings T of X into Y, we set I’ = X, 
E;, = -I-,, , and Q,, = P,, and note that, since I’* = X*. one of the simplest 
possible choices for 

K : s + X”, Kn : LY,, - X,,’ = R(P,*) c x* 
and 

M,, : x,, + -Yn 
is to take 

and 

K = J : x+ x*, K, = P,*J lx,, : X,, + X-,’ 

ICI,, = I, : x,, + x,l , 

where I,, is an identity on X, and J is the single-valued duality map of X into 
X* (with either J = Jo or J = J&T,) which is known [6] to be continuous from 
the strong topology of X to the weak* topology of X* and for which 

Pn*JW = J(x) for all .Y in ;k; and each n [ 131. 

It follows that for this choice of K, K,z and M”, we have 

(Pn(g), Kd.4) = (Pn(g)> Pn*JW = kv J(4) vs E x,, ) g E x, 

and for all .\: in X,, with ?r* # o 

(M&), K,(x)) = (x, P,* J(x)) = (x, J(x)) = I/ x II I/ J(x)11 > 0. 

Consequently, Theorem 1 reduces to the following new existence theorems 
for pseudo-A-proper mappings T of D into X. 

THEOREM 12. Let X be a real Banach rr,-space with X* strictly convex, J a 
duality mapping of X into X*, and D a bounded open subset of X with o E D. 

(a) If T is an fa-continuous pseudo-A-proper mapping of D into X and f 
an element in X such that 

(T(x), J(x)) 2 (f, J(x)) for all x in Q 

then Eq. (l), T(x) = f, has a solution in D. 
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(b) If T is an fa-continuous Pseudo-A-proper mapping of X into X such 
that either the condition (i) or the coerciveness condition (ii) of Theorem l(b) 
holds, then T(X) = X. 

We observe that if D is also assumed to be convex and f = o, then Theo- 
rem 12(a) reduces essentially to the fixed point theorem established in [13] for 
G-operators since it is easy to see in this case that if T is an fa-continuous 
pseudo-A-proper map of D into X such that (T(x), J(x)) > 0 for all x in a, 
then the map T = I - T is a G-operator of D into X such that 
(q.t’), J(x)) < (x, J(x)) f or all x in B and consequently T (see [13]) has a 
fixed point in n or equivalently the equation T(x) = 0 has a solution in 0. 
We recall (see [13]) that T : D --f X is said to be a G-operator if T is fa-con- 
tinuous and if T has a fixed point in D whenever T,, has a fixed point in & 
for each n. 

An immediate consequence of Theorem 12(a) is the following fixed point 
theorem for projectionally-compact (P-compact) operators established in 
Petryshyn [24] f or D = B(o, r) (see also Petryshyn-Tucker [32] and 
Browder-Petryshyn [9] for a slightly more general result). We recall (see 
[24]) that T : n + X is said to be P-compact if T is fa-continuous on D and 
T, = T - dI is A-proper for each d > o. 

COROLLARY 7. Let X be a Banach nl-space with X* strictly convex and 
with J a given duality mapping of X into A-*. If D is a bounded open subset of X 
and T a P-compact map of ii into X which satisjies the boundary condition 

(Wh I(4) d (~3 J(4)f or a 11 x in a, then T has a fixed point in D. The above 
conclusion holds, in particular, when D = B(o, r) and T(B) C B. 

Proof. Since F = I - T is obviously an fa-continuous A-proper map of 
D into X, and in particular, pseudo-A-proper and (F(a), J(x)) >, 0 for all x 
in B, the first part of Corollary 7 follows from TheoryIn 12(a). To prove the 
second part, it suffices to show that T(B) C B implies the relation 
(T(x), J(x)) 3 0 f or all s in B. Now, since T(x) E B for each .Y in I$ it follows 
that 11 T(m)11 < r = I/ .Y I[ and, therefore, 

(T(x), JW) d II W9Il II J@)lI G II x Ii II J(4 = 6, J(x)) for all N in B, 

I.e., 
for all x in B. 

Q.E.D. 

Since every compact mapping T of D into X as well as every quasi- 
compact mapping in the sense of Kaniel [17] is P-compact, the fixed point 
theorem of Schauder [38], Rothe [37] and Kaniel for D = B(o, Y) follow 
from Corollary 7 and thus from Theorem 12(a). 
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It is easy to see that if T is a weakly closed map of D into X with S reflex- 
ive, then T =- I - T is also weakly closed; moreover, if D is also assumed to 
be convex and T is a weakly continuous map of D into X, then T is also 
weakly closed. Hence, in view of Proposition 2, Theorem 12(a) implies also 
the validitv of the following corollary whose special cases are due to 
Schauder [38] for T a weakly continuous map of B(o, r) into B(o, r), to 
Altman [1] for S a Hilbert space and T a bounded weakly closed map of B 
into S with (Tx, s) -< 11 .T II2 for all x in B (see also Shinbrot [39]), and to 
De Figueiredo [13] for D a bounded open convex subset of S with o E D 
and T a weakly continuous map of D into X with 

VW, J(4) < (.Y J(4) for all y E D. 

COROLLARY 8. Let X7 be a rejlexive r,-space with X* strictly convex. If D 
is a bounded open subset of X and T a bounded fa-continuous, and weakly closed 
map of D into X such that (T(x), J(x)) < (x, J(x)) for all x in D, then T has a 
fixed point in D. 

If the duality mapping / of X into X* is assumed to be both strongly and 
weakly continuous, then it follows from Proposition 4 for the case when 
I’ = X and K = J that every demicontinuous J-monotone map of X into X 
is pseudo-A-proper. Consequently, Theorem 12 implies the validity of the 
following corollary which includes Theorems 1, 2, and 3 established in 
Browder-De Figueiredo [7]. 

COROLLARY 9. Let X be a rejexive 7r,-space with X* strictly convex and 
with a duality map J of X into X* which is both strongly and weakly continuous. 
Let T be a demicontinuous J-monotone mapping of X into X. 

(a) Jf D is a bounded open subset of X with o E D such that (T(x), J(x)) > 0 
for all x in D, then T(x) = 0 has a solution in D. 

(b) If T is J-coercive, then T maps X onto X. 

We note in passing that for the mapping J to be strongly continuous it 
suffices to assume that X* has Property (H). Hilbert spaces, uniformly 
convex and locally uniformly convex Banach spaces are examples of such 
spaces. It is also known that Hilbert spaces and Banach 1, spaces with 
1 <p < cc possess duality mappings which are both strongly and weakly 
continuous. Consequently, Corollary 9 is certainly true for the latter spaces. 

If we strengthen further the conditions on J, then the assertion analogous 
to Corollary 9 also holds for mappings of type (P JM). Thus we get the follow- 
ing new result. 
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COROLLARY 10. Let X be a reflexive x,-space with X* strictly convex and 
with a duality map / of X into X* which is both weakly continuous on X and 
uniformly continuous on bounded subsets of X. Let T be a bounded fa-continuous 
mapping of type (P JM) of X into X. 

(a) If D is a bounded open subset of X with o E D such that 

(T(x), J(x)) 3 0 for all x in D, 

then T(x) = 0 has a so&ion in D. 

(b) Zf T is J-coercive, then T maps X onto X. 

For the sake of completeness we also state the following corollary for 
mappings T of type (JM) as a special case of Theorem 8 or 12. 

COROLLARY 11. Suppose that X, X* and J satisfy the conditions of 
Corollary 9. 

(a) IfD’ b ddp 2s a oun e o en convex subset of X with o E D and T is a bounded 
fa-continuous mapping of D into X of type (JM) such that (T(x), J(x)) > 0 for 
all x in D, then T(x) = 0 has a so&ion in D. 

(b) If T is a bounded fa-continuous map of X into X of type (JM) such that T 
is J-coercive, then T maps X onto X. 

To obtain an analogue of Theorem 2 for a mapping T of X into X which 
on bounded sets in X is a uniform limit of a special sequence of pseudo-A- 
proper mappings and which satisfies the “at infinity” condition that is more 
general than the coerciveness condition (ii), we take for F : X - X the 
identity I(= F) on X and observe that in this case the corresponding con- 
ditions (~3) and (~4) of Theorem 2 are certainly satisfied, in view of our 
choice of K = J, if we assume that (T(x), J(x)) > - C jl J(x)l] + (T(o), J(x)) 
for all x in X and some C 3 0. Consequently, we have the following new 
result for mappings T of X into X. 

THEOREM 13. Let X be a Banach al-space with X* strictly convex and 
with J : X + X* a given duality mapping. Let T be an fa-continuous mapping 
of X into X such that 

(clB) T(G) is closed in X whenever G is a bounded closed convex set in X. 

(c2B) T,, = T + ~1 is pseudo-A-proper for each t.~ > o. 

(c4B) (T(x), J(x)) 3 - CII J(x)11 + (T(o), J(x)> for all x in X and some 
c 3 0. 

(c5B) II V-4 - 00 as II x II - ~0. 

Then T maps X onto X. 
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Now Theorem 13 (or Theorem 4 for I’ -= X, R = J and F = I) yields 
immediately the validity of the following new and to our knowledge the most 
general result for J-monotone mappings. 

COROLLARY 12. Let X be a reflexive rr,-space with X’ strictly convex and 
with the duality mapping J of X into X* which is both strongly and weakly 
continuous. If T is a demicontinuous J-monotone map of X into X such that 
(c5B) of Theorem 13 holds, then T maps X onto X. 

To obtain a similar result for mappings T of type (PJM) we need to 
strengthen somewhat the conditions on X and J. 

COROLLARY 13. Let X be a reflexive VI-space with Property (H) and with 
X* strictly convex. Suppose that the duality map J of X into X* given by (Jl) 
is both weakly continuous on X and uniformly continuous on bounded sets in X. 
If T is a bounded fa-continuous mapping of type (PJM) of X into X such that 
(c4B) and (c5B) of Th eorem 13 hold, then T maps X onto X. 

Proof. Since K = J : X-,X*, to prove Corollary 13, it suffices to 
verify that, under our conditions on X and J, the mapping F = I satisfies 
all the conditions of Theorem 6 for Y = X. Since F = I is obviously J-mono- 
tone, bounded, and positively homogeneous of order ar = 1, we need only to 
verify either the condition (I) or the condition (II). 

We shall show that when F = 1, then F satisfies condition (S) on X, i.e., 
we verify (II). Let {x~> be any sequence in X such that x,, - *T,, in X and 
(JC, - x,, , J(xn - x0)) - 0 as n + cc. In view of the inequality (J2) satisfied 
by J, it follows that 11 s,, II+ /I x,, I/ as n + CO from which, since x,-x0 in 
X with X having Property (H), it follows that x, + ~a, in X, i.e., F = I 
satisfies condition (S) on 9 and, therefore, Corollary 13 follows from Theo- 
rem6or 13. Q.E.D. 

We add in passing that in view of Proposition 9 we have in effect shown 
that T, = T + ,u*I is an A-proper map of X into X for each p > o. We remark 
also that, using essentially the arguments of Kato [19], it has been shown by 
the author in [34] that a sufficient condition for J given by (J 1) to be uniformly 
continuous on bounded subsets of X is that X* be uniformly convex. 

As our final application of Theorem 13 (or Theorem 9 for Y = X, k’ = J, 
and F = I) under the assumption that J is both strongly and weakly continu- 
ous on X we obtain the following new result for mappings T of type (JM). 

COROLLARY 14. Suppose that X, X* and J satisfy the conditions of Corol- 
lary 12. If T is a bounded fa-continuous mapping of type (JM) of X into X such 
that the conditions (c4B) and (c5B) of Th eorem 13 hold, then T maps X onto X. 
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We continue this section by deducing from Proposition 5 for a J-monotone 
mapping T of X into X the analogue of Proposition 14. 

PROPOSITION 15. Let X be a reflexive Banach rr,-space with X* strictly 
convex and let Jti be the duality mapping of X into X* corresponding to the 
gauge function 4(r) which is both strongly and weakly continuous on X. If T 
is a demicontinuous (or a weak& continuous) J-monotone mapping of X into X, 
then the mapping T, = T + PI is an A-proper mapping for each p > o (i.e., 
- T is P-compact). 

Proof. To deduce Proposition 15 from Proposition 5 for the case when 
I7 = X, K = J and K, = P,* : ] Ix,, it suffices to show that the J-mono- 
tone map F = I of X into X which satisfies the inequality (F) of Proposition 5 
in the form 

(W - F(Y), .I@ - Y)) = 6~ - Y, J(x - YN 

= II x - Y II #(II x - Y II) vx, y E x 

is such that the nonnegative function y defined by 

r(ll x II 7 II Y II ? II x - Y II) = II x - Y II $(I1 x - Y II) 

satisfies the conditions (a) and (b) of Proposition 5. But the latter fact has 
been established in [12] and so we omit its proof here. 

Remark 12. Some special cases of Proposition 15 have been proved 
earlier by the writer in [30] for T assumed also bounded and in [31] for T 
continuous. Proposition 15 for unbounded demicontinuous T as stated here 
follows from Lemma 2 in [12]. 

We conclude this section by observing that, in view of Theorem A, Theo- 
rem 3 in [33] obtained there for Hilbert spaces remains also valid for Banach 
spaces. 

THEOREM 14. Let X be a Banach z-,-space with X* strictly convex and 
with J a duality map of X into X*. If T is an fa-continuous P-compact mapping 
of X into X such that 

(T(x), J(4) < (T(o), J(4) for all x in X, (k) 

then for any TV > o the equation p.x - T(x) = f is feebly projectionally- 
solvable for each fin X and, in particular, (PI - T) is onto. 

Proof. Since T is P-compact, T,, = PI - T is A-proper for each fixed 
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p > o. Let f be any given element in X. Then it follows from the inequality 
(k) that for each given p > o and all x in X 

This shows that if we take 

y,~ > IIf+ w4ll 
P ’ 

then 

( ~uc4 J(d) 3 ( f, JW for all .x E B(0, rUl) 

and consequently the conclusion of Theorem 14 follows from Theorem A 
for the case when 

Y- = x, K = J, K, = pn*J lx, 9 and M* = zn . 

Q.E.D. 
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