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Abstract Extracellular HSP70 has been found to participate in
both innate and adaptive immune responses. However, little is
known about the molecular mechanisms that mediate this pro-
cess. Previous reports suggest that HSP70 interacts with antigen
presenting cells (APC) through a plethora of surface receptors.
In this study, we have examined the relative binding of potential
HSP70 receptors and found high affinity binding to LOX-1 but
not other structures with a role in HSP70–APC interactions
such as LRP/CD91, CD40, TLR2, TLR4 or another c-type lec-
tin family member (DC-SIGN) closely related to LOX-1. In
addition to APC, HSP70 can avidly bind to non-APC cell lines,
especially those from epithelial or endothelial background.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Heat shock protein 70 (HSP70) has been well characterized

as an intracellular molecular chaperone involved in nascent

and damaged intracellular protein refolding [1,2]. However,

a novel extracellular role has been ascribed to this protein

since HSP70-derived tumor preparations can elicit in vivo tu-

mor rejection [3,4]. HSP70 has been shown to capture anti-

genic peptides and trigger their cross-presentation through

immune effector cells [5]. HSP70 also mediates both cytokine

expression and maturation of antigen presenting cell (APC)

[5–9]. This HSP70 extracellular function is also conserved

among several other HSP family members including gp96/

GRP94, calreticulin and HSP60 [4]. Although, HSP70 shows

exciting potential as an adjuvant molecule, the mechanism(s)

through which it exerts this function remains elusive. Previ-

ous studies have demonstrated that the anti-tumoral immune

function of HSPs is activated through receptor-mediated

endocytosis because of the low level (nanomolar) of HSPs

needed to see an immune response and the saturability of
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the process [10,11]. A growing number of surface receptors

for HSPs such as scavenger receptors LOX-1, CD94 and

scavenger receptor A (SR-A), the LDL-receptor-related pro-

tein/a2-macroglobulin CD91 receptor, the Toll-like receptor

(TLR) 2 and 4 and CD40 have been associated with endocy-

tosis/phagocytosis and/or are involved in the induction of the

pro-inflammatory response [12–16].

SRs are membrane endocytic receptors recognizing modi-

fied or altered molecules such as lipoproteins and polyan-

ionic ligands [17–19]. Delneste et al. [12] have shown

convincingly that LOX-1, a class E SR, is an important

HSP70 binding structure present on the surface of dendritic

cells (DC). This type II calcium-dependent SR also belongs

to c-type lectin domain receptor family comprising other

members, such as DC-SIGN, CD94 and DECTIN-1

[20,21]. LOX-1 has been associated with functions related

to immunity including leukocyte homing as the tethering

receptor responsible for leukocyte adhesion rolling on endo-

thelial cells [22]. LOX-1 also binds and internalizes oxidized

LDL (ox-LDL), an important process involved in atheroscle-

rosis [23]. Interestingly, another c-type lectin receptor found

on Natural Killer (NK) cells CD94 can bind HSP70 and the

endoplasmic reticulum (ER) resident Gp96 interacts to SR-A

illustrating the importance of SRs in HSP-mediated immune

function [14].

LRP/CD91 has also been proposed as a HSP70 receptor

[15]. LRP/CD91 is a multifunctional plasma membrane recep-

tor recognizing as well as SR family members various ligands,

such as lipoproteins, bacterial toxins and more specifically a2-
macroglobulin [24]. LRP/CD91 is synthesized as a 600-kDa

precursor processed into 515-kDa (alpha) and 85-kDa (beta)

subunits [24]. The 85-kDa subunit (beta) possesses a trans-

membrane domain and binds the extracellular 515-kDa sub-

unit (alpha) through non-covalent interactions [25]. The

HSP70 binding site on CD91 has been mapped to the first part

of the alpha subunit and HSP70/CD91 interaction can be com-

peted by a2-macroglobulin and receptor-associated protein

(RAP) [15,16,26]. LRP/CD91 binding is evidently not re-

stricted to HSP70 but encompasses other HSPs (gp96/

GRP94, calreticulin and HSP90) [15]. Interestingly, CD91/cal-

reticulin complexed with surfactant proteins (SP-A and SP-D)

associated with foreign debris can initiate phagocytosis and

pro-inflammatory response in lungs [27].

HSP70–peptide complex binding is followed by antigen

cross-presentation in APC. HSP70–peptide complexes
blished by Elsevier B.V. All rights reserved.
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proceed through specific routes for peptide representation on

the cell surface by major histocompatibility complex (MHC)

receptor (cross-presentation) [10,11]. Such peptides are taken

up into the ER through ABC family transport system that

involves the transporters associated with antigen processing

(TAP)-TAP1 and TAP2 proteins. TAP1 and TAP2 form a

complex that transports peptides across the ER membrane

and delivers them to MHC class I (MHCI) protein com-

plexes [28,29]. These MHC I complexes are transported to

the cytoplasm via a vesicular system and displayed on the

cell surface where they are subject to surveillance by cyto-

toxic, CD8+ lymphocytes [30].

In parallel with cross-presentation, HSP70 can initiate a

potent innate immune response [6,8,31]. After HSP70 bind-

ing to APC, a pro-inflammatory response is generated

through the activation of various immune processes, such

as cytokine production (IL-1b, TNF-a and IL-6, etc.), co-

stimulatory molecule expression (MHC class II and CD86)

and nitric oxide (NO) release. Our group and others have

demonstrated that two members of the Toll-like receptor

family TLR2 and 4 activate HSP-mediated pro-inflammatory

cytokine production via the MyD88/IRAK/NF-jB signal

transduction pathway in a CD14-dependent fashion [6–8].

Extracellular HSP70 also stimulates intracellular calcium

mobilization. Artificial depletion of the calcium content

using intracellular Ca2+ chelator BAPTA-AM interferes with

the IjBa/NF-jB pathway leading to cytokine expression

inhibition. In addition to TLRs, other HSP70 signaling

receptors, such as CD40 have shown some pro-inflammatory

activity [32]. CD40 plays an essential role in the develop-

ment of HSP70-induced autoimmune form of diabetes [33].

In this particular context, HSP70 promotes cytokine produc-

tion through a CD40-dependent mechanism but induces

functional maturation of bone marrow-derived DC in the

absence of a ‘‘standard’’ phenotypic maturation [33].

In this study, the relative binding affinity of known and un-

known HSP70 receptors, such as LOX-1, DC-SIGN, LRP/

CD91, TLR2, TLR4 and CD40 in HSP70–cell surface interac-

tion has been evaluated using stable transfectants overexpress-

ing these receptors in non-APC cells. Among the receptors

proposed to specifically bind HSP70, only c-type lectin recep-

tor LOX-1 showed significant HSP70 binding affinity. Intrigu-

ingly, endothelial/epithelial cells possessed membrane HSP70

receptor(s) suggesting a role of HSP70 in other cellular func-

tion(s) than anti-tumor immune response.
2. Materials and methods

2.1. Cell culture
THP-1, RAW 264.7, wild-type K562 and K562 overexpressing hu-

man DC-SIGN were grown in RPMI 1640 medium 10% FBS sup-
plemented with 100 IU/ml penicillin and 100 lg/ml streptomycin
[34]. IMR90 were cultured in minimal essential medium (MEM)
15% FBS with 2 mM glutamine. Human umbilical vein endothelial
cells (HUVEC) were maintained in endothelial basal medium-2
(EBM-2) supplemented with Clonetics� SingleQuot� (Cambrex/Bio-
wittaker). The melanoma A375, wild-type HEK293 (293), HEK293
overexpressing human TLR2 or 4 (293-TLR2, 293-TLR4) (G418),
HEK293 overexpressing the PMX empty vector (293 EV Ley)
(G418), HEK293 overexpressing murine CD40 (293 CD40 Ley)
(G418), HeLa, HeLa S3 and MCF-7 were grown in DMEM 10%
FBS [8,35]. Prostate cancer cells PC-3, Chinese Hamster Ovary
(CHO), CHO overexpressing human LOX-1 (CHO-LOX-1), CHO
LRP null, CHO LRP null overexpressing the second extracellular
binding region of the alpha subunit of human LRP linked to the
beta subunit (LRP2) (aa. 787–1164 + 3765–4525) (G418) or the
fourth region of the alpha subunit fused with the beta subunit
(LRP4) (aa. 3274–4525) (G418) were maintained in F-12 (Ham)
nutrient mixture with 10% FBS [36]. In the case of CHO-LOX-1,
clonal selection was kept with 10 lg/ml blasticidin S. For all stable
transfectants using G418 as a selecting agent, cells were incubated
with G418 at a final concentration of 0.4 lg/ml. Each experiment
was carried out in cell lines grown in exponential conditions.

2.2. Thioglycollate-elicited peritoneal macrophages
Isolation of peritoneal macrophages was done as previously de-

scribed [37]. Briefly, peritoneal macrophages were isolated from 6–
10-week-old C57BL/6 background mice. The mice were injected intra-
peritoneally with 3 ml of thioglycollate, and after 4 days peritoneal
exudate cells were harvested by lavage with 10 ml of RPMI 1640
medium supplemented with 10% heat-inactivated FBS and penicillin/
streptomycin.

2.3. Alexa 488-labeled purified HSP70 preparation
Human melanoma cells A375-MEL or mouse MISA cells have

been used as starting material for HSP70–peptide complexes
(HSP70.PC) preparation because high endogenous HSC70 and/or
HSP70 levels were detected in these cell types. HSP70.PC purifica-
tion was executed as previously reported [38]. Briefly, a 10-ml cell
pellet of tumor cells was homogenized in 40 ml hypotonic buffer
(10 mM NaHCO3, 0.5 mM PMSF, pH 7.1) by Dounce homogeniza-
tion. The homogenate was first centrifuged at 10000 · g for 30 min
and the supernatant was recentrifuged for 60 min at 100000 · g. The
sample buffer was changed to buffer D (20 mM Tris–acetate, 20 mM
NaCl, 15 mM b-mercaptoethanol, 3 mM MgCl2, and 0.5 mM
PMSF, pH 7.5) using PD-10 column (Amersham-Biosciences). The
sample was applied directly to a 5-ml ADP–agarose column (Sig-
ma–Aldrich) which was equilibrated with buffer D. HSP70.PC was
eluted from ADP–agarose column with 3 mM ADP in buffer D.
The sample buffer was changed to FPLC buffer (20 mM sodium
mono- and diphosphate, 20 mM NaCl, pH 7.0) with PD-10 column.
The supernatant was applied to a DEAE anion exchange column
equilibrated with FPLC buffer (Amersham-Biosciences). HSP70.PC
was eluted with the FPLC buffer containing 150 mM NaCl. All pro-
teins were quantitated with Bradford assay. Alexa 488 labeling on
HSP70.PC was carried out according to the manufacturer�s instruc-
tions (Molecular Probes, USA). BSA was used as negative control.
No degradation of the HSP70.PC purified preparation was observed
by Coomassie staining and the presence of HSP70 in the prepara-
tion was confirmed by Western blotting using a mouse monoclonal
antibody specific against HSP70 (SPA-810, Stressgen).

2.4. HSP70.PC binding assay
Non-trypsinized cells (2 · 105) were washed twice in PBS containing

0.5% FBS, 0.05% NaN3 and 1 mM CaCl2 (PFNC) and incubated with
150 nM Alexa 488-labeled BSA or HSP70.PC for 30 min on ice with
gentle shaking. The cells were washed in PFNC twice and Alexa
488-labeled HSP70.PC binding was monitored by flow cytometry (Bec-
ton Dickinson). For blocking experiments, cells were pre-incubated
with 120 lg/ml of anti-human LOX-1 (JTX92) (Dr. Sawamura) for
30 min at 37 �C and then washed twice with PFNC before HSP70.PC
binding assessment.
3. Results

3.1. Exogenous HSP70.PC can specifically bind to APC

As mentioned earlier, HSP70 anti-tumoral immune func-

tion is probably activated through its interaction with a sur-

face membrane receptor [10]. Our group and others have

demonstrated that exogenous HSP70 can bind to the surface

of human monocytes, splenocytes and DC [6,15,39]. We

have analyzed by flow cytometry HSP70 binding to a human

pre-monocytic cell line (THP-1), to mature murine macro-



Fig. 1. Exogenous HSP70.PC specifically binds to monocytes and
macrophages. Pre-monocytic THP-1, mature macrophages RAW
254.7 or thioglycollate-elicited peritoneal macrophages were incubated
with Alexa 488-labeled BSA or HSP70.PC at a concentration of 10 lg/
ml (150 nM) on ice for 30 min with gentle shaking. HSP70.PC binding
was monitored by flow cytometry (FL1). Shaded gray and thick black
line histograms corresponded, respectively, to BSA and HSP70.PC
binding. Experiments were carried out three times with similar results.
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phages (RAW 264.7) and to thioglycollate-elicited peritoneal

macrophages using human HSP70.PC (Fig. 1). HSP70

binding intensity differed between each cell type reflecting

probably differences in HSP70 receptor(s) expression. Inter-

estingly, at least two peaks were generated when HSP70.PC

was associated with RAW 264.7 cells and thioglycollate-elic-

ited macrophages suggesting the possibility of multiple

HSP70 receptors on macrophages (Fig. 1).
3.2. Absence of association between HSP70.PC and LRP/CD91

or TLR 2, 4 or CD40

It has been suggested that HSP70 can interact directly with

LRP/CD91 [15]. Nonetheless, some skepticism has been di-

rected to the involvement of CD91 in HSP binding since

independent studies conducted by Berwin et al. [40] showed

that CHO cells, which express CD91, do not bind gp96.

LRP/CD91 is composed of more than 4500 amino acids mak-

ing difficult the expression of the full-length protein in an

artificial system (stable transfection). To overcome this prob-

lem, LRP/CD91 mini-receptors have been prepared in CHO

LRP null line to avoid the possibility of background binding

to endogenous LRP/CD91 [41]. LRP/CD91 ligands mainly

interact with the second and/or the fourth binding domain

present on its alpha subunit (CHO LRP 2 and LRP 4) [41].

A residual HSP70.PC binding was seen on wild-type CHO

(CHO-K1) suggesting the presence of endogenous HSP70

receptors. Surprisingly, no sign of high affinity HSP70.PC

binding was observed in CHO-LRP 2 and 4 (Fig. 2). Also,

there was no significant difference in HSP70.PC binding be-

tween wild-type CHO cells (CHO-K1) and CHO cells devoid

of a functional LRP/CD91 gene suggesting that LRP/CD91

was not the high affinity HSP70 receptor present on CHO

(Fig. 2).

The HSP70-induced pro-inflammatory response has been

functionally related to TLR2 and/or TLR4 in collaboration

with CD14 suggesting these molecules as potential HSP70

receptors [6–8]. Previous experiments have ruled out the possi-

bility that CD14 is a HSP70 receptor since no interaction is ob-

served between HSP70 and CD14-overexpressing CHO cells

[12]. Moreover, a specific neutralizing anti-CD14 antibody

(clone MY4) does not inhibit HSP70 binding to APC [42]. In

order to determine whether TLR2 and TLR4 are HSP70

important receptors, we have stably transfected expression vec-

tors encoding those receptors in HEK293 cells. Such cells

showed enhanced activation of NF-jB activity when chal-

lenged with E. coli LPS or mammalian HSP70 indicating effi-

cient expression of the proteins in HEK293 [8]. Intriguingly,

wild-type HEK293 cells can significantly bind exogenous

HSP70 showing that HSP70 binding was not restricted to

APC (Fig. 3A). Nonetheless, no greater association was ob-

tained when human TLR2 or TLR4 was overexpressed in these

cells (Fig. 3A).

Concerning CD40, HSP70 binding to this molecule was re-

ported to be ADP-dependent requiring only the HSP70 ATP-

ase domain [32]. This interaction was evidently further

stabilized with the presence of HSP70 peptide substrate. Nev-

ertheless, in our studies, HSP70.PC binding assessment to

HEK293 embryonic kidney cells overexpressing the murine

form of CD40 revealed no significant interaction between

HSP70.PC and CD40 even when HSP70 binding assays were

carried out at high concentrations (up to 50 lg/ml) (Fig. 3B)

(data not shown). Surface expression of CD40 was confirmed

in these cells using an anti-CD40 antibody in Western Blotting

and by flow cytometry signifying that CD40 does not play a

major role as a HSP70 receptor (data not shown) [35]. The

HSP70 binding affinity of HEK293 overexpressing an empty

vector was significantly reduced in comparison from the one

obtained with wild-type HEK293 (Figs. 3A and B). It is possi-

ble that the provenance of these cell lines, different culture con-

ditions or selection of stably overexpressing clone has favored

the establishment of different HEK293 cell populations



Fig. 2. Extracellular HSP70.PC does not interact with LRP/CD91. Wild-type CHO, CHO devoid of a functional LRP/CD91 gene (LRP NULL) or
overexpressing the second or the fourth LRP/CD91 binding domain present on the alpha subunit (LRP 2 or LRP 4) were subjected to a HSP70
binding assay as mentioned in Section 2. Shaded gray and thick black line histograms corresponded to BSA and HSP70.PC binding, respectively.
Experiments were carried out three times with similar results.
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expressing variable amounts of endogenous HSP70 recep-

tor(s). However, in each cell population, independent controls

were carried out, indicating minimal high affinity binding of

HSP70 to TLR2, TLR4 and CD40 (data not shown).

3.3. C-type lectin receptor LOX-1 interacted with HSP70.PC

We next examined the role of SR LOX-1 which has been

previously associated with HSP70.PC binding capacity [12].

We observed abundant HSP70.PC-LOX-1 interaction in sta-

ble transfectant overexpressing the human LOX-1 receptor

on CHO (Fig. 4) [36]. CD94, another member of c-type lectin

receptor family member expressed on NK cells, possesses

some HSP70 binding affinity [13]. Since the extracellular do-

mains of both proteins comprise almost exclusively the c-type

lectin domain, we wanted to determine if other c-type lectin

family member such as DC-SIGN could interact with

HSP70. As illustrated in Fig. 4, no clear HSP70 binding

was seen on the lymphoblastic cell line K562 when human

DC-SIGN was overexpressed at the HSP70 concentration

tested suggesting that DC-SIGN was not a high affinity

HSP70.PC binding molecule [34]. These experiments indicate

some specificity in the interaction of the c-type lectin family

with HSP70.PC.

3.4. HSP70.PC binding to endothelial/epithelial cells

Since significant HSP70 binding to HEK293 embryonic

kidney cells was observed, we examined whether this observa-

tion could be extended to other non-APC cell types. In fact,
previous studies had suggested that extracellular HSP70

might have properties independent of the immune response,

in for instance, cytoprotection in neuronal cells [43]. To ex-

plore the extent of this possibility, HSP70 binding assays

using HSP70.PC at a concentration of 10 lg/ml were per-

formed on various cell lines including endothelial/epithelial,

melanoma cells and fibroblasts. Extracellular HSP70.PC

bound avidly to human endothelial cells HUVEC, prostate

cancer PC-3 cells and HeLa cells while binding to human

fibroblasts IMR90, breast cancer cells MCF-7 or melanoma

cells A375 was minimal (Figs. 5A and B). As observed for

HEK293, HeLa coming from two different backgrounds

(HeLa S3 or HeLa) appeared to bind with different avidity

to HSP70.PC (Fig. 5A).

HSP70 binding to HUVEC correlates with previous reports

showing surface expression of the c-type lectin receptor LOX-1

on endothelial cells [44]. As our studies indicate that LOX-1 is

an effective HSP70 receptor, we tested whether LOX-1 could

account for HSP70.PC binding to HUVEC. We performed

an inhibition experiment using an anti-human LOX-1 blocking

antibody (JTX92) on CHO LOX-1 and HUVEC cells. As seen

in the Fig. 5C, HSP70.PC binding to CHO LOX-1 was inhib-

ited by approximately 70% by the JTX92 antibody but not a

specific control antibody against DC-SIGN (data not shown).

Nevertheless, JTX92 antibody had no effect on HSP70.PC

binding to HUVEC indicating that LOX-1 does not play a ma-

jor role in HSP70-HUVEC binding. Interestingly, HSP70.PC

binding to PC-3 and HeLa was also not affected by pre-incu-



Fig. 3. Absence of association between HSP70.PC and signaling receptors such as TLR 2, 4 and CD40. (A) Wild-type HEK293, HEK293
overexpressing the TLR 2 or 4 (293 TLR2 or TLR4), (B) HEK293 overexpressing an empty vector (293 EV Ley) and HEK293 overexpressing the
murine CD40 (293 CD40 Ley) (kindly provided by Dr. Steve C. Ley) were subjected to a HSP70 binding assay as mentioned in Section 2. Shaded
gray and thick black line histograms corresponded to BSA and HSP70.PC binding, respectively. Experiments were carried out three times with
similar results.
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bating them with JTX92 antibody suggesting that these cells

may possess a number of potential receptors for HSP70

excluding LOX-1 and these are widely distributed in different

cell types (Fig. 5C).
4. Discussion

There has been considerable recent interest in the biolog-

ical role of extracellular HSP molecular chaperones particu-
larly in the immune response. Such HSP are evidently able

to interact with target cells and evince molecular and biolog-

ical responses. Extracellular HSPs may be released from cells

under a range of conditions and travel through the circula-

tion to cellular targets. HSPs are particularly interesting as

potential danger signals due to their massive induction by

sub-lethal and lethal stresses and their ability to bind to im-

mune effector cells [1,6,15,45]. Previous studies suggest that

HSP70 binds to a number of cell surface proteins

[12,13,15,32]. Even though specific receptors have shown to



Fig. 4. C-type lectin LOX-1 but not DC-SIGN interacts with HSP70.PC. Wild-type CHO-K1 and CHO overexpressing human receptor LOX-1 (also
known as the ox-LDL receptor 1) or wild-type lymphoblastic K562 and K562 overexpressing human DC-SIGN were incubated with Alexa 488-
labeled BSA or HSP70.PC as reported in Section 2. Shaded gray and thick black line histograms corresponded to BSA and HSP70.PC binding,
respectively. Experiments were carried out three times with similar results.
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possess significant HSP70 binding affinity, their relative con-

tribution in cell surface association has not been determined.

In this study, we show strong HSP70 binding affinity to SR

LOX-1 as first demonstrated by [12]. The specificity of this

association seems to be restricted to LOX-1 since no signif-

icant binding occurs between HSP70 and a closely related

c-type lectin family member known as DC-SIGN or SRs

coming from other classes (ex. CLA-1, SR-A1, MARCO

and CD36) [12]. As mentioned earlier, the c-type lectin

receptor CD94 also shows some binding affinity

for HSP70. However, the HSP70 relative affinity of CD94

for HSP70 seems to be weaker than for LOX-1 since more

HSP70 (five times more) is needed to see a clear binding

to CD94 indicating that conserved residues defining the c-

type lectin domain are not the sole determinant necessary

for HSP70 interaction [12,13].

LRP/CD91 binds a wide spectrum of ligands and, in every

case, ligands interact, in part or entirely, with the second

and/or the fourth LRP/CD91 ligand binding site located in

the alpha subunit [24,41]. RAP ligand binds exclusively these

two domains and can block HSP binding to LRP/CD91 while

our studies show that HSP70.PC does not interact with these

domains [26,41]. Although, LRP/CD91 does not seem to

participate directly in HSP70.PC interaction with cells, it

may however be involved at a subsequent stage in

HSP70.PC-mediated cross-presentation [26].
From initial experiments showing HSP70-mediated pro-

inflammatory cytokine production, HSP70 participation in

the innate immune response has been linked to both

TLR2 and TLR4 in a CD14-dependent fashion [6–8].

HSP70, HSP90, CXCR4, GDF5 and TLR4 are also

mediators of cytokine release in a CD14-independent LPS-

activated complex in monocyte [46]. However, no specific

interaction is seen between HSP70 and TLR2/4 or with

CD14 (Fig. 3A) [42]. It is possible that HSP70-mediated

pro-inflammatory cytokine production does not require a di-

rect association between TLRs and HSP70 but involve a

putative cross-talk between TLRs and other HSP70 recep-

tors. Supporting this idea, TLR2-mediated inflammatory re-

sponse can be enhanced through synergic collaboration with

endocytic receptors such the c-type lectin receptor DECTIN-

1 (also known as the b-glucan receptor) in response against,

for example, a yeast cell wall preparation called Zymosan

[47,48].

The failure to see HSP70 binding to CD40 was quite unex-

pected since our HSP70 is associated with ADP and likely

contains an array of endogenous mammalian peptide anti-

gens, properties evidently required for HSP70–CD40 interac-

tion [32]. No accurate prediction can be made about the

proportion of peptide bound to HSP70. Nonetheless, ADP

seems to be the major element required for the direct binding

to CD40. However, only one report has proposed mamma-



Fig. 5. HSP70.PC interacts with endothelial/epithelial cells but not other non-APC cell types. (A) HSP70 binding assay on human endothelial
HUVEC, prostate cancer cell line PC-3 and HeLa from two different backgrounds. (B) No or few interaction between HSP70 and other non
endothelial/epithelial cell lines IMR90 (human fibroblasts), MCF-7 (breast cancer cells) and A375 (melanoma cells). Shaded gray and thick black line
histograms corresponded to BSA and HSP70.PC binding, respectively. Experiments were carried out three times with similar results. (C) HSP70.PC
binding blocking experiments (Section 2) using anti-human LOX-1 (JTX92) (aLOX-1) on CHO-LOX-1, HUVEC, PC-3 and HeLa (n = 3). MFI:
mean fluoresence intensity.
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lian HSP70 as ligand for CD40 whereas other studies suggest

instead that only mycobacterial hsp70 is able to transduce

signal directly through CD40 while mammalian HSP70 is

inactive [49]. The latter study utilized similar experimental

conditions used here, involving overexpression of the human

CD40 in HEK293 cells.

Previous reports have exclusively attributed surface HSPs

binding affinity to immune effector such monocytes, macro-

phages and DC [6,15,39]. Indeed, we show here HSP70.PC

interaction with pre-monocytic THP-1, mature macrophages

RAW 267.4 and thioglycollate-elicited macrophages (Fig. 1).

Surprisingly, we also found that HSP70.PC interacts with

non-APC cells especially those from endothelial/epithelial

background (Fig. 5A). LOX-1 does not however play a ma-

jor role in HSP70.PC binding to HUVEC, PC-3 and HeLa

suggesting the involvement of, at least, another HSP70

receptor. Concerning the HUVEC cells, one possible expla-

nation is that LOX-1 levels were insufficient to mediate

HSP70 binding. The significance of the HSP70 interaction

with non-APC cells remains undefined but HSP70 binding

to these cells may mediate other non-immune purposes or

applications. In fact, HSP70 uptake may participate in the

response to external stresses in HSP70-deficient cell types

unable to mount a heat shock response such as neurons

[43]. Indeed, it has been found that glial cells can release
HSP70 in normal conditions or during stress such as heat

shock [43]. HSP70 released from glial cells is taken up by

adjacent neuronal cells, which in turn develop a higher resis-

tance to stress-induced apoptosis. Interestingly, HSP60 has

been shown to induce endothelial cytokine production and

adhesion molecule expression [50]. Moreover, HSP70 is

aberrantly expressed at the surface on DC and/or secreted

in a rheumatoid arthritis model suggesting a role of HSPs

in autoimmune diseases [51]. Thus, identification and char-

acterization of endocytic and signaling HSP70 receptors in-

volved in HSP70-mediated tumor antigen cross-

presentation will not only help to decipher the role of

HSP70 as a self-adjuvant but may pave the way to elucidate

the involvement of extracellular HSP70 in other non anti-

tumor immune functions such as atherosclerosis and

arthritis.

Our experiments therefore indicate that LOX-1 binds with

high affinity to HSP70, but other cell surface structures that

appear to mediate immune effects of HSP70, such as LRP/

CD91, CD40, CD14, TLR2 and TLR4 do not show signif-

icant binding to HSP70. It is, however, evident that other

perhaps unidentified HSP70 receptors exist as binding to

HUVEC, PC-3 and HeLa cells does not involve a major

contribution from LOX-1 and our future studies will address

this question.



Fig. 5 (continued)
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