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Summary

Carbon (C)-ion irradiation
effectively reduces tumor
cell migration and invasion;
however, the underlying
mechanisms are not well
understood. We provide evi-
dence that C-ion treatment
suppresses the activities of
Rac1 and RhoA, 2 major
regulators of cell motility,
via ubiquitin-mediated pro-
teasomal degradation in
human pancreatic carcinoma
cells. This is the first report
describing the inhibition of
cancer cell migration and
invasion via suppression of
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Purpose: To investigate the mechanisms underlying the inhibition of cancer cell
migration and invasion by carbon (C)-ion irradiation.
Methods and Materials: Human pancreatic cancer cells MIAPaCa-2, AsPC-1, and
BxPC-3 were treated by x-ray (4 Gy) or C-ion (0.5, 1, 2, or 4 Gy) irradiation, and their
migration and invasion were assessed 2 days later. The levels of guanosine triphos-
phate (GTP)-bound Rac1 and RhoA were determined by the active GTPase pull-
down assay with or without a proteasome inhibitor, and the binding of E3 ubiquitin
ligase to GTP-bound Rac1 was examined by immunoprecipitation.
Results: Carbon-ion irradiation reduced the levels of GTP-bound Rac1 and RhoA, 2
major regulators of cell motility, in MIAPaCa-2 cells and GTP-bound Rac1 in AsPC-1
and BxPC-3 cells. Proteasome inhibition reversed the effect, indicating that C-ion
irradiation induced Rac1 and RhoA degradation via the ubiquitin (Ub)-proteasome
pathway. E3 Ub ligase X-linked inhibitor of apoptosis protein (XIAP), which directly
targets Rac1, was selectively induced in C-ioneirradiated MIAPaCa-2 cells and co-
precipitated with GTP-bound Rac1 in C-ioneirradiated cells, which was associated
with Rac1 ubiquitination. Cell migration and invasion reduced by C-ion radiation
were restored by short interfering RNAemediated XIAP knockdown, indicating that
XIAP is involved in C-ioneinduced inhibition of cell motility.
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Rho GTPases by C-ion

radiation.
Conclusion: In contrast to x-ray irradiation, C-ion treatment inhibited the activity of
Rac1 and RhoA in MIAPaCa-2 cells and Rac1 in AsPC-1 and BxPC-3 cells via Ub-
mediated proteasomal degradation, thereby blocking the motility of these pancreatic
cancer cells. � 2015 The Authors. Published by Elsevier Inc. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).
Introduction

In cancer, carbon (C)-ion irradiation has advantages over
conventional photon therapy, such as accurate dose distri-
bution and enhanced biological effects due to higher linear
energy transfer (LET) translated into 2- to 3-fold higher
cytotoxicity, as evidenced by the analysis of biological
endpoints, including cell death, DNA damage, and chro-
mosomal aberrations (1, 2).

It has been previously reported that C-ion and photon
radiation produced different effects on the migration and
invasiveness of tumor cells (3-5). X-ray irradiation
enhanced the invasiveness of MIAPaCa-2 and PANC-1
pancreatic cancer cells (3, 4), whereas C-ions suppressed
invasion and migration of MIAPaCa-2 as well as BxPC-3
and AsPC-1 pancreatic adenocarcinoma cells (4), but
enhanced PANC-1 cell invasion (4). Cell movement re-
quires dynamic remodeling of cellular architecture,
including actin filament rearrangement and actomyosin
contraction, and Rho guanosine triphosphate (GTP)ases
Rac1 and RhoA are key components of signaling networks
regulating cell migration (6). We have previously demon-
strated that nitric oxideeinduced RhoA activation
enhanced the invasiveness of C-ioneirradiated PANC-1
cells (4). However, the role of Rac1 and RhoA in the
response of cancer cells to C-ion irradiation has not been
explored.

The activity of Rac1 and RhoA is tightly regulated by
guanine nucleotide exchange factors (GEFs) that activate
Rho GTPases by stimulating the exchange of guanosine
diphosphate (GDP) to GTP, and by GTPase-activating
proteins (GAPs) that inactivate Rho GTPases by
enhancing GTP hydrolysis (6). The cytosolic localization
of inactive Rho GTPases is regulated by Rho-specific
guanine nucleotide dissociation inhibitors (GDIs) that
maintain Rho GTPases in an inactive GDP-bound state
(7). Recent studies have shown that the activity of Rac1
and RhoA is regulated by their degradation via the ubiq-
uitin (Ub)-proteasome system, which modulates cell
migration (8, 9).

The Ub-proteasome system executes selective degrada-
tion of target proteins labeled with poly-Ub chains by the
sequential activities of E1, E2, and E3 Ub ligases; the latter
transfers Ub from E2 to the target protein (10). Thus, E3
ligase plays a major role in regulating protein turnover,
which maintains specific cellular phenotypes (11).

In this study we demonstrate that C-ion irradiation in-
hibits the motility of pancreatic cancer cells by suppressing
Rac1 and RhoA activation via the Ub-proteasome degra-
dation pathway.

Methods and Materials

Cell culture and reagents

Human pancreatic cancer cell lines MIAPaCa-2, AsPC-1,
BxPC-3, and PANC-1 were purchased from the American
Type Culture Collection (Manassas, VA). Cells were cultured
in Dulbecco’s modified eagle medium (DMEM) (MIAPaCa-2
and PANC-1) and Roswell Park Memorial Institute medium
1640 (AsPC-1, BxPC-3) purchased from Nissui (Tokyo,
Japan) and supplemented with 10% fetal bovine serum
(HyClone, Logan, UT). A proteasome inhibitor, epoxomicin,
was purchased from Peptide Institute (Ibaraki, Japan).

Irradiation

Cells were treated with x-ray or C-ion radiation as previ-
ously described (4). The initial energy of the C-ion beam
was 290 MeV per nucleon and the LET value was 80 keV/
mm, corresponding to a monoenergetic beam with narrow
Bragg peak at a depth of 10 cm. Cells were irradiated at
doses of 4 Gy (X rays) and 0.5, 1, 2, or 4 Gy (C-ions) at the
rate of 1 Gy/min. An outline of the experimental procedure
is presented in Figure 1.

Migration and invasion assay

Cell migration and invasion were examined as previously
described, with some modifications (5). Briefly, 2 days
after irradiation, cells were trypsinized and stained with
trypan blue to determine cell viability. Cells were then
resuspended in serum-free DMEM containing 0.35%
bovine serum albumin and seeded at a concentration of
1.5 � 105 viable cells per well in transwell chambers
containing 6.5-mm filters with 8-mm pores (Corning,
Corning, NY); cell migration and invasion were evaluated
after 24 hours (Fig. 1). Cells that migrated through the
transwell membrane were fixed and stained with Diff
Quick (Sysmex, Kobe, Japan).

Short interfering RNA transfection

Short interfering RNA (siRNA) targeting X-linked inhib-
itor of apoptosis protein (XIAP) and negative control
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Fig. 1. An outline of the experimental procedures. siRNA Z short interfering RNA.
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siRNA (Santa Cruz Biotechnology, Santa Cruz, CA) were
used as previously described (12). Cells grown to
approximately 60% confluence in 6-well plates were
transfected with 50 pmol siRNA mixed with LipoTrust
Ex Oligo reagent (Hokkaido System Science Co, Hok-
kaido, Japan) for 48 hours in serum-free medium.
Cells were then trypsinized and used for migration and
invasion assays, or analyzed for protein expression by
immunoblotting.

Immunoblotting

The time course of protein expression analysis is shown in
Figure 1. Cells were lysed in radioimmunoprecipitation
buffer containing 200 mM phenylmethylsulfonyl
fluoride and protease inhibitor cocktail (Santa Cruz
Biotechnology) as previously described (5). Total cell
proteins were separated by sodium dodecyl sulfatee
polyacrylamide gel electrophoresis, transferred to nitro-
cellulose membranes, and incubated with primary
antibodies for 1 hour at room temperature. The antibodies
against the following proteins were used: matrix
metalloproteinase-2 (1:2500; Daiichi Fine Chemical,
Toyama, Japan), XIAP, IAP1, HECT domain and ankyrin
repeat-containing E3 ubiquitin ligase (HACE)1 (1:1000;
all from Cell Signaling Technology, Danvers, MA), protein
Ub chain (1:2000; MBL, Nagoya, Japan), Rac1 and RhoA
(1:2500; the Rac1 and RhoA activity assay kit, Cell Bio-
labs, San Diego, CA), and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (1:10,000; Trevigen, Gaither-
burg, MD). Can Get Signal Solution 1 (Toyobo, Tokyo,
Japan) was used as the dilution buffer. The membranes
were washed and incubated for 1 hour at room
temperature with horseradish peroxidaseeconjugated anti-
mouse or anti-rabbit IgG (Amersham Biosciences, Buck-
inghamshire, United Kingdom) diluted 1:10,000 with Can
Get Signal Solution 2 (Toyobo). Protein bands were
detected by enhanced chemiluminescence using an LAS
4000 Lumino image analyzer (Fujifilm, Tokyo, Japan).

For proteasome inhibition, 2 days after irradiation cells
were treated with 10 or 20 nM epoxomicin for 24 hours,
lysed as described, and analyzed for protein expression or
Rac1 and RhoA activity.

Glutathione S-transferase pull-down of
polyubiquitinated proteins

Polyubiquitinated proteins were isolated using the gluta-
thione S-transferase (GST)-tagged Tandem Ubiquitin
Binding Entity (GST-TUBE) (Nacalai Tesque, Kyoto,
Japan), according to the manufacturer’s instructions.
Briefly, cells were lysed as described earlier with or without
GST-TUBE. The GST-TUBEecontaining samples were
collected in ice-cold tubes, incubated for 15 minutes on ice,
centrifuged at 14,000 � g for 10 minutes at 4�C, and the
supernatant was incubated with Glutathione Sepharose 4B
beads (GE Healthcare, Buckinghamshire, United Kingdom)
for 2 hours at 4�C with rotation; immunoprecipitated pro-
teins were eluted and analyzed by immunoblotting. Cell
lysates without GST-TUBE were used to measure protein
concentration by the Bicinchoninic acid (BCA) protein
assay (Pierce Biotechnology, Rockford, IL).

Rac1 and RhoA activity assay

Small GTPase activity was measured using the active Rho
GTPase pull-down assay and the Rac1 and RhoA activa-
tion assay kit (Cell Biolabs) according to the manufac-
turer’s instructions. Briefly, cells were lysed on ice,
centrifuged at 14,000 � g for 10 minutes at 4�C, and the
supernatant was incubated with agarose beads containing
immobilized protein-activated kinase 1 or Rhotekin Rho-
binding domain (Cell Biolabs) for 1 hour at 4�C with
rotation. The precipitated protein was eluted and analyzed
by immunoblotting.

Statistical analysis

Statistical analyses were performed using an unpaired
Student t test, and the differences between groups were
assessed with a 2-tailed test; P<.05 was considered



3

2

1

0
0 0.5 1 2 4

C-ion

M
ig

ra
te

d 
ce

lls
 (

%
)

Dose (Gy) Dose (Gy)
In

va
da

d 
ce

lls
 (

%
) 4

3

2

1

0
0 0.5 1 2 4

C-ion

**
**

**
** ** **

A B

Fig. 2. Carbon-ion (C-ion) irradiation suppresses
MIAPaCa-2 cell migration and invasiveness in a dose-
dependent manner. (A) Migration and (B) invasion of
MIAPaCa-2 cells. **P<.01 versus control (nZ3).
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significant. Each experiment was performed in triplicate
and independently repeated at least twice on different days.

Results

Carbon-ion radiation suppresses MIAPaCa-2 cell
migration and invasion in a dose-dependent
manner

We have previously demonstrated that irradiation of
MIAPaCa-2 cells with 2 Gy C-ions suppressed their
migration and invasion (4). Here, we found that C-ion
irradiation at 0.5, 1, 2, and 4 Gy dose-dependently inhibited
the migration and invasion of MIAPaCa-2 cells (Fig. 2).
Consistent with reduced invasiveness, the expression of
activated matrix metalloproteinase-2, a critical protease
involved in MIAPaCa-2 cell invasion (3), was decreased in
C-ioneirradiated cells (Supplemental Figure E1; available
MIAPaCa-2
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online at www.redjournal.org). Although MIAPaCa-2 cell
migration and invasion were markedly inhibited by C-ions
at doses >1 Gy (Fig. 2), they were induced by x-ray irra-
diation at 4 Gy (3). The relative biological effectiveness of
x-ray versus C-ion radiation, as represented by the D10

value, was 2.0 (Supplemental Figure E2; available online at
www.redjournal.org); therefore, in the subsequent experi-
ments, X rays and C-ions were used at the doses of 4 and
2 Gy, respectively.

Carbon-ion radiation inhibits Rac1 and RhoA
activities via proteasomal degradation

Carbon-ion treatment suppressed MIAPaCa-2 cell migra-
tion and invasion, indicating that cell motility was affected.
Therefore, we examined the effect of C-ion radiation on the
activity of Rac1 and RhoA, 2 major regulators of cell
motility (6). Although total levels of Rac1 and RhoA were
unchanged, the expression of the GTP-bound active Rac1
was increased in X rayeirradiated cells (Fig. 3A). In
contrast, C-ion radiation markedly reduced the levels of
GTP-bound Rac1 and RhoA (Fig. 3A, B), indicating the
inhibition of Rac1 and RhoA activation in MIAPaCa-2
cells. However, in C-ioneirradiated PANC-1 cells, the
level of GTP-bound Rac1 was not changed (Fig. 3C). We
have previously found that in PANC-1 cells, C-ion irradi-
ation enhanced invasiveness and increased GTP-bound
RhoA without affecting total RhoA (5).

The molecular switch between active GTP-bound and
inactive GDP-bound forms of Rac1 and RhoA is regulated
by GEFs and GAPs (6); however, their messenger RNA
(mRNA) expression was not altered in irradiated
MIAPaCa-2 cells (Supplemental Figure E3; available
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online at www.redjournal.org). In addition, the protein level
of Rho-specific GDI, which sequesters GDP-bound
GTPases in the cytosol, as well as the subcellular locali-
zation of Rac1 and RhoA, were also not affected by irra-
diation (Supplemental Figure E4; available online at www.
redjournal.org). Interestingly, the treatment of MIAPaCa-2
cells with a proteasome inhibitor restored GTP-bound
Rac1 and RhoA levels (Fig. 4A, B). Furthermore, we
found that in AsPC-1 and BxPC-3 cells, C-ion irradiation
also significantly decreased the levels of GTP-bound Rac1
without affecting total Rac1 expression (Fig. 4C, D), which
correlated with the inhibition of cell migration (4). The
decrease in GTP-bound Rac1 was rescued by the treatment
with epoxomicin (Fig. 4C, D), suggesting that C-ion irra-
diation reduced BxPC-3 and AsPC-1 cell migration by
down-regulating Rac1 activity via proteasomal degradation
of GTP-bound Rac1, which is similar to the effect observed
in MIAPaCa-2 cells. Together, these data indicate that the
response of PANC-1 cells to C-ion treatment differs from
that of the other tested pancreatic cancer cells.
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Carbon-ion radiation induced stronger
polyubiquitination than x-ray radiation

To examine the effect of C-ion irradiation on Ub-mediated
proteasomal degradation of Rac1 and RhoA, we analyzed
the level of polyubiquitinated proteins in irradiated cells. In
C-ionetreated cells, proteasome inhibition caused higher
accumulation of polyubiquitinated proteins compared with
X rayetreated cells (Fig. 5A), indicating that the Ub-
proteasome system was activated by C-ions. Accordingly,
E3 Ub ligase mRNAwas upregulated by >50% after C-ion
irradiation (Supplemental Table E1; available online at
www.redjournal.org).
E3 Ub ligase XIAP mediates C-ioneinduced
degradation of GTP-bound Rac1

Two IAPs, XIAP and cIAP1, and HACE1 have been
identified as E3 Ub ligases specific for Rac1 (9, 13). The
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XIAP transcript (Supplemental Table E1; available online
at www.redjournal.org) and protein (Fig. 5B) were
increased after C-ion irradiation, whereas the expression of
cIAP1 and HACE1 was unchanged (Fig. 5C, D). X-linked
inhibitor of apoptosis protein also coprecipitated with
GTP-bound Rac1 in the lysates of C-ioneirradiated cells
(Fig. 5E), suggesting that XIAP binds to and Ub-labels the
GTP-bound Rac1 to target it for degradation; indeed, Rac1
was ubiquitinated in C-ioneirradiated cells (Supplemental
Figure E5; available online at www.redjournal.org). RhoA
was also ubiquitinated under these conditions
(Supplemental Figure E5; available online at www.
redjournal.org); however, none of E3 Ub ligases involved
in RhoA degradation was upregulated by C-ion radiation
(Supplemental Table E1; available online at www.
redjournal.org).

XIAP mediates the inhibitory effects of C-ion
radiation on cell migration and invasion

To determine XIAP’s role in C-ioneinduced inhibition of
cell migration and invasion, XIAP expression was blocked
by specific siRNA (Fig. 6A). Cell migration and invasion
suppressed by C-ion radiation were restored by XIAP
knockdown (Fig. 6B, C), indicating that XIAP is the E3
ligase responsible for Rac1 degradation and suppression of
migration and invasion of C-ioneirradiated pancreatic
cancer cells.

Discussion

Radiation therapy is a standard method of cancer treatment,
and the therapeutic efficacy of C-ion radiation in pancreatic
cancer has been recently analyzed (14). We have previously
found that C-ion irradiation suppressed the motility of
AsPC-1, BxPC-3, and MIAPaCa-2 pancreatic cancer cells
but increased the invasion of PANC-1 cells (4). We have
also observed that C-ions reduced the invasiveness of
several other tumor cell lines; only SF126 human glio-
blastoma cells exhibited increase (5). The response of
cancer cells to radiation may vary depending on genetic
background; indeed, we have identified mutations in the
genes encoding the components of the NO-PI3K-AKT2
pathway (data not shown), which is a critical signaling
mechanism underlying irradiation-enhanced invasion of
PANC-1 cells (5). Given that C-ion irradiation activated
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RhoA in PANC-1 cells (5) but exerted the opposite effects
in other pancreatic cancer cells (ie, inhibiting RhoA and
Rac1 in MIAPaCa-2 cells and Rac1 in AsPC-1 and BxPC-3
cells, via proteasomal degradation), the involvement of
cell-specific mutations in Rac1 and RhoA stability should
be further investigated.

Small GTPase activity is regulated by multiple factors,
including GEFs and GAPs which, serve as molecular
switches between GTP- and GDP-bound forms of Rac1 and
RhoA (6), and GDIs, which sequester GDP-bound Rac1 and
RhoA in the cytosol, preventing their membrane localiza-
tion (7, 15). Patients with pancreatic adenocarcinomas
positive for VAV1, a GEF regulating Rac1 activation, have
lower survival rates than those with VAV1-negative tumors
(16), suggesting that GEFs or GAPs may be potential
therapeutic targets (17). Surprisingly, we did not observe
any changes in the expression of GEF and GAP mRNA and
GDI protein, or subcellular localization of Rac1 and RhoA
in irradiated MIAPaCa-2 cells. Radiation reduces intracel-
lular GTP pool via oxidation of GTP to 8-oxo-dGTP, which
is further hydrolyzed by MutT homolog 1 and released from
the cells (18, 19); however, GTP level was unchanged in
irradiated MIAPaCa-2 cells (data not shown).

In MIAPaCa-2 cells, XIAP levels were upregulated by
C-ions but not by x-ray radiation. Transcription of XIAP is
regulated by nuclear factor kB (20), which is more strongly
activated by particle than by photon radiation via IkB
phosphorylation and degradation (21-23), a process
modulated by tumor necrosis factor receptoreassociated
factor (TRAF)2 (24, 25). Deoxyribonucleic acid microarray
analysis revealed the increase in TRAF2 levels in C-ion-
but not in X rayeirradiated MIAPaCa-2 cells (data not
shown). Thus, TRAF2 may play a role in the up-regulation
of XIAP expression by C-ion radiation; however, additional
studies are needed to elucidate the mechanism of GTP-
bound RhoA degradation induced by C-ions.

In this study we observed a unique effect of C-ion ra-
diation on the protein degradation system in MIAPaCa-2,
AsPC-1, and BxPC-3 cells. Protein polyubiquitination
after C-ion irradiation was dramatically induced compared
with x-ray treatment in MIAPaCa-2. Heavy ions,
including C-ion, have high ionization density in each track
of individual particles and can induce significant DNA
damage and cytotoxicity in tumor cells (26, 27). Radiation
also triggers cellular oxidative stress via generation of
reactive oxygen species such as hydroxyl radicals (�OH)
and reactive nitrogen oxide species (28), leading to
structural and functional alterations of cellular proteins
(29, 30) and their degradation through the ubiquitin-
proteasome system (31). Interestingly, Matsumoto et al
(32) have reported that the generation of dense �OH rad-
icals was enhanced with increasing LET and that different
types of dense �OH may be produced by x-ray and C-ion
irradiation. Therefore, C-ions may have more severe ef-
fects on protein stability than photon radiation. Protein
ubiquitination-mediated degradation can affect cell
behavior (33), as evidenced by the change in MIAPaCa-2
cell motility induced by C-ion irradiation. E3 Ub ligase
regulates the turnover of specific proteins responsible for
particular cellular phenotypes (10, 11); therefore, E3 Ub
ligases and their substrates are likely to be involved in
cellular responses to C-ion radiation (11, 34).

In conclusion, we show, for the first time, that Ub-pro-
teasomeemediated degradation of Rac1 and RhoA is a
mechanism underlying the suppression of pancreatic cancer
cell motility by C-ion radiation. Further investigation of
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genetic mechanisms regulating the activity of Rac1 and
RhoA in tumors may provide clues to effective inhibition of
cancer invasiveness by C-ion radiation.
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