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SUMMARY

Angiogenesis requires coordination of distinct cell
behaviors between tip and stalk cells. Although
this process is governed by regulatory interactions
between the vascular endothelial growth factor
(Vegf) and Notch signaling pathways, little is known
about the potential role of microRNAs. Through
deep sequencing and functional screening in zebra-
fish, we find that miR-221 is essential for angiogen-
esis.miR-221knockdownphenocopieddefectsasso-
ciatedwith loss of the tipcell-expressedFlt4 receptor.
Furthermore, miR-221 was required for tip cell prolif-
eration and migration, as well as tip cell potential in
mosaic blood vessels.miR-221 knockdown also pre-
vented ‘‘hyper-angiogenesis’’ defects associated
withNotchdeficiencyandmiR-221expressionwas in-
hibited byNotch signaling. Finally,miR-221promoted
tip cell behavior through repression of two targets:
cyclin dependent kinase inhibitor 1b (cdkn1b)
and phosphoinositide-3-kinase regulatory subunit 1
(pik3r1). These results identify miR-221 as an impor-
tant regulatory node through which tip cell migration
and proliferation are controlled during angiogenesis.

INTRODUCTION

During embryogenesis, vascular development proceeds through

two distinct stages (Poole and Coffin, 1989). De novo formation

of blood vessels, or vasculogenesis, begins with the emergence

of angioblast progenitor cells from the lateral mesoderm and

migration to target tissues where they coalesce, assemble into

cords, and lumenize to form the major blood vessels. Subse-

quently, smaller caliber vessels sprout from pre-existing ones

by angiogenesis (Poole and Coffin, 1989), which requires careful

orchestration of distinct cell behaviors between adjacent endo-

thelial cells (Gerhardt et al., 2003). Initial sprouting is driven by

proangiogenic factors in the surrounding extracellular environ-

ment that induce selected cells to emerge from an established

blood vessel. These leading tip cells exhibit extensive filopodia

and pathfinding behavior, whereas trailing stalk cells do not

(Gerhardt et al., 2003). In some vascular beds (e.g., mouse retinal
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vasculature), the vascular plexus grows via proliferation of stalk

cells as tip cells migrate, whereas in others (e.g., zebrafish

segmental vessels) tip cells exhibit both migration and prolifera-

tion (Gerhardt et al., 2003; Siekmann and Lawson, 2007). Despite

these differences, the distinction between tip and stalk cells is an

essential conserved process that allows blood vessels to grow

while maintaining their connection to the patent vascular system

(Thurston et al., 2007).

The signals that coordinate tip and stalk cell behaviors have

been the subject of intense investigation. Initial tip cell emer-

gence is driven by Vascular endothelial growth factor A (Vegfa),

which is acutely required for tip cell filopodia activity and migra-

tion (Gerhardt et al., 2003). Accordingly, tip cells express recep-

tors for both Vegfa (Vegfr-2) and Vegfc (Vegfr-3/Flt4), the latter of

which is highly dynamic and becomes restricted to the tip cell

during sprouting (Covassin et al., 2006b; Gerhardt et al., 2003;

Siekmann and Lawson, 2007; Tammela et al., 2008). Vegfa

induces tip cell expression of the Notch ligand, dll4, and subse-

quent Notch activation in the stalk cell suppresses tip cell behav-

iors, in part, by repressing flt4 expression (Hellström et al., 2007;

Lobov et al., 2007; Siekmann and Lawson, 2007; Tammela et al.,

2008). Consistent with this model, mouse or zebrafish embryos

lacking dll4 display excessive blood vessel branching and endo-

thelial proliferation (Hellström et al., 2007; Leslie et al., 2007;

Siekmann and Lawson, 2007; Suchting et al., 2007), which can

be normalized by reducing Vegfr-3/flt4 signaling (Hogan et al.,

2009; Siekmann and Lawson, 2007; Tammela et al., 2008).

More recent observations have demonstrated competition

between endothelial cells for the leading tip cell position during

sprouting (Jakobsson et al., 2010). Endothelial cells with lower

Vegfr-2 or increased Notch signaling are often excluded from

the tip cell position (Jakobsson et al., 2010), consistent with

similar results in mosaic zebrafish blood vessels (Siekmann

and Lawson, 2007). Thus, tip and stalk cell behaviors are coordi-

nated through negative interactions between the Vegf and Notch

pathways. However, little is known about the possible role of

posttranscriptional control of this dynamic process.

MicroRNAs are expressed as autonomous transcripts, or are

found in introns where they are expressed within pre-mRNA

(Ghildiyal and Zamore, 2009). Autonomous microRNA precur-

sors are cleaved in the nucleus by Drosha (Lee et al., 2003),

leaving short hairpin RNAs that are transported to the cytoplasm

and cleaved by the ribonuclease Dicer (Bernstein et al., 2001;

Hutvágner et al., 2001). The mature strand from the resulting

double stranded �22 nucleotide microRNA is subsequently
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Figure 1. miR-221 Is Required for Vascular Development

(A) Whole-mount in situ hybridization of embryos at 48 hr postfertilization (hpf). Dorsal aorta and posterior cardinal vein are indicated by a bracket and A or V,

respectively. Arrows indicate intersegmental blood vessels (ISV). Scale bar = 50 mm.

(B) Left column, transmitted light images of embryos at 30 hpf injected with indicated MO. Scale bar = 250 mm. Right column, confocal micrographs of trunk

vessels at 30 hpf in Tg(kdrl:egfp)la116 embryos injected with indicated MO. ISVs indicated by arrows and DLAV by arrowheads. Scale bar = 50 mm.

(C) Tg(kdrl:egfp)la116 embryos at 27 hpf injected with 10 ng control or miR-221 MO. aa1, aortic arch 1; PHBC, primordial hindbrain channel; LDA, lateral dorsal

aorta. Scale bar = 50 mm.

(D) Tg(fli1a:egfp)y1 embryos at 5 days postfertilization (dpf) injected as in (C). DA, dorsal aorta; PCV, posterior cardinal vein; position of thoracic duct is indicated by

arrows. Scale bar = 25 mm.

(E) Transmitted light images of larvae at 5 dpf injected as in (C). Scale bar = 500 mm. All panels are lateral views, dorsal is up, anterior to the left.
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incorporated into a ribonucleoprotein silencing complex (RISC;

Czech and Hannon, 2011; Gregory et al., 2005) and used as

a complementary guide sequence that binds to sites in the 30

UTR of a target mRNA. Upon RISC binding, a target transcript

is deadenylated leading to its degradation and translational

repression (Giraldez et al., 2006; Guo et al., 2010; Wu et al.,

2006). Thus, in most cases, microRNAs provide a mechanism

for posttranscriptional repression of gene expression. Since

microRNAs have been implicated in multiple aspects of vascular

growth control (Suárez and Sessa, 2009), we reasoned that they

might play a role to coordinate tip and stalk cell behaviors. By

applying deep sequencing and functional screening of micro-

RNAs in zebrafish embryos, we identifiedmir-221 as an essential

regulator of tip cell proliferation and migration.

RESULTS

miR-221 Is Expressed in Embryonic Endothelial Cells
and Is Required for Angiogenesis
To identify candidate microRNAs required for angiogenesis, we

sequenced small RNAs from zebrafish endothelial cells at 24 hr
Developm
postfertilization (hpf), at which time there is extensive vascular

growth (Isogai et al., 2003; Siekmann and Lawson, 2007;

Figure S1A available online). Approximately 20 microRNAs

displayed 2-fold or greater enrichment in green fluorescent

protein (GFP)+ cells isolated from Tg(kdrl:egfp)la116 embryos

compared to GFP� cells and more than 50 were highly ex-

pressed (>1,000 sequence tags) in GFP+ cells, many of which

are also expressed in human endothelial cells (Table S1; Kueh-

bacher et al., 2007). We also noted hematopoietic-expressed

microRNAs (e.g., miR-223, miR-451) consistent with kdrl:egfp

expression in hematopoietic cells (Bertrand et al., 2010).

We validated candidate microRNA expression by whole-

mount in situ hybridization using locked nucleic acid (LNA)

probes. Candidates were selected based on enrichment (e.g.,

miR-20b) or high expression (e.g., miR-221) in kdrl:gfp-positive

cells. Several candidate microRNAs displayed expression

similar to the endothelial-expressed transcription factor, fli1a,

at 48 hpf including miR-107, miR-20b, miR-221, and miR-222

(Figure 1A; Table S1; data not shown). To assess the function

of these microRNAs, we injected Morpholinos (MOs) to block

their maturation (Figure S1B and data not shown) and observed
ental Cell 22, 418–429, February 14, 2012 ª2012 Elsevier Inc. 419
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vascular and overall morphology in Tg(kdrl:egfp)la116 embryos. In

most cases, we noted normal development and intersegmental

vessel (ISV) formation at 30 hpf, except formiR-221 knockdown,

which caused partial ISV formation (Figure 1B). We also

observed distinct cardiovascular defects associated with loss

of other microRNAs. For example, miR-107-deficient embryos

displayed vascular stability defects (Figure S1C), whereas

embryos lacking miR-20b exhibited an apparent block in

erythroid differentiation (Figure S1D). Based on our interest in

identifying microRNAs involved in angiogenesis, we investigated

the function of miR-221 in greater detail.

Consistent with our deep sequencing data, miR-221 is

detected at high levels in endothelial cells from Tg(kdrl:egfp)la116

embryos at 24 hpf (Figure S1E). Although a high proportion of

miR-221-deficient embryos displayed partial ISV formation at

30 hpf (Figure 1B; Figure S1F), general embryonic development

was not delayed and overall morphology appeared normal (Fig-

ure 1B). Loss of miR-221 did not perturb development or differ-

entiation of structures adjacent to ISVs, such as somites, neural

tube, and notochord (Figure S1G). Closer inspection revealed

defects in formation of the primordial hindbrain channel, a tran-

sient vein in the zebrafish hindbrain (Isogai et al., 2003), in

embryos lacking miR-221, whereas the adjacent lateral dorsal

aortae formed normally (Figure 1C). We also noted lack of the

thoracic duct, a primary lymphatic vessel, at 5 days postfertiliza-

tion, whereas overall morphology was normal at this stage

(Figures 1D and 1E). A second MO targeting miR-221 caused

the same vascular defects (Figures S1H and S1I and data not

shown). Although there is a high degree of homology between

miR-221 andmiR-222, both MOswere specific formiR-221 (Fig-

ure S1J) and simultaneous knockdown ofmiR-221 andmiR-222

did not enhance or cause additional vascular defects (data not

shown). We did not note any changes in expression of either

vegfa, or its receptor kdrl (Figure S2A), which are essential for

ISV sprouting, (Covassin et al., 2006b) in miR-221-deficient

embryos. Likewise, ISV and vein-specific expression of flt4

and artery-specific expression of its ligand vegfc, as well as

ephrinb2a, notch3, and dll4 were not affected by loss of miR-

221 (Figures S2A and S2B). Circulation and heart function were

also normal in miR-221-deficient embryos (data not shown).

Together, these results demonstrate that miR-221 is highly ex-

pressed in endothelial cells and is required for angiogenesis.

miR-221 Is Required for Signaling through
the Vegfc/Flt4 Pathway
In the zebrafish embryo, kdrl and flt4 cooperate to drive ISV

growth, whereas flt4 alone is required for vein and lymphatic

development and kdrl alone is required for artery differentiation

and morphogenesis (Covassin et al., 2006b; Habeck et al.,

2002; Hogan et al., 2009). Strikingly, the phenotypes associated

with loss of miR-221 were identical to those in embryos lacking

flt4 (Covassin et al., 2006b; Hogan et al., 2009). By contrast,

miR-221-deficient embryos did not display hallmarks of Vegfa

deficiency, such as arteriovenous circulatory shunts or loss

of artery differentiation (data not shown; Figure S2A). These

observations suggested that miR-221 preferentially affects the

Vegfc/Flt4 pathway. To determine if this was the case, we first

assessed the genetic interaction between miR-221 and kdrl or

flt4 by quantifying ISV length in embryos lacking combinations
420 Developmental Cell 22, 418–429, February 14, 2012 ª2012 Elsev
of these genes. Embryos injected separately with either 1 ng of

flt4 or 5 ng of miR-221 MO displayed ISVs of normal length at

30 hpf similar to embryos injected with control MO (Figures

2A–2C and 2G). However, coinjection of these subphenotypic

MO doses resulted in significantly shorter ISVs (Figures 2D and

2G), similar to a more complete knockdown of either gene alone

at higher doses (Figure 2G). Furthermore, we did not observe any

enhancement of the ISV defect in embryos co-injected with

these higher MO doses (Figure 2G), suggesting that flt4 and

miR-221 act in the same pathway. By contrast, reduction of

miR-221 in mutant embryos bearing a null kdrlum19 allele

decreased ISV length compared to control kdrlum19 mutant

embryos (Figures 2E–2G), which normally display variable partial

shortening in ISV length (Covassin et al., 2009). The enhanced

ISV defect in embryos lacking miR-221 and kdrl is similar to

the effect of simultaneously reducing flt4 and kdrl (Covassin

et al., 2006b). These observations suggest that miR-221 acts

parallel to vegfa and kdrl and is likely acting in a common

pathway with vegfc and flt4. Despite this genetic interaction,

we did not detect changes in miR-221 levels in the absence of

flt4 (Figure S2D) and, as noted above, flt4 levels were normal in

miR-221-deficient embryos (Figures S2A and S2B).

We next determined if miR-221 function was required for

Vegfc/Flt4 signaling by assessing the response ofmiR-221-defi-

cient embryos to ectopically expressed Vegfc. We used the heat

shock 70 (hsp70) promoter to inducibly express Vegfc in frame

with monomeric red fluorescent protein (mCherry) separated

by the viral 2A peptide sequence in zebrafish embryos. Mosaic

Vegfc overexpression following heat shock at 15 somite stage

caused ectopic branching of ISVs along the horizontal myosep-

tum in control embryos at 33 hpf (Figures 2H and 2L), but not in

flt4-deficient embryos (Figures 2I and 2L) indicating that this

effect is dependent on the Flt4 receptor. Likewise,miR-221-defi-

cient embryos displayed significantly fewer ectopic vessels in

response to Vegfc (Figures 2J and 2L). The loss of ectopic

sprouting was not generally attributable to partial ISV formation

caused by flt4- or miR-221 deficiency, as kdrlum19 mutant

embryos, which also exhibit partial ISV sprouts (see above),

form ectopic vessels in response to Vegfc (Figures 2K and 2L).

Together, these results suggest that miR-221 is required for

Vegfc/Flt4 signaling during ISV sprouting.

miR-221 Is Required for Endothelial Tip Cell
Proliferation and Migration
In sprouting blood vessels, flt4 expression is highly dynamic and

becomes restricted to endothelial tip cells (Covassin et al.,

2006b; Siekmann and Lawson, 2007; Tammela et al., 2008).

Since miR-221 was required for ISV growth and Vegfc/Flt4-

induced angiogenesis, we reasoned that it might play a role in

governing endothelial tip cell behaviors. To determine if this

was the case, we performed two-photon time-lapse microscopy

on embryos lacking or overexpressing miR-221. In control

embryos, ISVs generally formed by migration of endothelial tip

cells from the dorsal aorta followed by a second trailing cell (Fig-

ure 3A, 19:30 and 20:54; Movie S1), as shown previously (Siek-

mann and Lawson, 2007). Once reaching the horizontal myosep-

tum, tip cells in most ISVs divided (Figure 3A, 20:54 to 24:36) and

a single daughter cell subsequently migrated dorsally to form the

dorsal longitudinal anastomtic vessel (DLAV) (Figure 3A, 27:01).
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Figure 2. miR-221 Is Required for Vegfc/Flt4 Signaling

(A–F) Confocal micrographs Tg(fli1a:egfp)y1 embryos at 27 hpf; arrowheads denote ISVs; lateral views, dorsal is up, anterior to the left. (A) Embryo injected with

6 ng control MO. (B) Embryo injected with 1 ng flt4 and 5 ng control MO. (C) Embryo injected with 1 ng control and 5 ngmiR-221MO. (D) Embryo injected with 1 ng

flt4 MO and 5 ng miR-221 MO. (E) kdrlum19 mutant embryo injected with 10 ng control MO. (F) kdrlum19 mutant embryo injected with 10 ng of miR-221 MO.

(G) Quantification of ISV length in wild-type or kdrlum19mutant embryos injected with indicatedMOs. Measurements were made of four adjacent ISVs per embryo

in at least 18 embryos from three separate injections; *p < 0.001; N.S., not statistically different.

(H–K) Tg(fli1a:egfp)y1 embryos injected with hsp70:vegfc-2A-mcherry transposable element and heat shocked at 15 ss. Red indicates Vegfc-2A-mcherry

expression. Arrowheads indicate ectopic formation of vessels. Embryos at 33 hpf coinjected with (H) 10 ng control MO, (I) 2 ng flt4MO, (J) 10 ngmiR-221MO, or

(K) mutant for kdrlum19.

(L) Proportion of hemisegments with ectopic vessel sprouts in embryos injected with 25 pg Tol2-hsp70:vegfc-2A-mcherry and 25 pg Tol2 transposase. Embryos

were co-injected with indicated MO, or were mutant for the kdrlum19 allele as determined by genotyping following phenotypic analysis. *p < 0.02; N.S., not

significant. Scale bars are (A–F) 50 mm and (H–K) 25 mm.
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In the absence ofmiR-221, the initial rate ofmovement for tip and

trailing cells from the dorsal aorta into the ISV was relatively

normal (Figure 3B, 19:30 to 20:50; Movie S2; Figure S3A).

However, subsequent migration of tip cells from the horizontal
Developm
myoseptum to the DLAV was significantly slower than in control

embryos (for example, compare Figure 3B, 26:51 to Figure 3A,

24:36; Movie S2, Figure S3A). In addition, tip cells often failed

to divide in miR-221-deficient embryos (Figure 3B; Movie S2).
Figure 3. miR-221 Regulates Migration and

Proliferation of Tip Cells
(A–C) Still images from time-lapse analysis of

(A and B) Tg(fli1a:negfp)y7;(kdrl:ras-cherry)s916 or

Tg(fli1a:negfp)y7;(kdrl:tagrfap-caax)is19 embryos.

Time (hpf) is noted in the bottom left hand corner.

Nuclei are numbered; successive numbers indi-

cate new cells that migrated from the dorsal aorta,

decimals indicate daughter cells arising from cell

division. Lateral views, dorsal is up, anterior to the

left. Horizontal white line denotes horizontal

myoseptum (hm). (A) Embryo injected with 10 ng

control MO. (B) Embryo injected with 10 ng miR-

221MO. (C) Embryo injectedwith 500 mMmiR-221

duplex. Scale bar is 25 mm.

See Movies S1, S2, and S3.
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Figure 4. miR-221 Acts Endothelial Cell Autonomously to Drive Tip

Cell Potential

(A–C and F) Confocal micrographs of mosaic embryos at 27 hpf following cell

transplantation. (A–C) Donor Tg(fli1a:egfp)y1 cells are green, host Tg(kdrl:ras-

mcherry)s916 vessels are red; DA, dorsal aorta; PCV, posterior cardinal vein,

both indicated by brackets. (A) Donor control cells in DLAV (arrow) and ISV

stalk (arrowhead). (B) Donor miR-221-deficient cells in the ISV stalk (arrow-

head). Asterisks indicate donor cells in the PCV. (C) Donor cells over-

expressing miR-221 in DLAV (arrows) and dorsal aorta (arrowhead).

(D and E) Proportion of host embryos with donor contribution to indicated

blood vessel type. (D) *p = 0.04. (E) *p = 0.001.

(F) Tg(fli1a:egfp)y1 host embryowithmiR-221-deficient donor cells labeledwith

rhodamine in nonendothelial cell types surrounding the ISVs, including neural

tube (white arrows) and somites (white arrowheads). Scale bars are 50 mm.
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Together, these defects resulted in delayed formation of the ISV

and DLAV, which were ultimately comprised of fewer endothelial

cells in miR-221-deficient embryos (see below). By contrast,

injection of miR-221 duplex induced precocious division of tip

cells prior to reaching the horizontal myoseptum (Figure 3C,

19:30 to 20:20; Movie S3). In addition, excessive numbers of

cells from the dorsal aorta continued to migrate into the ISV (Fig-

ure 3C, 20:20 to 23:07), further increasing cell numbers in the

ISVs (Figure 3C, 28:37 and see below), although ISV growth

rate was not faster than in control embryos (data not shown).

Consistent with our time-lapse observations, fewer tip cells in

miR-221-deficient ISVs incorporated BrdU than in control

embryos when pulsed beginning at 20 hpf, whereas exogenous
422 Developmental Cell 22, 418–429, February 14, 2012 ª2012 Elsev
miR-221 expression increased BrdU incorporation in cells that

contributed to the DLAV (Figures S3B and S3C). Interestingly,

the number of BrdU-positive cells in the dorsal aorta and poste-

rior cardinal vein did not change significantly in either case (Fig-

ure S3D), suggesting a preferential effect of miR-221 on ISV tip

cell proliferation. These observations indicate that miR-221 is

required for both migration and proliferation of endothelial tip

cells during ISV angiogenesis.

We have previously assessed the potential of an endothelial

cell to be a tip cell (referred to hereafter as ‘‘tip cell potential’’)

by determining its ability to contribute to the DLAV, which, based

on time-lapse analysis, is initially formed from a daughter of the

initial ISV tip cell. Using this assay, we have successfully demon-

strated that endothelial cells lacking Notch activity, which exhibit

excessive proliferation and migration, preferentially localize to

the DLAV (Siekmann and Lawson, 2007), whereas recent studies

demonstrate a similar behavior for endothelial cells partially

deficient in plexin signaling (Zygmunt et al., 2011). To assess

the tip cell potential of miR-221-deficient or overexpressing

cells, and to confirm the endothelial autonomy of these effects,

we transplanted donor cells from Tg(fli1a:egfp)y1 embryos

injected with miR-221 MO or miR-221 duplex, respectively,

into wild-type Tg(kdrl:ras-cherry)s916 host embryos. Control

donor cells contributedwell to all host blood vessels in the zebra-

fish trunk (Figures 4A, 4D, and 4E; control MO into WT, n = 20;

control duplex into WT, n = 16), whereas miR-221-deficient

endothelial cells contributed less frequently to the DLAV (Figures

4B and 4D; n = 17), consistent with their reduced proliferation

and migratory rates observed in time-lapse analysis (see above).

On the contrary, donor cells expressing exogenous miR-221

showed an enhanced ability to contribute to the DLAV (Figures

4C and 4E; n = 21). Donor cells with either gain or loss of miR-

221 expression otherwise contributed tomost other blood vessel

positions, ruling out a general defect in endothelial cell specifica-

tion (Figures 4A–4E). Furthermore, ISV formation was normal in

embryos where miR-221-deficient donor cells contributed only

to surrounding neural tube or somite tissue but not endothelial

cells (Figure 4F; n = 10). Thus, miR-221 increases tip cell poten-

tial during ISV angiogenesis and does so in an endothelial auton-

omous manner.

miR-221 Is Negatively Regulated by Notch Signaling
The defects caused by exogenousmiR-221were similar to those

associated with loss of dll4 (Hellström et al., 2007; Leslie et al.,

2007; Siekmann and Lawson, 2007), suggesting an antagonistic

relationship between miR-221 and Notch signaling. Therefore,

we investigated the genetic interaction between miR-221 and

dll4 by comparing ISV length and cell numbers in embryos

following knockdown of one or both of these genes. Similar to

previous observations, dll4 deficiency resulted in significantly

more ISV endothelial cells at 27 hpf than in control embryos

(Figures 5A, 5B, and 5J), similar to injection of miR-221 duplex

(Figures 5C and 5J). By contrast, mir-221 knockdown signifi-

cantly decreased cell numbers, as well as ISV length (Figures

5D, 5J, and 5K), consistent with time-lapse analysis (see Fig-

ure 3). Likewise, simultaneous reduction of mir-221 and dll4

decreased ISV cell number and length compared to dll4 knock-

down alone (Figures 5E, 5J, and 5K). At 35 hpf, dll4-deficient

embryos displayed excessive cell numbers compared to control
ier Inc.



Figure 5. miR-221 Is Required for the Notch-Deficient ‘‘Hyper’’-Angiogenesis Phenotype

(A–I), Confocal micrographs of Tg(fli1a:negfp)y7;(kdrl:ras-cherry)s916 embryos, lateral views, dorsal is up, anterior to the left. Numbers indicate nuclei in repre-

sentative intersegmental blood vessels (ISV). (A–E) Embryos at 27 hr post fertilization (hpf). (F–I) Embryos at 35 hpf. (A and F) Embryos injected with 25 ng of

control MO. (B and G) Embryos injected with 15 ng of dll4MO. (C) Embryo injected with 500 mMmiR-221 duplex. (D and H) Embryo injected with 10 ng of miR-221

MO. (E and I) Embryos coinjected with 15 ng of dll4 MO and 10 ng of miR-221 MO.

(J and K) (J) Quantification of endothelial number and (K) ISV length in Tg(fli1:ngfp)y7;(kdrl:ras-cherry)s916 embryos injected with indicated MO(s); *p < 0.0001.

Measurements were determined for four adjacent ISVs per embryo in at least eight embryos from three separate injections.

(L) Fold change of maturemiR-221 levels assessed by qRT-PCR in embryos injected with 2.5 ng rbpsuhMO or with mRNA encoding an activated form of Notch

compared to control embryos.

(M) Confocal micrographs of Tg(fli1ep;mcherry-pik3r1-utr)um28 embryos injected with 10 ng control MO, 10 ngmiR-221MO, or 2.5 ng Rbpsuh MO. Lateral views,

dorsal is up, anterior to the left. Scale bars are 50 mm.
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embryos (Figures 5F, 5G, and 5J), whereas ISVs inmir-221-defi-

cient embryos, which have recovered to form a DLAV and exhibit

normal ISV length (Figures 5K and 5H), displayed fewer ISV cells

(Figures 5H and 5J). Furthermore, dll4-deficient embryos lacking

miR-221 displayed normalized numbers of cells similar to wild-

type ISVs (Figures 5I and 5J). Taken with our finding that exoge-

nousmiR-221 drives excessivemigration and proliferation, these

observations suggest that miR-221 is required for excessive

angiogenesis associated with loss of Notch.
Developm
Notch signaling blocks angiogenesis, in part, by repressing flt4

expression (Siekmann and Lawson, 2007). SincemiR-221 acted

in the flt4 signaling pathway, we determined whether it might

also be repressed by Notch. In embryos injected with a MO

targeting the Rbpsuh DNA binding protein, which is required

for Notch signaling (Bailey and Posakony, 1995; Fortini and

Artavanis-Tsakonas, 1994), we found that miR-221 is upregu-

lated (Figure 5L). By contrast, injection of mRNA encoding an

activated form of Notch repressed miR-221 levels when
ental Cell 22, 418–429, February 14, 2012 ª2012 Elsevier Inc. 423



Figure 6. cdkn1b and pik3r1 Are Targets of miR-221

(A and B) Fluorescent images of embryos co-injected with 150 pg each of

mcherrymRNA fused to control 30 UTR and egfpmRNA fused to (A) cdkn1b 30

UTR or (B) pik3r1 30 UTR with 100 mM indicated duplex RNA. Lateral views,

dorsal is up, anterior to the left. Scale bar is 500 mm.

(C and D) Western analysis of embryos in (A) and (B).

(E and F) (E) ISV length and (F) cell number in Tg(fli1:egfp)y1 and Tg(fli1:negfp)y7

embryos, respectively, at 27 hpf injected with 500 pg of indicated mRNAs. For

coinjections, 200 pg of cherry2A-cdkn1b and 300 pg cherry2A-pik3r1 mRNA

were used. *p < 0.002.

(G) Left, host Tg(kdrl:ras-mcherry)s916 embryo at 27 hpf following trans-

plantation of cells from a Tg(fli1a:egfp)y1 embryo injected with 200 pg cdkn1b

and 300 pg pik3r1 mRNA Right, proportion of embryos displaying donor cells

in indicated vessel type. Control donor cells were from embryos injected with

500 pg mcherry mRNA. *p = 0.03. Scale bar is 25 mm.
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compared to control injected embryos (Figure 5L). To demon-

strate that the effect of Notch signaling on miR-221 levels was

occurring in endothelial cells, we utilized an endothelial autono-

mous microRNA sensor assay (Nicoli et al., 2010). In this

case, we generated a transgenic line (Tg(fli1ep:egfp;mcherry-

pik3r1)um28) using an endothelial cell-specific bicistronic vector

driving mcherry fused to a 30 UTR containing two miR-221

binding sites (Figure S4A and see below) and egfp fused

to a control 30 UTR. Tg(fli1ep:egfp;mcherry-pik3r1-utr)um28

embryos exhibited robust green fluorescence in trunk blood

vessels at 28 hpf, whereas mcherry levels appeared lower (Fig-
424 Developmental Cell 22, 418–429, February 14, 2012 ª2012 Elsev
ure 5M). Consistent with miR-221-mediated repression of the

mcherry transcript, we observed increased red fluorescence

in Tg(fli1ep:egfp;mcherry-pik3r1)um28 embryos injected with

miR-221 MO (Figure 5M; Figure S4B). By contrast, Mcherry

expression was significantly repressed following injection of

rbpsuhMO (Figure 5M; Figure S4B), consistent with our observa-

tion that miR-221 levels are increased in Notch-deficient

embryos (Figure 5L). Similar results were observedwith a second

30 UTR bearing miR-221 sites (see below and Figures S4B and

S4C). Taken together, our results demonstrate that Notch nega-

tively regulatesmiR-221 to block endothelial tip cell proliferation

and migration.

Repression of Two Distinct Targets by miR-221

Is Required for Angiogenesis
In tumor cells miR-221 drives proliferation by repressing cyclin

dependent kinase inhibitor 1b (cdkn1b; Galardi et al., 2007),

which blocks cell cycle progression. Since our studies demon-

strated a block in endothelial proliferation in miR-221-deficient

embryos, cdkn1b was a viable candidate target during angio-

genesis. In addition, we identified pik3r1, the p85-alpha regula-

tory subunit of the phosphoinositide-3-kinase (PI3K) complex,

as a candidate target of miR-221. Given the importance of

PI3K signaling in vascular development (Graupera et al., 2008),

we reasoned that this transcript was also a possible functional

target of miR-221 during ISV angiogenesis.

Both cdkn1b and pik3r1 30 UTRs containmiR-221 binding sites

(Figure S4A; data not shown) and were repressed bymiR-221 in

whole-embryo reporter assays (Figures 6A–6D) and endothelial

cells in vivo (Figure 5M; Figures S4B and S4C). We also detected

low-level expression of both transcripts in the trunk blood

vessels and isolated kdrl:egfp cells (Figures S5A and S5B).

Consistent with the possibility that increased levels of cdkn1b

and pik3r1 contributed to defects associated with loss of miR-

221 (see above), overexpression of cdkn1b or pik3r1, or both

together, reduced ISV length and cell numbers (Figures 6E and

6F), without an overt effect on general development (Figure S5C).

Furthermore, mosaic analysis demonstrated that cells express-

ing both pik3r1 and cdkn1b contribute less frequently to the

tip cell position than control (Figure 6G; control mRNA > WT,

n = 20, cdkn1b/pik3r1 mRNA > WT, n = 25), similar to miR-

221-deficient cells (Figures 4B and 4D). These results indicate

that increased levels of cdkn1b and pik3r1 can negatively affect

tip cell potential in an endothelial autonomous manner, further

supporting that they are normally targeted by miR-221 during

ISV sprouting.

Our results suggest that miR-221 controls ISV growth by

inducing proliferation and PI3K activity through repression of

cdkn1b and pik3r1, respectively. To further investigate the

importance of proliferation and PI3K during ISV growth, we

treated embryos at 20 hpf with either 5-hydroxyurea and aphido-

colin (HUA/AP) to block cell cycle or LY294002 to inhibit PI3K. In

both cases, we observed a significant decrease in ISV length and

cell number (Figures 7A–7C), although embryoswere normal and

did not exhibit changes in vegfa or kdrl expression (Figure S5D;

data not shown). The decrease in ISV cell number was more

modest in LY294002-treated embryos than those treated with

HUA/AP (Figure 7C). Furthermore, similar to miR-221 knock-

down, HUA/AP prevented BrdU incorporation into ISV tip cells,
ier Inc.



Figure 7. Proliferation and PI3K Are

Required for ISV Growth

(A) Embryos at 27 hpf treated with 4% DMSO,

150 mM 5-hydroxyurea, and 20 mM aphidocolin

(HUA/AP), or 25 mM LY294002 (PI3K inh) begin-

ning at 20 hpf. Left panels, confocal micrographs

of Tg(fli1:negfp)y7;(kdrl:ras-cherry)s916 embryos.

(right panels) Two-photon micrographs of

Tg(kdrl:egfp)la116 embryos pulsed with BrdU at 20

hpf. Lateral views, dorsal is up, anterior to the left,

yellow arrows denote BrdU-positive endothelial

nuclei; BrdU-negative endothelial nuclei indicated

by white arrowheads. Scale bar is 50 mm.

(B and C) Quantification of (B) ISV length in

microns and (C) number of nuclei per ISV in

Tg(fli1:negfp)y7;(kdrl:ras-cherry)s916 embryos at 27

hpf treated as in (A). *p < 0.0001.

(D) Quantification of BrdU-positive DLAV or ISV tip

cells in Tg(kdrl:egfp)la116 embryos at 27 hpf treated

as in (A). **p < 0.02. NS, not significant.
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whereas LY294002 did not (Figures 7A and 7D), suggesting

that PI3K inhibition does not affect endothelial cell prolifera-

tion during sprouting. Our results demonstrate that pik3r1

overexpression and PI3K inhibition similarly blocked ISV

growth, suggesting that increased pik3r1 in the absence of

miR-221 blunts PI3K signaling output. To determine if this was

the case, we generated transgenic zebrafish (referred to as

Tg(fli1ep:phaktegfp-2A-mcherry)um63) bearing EGFP fused to

the pleckstrin homology domain of human Akt1 (PH-AKT-

EGFP),which localizes to themembrane in response toPI3Kacti-

vation (Astoul et al., 1999), and a coexpressed red fluorescent

protein. InTg(fli1ep:phaktegfp-2A-mcherry)um63embryos lacking

miR-221, we observed decreased filopodial localization of PH-

AKT-EFP compared to control (Figures S5E and S5F). Further-

more, partial reduction of pik3r1 to levels that do not affect ISV

formation (see below) restores filopodial PH-AKT-EGFP localiza-

tion in miR-221-deficient Tg(fli1ep:phaktegfp-2A-mcherry)um63

embryos (Figures S5E and S5F). These observations suggest

that increased levels of pik3r1 in the absence of miR-221 cause

reduced or mislocalized PI3K output in sprouting endothelial

cells, which contributes to the observed defects in ISV growth.

Our results suggested that upregulation of pik3r1 and cdkn1b

is the likely cause of ISV growth defects in miR-221-deficient

embryos. If this were the case, then reducing their levels would

rescue the phenotypes in miR-221-deficient embryos. To inves-

tigate this possibility, we injected embryos with MOs to inhibit

splicing of cdkn1b or pik3r1 (Figures S6A–S6D). In all cases,

we coinjected tp53MO to eliminate off-target toxicity. Reduction

of tp53 alone did not rescue defects associated with miR-221

deficiency (Figures 8A, 8E, 8J, and 8L). Wild-type embryos lack-
Developmental Cell 22, 418–429,
ing cdkn1b exhibited excessive numbers

of ISV endothelial cells (Figures 8A, 8B,

and 8I), similar to embryos injected with

miR-221 duplex (see Figures 5C and

5J), but were otherwise normal (Fig-

ure S6D). Embryos injected with 10 ng

of MO to reduce pik3r1 levels displayed

variable shortening of ISV length and

a slight, but nonsignificant decrease in ISV cell numbers and

were otherwise overtly normal (Figures 8C, 8I, and 8K; Figures

S6B–S6D). Injection of 5 ngpik3r1MOdid not cause a phenotype

(Figures 8D, 8I, and 8K). We attempted to rescue miR-221 defi-

ciency by coinjecting 5 ng of either cdkn1b or pik3r1 MO with

10 ng ofmiR-221MO. In both cases, we observed a partial resto-

ration of ISV length, although not to control levels (Figures 8E–8G

and 8L). Interestingly, knockdown of cdkn1b, but not pik3r1,

restored ISV endothelial cell number to control levels in the

absence of miR-221 (Figure 8J), consistent with the differential

effects of HUA/AP and LY294002 on endothelial proliferation

and ISV growth noted above. Simultaneous knockdown of

ckdn1b and pik3r1 in miR-221-deficient embryos fully restored

both ISV length and cell number (Figures 8H, 8J, and 8L), indi-

cating that these two targets together mediated the function of

miR-221 during ISV growth. Furthermore, endothelial cells with

reduced levels of cdkn1b and pik3r1 localized to the DLAV at

a greater frequency than control cells in mosaic embryos (Fig-

ure 8M; control MO data are same as those shown in Figure 4;

cdkn1b/pik3r1 MO > WT, n = 24), similar to cells expressing

exogenous levels of miR-221 (see Figure 4E). Thus, miR-221

induces tip cell proliferation through downregulation of cdkn1b

and promotes optimal PI3K output by reducing pik3r1. Together,

these effects contribute to endothelial tip cell migration and

proliferation during angiogenesis.

DISCUSSION

The ability of an endothelial cell to dynamically respond to

proangiogenic cues is essential to coordinate distinct cellular
February 14, 2012 ª2012 Elsevier Inc. 425



Figure 8. pik3r1 and cdkn1b Are Functional

Downstream Targets of miR-221

(A–H) Tg(fli1a:negfp)y7;(kdrl:ras-cherry)s916 em-

bryos at 27 hpf. Numbers denote cell nuclei of

representative ISV. All embryos were co-injected

with 1 ng of p53 MO. Scale bar is 50 mm. Embryo

injected with (A) 15 ng control MO (B) 5 ng cdkn1b

MO, (C) 10 ng pik3r1 MO, (D) 5 ng pik3r1 MO, (E)

10 ng miR-221 MO, (F) 10 ng miR-221 and 5 ng

cdkn1b MOs, (G) 10 ng miR-221 and 5 ng pik3r1

MOs, and (H) 10 ng miR-221, 3 ng cdkn1b, and

3 ng pik3r1 MOs.

(I–L) (I and J) Quantification of cells per ISV and

(K, L) ISV length in embryos at 27 hpf injected with

MOs as above, except control MO, which was

injected at (I and K) 10 ng and (J and L) 15 ng

doses. *p < 0.001; N.S., not significant. Measure-

ments were obtained from four adjacent ISVs in at

least ten embryos from three separate experi-

ments. (M) Left, host Tg(kdrl:ras-mcherry)s916

embryo at 27 hpf following transplantation of cells

from a Tg(fli1a:egfp)y1 embryo injected with 3 ng

cdkn1bMO and 5 ng pik3r1MO. Right, proportion

of embryos displaying donor cells in indicated

vessel type. Data from control donor cells is the

same as in Figure 4D. *p = 0.07. Scale bar is 25 mm.
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behaviors with its neighbors. Without this coordination, produc-

tive angiogenesis is hindered. Our present work provides

evidence that posttranscriptional regulation bymicroRNAs plays

an important role in this process. In particular, we identify miR-

221 as an essential regulator of angiogenesis in embryonic

zebrafish and provide evidence that supports a role for miR-

221 in endothelial tip cell proliferation and migration.

miR-221 appears to act in sprouting endothelial cells through

repression of two distinct target transcripts: pik3r1 and cdkn1b.

Our results suggest that these target genes control distinct

tip cell behaviors. Although miR-221-mediated downregulation

of cdkn1b was required for proliferation, PI3K signaling was

dispensable for this behavior in tip cells. Although repression

of pik3r1 by microRNAs in other contexts can cause p53-depen-

dent apoptosis (Park et al., 2009), endothelial tip cell survival
426 Developmental Cell 22, 418–429, February 14, 2012 ª2012 Elsevier Inc.
appeared normal following loss of miR-

221, pik3r1, or PI3K signaling and tp53

knockdown did not rescue miR-221 defi-

ciency. Instead, we believe that pik3r1 is

important for tip cell migration, consistent

with the role for the PI3K catalytic p110a

subunit in endothelial cells (Graupera

et al., 2008). Our results further suggest

that miR-221 appropriately tunes PI3K

signaling output by controlling the levels

of a PI3K regulatory subunit. Pik3r1

usually exists in a 1:1 ratio with a catalytic

subunit of the PI3K signaling complex

(Geering et al., 2007), such as p110a,

and both proteins are otherwise unstable

(Yu et al., 1998). Pik3r1 inhibits the cata-

lytic subunits, but is also required for

PI3K activity following membrane locali-
zation of the Pik3r1/p110 complex and activation by a receptor

tyrosine kinase (Vanhaesebroeck et al., 2010). A central question

is how increased Pik3r1 may alter PI3K signaling to block

sprouting. In some contexts, Pik3r1 acts independently of PI3K

catalytic subunits (Garcı́a et al., 2006), suggesting that increased

Pik3r1 may interfere with other signaling pathways required

for angiogenesis. However, in this case excess Pik3r1 would

not affect PI3K output, yet we observe decreased PI3K activity

in the filopodia of miR-221-deficient ISVs. A more likely possi-

bility is that increased Pik3r1 alters the appropriate balance

in regulatory and catalytic subunits, which can be composed

of several different isoforms that are present in endothelial

cells (Graupera et al., 2008). In turn, a shift in stoichiometry

may squelch receptor tyrosine kinase signaling output and

PI3K activity. It is also possible that these changes lead to
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inappropriate subcellular localization of PI3K complexes. In this

regard, it is of note that PI3K signaling is active in endothelial

filopodia in developing ISVs. Increased Pik3r1 may alter the

subcellular localization of PI3K complexes, thereby reducing filo-

podia PI3K activity, possibly without a change in total cellular

PI3K output. In any event, microRNA regulation of PI3K signaling

appears to be an emerging theme in the control of this crucial

signaling regulator as miR-126 similarly regulates Vegfr-2

signaling output through modulation of Pik3r2 (Fish et al.,

2008; Wang et al., 2008).

The importance of miR-221 for endothelial tip cell migration

and proliferation is consistent with its requirement for signaling

through flt4. Interestingly, neither vegfc, nor flt4 expression is

regulated by miR-221, whereas miR-221 expression is normal

in flt4-deficient embryos. We believe that the central point of

interaction between miR-221 and flt4 is at the level of pik3r1

regulation. Pik3r1 possesses SH2 domains to facilitate interac-

tion with activated receptor tyrosine kinases and is known to

interact with Flt4 following binding to Vegfc (Wang et al., 2004).

Thus, miR-221 may directly affect Flt4 signaling output through

its regulation of pik3r1 levels. Although miR-221 expression is

independent of flt4 itself, we find that it is repressed by Notch

activation, similar to flt4. Together, our findings suggest a model

in whichmiR-221 promotesmigration and proliferation by poten-

tiating flt4 signaling through regulation of pik3r1, while repressing

cdkn1b. By contrast, Notch activation in stalk cells represses

both flt4 and miR-221. Subsequently, cdkn1b levels increase

to limit proliferation, whereas an increase in pik3r1 serves to

dampen, or qualitatively shift PI3K output.

In contrast to our findings, exogenous miR-221 is anti-angio-

genic in human venous or lymphatic endothelial cells (Chen

et al., 2010; Poliseno et al., 2006; Wu et al., 2011). These effects

were mediated through numerous distinct targets depending on

the study and included the ETS1 transcription factor (Zhu et al.,

2011), the stem cell factor receptor C-KIT (Poliseno et al., 2006),

and the transcriptional repressor ZEB2 (Chen et al., 2010). miR-

221 can also increase lymphocyte adhesion through repression

of ETS1, leading to a decrease in angiotensin II expression (Zhu

et al., 2011). Interestingly, this latter work did not note amigration

defect in response to miR-221 overexpression, as cited in other

studies. A possible explanation for these discrepancies is that

miR-221 levels vary significantly in response to both serum

and Vegfa (Chen et al., 2010; Suárez et al., 2008), suggesting

that growth conditions influence microRNA function in cultured

cells. These observations raise the possibility that miR-221

governs context-specific changes in endothelial behavior

depending on cell type or developmental stage. Thus, whereas

miR-221 is an important proangiogenic signal during embryonic

development, it may play different roles in the mature circulatory

system.

Although miR-221 is only modestly enriched in endothelial

cells and is present at high levels in nonendothelial cell types,

miR-221 deficiency caused remarkably specific developmental

vascular defects. There may several reasons for this observa-

tion. First, MOs only provide partial knockdown and the

observed phenotypes may be manifest only in cell types (e.g.,

endothelial tip cells) where high gene dosage is required.

Second, miR-221-deficient embryos may display subtle defects

in other tissues and developmental processes. Indeed, the
Developm
observed vascular defects were only obvious when using a

transgenic background to visualize blood vessel morphology.

Thus, more careful molecular and cellular analysis applied to

other organ systems may reveal further defects associated

with miR-221 reduction. Finally, microRNAs play an important

regulatory role by tuning gene expression to appropriate levels.

As such, single microRNA deficiency often has very subtle

effects on animal development. In this regard our findings are

consistent with those in other models. Interestingly, we also

noted specific cardiovascular defects associated with knock-

down of othermicroRNAs (e.g.,miR-107 andmiR-20b), suggest-

ing a widespread role for small RNAs in vascular development.

Further screening of microRNA function in zebrafish will likely

reveal additional roles for small RNAs in vascular formation,

function, and homeostasis.

EXPERIMENTAL PROCEDURES

Zebrafish Lines

Zebrafish used in this study are described in Supplemental Experimental

Procedures.

miRNA Library Preparation, Deep Sequencing, and Analysis

Endothelial cells were isolated from Tg(kdrl:egfp)la116 embryos as previously

(Covassin et al., 2006a). Small RNA (18–24 nt) purification, adaptor ligation,

cDNA synthesis and library amplification were performed as described (Gu

et al., 2009). Deep sequencing was performed at the Center for AIDS Research

at UMass Medical School. Reads were mapped to known zebrafish micro-

RNAs using the latest version of mirDeep (Friedländer et al., 2008).

Northern Blot Analysis, In Situ Hybridization, and Quantitative PCR

For Northern analysis, 5–10 mg of total RNA was resolved on a 15% acryl-

amide/7 M urea gel and transferred by electrophoresis to positively charged

nylon membrane (Millipore) using a Trans-Blot SD apparatus (Bio-Rad).

Hybridization and detection using digoxigenin-labeled locked nucleic acid

(LNA) probes (Exiqon) were performed as described (Kloosterman et al.,

2006). Whole-mount in situ hybridization using LNA or antisense RNA probes

was performed as previously (Kloosterman et al., 2006; Nicoli et al., 2010).

miRNA-quantitative-PCR was performed using the miScript PCR system

(QIAGEN). Probe and primer sequences can be found in the Supplemental

Experimental Procedures.

Morpholino and mRNA Injections

MO sequences and primers designed for RT-PCR validation are described in

Supplemental Experimental Procedures. Knockdown of the zebrafish cdkn1b

and pik3r1 genes was accomplished using MOs targeting splice junctions

within these genes that were validated by RT-PCR and qRT-PCR on RNA iso-

lated from injected embryos. MOs targeting rbpsuh, flt4 and dll4 are described

elsewhere (Covassin et al., 2006b; Siekmann and Lawson, 2007). MOs were

synthesized by Gene Tools, LLC and dissolved in DEPC water.

MicroRNA Sensor Assays

Whole-embryo and endothelial autonomous microRNA sensor assays were

carried out as previously described (Nicoli et al., 2010). For details see Supple-

mental Experimental Procedures.

Western Blot

Ten to twenty embryos injected with 30 UTR sensor and control mRNAs at 24

hpf were dechorionated and triturated in calcium free ringer solution (Covassin

et al., 2006a) and lysed as described (Rand et al., 2004). Total protein (40 mg)

was separated on a 12% SDS-PAGE gel. Western blotting was performed

according to standard protocols. GFP and Cherry were sequentially detected

using rabbit anti-GFP (1:1,000, Invitrogen) and rabbit anti-DsRed (1:1,000,

Clontech), respectively, followed by chemiluminscent immunodetection using

anti-rabbit HRP conjugate (1:20,000, Invitrogen).
ental Cell 22, 418–429, February 14, 2012 ª2012 Elsevier Inc. 427
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Chemical Treatments, BrdU Incorporation,

and Immunohistochemistry

To block cell division, we treated embryos simultaneously with 150 mM aphidi-

colin (Sigma) and 20 mM hydroxyurea (Sigma) as described (Lyons et al.,

2005). To block PI3K signaling we used 25 mM LY294002 (Sigma). Drug treat-

ments were performed at 20 hpf on dechorionated embryos in agarose-coated

dishes. BrdU labeling was performed by injection of 50 mM BrdU in 0.2 M KCl

directly into the yolk of Tg(kdrl:egfp)la116 embryos. Embryos were injected at

20 hpf, transferred to embryo media, and incubated at 28.5�C until 28 hpf.

For whole-mount immunostaining, embryos were fixed in 4% paraformalde-

hyde for 2 hr at room temperature and transferred to methanol overnight

at �20�C. Embryos were rehydrated to PBST (PBS + 0.5% Triton X-100)

and incubated in 2N HCl for 1 hr at room temperature, washed in PBST and

placed in blocking solution (PBST + 1%DMSO + 1%BSA + 0.2% goat serum)

for 30 min at room temperature. To detect BrdU, embryos were immuno-

stained with Alexa-594 anti-BrdU antibody (1:200, Invitrogen) and Alexa-488

anti-GFP antibody (1:300, Invitrogen).

Image Acquisition and Vessel Measurements

Whole-mount live and fixed embryos were analyzed using a MZFLIII micro-

scope equipped with epifluorescence. Digital images were captured using

a Zeiss mRC digital camera and AxioVision software. Confocal stacks in green

(excitation 488 nm laser) and red (excitation 651 nm laser) channels were

acquired sequentially using a Leica SP2 confocal microscope. Two-photon

imaging was performed using a LSM7 MP Laser scanning microscope (Zeiss)

equipped with a Chameleon Ti:Sapphire pulsed laser (Coherent, Inc.) and

images acquired using ZEN 2009 software. For detection of BrdU and Egfp

in Tg(kdrl:egfp)la116 embryos, we sequentially scanned embryos at 1,040 nm

(70% power) and 920 nm (20% power). Measurements of ISVs were made

straight from the edge of the aorta to the leading edge of the sprout. Two-

dimensional projections were generated using Imaris (Bitplane). Except where

otherwise indicated, all pairwise comparisons were analyzed for significance

using a Student’s two-tailed t test. Error bars in all graphs represent SD.

Mosaic Analysis

Transplantations were performed as described (Covassin et al., 2009). Donors

were injected with 10 ng of control MO ormiR-221MO to assess loss-of-func-

tion effects or 500 mM of miR-221 duplex or control duplex to assess gain-of-

function effects. The contribution of donor cells was assigned as a percentage

of total number of host embryos that display GFP endothelial cells in the indi-

cated vessels. To assess nonautonomous effects, donor cells were injected

with miniRuby (Invitrogen) and transplanted into Tg(fli1a:egfp)y1 embryos. To

determine cell autonomous function of pik3r1 and cdkn1b, donor embryos

were coinjected with 5 ng of cdkn1b and 5 ng of pik3r1 MOs or 200 pg of

cdkn1b and 300 pg of pik3r1 mRNA, respectively. Control transplants were

performed using donors injected with 500 pgmcherrymRNA. The proportions

of embryos exhibiting contribution to each vessel type following the indicated

experimental manipulations were compared using Fisher’s exact test.
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Rådmark, O., Kim, S., and Kim, V.N. (2003). The nuclear RNase III Drosha initi-

ates microRNA processing. Nature 425, 415–419.

Leslie, J.D., Ariza-McNaughton, L., Bermange, A.L., McAdow, R., Johnson,

S.L., and Lewis, J. (2007). Endothelial signalling by the Notch ligand Delta-

like 4 restricts angiogenesis. Development 134, 839–844.

Lobov, I.B., Renard, R.A., Papadopoulos, N., Gale, N.W., Thurston, G.,

Yancopoulos, G.D., and Wiegand, S.J. (2007). Delta-like ligand 4 (Dll4) is

induced by VEGF as a negative regulator of angiogenic sprouting. Proc.

Natl. Acad. Sci. USA 104, 3219–3224.

Lyons, D.A., Pogoda, H.M., Voas, M.G., Woods, I.G., Diamond, B., Nix, R.,

Arana, N., Jacobs, J., and Talbot, W.S. (2005). erbb3 and erbb2 are essential

for schwann cell migration and myelination in zebrafish. Curr. Biol. 15,

513–524.

Nicoli, S., Standley, C., Walker, P., Hurlstone, A., Fogarty, K.E., and Lawson,

N.D. (2010). MicroRNA-mediated integration of haemodynamics and Vegf sig-

nalling during angiogenesis. Nature 464, 1196–1200.
Developm
Park, S.Y., Lee, J.H., Ha, M., Nam, J.W., and Kim, V.N. (2009). miR-29miRNAs

activate p53 by targeting p85 alpha and CDC42. Nat. Struct. Mol. Biol. 16,

23–29.

Poliseno, L., Tuccoli, A., Mariani, L., Evangelista, M., Citti, L., Woods, K.,

Mercatanti, A., Hammond, S., and Rainaldi, G. (2006). MicroRNAs modulate

the angiogenic properties of HUVECs. Blood 108, 3068–3071.

Poole, T.J., and Coffin, J.D. (1989). Vasculogenesis and angiogenesis: two

distinct morphogenetic mechanisms establish embryonic vascular pattern.

J. Exp. Zool. 251, 224–231.

Rand, T.A., Ginalski, K., Grishin, N.V., and Wang, X. (2004). Biochemical iden-

tification of Argonaute 2 as the sole protein required for RNA-induced silencing

complex activity. Proc. Natl. Acad. Sci. USA 101, 14385–14389.

Siekmann, A.F., and Lawson, N.D. (2007). Notch signalling limits angiogenic

cell behaviour in developing zebrafish arteries. Nature 445, 781–784.
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