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SUMMARY

Nucleoplasmin (Npm) is an abundant histone chap-
erone in vertebrate oocytes and embryos. During
embryogenesis, regulation of Npm histone binding is
critical for its function in storing and releasing
maternal histones to establish and maintain the zy-
goticepigenome.Here,wedemonstrate thatXenopus
laevis Npm post-translational modifications (PTMs)
specific to the oocyte and egg promote either histone
deposition or sequestration, respectively.Mass spec-
trometry and Npm phosphomimetic mutations used
in chromatin assembly assays identified hyperphos-
phorylation on theN-terminal tail as a critical regulator
for sequestration. C-terminal tail phosphorylation and
PRMT5-catalyzed arginine methylation enhance
nucleosome assembly by promoting histone interac-
tion with the second acidic tract of Npm. Electron mi-
croscopy reconstructions of Npm and TTLL4 activity
toward the C-terminal tail demonstrate that oocyte-
and egg-specific PTMs cause Npm conformational
changes. Our results reveal that PTMs regulate Npm
chaperoning activity by modulating Npm conforma-
tion and Npm-histone interaction, leading to histone
sequestration in the egg.
INTRODUCTION

During early Xenopus laevis embryogenesis, rapid and syn-

chronous cell division occurs in the absence of transcription.

Activation of the zygotic genome is concomitant with the

mid-blastula transition (MBT) (Almouzni and Wolffe, 1995;

Newport and Dasso, 1989). This transcriptional quiescence

necessitates that the cells survive solely on the maternally

stored proteins and mRNAs, including histones (Sun et al.,

2014). Regulation of the switch from storage to deposition of
Cell
histones is critical for maintaining the pool of stored histones

and simultaneously supporting rapid genome replication. The

regulation between histone binding and release is therefore

essential for establishing and maintaining the zygotic

epigenome.

Nucleoplasmin (NPM2, here called Npm; encoded by the

npm2a and npm2b alloallelic genes) is a histone chaperone for

histones H2A-H2B and is highly expressed in the oocyte and

through the early stages of embryogenesis (Bouleau et al.,

2014; Litvin and King, 1988). Its high concentration led to the hy-

pothesis that Npm stores histones H2A-H2B in the egg (Finn

et al., 2012; Keck and Pemberton, 2013). Npm is one of three

Npm family members found in vertebrates (Finn et al., 2012).

Npm forms a stable homopentamer comprised of individual

22 kDa subunits, and its hydrophobic core domain (amino acids

16–120) is responsible for pentamerization and extreme heat

stability (Dutta et al., 2001), whereas the N and C termini are

disordered (Bañuelos et al., 2003; Dutta et al., 2001). Npm con-

tains three acidic tracts: A1, A2, and A3. The C-terminal intrinsi-

cally disordered domain contains a bipartite nuclear localization

sequence, A2 and A3, and the extreme C terminus containing

positive amino acids (Dutta et al., 2001; Prado et al., 2004). Pre-

vious biochemical and electron microscope analyses revealed

that the core is sufficient to bind histones, but the tail also en-

gages in histone binding (Arnan et al., 2003; Ramos et al.,

2010, 2014; Taneva et al., 2009). The functional significance of

the tail binding is unknown.

Npm is extensively post-translationally modified (PTM). Npm

is phosphorylated during oogenesis and hyperphosphorylated

upon progesterone-induced meiosis II (Bañuelos et al., 2007;

Cotten et al., 1986; Leno et al., 1996; Sealy et al., 1986; Tam-

ada et al., 2006; Taneva et al., 2008). This hyperphosphoryla-

tion is critical for sperm DNA decondensation and protamine

removal (Bañuelos et al., 2007; Leno et al., 1996). Npm with

Ser to Asp phosphomimetic mutations on predicted, but not

known, phosphorylation sites showed an increase in affinity

for histones H2A-H2B (Taneva et al., 2009). We previously

showed that PRMT5 methylates Npm on its C terminus (Wilc-

zek et al., 2011). Glutamylation, an isopeptide addition of a
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glutamic acid to the Y-carboxyl of a primary chain glutamate

residue occurs on the Npm family member nucleophosmin

(Npm1) (van Dijk et al., 2008). Glutamylation is also found on

histone chaperone Nap1 (Regnard et al., 2000) and was origi-

nally identified in tubulin (Eddé et al., 1990; Janke et al.,

2008), where it was shown to recruit binding partners (Sirajud-

din et al., 2014).

An earlier comparison of histone deposition on plasmid DNA

by oocyte Npm (oNpm) and eggNpm (eNpm) demonstrated spe-

cific Npm nucleosome assembly in the egg (Cotten et al., 1986;

Sealy et al., 1986). This observation contrasted starkly with the

hypothesis that Npm stores histones and suggested that Npm

PTMs may regulate histone storage.

Here, we show that Npm is developmentally modified to regu-

late its function in histone storage and release. We present high-

resolution mass spectrometry analysis revealing Npm arginine

methylation and glutamylation on the C-terminal flexible tail

and phosphorylation on both N- and C-terminal tails. Npm puri-

fied from the egg sequestered histones both from DNA and from

another histone chaperone Nap1. Through the use of phospho-

mimetic mutations and PRMT5 methyltransferase treatment of

Npm, we show that N- and C-terminal PTMs promote sequestra-

tion and deposition, respectively. Our TTLL4 glutamyltransferase

treatment and electron microscope reconstruction of rNpm,

oNpm, and eNpm demonstrates substantial PTM-dependent

conformational changes, and our biochemical analyses show

that regulated acidic patch accessibility is a significant contrib-

utor to histone deposition activity. Our results support a model

in which developmentally regulated Npm PTMs alter its confor-

mation and its histone deposition activity to balance the require-

ments of maternal histone storage and rapid zygotic genome

duplication.

RESULTS

Nucleoplasmin Is Modified in a Developmentally
Regulated Fashion
To test developmental Npm expression, we isolated total protein

from Xenopus laevis embryos and adult tissues. Immunoblots of

these total lysates confirmed that Npm is only present in the early

embryos and the ovaries and not in any other differentiated tis-

sues (Figure S1A). We observed a distinct Npm mobility shift in

lysates starting at the laid egg and lasting until stage 9, concom-

itant with theMBT and the onset of zygotic gene expression (Fig-

ure S1B; Cotten et al., 1986). We purified intact, non-proteolyzed

rNpm pentamer by enrichment for full-length protein on MonoS

column and isolated Npm from Xenopus laevis surgically ex-

tracted oocytes and laid eggs (Figures 1A and S1C). Both puri-

fied oNpm and eNpm showed a mobility shift compared to

rNpm that was relieved by l-phosphatase treatment (Figure 1B).

These results confirmed that oNpm is phosphorylated and eNpm

is hyperphosphorylated (Cotten et al., 1986).

We identified the precise PTMs on purified oNpm and eNpm

by mass spectrometry. Treatment of Npm with chymotrypsin

yielded peptides of appropriate size and hydrophobicity for

reversed-phase HPLC separations and mass spectrometric an-

alyses. We obtained complete sequence coverage of the entire

protein, including what we determined to be the three most
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heavily modified regions: the N terminus, the C terminus, and

within the second acidic patch (Figure S2A). Npm2a and

npm2b gene products have 11 modest amino acid alterations

and a four-amino-acid deletion in the second acidic patch (Fig-

ure S2B).We observed that peptides from the shorter gene prod-

uct, Npm2B (196 amino acids), were between five and seven

times more abundant than Npm2A. All subsequent mass spec-

trometry probed peptides from Npm2B (hereafter referred to

as Npm).

High-resolution MS1 analysis of the major C-terminal tryptic

peptide revealed a distribution species related to one another

by multiples of 79.9663 Da and 14.01565 Da, indicative of vari-

able phosphorylation and methylation, respectively (Figure 1C).

Electron-transfer dissociation (ETD) MS/MS sequencing re-

vealed S172, S173, and S177 as the phosphorylated residues

and arginine 187 as the dimethylated residue.

N-terminal phosphorylation increased between the two bio-

logical states, from a majority unphosphorylated in the oocyte

sample to 50% doubly phosphorylated and 25% triply phos-

phorylated in the egg sample (Figures S2C and S2D).

Sequencing of the N-terminal peptides by both ETD and CAD

MS/MS revealed that S15 was never phosphorylated and that

the majority of the phosphorylations were distributed over S5,

T7, and S8. The major forms of the C-terminal region of Npm

from oocyte and egg contained two phosphorylations (S172

and S173) and three phosphorylations (S172, S173, and S177),

respectively. Serine 144 was nearly 100% hyperphosphorylated

in the egg. S144 and S177 are well conserved between Xenopus

and human Npm (Figure S2E). Phosphorylation on threonine 96

on the peptide V91-F101 was <1% in both the oocyte sample

and the egg sample and did not have significant change in abun-

dance between the two samples. We also observed full N-termi-

nal acetylation. In both oocyte and egg Npm, R187 dimethylation

was roughly twice the abundance of monomethylation with

approximately 5% unmodified.

A pattern of multiple 129.04-Da additions observed on the

oocyte-derived peptide S124-K156 indicated glutamylation (Fig-

ures 1D and 1E). Themajor form of this peptide was roughly 60%

monoglutamylated relative to the unmodified form and con-

tained up to five total glutamylations in decreasing relative abun-

dance. ETDMS/MS analysis localized these modifications to the

glutamate residues within the region A126EEEDEG132. To further

confirm the presence of glutamylation, we probed egg extract,

rNpm, oNpm, and eNpm by immunoblot using antibodies raised

against glutamylated b-tubulin fragments (Spano and Frank-

furter, 2010). Two of these antibodies, TTSG1 and TT-bIII, recog-

nized oNpm and eNpm, but not rNpm, confirming the glutamyla-

tion of Npm in vivo (TT-bIII was used in most experiments and

labeled as ‘‘glu’’; Figures 1F and S2F).

We observed simultaneous glutamylation and S144 phos-

phorylation in oocytes and eggs (Figure S2G). Immunoblot anal-

ysis on embryo lysates of different stages confirmed Npm phos-

phorylation, glutamylation, and arginine methylation (Figure 1G).

Arginine methylation occurred early in oogenesis at stages II/III,

whereas glutamylation was enriched later in stage VI oocytes

(Figure 1G). Embryos probed for Npm modifications showed

the persistence of arginine methylation and glutamylation past

the MBT. We also confirmed that hyperphosphorylation,
s



Figure 1. Npm PTM Identification and Characterization

(A) Purified rNpm, oNpm, and eNpm. oNpm and eNpm both show mobility shift compared to rNpm.

(B) l-phosphatase treatment of purified oNpm and eNpm. The collapsed gel retardation confirms the shift is due to phosphorylation.

(C) Low-resolution ETD MS/MS spectrum of the [M+7H]7+ charge state of K165-K195 peptide of oNpm. Complete localization of all PTMs is apparent from the

sequence coverage map (top).

(D) Averaged full MS spectrum of Npm S124-K156 from oocyte displaying the distribution of polyglutamylation within the region of E127–E131. Dm = 129.04 Da

indicates an addition of a single glutamyl group.

(E) Chemical structure of a glutamylated peptide on a backbone glutamate reveals the increased and wider distribution of negative charge.

(F) Immunoblot of egg extract and purified rNpm, oNpm, and eNpm confirms glutamylation on oNpm and eNpm in vivo.

(G) Immunoblot of oocyte, laid egg, and embryo lysates probing for glutamylation and arginine symmetric dimethylation.

(H) Hyperphosphorylation of Npm occurred after overnight incubation of oocytes in progesterone to promote maturation and GVBD.

Also see Figure S1.
detected as gel retardation, occurs upon germinal vesicle break-

down (GVBD) after progesterone treatment (Figure 1H).

We summarized the modifications found on Npm with their

relative abundances in heatmaps in Figure 2, demonstrating a

marked increase in the total abundance and density of phos-

phorylation and glutamylation upon GVBD and egg laying.

Nucleoplasmin Post-translational Modifications Alter
Histone Binding and Chaperoning Activity
We first determined whether the Npm PTMs caused a difference

in histone binding. We incubated C-terminally StrepII (SII)-

tagged H2A(SII)/H2B dimers with an equimolar quantity of

rNpm, eNpm, or a 1:1 mixture of rNpm/eNpm and then isolated

interacting complexes on Strep-Tactin resin. Both rNpm and

eNpm were co-precipitated with the tagged histone dimers,

but eNpm outcompeted rNpm for histone binding in the mixed
Cell
sample (Figure 3A). We also performed the same experiment us-

ing oNpm. Both oNpm and rNpm were co-precipitated with

tagged histones even in a 1:1 molar mixture of oNpm and

rNpm (Figure S3A).We concluded that eNpmhas a higher affinity

for histone dimers than rNpm or oNpm.

To test Npm histone-chaperoning activity, we measured

chromatin assembly in the presence of ISWI, an ATP-depen-

dent chromatin remodeler, and hyperacetylated core histones

purified from HeLa cells (Figure S3B). Using this system, we

observed nearly 100% of plasmid supercoiled with recombi-

nant X. laevis Nap1. Micrococcal nuclease (MNase) treatment

of the product yielded bands corresponding to poly-nucleo-

somes in an ISWI-dependent manner (Figure S3C), confirming

our appropriate experimental design (Fyodorov and Kado-

naga, 2003). Furthermore, we observed poor supercoiling

and high background with Npm in the absence of ISWI
Reports 10, 1735–1748, March 17, 2015 ª2015 The Authors 1737



Figure 2. Npm Modifications Dynamically Change upon Oocyte Maturation to the Egg as Determined by Mass Spectrometry

(A) Npm domains (hydrophobic core in blue and acidic patches in red) and regions analyzed by mass spectrometry (numbered above).

(B) A summary of the PTMs found on the four major peptides analyzed by mass spectrometry in both the oocyte and egg forms of Npm are shown. The peptide

sequence is shown on the left column. Each row of the table shows the PTMs, the individual sites, and their relative abundances (-, not detected;C, 1%–10%

relative abundance; CC, 11%–50% relative abundance; CCC, 51%–90% relative abundance; CCCC, 91%–100% relative abundance).

(C) The relative abundances of PTMs on each of the four peptides are shown in heatmaps to demonstrate the change upon GVBD from the oocyte to the egg.

Also see Figure S2.
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Figure 3. PTMs Alter the In Vitro Histone Binding and Deposition of oNpm and eNpm

(A) Competitive co-precipitation assay of rNpm and eNpm. StrepII-tagged H2A-H2B dimer complexed with rNpm, eNpm, or a 1:1 molar mixture of rNpm and

eNpm was precipitated with Strep-Tactin resin and blotted for Npm and H2A. eNpm migrates slower on the gel, allowing separation from rNpm.

(B) Chromatin-assembly assay using rNpm, oNpm, and eNpm. Concentrations of Npm used for each sample are indicated as a mass ratio to histones. Plasmid

supercoiling (top) and MNase digestion of the same reaction (bottom) are shown.

(C) The quantification of histone deposition in (B). Histone deposition is expressed as a ratio of supercoiled band (bottom-most band) to total DNA (‘‘supercoiling

index’’). The values represent the normalized mean of three replicates ± SD.

(D) Chromatin assembly assaywith amixture of Npm and increasing amounts of XlNap1. The numbers over the lane represent Nap1:histonemolar ratio. Npmwas

kept at 5:1 molar ratio to histones (equivalent to 2:1 mass ratio).

(E) Chromatin-assembly assay with l-phosphatase treated (+) or mock-treated (�) Npm.

(F) Quantification of (E), shown as in (C). The legend for (C) and (F) is shown between them.

Also see Figure S3.
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Figure 4. Oocyte and Egg PTMs Alter Npm

Conformation

(A) Top, side, and bottom views of reconstructions

of rNpm, oNpm, and eNpm 3D structure from

negatively stained electron micrographs of each

protein. The density maps are displayed at

contours covering 100% mass, as shown at

the top.

(B) A side view reconstruction of oNpm (blue) and

eNpm (purple) is modeled with the PDB: 1KJ5 core

domain structure fit (orange). The scale bar is

shown in nm. Central slices of the reconstruction

are shown on the right.

(C) A difference map between the oNpm and

eNpm models is shown in pink, illustrating the

altered conformation and rotation of the C-termi-

nal tails about the pentamer axis.

Also see Figure S4.
(Figure S3D), further demonstrating the necessity of ISWI in

the assay.

We first tested rNpm, containing no PTMs and oNpm and

eNpm with PTMs in the chromatin assembly assay. DNA and

core histone concentrations were kept constant while each

species of Npm was titrated relative to core histone mass.

We observed significant plasmid supercoiling for rNpm and

oNpm (Figure 3B, top panel). MNase treatment of the super-

coiled product yielded bands corresponding to poly-nucleo-

somes, confirming bona fide nucleosome assembly by rNpm

and oNpm (Figure 3B, bottom panel). However, the histone

deposition by rNpm was reduced above a 2:1 mass ratio.

oNpm exhibited constant histone deposition above the 2:1 ratio

up to 15:1, the highest ratio tested (Figures 3B, 3D, and S3E).

The MNase treatment of rNpm- and oNpm-assembled nucleo-

somes also exhibited a band of overdigested DNA that was ab-

sent from Nap1-assembled nucleosomes (Figures 3B and S3C,

bottom panel). This difference in histone deposition between

Npm and Nap1 suggests a relatively low efficiency of histone

deposition for rNpm and oNpm in vitro, as previously reported

(Sealy et al., 1986).

In contrast, eNpm did not deposit histones in our chromatin-

assembly assay (Figures 3B and 3C). To test the possibility

that eNpm may have an altered threshold concentration for his-

tone deposition, we performed chromatin assembly up to 15:1

mass ratio but were still unable to observe histone deposition

(Figure S3E). Npm binds chromatin in the egg and DNA in vitro

(Lu et al., 2012; Okuwaki et al., 2012). To exclude the possibility

that the DNA binding prevented eNpm histone deposition, we

performed a native gel shift assay using Npm and a linear DNA

fragment. We confirmed that rNpm, but not wild-type or phos-

phatase-treated oNpm or eNpm, weakly bound DNA, demon-

strating that eNpm histone sequestration was not due to DNA

binding (Figure S3F). To further test the ability of Npm to

sequester histones, we titrated Nap1 into Npm preincubated

with histones and observed that eNpm, but not rNpm or

oNpm, prevented histone deposition by Nap1 (Figure 3D). This
1740 Cell Reports 10, 1735–1748, March 17, 2015 ª2015 The Author
result indicated that eNpm specifically sequesters histones

from DNA and other chaperones.

Because we identified hyperphosphorylation as the main dif-

ference between oNpm and eNpm, we tested the role of Npm

phosphorylation in chromatin assembly. Dephosphorylation of

eNpm with l-phosphatase restored robust histone deposition,

indicating that hyperphosphorylation is critical for eNpm histone

sequestration (Figures 3E and 3F), including at higher chaperone

mass ratios (Figure S3G). We concluded that phosphorylation

was essential for histone sequestration, whereas glutamylation

and/or arginine methylation were responsible for enhanced

deposition at higher mass ratios.

Post-translational Modifications Alter the Conformation
of Nucleoplasmin
Our mass spectrometry identified PTMs solely on the N- and

C-terminal flexible tails of Npm. We hypothesized that PTMs

may alter the conformation of Npm in these intrinsically disor-

dered regions and therefore performed electron microscopy

reconstruction of each Npm species (Figures 4A and S4). The

Npm pentamer core crystal structure fit well into a globular

domain found in all three reconstructions (Figure 4B; PDB:

1K5J shown in orange). Comparison of rNpm (rNpm) with

oNpm and eNpm reconstructions showed several regions of

altered density (Figures 4A–4C). In rNpm, we observed density

on the lateral face of Npm immediately adjacent to the core

when displayed at a contour covering 100% mass. This density

was absent in oNpm and eNpm (Figure 4A, yellow arrows), form-

ing a hollow space instead. On the lateral face of Npm core, we

observed protruded density on oNpmand eNpm (Figure 4B, pur-

ple arrows). This protrusion was larger in eNpm and rotated

around the pentamer axis relative to oNpm (Figure 4B, right-

hand panel). Another striking difference among the Npm species

was a tailed structure protruding from the distal face progres-

sively disappearing as more PTMs accumulate from rNpm to

oNpm and to eNpm (Figure 4A, black arrows), also shown in

the difference map between eNpm and oNpm (Figure 4C).
s



Analysis of Nucleoplasmin Domains Required for
Histone Deposition
Because PTMs occurred adjacent to the A2 and A3 acidic

patches on the C-terminal tail, we hypothesized that they may

be regulating the interactions between the acidic tracts and the

basic histones. To test this hypothesis, we first determined the

domains of Npm necessary for histone deposition. We con-

structed a mutant truncating the region past A2 (core + A2)

and a mutant truncating the entire tail including A2 (core; Figures

5A and 5B). Using StrepII-tagged H2A(SII)-H2B dimer co-precip-

itation and a polyclonal antibody raised against the core domain

of Npm (Figure S5A), we confirmed that core + A2, but not core

alone, binds histones (Figure 5C), consistent with the previously

reported lower affinity of the core domain to histones (Taneva

et al., 2009).We then performed chromatin assembly using these

mutants and observed robust histone deposition by core + A2,

which showed almost 100%histone deposition and nucleosome

assembly and no histone deposition with core (Figure 5D). This

result indicated that A2 is critical for histone deposition whereas

the extreme C-terminal tail suppressed rNpm histone deposition

at high mass ratios.

We further tested how A2 binds histones using a protease pro-

tection assay. In this assay, the Npm-histone H2A-H2B complex

was digested with a protease and the interaction domain was

determined by a difference in digestion rate, monitored via

immunoblot probing H2A at different time points. We employed

trypsin and chymotrypsin, with unique digestion sites on Npm

and H2A (Figures S5B and S5C) to completely monitor the inter-

action domain. Using the full-length and truncation mutants of

Npm, we observed a significantly slower digestion rate of H2A

with full-length and core + A2 compared to histone alone or

core mutant (Figure 5E). After 10 min of digestion, core mutant

and histone alone samples had almost complete H2A digestion

whereas a significant amount still remained with full-length and

core + A2 (Figure S5D), consistent with A2-binding histones.

We also performed protease protection assays comparing

eNpm and oNpm to rNpm. Using trypsin, we observed higher

H2A protection with oNpm and eNpm compared to rNpm (Fig-

ure S5E). We also probed the digested proteins for A2 glutamy-

lation and confirmed that glutamylation, and therefore A2, still

remained in the digestion products (Figure S5F). In parallel, we

performed the protection assay with increasing concentrations

of chymotrypsin, a protease with distinct cleavage sites, and

confirmed that eNpm protected H2A better than rNpm did (Fig-

ure 5F). From these truncation analyses and protease protection

assays, we concluded that A2 is critical for histone deposition

and that oNpm and eNpm PTMs promote enhanced interaction

surface for histones.

Specific Function of Npm PTMs in Regulation of Histone
Deposition
To determine how phosphorylation alters Npm chaperone activ-

ity, we made Ser-to-Asp phosphomimetic mutants at the identi-

fied phosphorylation sites (Figures 6A and S6A). We had

observed that the N-terminal phosphorylation pattern was

different from that on the C-terminal tail. In the C-terminal tail,

S144 and S177 were nearly 100% phosphorylated in the egg.

Conversely, the N-terminal tails contained an ensemble of
Cell
PTMs, with the majority of oNpm peptides containing zero to

one phosphorylation and eNpm peptides containing two to three

phosphorylations at 60% and 50% relative abundance, respec-

tively (Figure 2C). Furthermore, we observed an N-terminal pep-

tide containing three phosphorylations at 25% abundance in

eNpm compared to less than 10% in oNpm (Figure 2C). This dif-

ference in phosphorylation patterns suggested that the N-termi-

nal and C-terminal tail phosphorylation might distinctly regulate

functions of Npm. Therefore, we made separate N- and C-termi-

nal phosphomimetic mutants (Figure 6A).

To test the specific function of discrete Npm phosphorylations

in histone chaperone function, we performed chromatin-assem-

bly assays using the N-terminal phosphomimetic mutations. All

mutants exhibited rNpm-like histone deposition with a peak at

2:1 mass ratio, whereas deposition by the egg mimic (N-Em;

two sites) and the hyperphosphorylated egg mimic (N-HyP-

Em; three sites) was reduced at the 2:1 ratio (Figure 6B). This

result strongly suggested that N-terminal phosphorylation is

critical for eNpm sequestration of histones. Conversely, the

C-Em four-site C-terminal phosphomimetic mutant exhibited

enhanced histone deposition above the 2:1 ratio (Figure 6C).

Quantification of multiple replicates of these supercoiling assays

confirmed the essential differences in histone deposition activity

of N- and C-terminal phosphomimetic mutants (Figure 6D). Egg

N-terminal phosphomimetic mutants had significant reductions

in deposition at the 2:1 ratio when analyzed with a two-tailed t

test (Figure 6E), whereas C-terminal phosphomimetic mutants

enhanced histone deposition at the 9:1 ratio (Figure 6F).

Our chromatin assembly assay with l-phosphatase-treated

Npm showed that glutamylation and/or arginine methylation is

sufficient to block rNpm inhibition of histone deposition at higher

mass ratios (Figure 3E). Therefore, we tested whether in vitro

methylation would cause a similar response. We treated rNpm

with the PRMT5 arginine methyltransferase and confirmed that

treated and repurified Npmwas dimethylated (Figure 6G). As hy-

pothesized, we observed enhanced chromatin assembly with

the PRMT5-treated Npm (Figure 6H; 4.5 and 9 mass ratios).

Npmargininemethylationmay act synergistically with phosphor-

ylation to alter its histone deposition activity. Therefore, we per-

formed the chromatin assembly assay with PRMT5-treated Em

to test whether phosphorylation and methylation together

caused histone sequestration. However, we observed similar

histone deposition with arginine-methylated Em (Figure S6B).

These results supported our hypothesis that N- andC-terminal

phosphorylations distinctly regulate Npm histone deposition.

C-terminal phosphorylation promotes enhanced histone

deposition whereas N-terminal phosphorylation is critical for

sequestration.

Regulated Accessibility of the Npm A2 Acidic Patch
In the Npm domain analysis and protease protection assays, we

observed that PTMs promoted interaction between A2 and his-

tones. Considering that the C-terminal tail past A2 is enriched

for positive amino acids (Figure S2B), an intramolecular interac-

tion may limit histone accessibility to the A2. To test this hypoth-

esis, we measured the efficiency of glutamylation using recom-

binant Xenopus tropicalis tubulin-tyrosine-ligase-like 4 catalytic

domain (TTLL4D526; Regnard et al., 2000; van Dijk et al.,
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Figure 5. Npm A2 Binding to Histone Is Critical for Histone Deposition

(A) Npm truncationmutants used in the domain analysis. The core domain is indicated in blue and acidic patches in red. PTM sites are noted above the schematic.

(B) Purified Npm truncation mutants used in the assay.

(C) Co-precipitation assay of Npm truncation mutants and histones. StrepII-tagged H2A-H2B dimer complexed with full-length Npm, core + A2, or core mutants

of Npm is precipitated with Strep-Tactin resin and blotted for Npm.

(D) Chromatin-assembly assay using Npm truncation mutants. Plasmid supercoiling (top) and MNase digestion of the same reaction (bottom) are shown.

(E) Protease protection assay of full-length Npm, core + A2, and core mutants of Npm digested with trypsin. The Direct Blue 71 whole-membrane stain and

immunoblot for H2A are shown at 0, 2, and 5 min post-digestion.

(F) Protease protection assay using rNpm and eNpm with increasing amounts of chymotrypsin. The Direct Blue 71 whole-membrane stain and immunoblot for

H2A are shown.

Also see Figure S5.
2008). Because the endogenous glutamylation occurs on A2, we

used this efficiency of glutamylation as a readout of A2 exposure.

Using full-length, core + A2, and core truncation mutants of

Npm, we observed that core + A2, but not the full-length or
1742 Cell Reports 10, 1735–1748, March 17, 2015 ª2015 The Author
core mutant, was efficiently glutamylated by TTLL4 (Figure 7A).

This observation was consistent with our hypothesis that the

extreme C-terminal region interacts with A2 and limits its acces-

sibility to other proteins.
s



Figure 6. N- and C-Terminal PTMs Distinctly Regulate Npm Histone Deposition

(A) Schematic showing the Npm Ser-to-Asp phosphomimetic mutations we prepared. The mutation sites (+) are indicated by residue number (top) and the

mutant protein name (left).

(B) Chromatin-assembly assay using N-terminal phosphomimetic mutant Npm proteins.

(C) Chromatin-assembly assay using C-terminal phosphomimetic mutant Npm proteins.

(D) Supercoiling index of (B) represented as in Figure 3D. The normalized mean of seven replicates ± SD is shown.

(E) Supercoiling index of (B) at 2:1 mass ratio is shown. p values (top) were calculated using Student’s t test.

(F) The quantification of C-Em and rNpm at 9:1 mass ratio are shown. The result represents the normalized mean of two replicates ± SD.

(G) rNpm, eNpm, and PRMT5-treated rNpm were immunoblotted for mono- (Rme1) and symmetric dimethylarginine (Rme2s) as shown.

(H) Chromatin-assembly assay using rNpm and PRMT5-treated rNpm.

Also see Figure S6.
We then performed the glutamylation assay using the phos-

phomimetic mutants of Npm to test our hypothesis that phos-

phorylation on the C-terminal tail increases the exposure of A2

by disrupting the interaction between A2 and the extreme
Cell
C-terminal region of Npm. As predicted, the C-Em mutant

was glutamylated by TTLL4 (Figure 7B). Surprisingly, our

mutant carrying seven phosphomimetic mutations over the

full length (Em) greatly increased glutamylation compared to
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Figure 7. Nucleoplasmin Phosphorylation, Glutamylation, and Methylation Crosstalk Reveals a Developmental Mechanism for Regulated

Histone Accessibility

(A) X. tropicalis TTLL4D526 glutamylation of Npm truncation mutants. Immunoblot for glutamylation (Glu) and Direct Blue 71 membrane stain for total protein are

shown.

(B) Glutamylation assay using phosphomimetic mutants of Npm as in (A).

(C) Glutamylation assay using PRMT5-treated rNpm (‘‘Rme rNpm’’) and Em phosphomimetic mutant, as in (A).

(D) Arginine-methylation assay using phosphomimetic mutants of Npm and XlPRMT5-MEP50. Immunoblot for mono- (Rme1) and symmetric dimethylarginine

(Rme2s) and the membrane stain are shown.

(E) Kinase assay of rNpm and arginine-methylated rNpm (Rme rNpm) in egg extract and oocyte extract supplemented with Y-32P-ATP; shown are autoradiogram

(top) and Coomassie-stained gel (bottom). The weak band appearing in the Npm-negative lane in the egg extract is the endogenous Npm from the extract.

(F) Npm domains with identified sites of modification (‘‘P,’’ phosphorylation; ‘‘EE,’’ glutamylation; ‘‘Rme,’’ arginine methylation) shown above.

(legend continued on next page)

1744 Cell Reports 10, 1735–1748, March 17, 2015 ª2015 The Authors



the C-Em mutant, whereas the N-Em mutant alone showed no

glutamylation. This result was consistent with our hypothesis

that C-terminal phosphorylation exposes A2, most likely by

limiting the interaction between the extreme C-terminal region

and A2.

Our observation that the N-terminal phosphomimetics

enhance glutamylation synergistically with the C-terminal phos-

phomimetic indicated that N-terminal phosphorylation may itself

cause conformational change, leading to histone sequestration.

We performed a chromatin assembly assay with oocyte, egg,

and hyperphosphorylated egg phosphomimetic mutations over

the full length of Npm, but wewere unable to observe full seques-

tration (Figure S6C).

Specific Function of Npm PTMs in Modification
Crosstalk
The phosphomimetic mutations clearly promoted glutamylation

of Npm. To test whether there was additional crosstalk between

modifications, we measured TTLL4 activity toward arginine-

methylated rNpm but did not observe any increase in glutamyla-

tion compared to unmethylated rNpm (Figure 7C). We also

tested whether the phosphomimetic mutations would increase

arginine methylation by treating the phosphomimetic mutants

of Npm with purified Xl PRMT5-MEP50 complex and measuring

mono- and symmetric dimethylation via immunoblot. The Om

and Em full phosphomimetic Npm proteins were very poor sub-

strates for PRMT5-MEP50, with intermediate inhibition with

fewer Ser-to-Asp mutations on both the N- and C-terminal do-

mains (Figure 7D). N-terminal phosphomimetic mutations spe-

cifically reduced dimethylarginine products. This observation

was consistent with our initial observation that arginine methyl-

ation preceded glutamylation during oogenesis (Figure 1G). We

also tested whether arginine methylation increased phosphory-

lation of rNpm in egg and oocyte extracts, but we did not observe

any significant change in phosphorylation in either extract

(Figure 7E).

These observations indicate that the nucleoplasmin PTMs

occur in the following order during oogenesis: (1) arginine

methylation; (2) basal phosphorylation; (3) glutamylation; and

then (4) hyperphosphorylation upon GVBD (Figures 7F and 7G).

DISCUSSION

A wave of protein phosphorylation occurs upon breakdown of

the Xenopus laevis germinal vesicle in the oocyte and the

resumption of meiosis, regulating many processes (Ferrell,

1999). Npm hyperphosphorylation was previously shown to be

required for sperm decondensation (Bañuelos et al., 2003; Freh-

lick et al., 2006; Leno et al., 1996; Ramos et al., 2005; Tamada

et al., 2006). Other studies showed that Npm phosphomimetic

mutants altered its histone-binding ability, although these

studies were limited due to the unknown sites of endogenous

phosphorylation (Taneva et al., 2008, 2009).
(G) Our inferred biological order of events during oogenesis.

(H) A model summarizing our results. Shown are the N-terminal tail (blue box w

sentative PTMs for each stage.

Also see Figure S7.

Cell
Our findings are summarized in a model in Figure 7H. In rNpm,

without any modifications, the extreme C-terminal region may

interact with A2 and limit its histone accessibility. The competi-

tion between the extreme C-terminal basic region and histones

for A2 likely results in the mass-ratio-dependent histone deposi-

tion pattern that we observed. PTMs acquired by Npm during

oogenesis, including basal phosphorylation, arginine methyl-

ation, and glutamylation, likely promote stronger interaction be-

tween A2 and histones, in part due to phosphorylation disrupting

the interaction between the extreme C-terminal region and A2.

Upon egg laying, two to three phosphorylations accumulate on

the N-terminal tail and two further phosphorylations occur on

the C-terminal tail. The accumulating phosphorylation on the

N-terminal tail likely causes further conformational change that

is critical for the eNpm histone sequestration.

Npm PTMs Have Substantial Crosstalk to Regulate
Histone Deposition and Sequestration
Glutamylation is catalyzed by TTLL polyglutamylases (Janke

et al., 2005). Glutamyltransferase activity exists within Xenopus

oocyte extracts (van Dijk et al., 2007) and egg extracts (data

not shown), consistent with our observed Npm glutamylation

and our in vitro TTLL4 modification of Npm. We previously

demonstrated that PRMT5-MEP50 is abundant in eggs and

methylates Npm (Wilczek et al., 2011). Phosphorylation of

Npm is catalyzed by CK2 (Taylor et al., 1987; Vancurova

et al., 1995) and the cyclin-dependent kinase cdc2/cdk1 (Cot-

ten et al., 1986). S144 and S177, sites of hyperphosphorylation

upon egg laying, are in a consensus sequence for cdk kinase

activity (SPxK) and are highly conserved across metazoan nu-

cleoplasmin proteins. S8, S172, and S173 phosphorylation on

both oNpm and eNpm is likely catalyzed by CK2, with a kinase

motif of [S/T]xx[E/D] (Amanchy et al., 2007; Vancurova et al.,

1995).

We observed that phosphorylations on S5, 8, 144, and 177 are

the critical differences between Npm in the oocyte and egg.

Because Npm hyperphosphorylation occurred concomitant

with GVBD and lasted until the MBT, the developmental period

with simultaneous requirement for storage and release of

maternal histones, we hypothesized that these PTMs would in-

fluence Npm histone-chaperoning activity. Consistent with our

hypothesis, we demonstrated that C-terminal phosphorylations

and arginine methylation promote enhanced histone deposition,

compared to the stoichiometry-dependent deposition promoted

by rNpm.

We also demonstrated that the hyperphosphorylation on

eNpm causes sequestration of histones. This eNpm sequestra-

tion was surprising as it contrasted with the previous observation

that Npm histone deposition in vitro is enhanced by the egg

PTMs (Sealy et al., 1986). Our purification strategy for Npm

differed from the previous study in a few key ways: (1) we em-

ployed immediate heat purification of low-speed extract to elim-

inate cycloheximide and cytochalasin B that had suppressed
ith white outline), A2 (red box), and C-terminal tail (thick blue line) with repre-
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ionization in the mass spectrometer, possibly resulting in distinct

phosphorylation states and (2) more phosphorylation was asso-

ciated with poorer heat stability, indicating that different temper-

atures during purification may result in different eNpm states

(Taneva et al., 2008). Another mass spectrometric analysis of

eNpm reported a majority of three to four phosphorylations on

the N terminus (Bañuelos et al., 2007). We observed that N-ter-

minal phosphomimetic mutations reduced histone deposition,

suggesting that the N-terminal phosphorylation is crucial to

eNpm histone sequestration, further supporting that the discrep-

ancy in eNpm histone deposition in the literature may be due to

different phosphorylation states in the N-terminal tail. These ob-

servations together suggest that the N-terminal phosphorylation

may function as a switch between histone storage and release,

where double phosphorylation leads to sequestration and further

phosphorylation promotes the release. This hypothesis is

supported by observations that N-terminal phosphorylation

promotes sperm DNA decondensation, the hallmark event of

fertilization (Bañuelos et al., 2003). Further experiments with

phosphoserine-containing Npm mutants, rather than Ser-to-

Aspmutants, will be necessary to fully test this hypothesis. Inter-

estingly, histone-deposition activity was not correlated with a

specific charge state on the Npm protein, as might be predicted

for a presumed electrostatically mediated process (Figure S7).

Therefore, our work demonstrated that individual PTMs have

substantial effects on Npm histone-chaperoning activity, either

through specific interaction sites and/or via conformational

change.

Conformational Change, Regulated Acidic Patch
Accessibility, and Histone Chaperone Activity
We favor the hypothesis that PTM-dependent conformational

change alters Npm histone-binding and chaperoning activity.

In support of this hypothesis, we demonstrated through EM

reconstruction and biochemical assays that Npm PTMs cause

successive conformational changes upon maturation of the

oocyte to the egg. In particular, our evidence supports a model

in which C-terminal tail phosphorylation exposes A2 and pro-

motes the interaction between A2 and histones, causing

enhanced deposition. We also demonstrated that arginine

methylation does not cause a similar conformational change

despite its enhancement of rNpm-deposition activity. These ob-

servations indicated that arginine methylation induced strong

histone deposition through a mechanism distinct from the A2

exposure to histones, as seenwith phosphorylation. Considering

that arginine methylation occurs past A3, we hypothesize that

arginine methylation may directly increase the affinity of the

C-terminal tail, containing A2 and A3, to histones.

We also demonstrated that the N-terminal hyperphosphoryla-

tion causes further conformational change. Although the identifi-

cation of the specific sites of conformational change or the inter-

action sites between Npm and histones leading to sequestration

require further experiments, we note that the N-terminal tail is

located near the A1 acidic patch in the crystal structure of

Npm core domain (Hierro et al., 2001; Namboodiri et al., 2003;

Platonova et al., 2011). It is possible that histone sequestration

may result from further interaction between these regions and

histones promoted by the N-terminal hyperphosphorylation.
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Furthermore, the N- and C-terminal tails are located side-by-

side on the distal face of Npm core (Dutta et al., 2001). Although

both tails aremissing from the crystal structure, it is likely that the

A2 on the C-terminal tail is immediately adjacent to the N-termi-

nal tail. This close proximity suggests a synergistic function be-

tween the N-terminal phosphorylation and glutamylation on A2,

consistent with our observation that the N- and C-terminal

phosphomimetic mutations synergistically exposed A2 in our

glutamylation assay. This synergistic nature and the lack of glu-

tamylation may have contributed to our inability to recapitulate

full histone sequestration.

Because N-terminal phosphomimetic mutations alone

reduced histone deposition, the eNpm sequestration of histones

may be independent of the C-terminal tail but dependent on the

conformational change caused by N-terminal hyperphosphory-

lation. Consistent with this, our EM reconstruction of eNpm

showed a conformational change on the lateral face of Npm

core domain due to egg-specific hyperphosphorylation. Our

inability to recapitulate eNpm sequestration in full may also be

due to the poor phosphomimetic nature of Ser-to-Asp muta-

tions. We observed increased TTLL4-dependent glutamylation

with the Ser-to-Aspmutations, but the overall efficiency of gluta-

mylation was still poor. We estimated the glutamylation of Em

mutant to be about 10% of glutamylation on core + A2 mutant

(data not shown), further indicating the poor phosphomimetic

nature of Ser-to-Asp mutations.

Taken together, our observations demonstrate that the his-

tone-chaperoning activity of Npm is dynamically regulated

through PTMs, leading to sequestration in the egg, and the N ter-

minus phosphorylation of Npm is the critical switch between

storage and release.

EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures for more-detailed methods.

Xenopus Extract Preparation and Histone Purification

Xenopus egg and oocyte extracts and histones were prepared as described

(Banaszynski et al., 2010). Frogs were handled and sacrificed according to

IACUC-approved protocols.

Npm Protein Preparation

Npmwas purified from extracts as described (Sealy et al., 1986). Recombinant

Npm, Npm truncations, andmutants were His-tagged, produced in E. coli, and

purified via Ni affinity and MonoS cation exchange chromatography.

Electron Microscopy and Image Processing

Following optimization of the protein concentration, 3 ml aliquots of specimen

were applied to carbon-coated copper grids that had been glow discharged.

The specimen was then stained on a drop of 2% uranyl acetate for 25 s. After

removing the extra stain with filter paper, the grid was air dried and examined

under a transmission electron microscope. Micrographs were taken under a

JEOL JEM-2100F electron microscope. A TVIPS TemCam-415 CCD camera

recorded the specimens at a pixel size of 1.25 A at specimen space. Image

processing was completed using the single-particle reconstruction package

EMAN. Boxing of individual particles was done using a box-size of 85 px for

each isolated Npm. Initial particle classification was done using multivariate

statistical analysis. Initial models were all generated independently of one

another. Two initial models were generated for each particle set: one with sym-

metry imposed and one without. These were all subsequently refined at an

angular step of 15 to resolve low-resolution details before refining at a lower

angular step of seven to resolve higher-resolution details. The initial model
s



for eNpm required hand selecting against misaligned particles in the initial

particle stack. Refinements were carried out iteratively using reference-based

statistical analysis from projections of the structures obtained in the previous

iteration. Symmetry was released during early refinement in all three models in

order to confirm convergence of refinement.

Chromatin Assembly Assays

Plasmid supercoiling and MNase digestions were all performed on plasmid

pGIEO with hyperacetylated HeLa histones and purified chaperones as

described (Fyodorov and Kadonaga, 2003).

Mass Spectrometry Analyses

Npm purified from Xenopus oocytes or laid eggs were reduced, alkylated,

and digested with endoproteinase chymotrypsin (Schroeder et al., 2004).

Self-packed precolumns and analytical columns were prepared as previ-

ously described (see Ficarro et al., 2009, Martin et al., 2000, and Supple-

mental Information). Aliquots of oocyte or egg Npm were bomb loaded

onto the precolumn, desalted with 0.1% acetic acid, and connected to the

analytical column. Peptides were gradient eluted into the mass spectrometer

via reversed-phase HPLC at a flow rate of 60 nl/min (see Supplemental Infor-

mation for gradient conditions). Data-dependent MS/MS analyses were ac-

quired on an LTQ-FT using either CAD or FETD (Earley et al., 2013). All

data were searched using OMSSA, and all spectra corresponding to Npm

were manually interpreted.

Chemicals and Antibodies

Chemicals and reagents were obtained from Sigma, RPI, or Fisher Scientific.

We used the following antibodies in this study: a purifiedmonoclonal Npm anti-

body (Dilworth et al., 1987), polyclonal rabbit antibody generated against full-

length recombinant Npm, anti-glutamylation TTbIII, SG I polyclonal antibodies

(gift of Dr. Frankfurter; Spano and Frankfurter, 2010), and histone and methyl-

arginine polyclonal antibodies (Wilczek et al., 2011).

Images and Adjustment

Gel images were acquired using digital tools (Epson V700 scanner and GE

LAS-4000) with 16-bit dynamic range. Complete images were levels adjusted

as a whole to improve clarity without obscuring, eliminating, or misrepresent-

ing any information present in the original.
ACCESSION NUMBERS

Nucleoplasmin reconstructions were deposited in the EMDataBank under

accession numbers EMD-2866 (egg Npm), EMD-2868 (oocyte Npm), and

EMD-2869 (recombinant Npm).
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G., Urbaneja, M.A., and Bañuelos, S. (2008). Activation of nucleoplasmin, an

oligomeric histone chaperone, challenges its stability. Biochemistry 47,

13897–13906.
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