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Abstract

A variation of a classical Tugin-type extremal problem (Evd 6n Graphs: His Legacy of Unsolved
Problems (1998) p. 36) is considered as follows: determine the smallest even iat@ges, n)
such that everyn-term graphic non-increasing sequence= (dq,dp, ..., dn) with term sum
o) = dp+dp+ - +dn > o(Krs, n) has a relization G containingKr s as a subgraph,
whereK; s is ar x s complete bipartite graph. In this paper, we determin@, s, n) exadly for

every fixeds > r > 3 whenn > ng(r, s), wherem = [%] and

m+ 352 — 25 — 6, if s < 2r ands is even
no(r,s) = {m+3s2+2s—8, if s < 2r ands is odd,
m+2s2+ 2 —6)s+4r —8, ifs>2r +1.
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1. Introduction

The set of all sequences= (ds, do, . .., dy) of non-negative integers witthh <n — 1
for eachi is denoted byN §,. A sequencer € N §, is said to begraphicif it is the degree
segquence of a simple grapgh onn vertices, and such a grahis called arealizationof r.
The set of all graphic non-increasing sequencdd & is denoted byG §,. For a sgquence
w = (d1,d2,...,dn) € NS, denoteo (r) = d1 + d2 + - - - + dy. For a given graphH ,

a s@uencer € G, is said to bepotertially (resp.forcibly) H-graphicif there exists a
realizaion of = containingH as a subgraph (resp. each realizatiomrafontainsH as a
subgraph).

It is well known (see ]] for exanple) that one of the classical extremal problems in
extrenal graph theory is to determine the smallest intdggf, n) such tat every graplG
on n vertices with edge numbex(G) > t(H, n) containsH as a subgraph. The number
t(H, n) is called theTuran numberof H. The chssical Tuah theorem I} determined
the Tudn numbet (K;, n) for K;, a compete graph o vertices. For the T number

t(Krs, n), Kovari et al. P] gave the general upper bound as follows$K; s, n) < an_Fl

for 2 <r < s. In chapter 3 of B], a conjecture has been made thé&, , n) > cn? 7.

Erdds et al. B] provedt (K 2, n) ~ %n%. Recently, Rifedi [5] provedt (K3 3, n) ~ %n%.

In terms of graphic sequences, the numbgi n) is the smallest even integer such
that each sequence = (di,d2,...,dn) € GS, with o(x) > 2t(H,n) is forcibly
H-graphic. Gould et al.q] considered the following variation of the classical anr’
numbert(H, n): deermine the smallest even integetH, n) such that every sequence
w = (dg,dp,...,dn) € GS§ with o(wr) > o(H,n) is potentially H-graphic. If
H = K;41, this pioblem was considered by Erdet al. ] where theyshowedthat
o(Kz,n) = 2n forn > 6 and onjectured that (K;+1,n) = (r — 1)(2n —r) + 2 for
sufficiently largen. Gould et al. p] and Li ard Song [8] proved that he conjecture holds
forr = 3 andn > 8, respectively. Recently, Li et al9] 10] further proved that the
conjecture is true for = 4 andn > 10 and for > 5 andn > () + 3. ForH = K,
Gould et al. p] determineds (K2 2, n) for n > 4. Recently, Yin and Li1, 12] determined
0 (K33, n) for n > 6 ando (K44, n) for n > 8, and also determinetl(K; ;, n) for even
r(=4) andn > 4r2 —r — 6 and fo oddr (>=3) andn > 4r? + 3r — 8. The purpose of the
paper is to determine(K; s, n) for largen. Thepaper is organized as follows. The second
section will give a sufficient condition for a sequence being potentléjly-graphic (see
Theorem 2.11L In the third sectin, we will dgerminec (K; s, n) exadly for s > r > 3

andn > ng(r, s) (seeTheorems 3.1,23.2.2and3.3.2, wherem = [%] and

m+ 3s2 — 25— 6, if s < 2r andsis even
no(r,s) = {m+3s2+2s— 8, if s < 2r andsis odd
m+2s2+ (2r —6)s+4r —8, ifs>2r+1.

More specifically, wheis = r, our main reslis become exactly the main results af7.

2. Preliminaries

In order to prove our main results, we need the following notations and results.



J-H. Yin et al. / European Journal of Combinatorics 25 (2004) 989-1002 991
For a non-increasing sequenge= (dy,dp,...,dn) € NS, denote f/(r) = maxi :
di > i} and define am-by-n matix A = (g;j) as follows: ifd; > i, then

(1 ifl<j<d+1landj#£i,
i = 1o otherwise

and ifd; < i, then

1 if1<j<d,
4j =10 otherwise

/() and A are called therace and theleft-most off-diagonal matrixof 7, resgectively.
The column sum vector oA, denoted byw = (d1, dy, ..., dn), is cdled thecorrected
conjugate vectoof . Clearly, the row sum vector dkis 7 ando (7) = o (7).

Theorem 2.1 (See [L3)). Letr = (di,d, ..., dn) € N§ be a non-increasing sequence
with evero (). Thenr € G§,ifandonlyifd + do+---+di <di1 +dz +--- +d; for
eachi=12 ..., f'(n).

For anon-increasing sequenge= (dy, dz,...,dy) € NS, letd; > d, > ... >d/
be the rearrangement @ — 1,d> — 1,...,dg, — 1, dd,+1,...,0n—1. Thenn’ =
(dj,d5, ..., d;_,) is called theresidual sequencef . Itis easy to see thatif’ € G§,_1

thenz € G, sincea realzationG of = can be obtained from a realizati@®i of =’ by
adding a new vertex of degrel to G’ and joining it to the vertices whose degrees are
reduced by one in going from to z'. In fact more is true:

Theorem 2.2 (See [L4]). Letzr = (d1,d2, ..., dn) € NS, be a non-increasing sequence.
Thenr € GS ifand only ifr” € GS,_1.

Theorem 2.3 (See [L0]). Letk> 5. Theno (Kki1,n) < 2n(k —2) 4+ 8for2k+2<n <
(5) +3ando (Kky1,nN) = (k—1)(2n— k) +2forn > (;) + 3.

Theorem 2.4 (See L or [12). Letr = (d1,...,0r, Cr41, ..., Or4s, rysy1, ..., 0n) €
G S, where dis >r +s—1andd >r. Thenx is potentially K s-graphic.

Theorem 2.5 (See D.l] or [12]) Letnr = (dl, ey dr s dr+1, RN dr+s, dr+s+]_, ey dn) (S
GS,whered>r+s—1dys<r+s—2andd,>r.Ifn>(r +2)(s—1),thenz is
potentidly K, s-graphic.

Letwr = (d1,...,dr,0r41,...,0r4s,dr4s41,...,0dn) € NS,. If 7 has a rebzation
H with vertex set{vy, vo, ..., vn} suchthatdi = dy(vj) for 1 <i < nandH contains
Krs as a subgraph, whefes, ..., v} and{vr41, ..., vr+s} is the bipartite partition of

the vertex set oK, s, thenx is calledpotentidly A, s-graphic It is easy to see that a
potertially A s-graphic sequence must be potentiadlys-graphic, but the inverse is not
true in general. On the potentialB s-graphic sequences, we have the following

Proposition 2.6 (See L1]). Letw# = (d1,...,dr,dr41, ..., 045, Arysy1,-..,0n) €
NS, whered >--->d >s,dry1>--->dys>randdysy1 >--->dy >r. Let
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(d25"'7dradr+l_17"'adr+d1_1a

7_[/ — dl’+d1+1s RN dn)7 If dl =n-—r,
1 (dZ - 11 ey dd1+r7n+1 - 17 dd1+r7n+27 ) dl’v
dr+1—1,...,dn—l), ifd]_>n—r,

andny = 5", ....dP dP . d d D dP), where ¢P > . > 0P is
the rearrangemetnof thefirst r — 1 terms inni, dr(fi =004+ —1forl <i < sand
d(l)

fpsp1 = > dr(,l) is the rearrangement of the final A r — s terms inn;. If 77 is
potentidly Ar_1 s-graphic, thenr is potentially A s-graphic.

For the squencer/, if dél) >...>d? > s, wecan define similarly the sequencg
as follows: let

@, ... dP —1,...dP -1,

(€8] s (1) r+d§l) 1)
e if <n-r
R B Gr=n-r
@ _ @ 14D (1)
(d3 Lo dd§1)+rfn+2 L dd§1)+rfn+3’ SRRl
d? —1,....d" - 1), if dSP > n—r,
2 2 42 2 4@ 2 2 2
andry = (d5?,....d?,d% ... d%. d%, . ....dP), wheredy > --- > d?
is the rearrangenme of the firstr — 2 terms inx, dr(i)i = dr(fi —1forl<i <s
and dr(_235+1 > > d,ﬁz) is the rearrangenme of the finaln —r — s terms inx;,. For
k=34, ...rinturn,if dlgkfl) > ... > d* > s, thedefinitions ofr, andx are
similar.

PrOpOS.tion 2.7 (See D.l]) Letm = (dl, e, dr s dr+1, N dl’+57 dr+s+1, e, dn) €
N S be a sequence iRroposition2.6, and letr}” be defined as above. 4f’ is graphic,
thenx is potentially A s-graphic.

For thedefined sequence’ = (dr(zr)l, e, dr(ﬂr)s, dr(25+1’ e d,(]')) in Proposition 2.7
if d”, >...>d". >1andd").,, > .. >d" > 1, we define

r+1 = r+s — r+s+1 =
() r) (r) (r)
=d,/),—-1,...,d —1,d oo di,
i1 = ( r+2 r+dr(r+)1+1 r"'dr(r+)1"‘2 n)
(r+1) (r+1) Lr+1) (r+1) (r+1) (r+1
andnr”Jrl = (A5 Oy, 0 . dn ), whered, [ > --- > dig s
the rearangement of the firss — 1 terms inx/_, and d;:;fl > ... > d'*Y is the
rearrangement of the final—r — sterms inzr/ ;. Itis easy to see that i’ , is graphic

thens,” is grgphic, since a realizatiohl of 7/ can be obtained from a realizatidf’ of

n/" . by adding a new vertex of degreié?l to H’ and joining it to the vertices whose

degrees are reduced by one in going frafhto " ,. Fork = 2,3,...,sin turn, if
4 > > g Y > 1 andd" Y > - > dTTY > 1, the definitions of

r/+k " +s r+s+1
m/ andrx/,  are similar.
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Proposition 2.8. Letr]” = (dr(zr)l, e dr(ﬂr)s, dr(25+1’ e d,(]')) be a defined sequence as
in Proposition2.7, 1 < k < sand letr/”,, be defined as above.#",, is graphic, then
7/ is also graphic.

Proof. Itfollows from /", being graphic th r”ﬂ- isgrgphicforj =k—1,k-2,...,0
inturn. O

Proposition 2.9. Let(d1, ds, ..., dn) € NS, be a non-increasing sequence. Fox t <
n,letps > p2 > --- > pp betherearrangementofid-1,dr—1,...,dt—1,di+1, ..., dn.

(1) If dl > dn andpn = dn — 1, thenpl = d]_ — 1,
(2) Ifdy —dn < 1,thenp; — pn < L.

Proof. (1) Supposea; > d,. Thend; — 1 > d,. Herce p, = dy, a @ntradiction. Thus
0 = diy1 =--- =dnh. Moreover,d; — 1> maxdy — 1,...,d —1,d¢41,...,dn}.
Hencep; = d; — 1.

(2) isevident. O

Lemma 2.10 (See L1 or[12]). Letwr = (d1,dp,...,dn) € NS, m = maxd;, do, ...,
dn} ando () be even. And let* = (dj, dJ, ..., d}) be the rearrangement sequence of
7w, where m=dj > dj > --- > d; is the rearrangement ofiddy, . . ., dn. If thereexids

anintegern < nsuchhatd; >h>landmn > %[W], thenr € GS,.

The following is a main result in this section.

Theorem 2.11. Lets>r > 3,n > # + 5% andr = (di,...,dr, dry1, ..., Orys,
...,dy) € GS,whered < r +s—2andd, > r. If there exists a integer
t,1<t<minfr-1[31 -1 suchhatdy >r+s—1—-tandds >r +t,
thens is potentially K s-graphic.

Proof. Define a new squence(ps, ..., Pr—t—1, Pr—ts---» Pr> Pr+1s -+ -» Prat> Prot+1,
oy Pr+s, Prost1s---, Pn) @asfollows:pp = diif1 <i <r —t—1p = diqt if

r—t<i<rp=d_tqifr+1<i<r+tandp =diifr+t+1<i <n.For

convenience, the new sequence is denoted .iglearly, we have
QDn-1=p1=p2=--->2p>r+s—1—tandp_t <r +s—2;
@n—-1=p41=Pr42= = Prgs=r +tandprypr <r +s—2;
B)r+s—2=>prist1> Prysy2>---= P =>T.

By Proposition 2.7 it is enough to prove thatr,” is grgphic. It follows from the
(r—t—1) (r—t-1) _(r—t-1 (r—t-1)

définition of =", | thatx . ; = (py ~..... P B P - AT
pf:sz:ll), .., prtYy satisfies:

@Wr+s—2>p P> p T P ody—r—t-D>r+s-1-1t) -

r—t-1=s
t-1 —t-1 —t-1 —t-1
© n(_:—;t = pr(r+1 Y>> pftY > pr(r+t+1) >z pls =2 +1land
r_ —
@) r+s—2> p;['r_st-'r_ll) >.o=pi P >t
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Hence, by(p' (" P =9+ - +(p V=9 < r—2(t+D) < 1 —2[$] < S —s <
+5)2 r r r r) r) r
U—-S)-_ % S n-— (r +S)a 7T|’N = (pg_jzla I pﬁ.ﬁta pg_;:t_i_la ey pr(-!,-sv pr(+s+17 ) pf(1 )

satisfies:
Dn-r-1>p7 > >ph=p > =pls=>tandp),, <s-2
@8r+s—-2 > pﬁ'ﬁsﬂ > 0> p,({) > t and there exists an integep >

2
n—(+s) — (5L -9 > (”“Ts)—%—(%—s)suchthatpr(25+XOZt+1.

(r+t) (r+t) (r+t) (r+t) ofina-
Thus,m/, = (Pritq1r s Pros » Prysias -0 Pn ) satisfies:

@) s—2zpily == pi 2 t-t=0;

(10)r +s—2> pfz:;tllzmz p,({H)zt—t:OandpﬁZ:;thOthrl—tzl.

By Proposition2.8 we only need to prove thatr,, is grgphic. Let 7* =
(dj,d3,....ds__y) be the rearrangement sequencerff,, whered; > dj > ... >
d* ., is the rearragement ofpr(z:ﬁzl, o pD, pr(ZrJ;tJ:l .., pY™ . We monsiderthe
following three cases:

(r+t) (r+t)
r4+t4+1° pr+s+1} =

n—( +s), byLemma2.10x/,, is

Case 1. § > 2. Thend: , ( > pf™ >
. _ 2 2
r+s—2. Slnce%[(”rs 24+2+1) 1< (Hf) _ rers

2 andd] = max{p,
=

graphic.

Case 2. §™ = 1. Thend:_, ¢ = pi™ = 1.1f p¥g,, > pi for eachk = 0,

1,...,r +t, where pﬁ(J)r)sJrl = Pros+1 and pﬁ,o) = pn, then by Proposition 2.61),
0 t 0 B t 0 0

Prissi— Plisia = P —pn 0 ien okl < s =P +1< (4s-2)—r+l=

s — 1. If there exists an integey,0 < j < r + t suchthat pr(L)erl = pﬁ,j), then

by Proposition 2.2), pﬁ'f:sﬂ — pﬁ,k) < 1 for eachk = j,...,r 4+ t, in paticular,
+t +t +t +t
pﬁ;sil = pgr : +l1=2<s-1 Hencedi“ = max pr(r+tJ21’ pgsil
- 2 2 2 .
[%] <S4 541 W9 HS < n(r 4, byLemma2.10x/,, is
graphic.

} < s—1.Since

Case 3. H—H) = 0. Then d;(Fo z pr(rJr-;tJZxo > 1. If pp«?SJrl = p#\k) for
eachk = 0,1,...,r + t, simlarly by Proposition2.@l), we have pfz:;tll <
pr(gr)s+1 -p = 0 +s —2) —r = s— 2 If there exists an integej,0 <
j < r 4+t suchthat prJF)SJrl = p\, then by Proposition 2.@2), pfz:;tll <
Pyt +1 = 1 < s—2 Thusdf = maxp/ ). p"t)) < s — 2 By
[%] = S7,2 = % - % - (% —S) < Xp andLemma2.10x/,, is also
graphic. O

3. Main results

. . . . 2
For convenience, we also introduce the following notationsrret [%] and
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f(r,s,n)=<2r+§—2)n—(r—1)r—S—2r+Z<§+1),

— -_= —(r — _(Z_Z - -1
g(r,s, n <2r + > 2) n— (@ —2r <2 2) r+ 8(3 +8s—1),

hr,s,n) = +s—2)n— w’
and let

A1 = {(r,s,n) | siseven andf (r, s, n) is also eveh
Az = {(r,s,n) | sis even andf (r, s, n) is odd},

B1 = {(r,s,n) | sisodd andg(r, s, n) is even,

B> = {(r,s,n) | sisodd andg(r, s, n) is alsoodd},
Ci={(,s,n) | h(r,s, n)iseven,

Co = {(r,s,n) | h(r, s, n) is odd}.

3.1. 0(Krs,n)for3<r <s<2r,evensandr> m+ 3s? — 2s — 6

Theorem 3.1.1. Let3 <r <s < 2r,wheresiseen,andletr>r +s. Then

f(r,s,n)+2, if(r,sn)e A,

o(Krs, ) = {f(r,s, n +1, if(,s n)e A

Proof. Assume(r,s,n) € Ar. Letr = (n—1)"Lr+s—2r+s-3,...,r+3, 0+

% - 1)”*’*3”), where tke synbol x¥ stands fory consecutive termg. Theno () =
f(r,s,n)isevenandf’(z) =r + % — 1. Itis easy to see from the left-most off-diagonal
matix A of 7 thatw = (dy,dz,...,dn) satisfiesn — 1 =dy = dp = -+ = df/() >
df’/ryi1 > -+~ > dn. Clearly,dy + dp+--- +di <dg +dz+---+di fori =1,2,...,
f/(m). Herce byTheorem 2.7 € GS,. Letmy = (s—1,5-2,..., 3 +1, (%)”f'*gﬁ).

If 7 is potentially Ky s-graphic, then ther exist irtlegersry ands;, 1 < r; < $ and

sy = s+ 1 — r1 suchthatx; is potentially Ky, s, -graphic, and hence there are at least
ri terms inzrq which are greater than or equalder 1 — rp, a @ntradiction. Sor is not
potertially K s-graphic. Thusr (Kys,n) > o(w) +2= f(r,s,n) + 2.

Now assumer,s,n) € Ay. Letr = (n—1)" Lr4+s—2r+s—3,...,r + %
r+3- =3+l 4 5 —2). Theno(r) = f(r,s,n) — 1is even andf’(x) =
r + 3 — 1. By the left-most off-diagonal matriA of 7,7 = (di, d, ..., dn) satisfies
dh=d=-..= df/(n)_l =n-—1landn-2 = df/(n) > df/(n)+1 > ... > dn ltis

easytoseethaty + dy+ - - +di <dy+dy+---+difori =1,2...,f'(n). By
Theorem 2.17r € GS,. Similarly, we can also prove that is not potentiallyK, s-graphic.
Thuso (Krs,n) >o(x)+2= f(f,ssn)+1. O

Lemma3.1.1. Let3 <r <s < 2r, where s is gen, and let n=m. Then

o(Krs,m) < £, +2+ (33— 52— 3s).
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Proof. Clearly,m < ("*37%) + 3. Hence byTheorem 2.3
0(Krs,N) <o(Krys,N) < (2r +2s—6)n+8

3 sr s /s
— f 2+ (2s—4 Shre > -2 (241
(r,s,n) + +<f )m+U "+ 4Q+-)+6
3 5 2 sys
<fr,sn+2+ >S4 +s)+(s—1)s+5—‘—1<§+1)+6
§f(r,s,n)+2+(%s3—sz—3s>. O

Lemma3.1.2. Let3 < r < s < 2r, where sis gen, and let n> mandr =
(d,dp,...,dn) € G withdy > r. If o(x) > f(r,s,n) + 2, thenx is potentially
Kr.s-graphic.

Proof. If drys > r + s — 1, then byTheorem 2.4 is potentially K s-graphic. If
Grys <r+s—2andd >r +s—1,thenbyn > m= [“*%ﬁ] > T +2(s-1
and Theorem 2.5 is potentially K s-graphic. Now assume thak < r + s — 2. If
Gyt <r+s—2—tforanyt e {1,2,...,3 —1},thenc(n) < r —H(n—=1) +(r +
S—24+ 0T +s-3)+-+T+D+T+53-D(N—-r—-35+2) = f(r,s,n) <o),
a oontradiction. Hence there exists an integee {1,2,..., % — 1} suchthatd,t >
r+s—1—t.lfdys<r+3—2thenbyr <s<?2r,

a(n)g(r—1)(n—1)+s(r+s—2)+(r+§—2)(n—r—s+1)
2

S S rs S
s rs & s 1)?
S(2r+§—2)n—(r—1)r—?+5+r+§—1— %

2

S rs S S
5(2r+§—2)n—(r—1)r—?+§+r+§—1

G +5)242(r +9)
4

2

s rs s
5(2r+§—2)n—(r—1)r—?+E+r+§—1

(3+9)°+20r +1)
4

s rs 1, s
_(2r+§—2)n—(r—1)r—?—1—63 +§—1
< f(r,s,n) +2<o(w), aontradiction.

Henced, ;s > r +3 —1 > r +t. Now by Theorem 2.11x is potentiallyK; s-graphic. [

Lemma3.13. Let3 < r < s < 2r, where s is gen, and let n= m + t, where
0<t<3s?—25s—6.Theno(Krs,n) < f(r,s,n) +2+ (3s° — s —3s) — .
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Proof. We use induction ort. It is known from Lemma 3.1.1that the resulholds for
t = 0. Now assume that the result holdsfer1,0 <t —1 < 32— 2s— 7. Letn = m+t
andr = (di, dz, ..., dn) € GG With o () > F(r,s,n) +2+ (3% — 5% — 3s) — §. We
only need to prove that is potentiallyK, s-graphic. Obviouslyy () > f(r,s, n) 4+ 2. If
dn > r, then byLemma 3.1.2x is potentiallyK, s-graphic. Ifd, <r —1, thenthe residual
sequencer’ of i satisfiesr (n') = o (7)—2d, > (1, s, n—1)+2+(%s3—32—33)—¥.
By the induction hypothesis;’ is potentiallyK, s-graphic, and hence sois [

Lemma3.14. Let3 <r < s < 2r, where s is gen, and let > m + 3s2 — 2s — 6. Then
o(Krs,n) < f(r,s,n) + 2

Proof. Itis enough to prove thag): if 7 = (d1,...,dn) € G, ando () > f(r,s,n)
+ 2, thenr is potentiallyK, s-graphic. Apply induction om. By Lemma 3.1.3(x) holds
for n = m + 3s? — 2s — 6. Now suppose that) holds forn — 1 > m+ 3s? — 2s — 6.
We will prove that(x) holds forn. If d, > r, then byLemma 3.1.27 is potentiallyK s-
graphic. Ifd, < r — 1, then the residual sequeneeof 7 satisfiesr (7') = o () — 2d, >
f(r,s,n — 1) + 2. By the induction hypothesisg; is potentiallyK; s-graphic, and hence
soisz. O

Theorem 3.1.2. Let3 <r < s < 2r, where s is gen, and let > m+ 3s2 — 2s— 6. Then

f(r,s,n)+2, if(r,sn)e A,

o (Krs, ) = {f(r, s,n)+1, if(r,sn) e A

Proof. It follows from Theorem 3.1.;andLemma 3.1.4hato (K¢ s, n) = f(r,s,n) + 2
for(r,s,n) e Arandf(r,s;n)+1<o(Krs,n) < f(r,s,n)+2for(r,s,n) € Ax. Since
o (Krs, n)is even, ve haves (Ky s, n) = f(r,s,n) +1for(r,s,n) € Ap. O

3.2.0(Krs,n)for3<r <s<2r,oddsandn> m+3s? +2s—8

Theorem 3.2.1. Let3 <r <s<2r,wheresisodd, andleter +s. Then

gr,s,n)+2, if(r,s,n) e By,

o(Krs, ) = {g(r, sn)+1, if(r,s n) e Bo.

Proof. Suppose(r,s,n) € By. Letr = (n— 1" L r+s—2r+s—-3,....,r+3+

L +3-D2, ¢+ 35— -5t Theno(x) = g(r, s, n) is even andf’(r) =

r + § — 3. By the left-most off-diagonal matrid of 7,7 = (di, d, ..., dy) satisfies
di=dp=---=dp)-1=n—1andr +s—2=ds (g > df/ ()41 > - - > dn. Clearly,
di+do+---4+d <dy+dy+---+dfori =1,2 ..., f'(x), andso byTheorem 2.1
7eGS. Lletnry = (s-1Ls-2...,5+3, 5+ %ﬁ*g,(g — $Hn=T=s+ly Assume

thatz is potentially K, s-graphic. Then there exist integarsands;, 1 < r1 < % + %
ands; = s+ 1 —ry suchthat 1 is potentially Ky, s,-graphic. Ifry < % + % then
there are at leasy terms inswy which are greater than or equaldo+ 1 — r1, which is
impossble. Ifr; = % + % then here are at least+ 1 terms inwy which are greater than
or equal to% + % which isalso impossible. Hence is not potentiallyK, s-graphic. Thus
o(Krs,N)>o(m)+2=9g(r,s,n +2.
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Nowsuppose(r s,n) € By. Letnr = ((n—l)r‘l,r +s—2,r+s—-3,...,r +§+
2, r+35- —)2+2 r+3 3)“_r_S r+3— —) Theno () = g(r, s,n) — 1 is even and
f'(r)y=r+3 53— 3 1. By usmg the similar method we also can prove thés grgphic and
not potentlaIIyKr,S graphic. Hence (Kys,n) > o(r) +2=9(,s,n) +1. O

Lemma3.2.1. Let3<r <s < 2r, where s is odd, and let &= m. Then

3, ¢
o(Krs,n) <g(r,s,n) +2+ E5 _5_5 S+ 4

Proof. Sincem < (”2’1) + 3, byTheorem 2.3
0(Krs,N) <o(Krys,N) < (2r +2s—6)n+8

=g(r,s,n)+2+ 3s ! m+( —Dr + > 1r
= 9ns 2°7 3 2732

1
—§(52+85—1)+6

3 7 S 1
SQ(V,S,n)+2+<ZS——>(s +S)+(S—1)s+<§—§)s

1
—é(sz+83—1)+6

3 5 49
= 2 o3
g(r,s,n)+ —|—<28 8 — 6s+ 8)

3 s?
<g(r,s,n)+2+ 53—3—55+4 O

Lemma3.22. Let3 <r < s < 2r, where s is odd, and let n> mandnr =
(di,d2,...,dn) € G withd, > r. If () > g(r,s,n) + 2, thenx is potentially
Kr.s-graphic.

Proof. If dryvs > r + s — 1, then byTheorem 2.4 is potentially K, s-graphic. If
O4s <r+s—21landd; >r +s—1,thenbyn >m> (r +2)(s— 1) andTheorem 2.5
s potentiaIIyKr,s-graphic. Now assume thdt <r +s—2. Ifdyt <r +s—2—t for

anyt € {1,2,... 2} thena(n) <r-1)(n—-D+F+s—-2)+r+s—3)+---+
(r + 2) +(r + 53— —)(n §+ %) < g(r,s,n)+2 < o(r), amntradiction. Hence
there exist an mteget e {1, 2, o % - %} suchthatd; ¢ > r +s— 1 —t. We onsider

the following two cases:

Case 1.There exists an integere {1,2,..., % — %’} suchthatdr 1t >r +s—1—t.If
dros <1 +35— 3 thenbyr <s<2r,

a(n)§(r—l)(n—l)+s(r+s—2)+(r—|— —§>(n—r—s+1)

s
2

< 2r+S > n—u—2Lr s_1 r+ +s+r 3
- 2 2 2 2
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(r+s+1)32
- |

< 2r+S > n——Lr s_1 r+82+s+r 3
- 2 2 2 2 2 2
_(r+s)2+2(r+s)
4

< 2r—|—S > n——Lr s_1 r+32+s+r 3
- 2 2 2 2 2 2
(5+5)°+20r +1)
4

—(2r 42 °\n r—Dr—(2 L), 1sz+s 3
n 2 2 2 2 16 2

< g(r,s,n) 4+ 2 < o(), amntradiction.

Henced; s >r + 5 — % >r +t. By Theorem 2.1 is potentiallyK; s-graphic.
Case2. ¢t <r+s—2—tforanyt € {1,2,...,3 — g}anddrH >r+s—1—tfor
t=35-3lfdis<r+35—3 theno(m) <t -V -+ T +s-2)+ (T +s-3)+
3D +3-DE+H D+ +3-DH(—r—s+1) < gr,s,M+2 <o (7),
which is impassible.Henced; ;s > r + % — % Thus byTheorem 2.1l is also potentially
Kr s-graphic. O

Lemma3.23. Let3 < r < s < 2r, where s is odd, and let n= m 4+ t, where
0<t<3s?2+2s—8.Then

3 2 -t
o(Krs,M) < g s +2+ (28— 55 44)— -t
' 2 2 2

Proof. Use induction ont. If follows from Lemma 3.2.1that the resulholds fort = 0.
Now suppose that the result holds for- 1,0 < t — 1 < 3s? + 2s — 9. We will prove
that the resulholds fort. Letn = m+t andwr = (d1,d2, ..., dy) € GS, with o () >
gr,s,n) +2+ (3s° - 5—22 —5s5+4) — & Theno () > g(r,s,n) + 2. If dy > 1, then
by Lemma 3.2.2x is potentiallyK, s-graphic. Ifd, < r —1, then the residual sequente
of x satisfiess (') = o' () — 20 > g(r, s,n— 1)+ 2+ (33— & — b5+ 4) — SV,
By the induction hypothesisz’ is potentially K, s-graphic, and hence so is. Thus

o(Krs,M < gr,s,n) +2+ (33— $ —5s+4) — &0 O

Lemma3.2.4. Let3 <r < s < 2r, where s is odd, and let & m + 3s2 + 2s — 8. Then
O—(}<T,Sa n) S g(rv Sv n) + 2

Proof. We only need to prove thatx): if 7 = (di,...,dn) € G with o(7) >
g(r, s, n) + 2, thenx is potentiallyK s-graphic. Apply induction om. By Lemma 3.2.3
(%) holds forn = m+3s2+2s—8. Now suppose that) holds forn—1 > m+3s?+2s—8.
We will prove that (x) holds forn. If dy > r, then byLemma 3.2.2 is potentially
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Krs-graphic. Ifd, < r — 1, then the residual sequengé of = satisfieso(7’) =
o(mr) — 2dy > g(r,s,n — 1) + 2. Thus by the induction hypothesis, is potentially
Kr.s-graphic, and hence sois [

Theorem 3.2.2. Let3 <r < s < 2r, where s is odd, and let & m + 3s2 + 2s — 8. Then

gr,s,n)+2, if(r,s,n) e By,

o(Kys, N) = {g(l’, s,nN)+1, if(r,s,n) e By

Proof. The result follows fromTheorem 3.2.1 Lemma 3.2.4and o (K s, n) being
even. [

33.0(Krs,nyforr >3,s>2r +1andn>m+2s> 4 (2r —6)s+4r — 8

Theorem 3.3.1. Letr >3,s>2r +1andn>r +s. Then

h(r,s,n)+2, if(r,s,n)eCq,

o(Krs. ) = {h(r, s,n)+1, if(r,s,n) eCo.
Proof. Assume(r,s,n) € C1. Letr = (n— 1" L r+s—-2r+s—-3,...,s,(s—
1)n-2r+2), Then_a(ﬂ) — h(r,_s,i) is even andf’(mr) = s -1 B_ythe lef-most off-
diagonal matrixA of 7, @ = (dg, d, ..., dp) satisfien —1=dy =dp = --- = d/ () >

df'ry41 > --- > dp,andsod; +da +---+di <di+do+---+dfori =1,2,...,

f/(7r). Thus byTheorem 2.1r € GS,. Letny = (s—1,5—2,...,5—r+1, (s—r)"~2+2),

If 7 is potentially K s-graphic, then ther exist irtegersr; ands;,1 < r1 < r and
st = s+ 1 —ry suchthat; is potentially Ky, s,-graphic. Hence there are at least
terms inr1 which are greater than or equalde- 1 — r1, which isimpossble. Sor is not
potertially K s-graphic. Thus (K s, n) > o () +2=h(r,s,n) + 2.

Now assumer, s, n) € C,. Letnr = ((n — 1)r_1,r +s—2r+s—3,...,5,(s—
1"=2+1 s_2). Theno () = h(r, s, n) —1is even and’(r) = s— 1. Similarly, we also
can prove that is grgphic and not potentiall¥, s-graphic. Thug (K s, n) > o (w)+2 =
hr,s,n)+1. O

Lemma3.3.1. Letr > 3,s>2r +1and n=m. Then

253 + (2r — 6)s? + 4rs — 8s

o(Krs,n) <h(,s,n)+2+ >

Proof. Sincem < ("*5°%) + 3, by Theorem 2.3
o0(Krs,N) <0 (Krys,N) < (2r +25—-6)n+8

:h(r,s,n)+2+(r+3_4)m+6+L223—r)
Sh(fvsv”>+2+<r+s—4>(s2+s)+e+w
=h(r,s,n)+2+233+(2r_6)32+4r25—105—r2+r+12
5h(r,s,n)+2+233+(2r—6)82+4r3—83’ -

2
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Lemma3.3.2 Letr > 3,s>2r+1landn> m,andletr = (dy,do,...,dn) € GS
with dy >r. If () > h(r, s, n) + 2, thenx is potentially Kk s-graphic.

Proof. If drys > r + s — 1, then byTheorem 2.4« is potentially K, s-graphic. If
bis<r+s—2andd >r +s—1,thenbyn>m> (r +2)(s— 1) andTheorem 2.5

7 is potentiallyK; s-graphic. Now assume thelt <r +s—2. Ifd4t <r +s—2—tfor
anyt € {1,2,...,r —1},theno(x) < r —-1H(n—D+ T +s—2)+Fr +sS—3)+---+
s+ (s—1)(n—2r+2) =h(r,s,n) < o(r), amntradiction. Hence there exists an integer
te{l,2,...,r —21} suchtr;atdm >r+s—1—t.Ifd1s <2r —2,thenbys>2r +1
andn > [(r+s4+1) 1> @49 12(r+s),

o)< -1Nn=-D+sr+s—-2)+ @ —2)(n—r —s+1)
=r+s—-2n—(s—2r+1H)(n—r —s+1)
2

(r+s)+2r +9) _r_s+1)

§(r+s—2)n—(2r+1_2r+1)< 7

(r+s2—20r+s)+4
2
< h(r,s,n) < o(), aontradiction.

=T+s—2)n—

Henced,1s > 2r — 1 >r +t. Thus byTheorem 2.11x is potentiallyK, s-graphic. O

Lemma3.3.3. Letr > 3,s > 2r + 1landn=m+t, where0 <t < 252 + (2r — 6)s

3 2
+4r — 8. Theno (Kys,n) < h(r,s,n) + 2+ = +(2r’6;5 +ars—8s _ sk

Proof. We use induction on. It follows fromLemma 3.3.%hat the resulholds fort = 0.
Now assume that theesult holds fort — 1,0 < t — 1 < 252 + (2r — 6)s + 4r — 9.
Letn = m+tandmr = (di,do,...,dn) € GS with o(z) > h(r,s,n) + 2 +

253 2

ZHA O H4s 8 St Theno () > h(r,s,n) + 2. If dy > r, then byLemma 3.3.2
T is potenUaIIyKr 5™ graphlc Ifdy < r — 1, then the residual sequeméof m satisfies
o (1)) = 0 (1) — 20y > h(r, s, N— 1) 4 24 @ = 6)52+4r3 8s —%+s—r>hr,sn-
1)+2+ 253+ (2r —6)s2+4rs—8s st+_ —h(, s, n_1)+2+ 253+(2r 6)sz+4rs 8s s(t H
Hence by the induction hypothesrs is potentiallyK, s-graphic, and hence sois Thus
o(Krs,n) < h(r,s,n) + 2+ 283+ (2r— 6%sz+4rs 8 s7t 0

Lemma3.34. Letr > 3,s > 2r +1andn> m+ 2s%2 + (2r — 6)s + 4r — 8. Then
o(Krs,n) <h(r,s,n) +2

Proof. Itisenoughto provethdk):if 7 = (d1,...,dn) € GS ando () > h(r, s, n)+2,
thenn is potentially K s-graphic. Apply induction om. By Lemma 3.3.3 (x) holds
forn = m+ 2> + (2r — 6)s + 4r — 8. Now suppose thatx) holds forn — 1 >
m+ 2s2 + (2r — 6)s + 4r — 8. We il prove that(x) holds forn. If d, > r, then by
Lemma 3.3.2x is potentiallyK, s-graphic. Ifdy, < r — 1, then the residual sequencé
of  satisfiesr (') = o () — 2dn > h(r, s, n — 1) + 2. By the induction hypothesis; is

potertially K s-graphic, and hence sois O
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Theorem 3.3.2. Letr >3,s>2r + landn> m+ 252 + (2r — 6)s+ 4r — 8. Then

h(r,s,n)+2, if(r,s,n)eCy,

o(Kys, N) = {h(r, s,n)+1, if(,s,n) eCo.

Proof. The result follows fromTheorem 3.3.1 Lemma 3.3.4and o (K, s, n) being
even. [
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