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Abstract

This paper establishes a weak similarity principle for the class of locally solvable complex vector
fields in the plane. The main tool is a local solvability result in an appropriate space of bounded mean
oscillation functions.
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1. Introduction
In this article we study properties of solutions of first-order equations of the form:
Lw=Aw+ Bw, (D)

wherew is a locally integrable functiom andB are bounded measurable functions @nd
is a planar complex vector field of claés™", 0 < r < 1. Equation (1) is a generalization
of the classical elliptic equation:
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which has been the subject of many works (see, for example, [2-5,15,24]). Notice that (1)
implies thatLw is locally integrable and satisfies the inequality

|ILw| < M|w| 3)

for some positive constaM . Conversely, ifv andLw are locally integrable and satisfy (3)
we may defined to be equal to the quotietfitw /w at points wherev does not vanish and
equal to zero otherwise; it then follows thatis measurable and bounded andsatisfies

(1) with B =0. WhenL = 9 is the Cauchy—Riemann operator, solutions of (3) were called
approximately analytic by L. Bers [3, p. 18].

Solutions of (2) are called pseudoanalytic functions or generalized analytic functionsin
the literature. Pseudoanalytic functions share many properties with analytic functions of
a single complex variable. These properties follow from the similarity principle which is
valid for solutions of (2). This principle says that locally every continuous solutiaf
(2) has the form

w=¢e%h,

for some holomorphic function and Holder continuoug. Thus,w andh are “similar”
in the sense that bottv/ 2 and h/w are bounded away from zero on compact sets, in
particular, the zero set @ is discrete.
Since in appropriate local coordinates, any elliptic vector fiellecomes a multiple of
d = 3/dz it turns out that the similarity principle holds as well for any elliptic vector field.
In a recent paper [12], A. Meziani studied the validity of the similarity principle for the
following three nonelliptic vector fields:

d .5 0 a . 0 a . 0
L1=—-3it*—, Ly=——ix—, and M=——ir—.
at 0x at 0x at 0x
There he proved, among other results, that an appropriate form of the similarity principle
for Ly andL; is valid, in the sense that ib is a solution ofL jw = Aw + Bw (j =1, 2),
thenw has the form

w=¢e%h,

whereL ;i = 0. It turns out that the main point abolif andL; is that they are locally
solvable, a property thaf does not share. Starting from this observation a weak form of
the similarity principle was proved in [1] for a substantial class of locally solvable vector
fields. Although the functiong andg involved in the representation af might be no
longer continuous for generdl in this class, the connection it establishes between the
zeros ofw andh proves useful and can be applied, for instance, to obtain uniqueness in
the Cauchy problem for certain types of semilinear equations with lowly regular weak
solutions [1].
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The main thrust of the present paper is to show that the weak similarity principle holds
indeed for all locally solvable vector fields, i.e., those characterized by the Nirenberg—
Treves condition(P) [14]. Our techniques also allow us to reduce substantially the
regularity assumptions on the coefficientslofor the associated local solvability result
(classCt" for the principal part and clags” for the zero-order term, @ r < 1, suffices).

The local solvability of L enters in the picture as follows: given, in order to find
functionsg andh such thatw = i exp(g), the main step is to fing — after whichh may
be defined ag = e 8w — so one must solve locally the equatibg = f for a boundedf.
Furthermore, the solutiogt must be such ex) is locally integrable. While it is true that
for any locally solvable vector field and 1< p < oo the equationLg = f can locally
be solved inL? if f isin L? [9,10], this is false, in general, fgsp = oo [11]. Clearly,
finding a solutiong € L? for any p < oo when f is bounded is not good enough because
expg might not be locally integrable. This difficulty can be dealt with by introducing the
spaceX = L*°(R;; bma(R,)) of measurable functions(x, ¢) such that, for almost every
teR, x— u(x,t) e bma(R) and|ju(z, -)lomo < C < oo fora.e.r € R, where bm@R) is a
space of bounded mean oscillation functions, dual to the semilocal Hardy sh@eof
Goldberg [6]. It was shown in [1] that for the class of vector fieldthere considered, the
equationLu = f can be locally solved with € X if f € L°. Here we improve this result
by showing that for any locally solvable vector fidldthe equatiorL.u = f can be locally
solved withu € X for any f € X. This can be regarded as an ersatzpct oo of the L?
local solvability valid for 1< p < oo.

We now describe briefly the organization of the paper. In Section 2 we recall some facts
about the semilocal Hardy spak&R) where most of our analysis is carried out and state
our main local solvability result, Theorem 2.2. This follows in a standard way from an
a priori estimate (Theorem 2.1) whose rather long proof is presented in Sections 3-5. In
Section 6 we derive a similarity principle for a vector field with*" coefficients that
satisfies(P) and apply it to obtain uniqueness in the Cauchy problem for a semilinear
equation involving a locally solvable vector field in any number of variables with rough
coefficients. Finally, in Appendix A, we prove some facts that are important in the proof of
Theorem 2.1 but they rather belong to the general theory of the #dace

2. A priori estimatesin Hardy spaces

We recall some facts about the real Hardy spac¢€R) c L1(R), a particular instance
of the spaces introduced by Stein and Weiss in [19], and its semilocal versi@)
introduced by Goldberg [6]. In many situatio$'(R) is an advantageous substitute
for L1(R) [18], as the latter does not behave well in many respects, for instance,
concerning the continuity of singular integral operators. Let us choose a function
@ >0e C>®([—1/2,1/2]), with [ @ dz = 1. Write &, (z) = e 1@ (z/¢), z € R, and set

Mo f(z)= Sup |(®:x f)(2)

O<e<oo

s

then [18]
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HY®) ={f e L*®R): Mo f € L'(®)}.

A space of distributions is called semilocal if it is invariant under multiplication by test
functions. The spac&'(R) is not: yu may not belong tad(R) for ¢ € C>°(R) and

u € HYX(R). A way around this is the definition of the semilocal (or localizable) Hardy
space — better suited for the study of PDE&%R) [6,18] by means of the truncated
maximal function,

mo f(2)= sup |(@.* )|, "R ={feS®): mof el ®R),

0<e<1

which is stable under multiplication by test functions (we will systematically denote by
S the Schwartz space of rapidly decreasing function and’hiys dual, i.e., the space of
tempered distributions). It turns out thatdf is substituted in the definition df*(R) by

any other function? € S(R) only subjected tof @ # 0, this will not change the space
h1(R). Moreoveri1(R) is a Banach space with the norm

I fllp2 = lime fllp2,

and H! c h' c LY. Of course, this norm depends on the choicefobut different®
will give equivalent norms, moreover, il C S is a bounded subset, there is a constant
C=C(A) >0suchthaflmg fll;1 < Clime fl ;1 forall f €S andg € A. Infact more is
true: denoting byM f (x) = sup,c 4 m¢ f (x) the grand maximal function associated4o
it follows that || M f ;1 < Cllme fl 1.

We now describe the atomic decompositiorh16,18]. An 21(R) atom is a bounded,
compactly supported functioa(z) satisfying the following properties: there exists an
interval I containing the support af such that:

(1) la(z)| < |I|71, a.e., with|I| denoting the Lebesgue measurd pf
(2) if |1] < 1, we further require thaf a(z) dz = 0.

Any f e h' can be written as an infinite linear combinationsdfatoms, more precisely,
there exist scalarg; and h! atomsa; such that the seriel_; Aja; converges in:t

to f. Furthermore,| f|,1 ~ inf Zj |21, where the infimum is taken over all atomic
representations. Another useful fact is that the atoms may be assumed to be smooth
functions. A simple consequence of the atomic decomposition is/th@) is stable
under multiplication by Lipschitz functions(x): if a satisfies (1) with7| > 1 it follows

that a(x)b(x)/|b|lL~ also does. If|[I| < 1 and the center of is xo we may write
a(x)b(x) =b(xp)a(x) + (b(x) —b(xg))a(x) = 1(x) + B2(x). ThenBi(x)/[|b| L~ satisfies

(1) and (2) (with the samé) while B2(x)/K satisfies (1) for the interval’ of centerxg

and length 1, wher& is the Lipschitz constant af(x). It follows that f — bf has norm

< |lallz + K in h1(R). This argument can be pushed further to show #éR) is stable
under multiplication by more general continuous functions including Holder functions,
as we now describe. Leb be a modulus of continuity, meaning that [0, co) — R™
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is continuous, increasingy(0) = 0 andw(2¢t) < Cw(t), 0 <t < 1. Consider the Banach
spaceC”(R") of bounded continuous functions. R" — C such that

|f|Cwisup|f(y)_f(x)| -
X#£y a)(lx_yl)

’

equipped with the normf ||co = || fllL~ + | f|ce. Note thatC® is only determined by the
behavior ofw () for values oft close to 0. We will show in Lemma A.1 in Appendix A
that if the modulus of continuity (z) satisfies

17 1\t
E/a)(t)dt<C<l+|nE> , O<h<1, 4)
0

thenh(R) is stable under multiplication by functiomsC® (R). Note that the modulus of
continuityw () =t", 0 < r < 1, that defines the Holder spa€é, satisfies (4).
Consider now a first-order linear differential operator in two variables,

a . 0
L=—+ib(x,t)— +c(x,t), x,teR. (5)
at dx

We assume that:

() c(x,1) € C°(R?) wherew satisfieq4);

(iiy b(x,r)isreal and of clas€1t" for some0 < r < 1, i.e., for all multi-indexese| < 1,
D%b is bounded and?b € C" (R?);

(iii) for anyx € R the functiory — b(x, t) does not change sign

We point out that (iii) means that the operafogiven by (5) satisfies the Nirenberg—Treves

condition(P). We now introduce the spade= L1(R;; h1(R,)) of measurable functions
u(x, 1) such that, for almost everye R, x — u(x, r) € h*(R) and

[lutnlpe < e <cc.

R
whereh!(R) is the semilocal Hardy spade (R) of Goldberg [6]. The dual of the spade
is the space&X mentioned in the introduction.

Theorem 2.1. Let the operatoil. given by(5) satisfy(i), (i) and (iii) and leta > 0. Then
there exist constants > 0 and 7Ty > 0 such that

lully < CT|Lully, (6)

forallu e C°([—a,al x [-T,T1),0< T < To.
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The a priori inequality (6) has a standard duality consequence which we now
describe. The dual of}(R), denoted by bm@), may be identified [6] with the
space of locally integrable function(x) such that sup,_; |I|*1f1 |f — f1] < oo and
SUR/>1 7171 [; 1f1 < 0o, where we have denoted iyan arbitrary interval and by; the
mean of f on I. In particular, bm@R) is contained in BMQR), the space of bounded
mean oscillation functions. Then, (6) implies local solvabilitylit? ((— T, T'], bma(R,))
for the formal transposé.’. Now, L and —L’ have the same principal part, $0and
— L' satisfy simultaneously the hypotheses of Theorem 2.1. Summing up, we obtain the
following theorem:

Theorem 2.2. Let the operator

J . d
L= 3 +ib(x, t)a—x +c(x, 1)
satisfy(i)—(iii) . There is a neighborhootl = (—a, a) x (—T, T) of the origin such that
for every functionf € X = L*° (R, bma(R,)) there exists a function € X which solves
Lu= f in U, with norm

lullx <CT|flx-

In particular, the size ofi can be taken arbitrary small by lettin§ — O.

We conclude this section by proving consequences of Theorems 2.1 and 2.2 that can
be stated in a more invariant form that does depend on a special coordinate system. In
Theorems 2.1 and 2.2 the operaiohas a special form which is instrumental in obtaining
a priori estimates with minimal assumptions on the regularity of the coefficients but, at
least heuristically, after a suitable change of variables any first-order operator of principal
type has this form. On the other hand, for operators with rough coefficients this change of
variables imposes a loss of regularity on the coefficients of the transformed operator. One
should also observe the loss of derivatives caused in the process of deriving estimates in
terms of the original variables from estimates obtained in the new variables by the behavior
of local Hardy norms under composition with diffeomorphisms. For this reason we now
deal with operators having?*" coefficients in the principal part. Since we are dealing with
mixed norms, the roles afandx cannot be interchanged and we must consider change
of variables that preserve the privileged roleroConsider a general first-order operator
defined in an open subsgt ¢ R? that contains the origin

3
Lu=A(x, )2 1 B(x, t)a—” +C(x. 1),
X

ou

at
with complex coefficientst, B € C2t7(2),0<r < 1, C € C?(£2). Assume that the lines
t = const are noncharacteristic, which amounts to saying tak, r)| > 0, (x, 1) € £2.
Since the properties we are studying do not chandeig multiplied by a nonvanishing
function of clas<C?*", we may assume without loss of generality that 1, i.e.,
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_Bu

ou
Lu= B, t)— +C(x,1).
“ 8t+ & )8x+ x. 1)

Write B(x,t) = a(x, 1) + ib(x,t) with & andb real and choos@ > 0 so that they are
defined for|x| < p, |t| < p. Consider the ODE

d—xzfl(x,t), x(0)=¢, gzl, 1(0)=0,
ds ds

with solution(x (&, 5), ¢ (€, s5)) given by

N

x(é,s)=$+f&(x(§,o),a)da, t(E,s)=s.
0

Observe thatx(¢,0) = & so (9x/9£)(0,0) = 1; also (dt/9£)(0,0) = 0 and
(0t/03s)(0,0) = 1 so the Jacobian determinant [@€k, r)/d(£, s)] assumes the value 1
atx =s =0, granting that&, s) — (x, 1) is, at least locally, a smooth change of variables.
The chain rule gives:

ad a ad a 9t 9
—=—+alx,t)—, = ao o
as ot ox &  Odx Ox

so in the new coordinates we have
L=, +i(B/(0&/3x))d + C(x(€,5),5) = 85 +ibd +c,

whereb is real of clas<1" andc € €. If L satisfies the Nirenberg—Treves conditi@)

so doed, due to the well-known invariance of this property. Multiplying the coefficiénts
andc by a cut-off functiony > 0e C*° (R?) that is identically equal to 1 in neighborhood
of the origin we have now an operatbf, with coefficients defined globally if®2, that
satisfies the hypotheses of Theorem 2.1 and agreedwiitia neighborhood of the origin.
Thus, the a priori estimate (6) holds fbtin the variablesé, s). Letu’(§, s) € C° (R?) be
supported in a sufficiently small neighborhood of the origin and éetr) = v’ (¢ (x, 1), 1),
where (x, 1) — (&, s) is the inverse of&, s) — (x, 1), thus of classC?*". Invoking the
invariance ofr(R) under diffeomorphisms of clags? discussed in Proposition A.6 we
conclude that ifs’ is supported in a convenient neighborhood of the origin we have:

Co [l 8 < [ 169y 85 < Co [ )]
R R R

and this shows that the a priori estimate (6) fdrimplies an analogous estimate fbr
using the fact thafLu(x, r) = L'u/ (6 (x, 1), 1).
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Theorem 2.3. Let L given by
ou ou
Lu=A(x,t)—+ B(x,t)— + C(x,1),
Jat 0x

be defined in a neighborhood of the origin, with complex coefficiant® € C2 (£2),
O<r <1, CeC?@). Assume that the level curves: const are noncharacteristic fof.
and thatL satisfies the Nirenberg—Treves conditi@). Then there exist constanis> 0,
C > 0andTp > O such that

lully < CT||Lully
for all u € C°([—a,a]l x [-T,T]), 0 < T < To. Hence, for every functiorf € X =

L*®(R;, bma(R,)) there exists a function € X which solved.u = f in a neighborhood
U of the origin, with norm

lullx <CTIfllx-

The long proof of Theorem 2.1 will be presented in the next sections.

3. Beginning of the proof

Due to the hypothesis o(x, r) we have thaf|cu|y < C|lu|ly. This means that it is
enough to prove (6) for the principal pdtt = 9; + ibd, of L, since in that case, writing
L = L1+ ¢, the perturbation introduced by the zero-order term may be absorbed by taking
T small enough. In other words, we may assume from now ondbatr) = 0 and we
do so. Consider a test functigne C2°(—2, 2) such thaty (¢§) = 1 for |§] < 1 and set

1-x®& =y7 () + ¥~ (&) with

l”+(‘§)—{o, iti<o, 24V (5)—{1_;(@), if £ <0.

Giveng € SR, x R;), for each fixed we have a decomposition
(p('a t) = POQD(a t) + P+(p('7 t) + P_(p('a t) = QDO(, t) +(p+('a t) +(p_('a t)a (7)

where

1 : R
Pop(x. 1) = Zféxsx(s)go(s,r)ds,
R

1 : R
Pro(,1) = Z/é%*(m(s,ods, (8)
R
ey ~
P p(x.1) = Z/éxéw*@)w@,r)ds, ©)

R
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where we have denoted Wiy, ) the Fourier transform of the function — ¢(x,-)
evaluated at. Thus,

Lo=Loo+LoT +Ly~ =LPyp+LP o+ LP g. (10)

We fix once for all some € S(R), [¢ = 1, setg,(x) = e lp(x/e), 0<e <1, and we
consider

|¢s*§00(x t)| = ‘/% X—X)/—(x s) ds dx’

1

< / (|¢e * Loo(-, $)(x)| ds +

)ds

¢e*(b( S ( S))(X)

T
< /m¢(L</>o( S))(X)+m¢(b( S) ( S))(X)ds

Lettinge — 0, we get|¢. * po(-,1)| — |@o(-, )|, SO integrating inc from —a to a we
get:

ds.  (11)
h(Ry)

I
/|<ﬂo(x n|dv < /Hcho( s>||,11(R)ds+be< )a—;o,s)

On the other hand, writingLgo = LPop = PoLe + [L, Pole and observing that
[d/0¢, Po] = O we see that

. d d
[L,l"olfp(-,t)=[Ib(-,t)a }p( 1) =ib(, t) ( t)—P0<b£(-,t)>,

SO

Po(ib—g“’(-,n) = 1()()*(!178 (. ))

X
.0b

n * (.—( 9., f))—ﬁl*(|—a so(-,w)
X

. 9b
n2# (ibp(-, 1)) — n1* ('gﬁ"(" t)>,

wheren; = F~1(x) is the inverse Fourier transform gf andnz = d71/dx. Observing
that (8 Pop/dx)(x, 1) = F (& x) * ¢, 1)(x) = 13 % ¢(-, 1) with n3 = F~L(i&x) and
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keeping in mind thafg, *n;}o<c<1, j = 1, 2, 3, is a bounded family of rapidly decreasing
functions, we get:
) @
hl

<Clot.n th(Rx)‘ (13)

ob
ILeoC. O], < C( || Lo D|,1 + 6o 0|0+ | =0, 1)
0x

12|

At this point we recall that multiplication by a Lipschitz function — and this is the cage of
— is a continuous operation ift(R), a fact discussed in Section 2 right after the definition
of atoms that we now state:
Lemma 3.1. Assume thab, b’ € L (R). There is a constanf > 0 such that
1bf niey < CUbILpNf Ity f € HH(R),

where||b]|Lip = max{[|5’llc, 1D1loc}-

Taking account of (12), (13), Lemma 3.1 and (11) we derive

looC. Ol L1 a0y < CT LN L3¢ 7.7y R0 + 10N L2¢—7. 1) H1RA )
which integrated with respect tdrom —T to T yields the following proposition:
Proposition 3.2. There exist€” > 0 such that
9ol L1 —a.ayx(—. 1) < C T (IL@ll 37,7y miwoy + 1@ 37,7y M1 R0p)  (14)

foranyg € C°((—a,a) x (=T, T)).

4. L' estimatesfor p*
TheL! estimate foig is very simple, does not use conditigh) and was only included
for the sake of completeness. To obtain similar estimategfowe will use the Smith

approach [17] that we now describe.
We first consider the operators:

] 9
L+=E—b(x,t)|Dx| and L*=E+b(x,t)|13x|, (15)

+00
1 i —
where IDxlw(X)=§/e'x§I§I¢(§)d€, ¢ € SR). (16)
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It is easily checked that if supp) C (0, c0) then |Dy|p = Dy, while is supfp) C
(—00, 0) then—|Dy|¢p = D, ¢, where comD,, = —i dy, i =+/—1. Thus,

LTt =Let, L ¢~ =Lg". a7

From now on we concentrate on the operatdr since the handling of.~ is entirely
analogous. Following Smith we associate to the real vector field ifR3,

€=d+b(x,0d,

and for every pointx, ¢, 0) consider the integral curve éfpassing througtix, ¢, 0), i.e.,
the solutiony (s) = (x(s), 7(s), y(s)) of the system of ODEs:

x'(s) =0, x(0)=x,
t'(s) =1, t(0)=t, (18)
Y'(s) =b(x(s),1(s)), y(0)=0.

Thusy (s) = (x,s + 1, y(s; £, x)) with y(s; x, 1) = on b(x,t+s')ds'.

Definition 4.1. The operatod.™ given by (15) is said to satisfy conditia®@ *) if b(x, 1)
nowhere changes sign fromto — along the oriented integral curves of the system (18) as
s increases, for angx, 1) € R2.

Remark 4.2. If in the definition above one forbids sign changes fremo + instead of
from + to —, the operatol.™ is said to satisfy conditio). Thus,L* satisfies(¥) if
and only if the transpose operatdr™ satisfieg¥*).

Sinceb(x,t + s") does not change sign because we assumeltisatisfies condition
(P) it trivially follows that L™ satisfies(¥*). We will prove a priori estimates fof. ™
assuming just¥*) which, of course, is weaker that assumirig). Assume that for some
fixed x there isfg such thath(x, ) > 0 for ¢t > 19 andb(x, t) < 0 for ¢ < 1o (notice that
condition (¥*) prevents more than one change sign). It follows that x,t) > O for
s >0if r >randy(s; x,r) > 0fors <Oif r <. At any rate, we conclude that for any
(x,t) eithery(s; x,r) > 0foralls >0ory(s; x,7) >0 foralls <O.

Let U(x,,y) = (Py * 91 (-, 1)) (x) = € YIPxlp*(x, 1) be the solution of the Dirichlet
problem:

{ (02+02)U(x,1,y) =0, xeR,y>0,
U(x,1,0) =" (x,1),

whereP (x) = 7 ~1(1+ x?)~1 is the upper plane Poisson kernel aPdx) = y 1P (x/y).
Notice that

aye_lex‘ — _|Dx|e_y‘Dx‘ and ate_y‘Dx‘ — e_lexlat.
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Thus, observing that/ (x, £7, y) = 0 we may expresso™(x,t) = +U(x, t,0) as the
line integral of¢U along the integral curve df passing througlx, ¢, 0) as follows:

+T—t
d
Fot(x,1) = £ / a(U(x,s%—t,y(s;x,t)))ds
0
+T—1¢

=+ / CU(x,s+1,y(s;x,1))ds.
0

For a given(x, t) we have chosen eithetT or T in order to achieve that(s; x,¢) > 0 as
s varies on the interval of integration; this choice is essential to make sense of the formula
asU (x,t,y) is not defined fory < 0. The substitution’ = ¢ + s in the last integral gives:

+T
Fot(x,n)==+ / EU(x,s’,y(s’—t,x,t)) ds’,
t
implying
T
|(p+(x,t)| < /|€U(x,s’,y(s’—t;x,t))|ds’.
-T
If T > 0issmall we see that fdr|, |s'| < T we have 0< y(s' — £; x,1) < 1, so

T

lot(x, 1) </ sup |€U (x,s', y)|ds’ (19)
O<y<1

(notice thatp™ vanishes foi¢| > T so (19) is trivial for those values @J. On the other
hand,

U, s',y) =Pl Lot (x, 5"y = [b, &P D™ (x, 8, (20)

so integrating by parts we obtain:

[b,e_y‘Dx‘]Dx(p—’_(x,s/) - —

if MQ),()C _ Z)(p+(z, s’) dz

X —2Z

+ Py x (%w*(-,s’))(x)

. . ob
= _le * (ﬁx(er('v S/))(.x) - |Py * <8_x(p+(s S/)) (X),
(21)
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whereQ,(x) = x/y2P’(x/y) and
b(x,s") —b(z,s") .
ﬂ*(z,s’)={ v=e 0 rEEm (22)
by(x,s), if z=1x.

We derive from (20) and (21) that

0.U(x,s") = sup [eU(s,x, y)|

O<y<1

< sup |PyxLeT(x,s)|+ sup

Py *< o, S))(X)

O<y<1 O<y<1
+ sup [0y * (B¢ " (. sN) (). (23)
O<y<1

Hence, (19) and (23) yield

T

|go+<x,t)|</ sup <|P x* Lot (-, s (0)| +

O<y<1

Py *( ot (, S))(x)

+]0y* (B 0™ (. s’))(x)|) ds’.

Integrating this inequality with respect tofrom —a to a we obtain:

+(. +
o™ 01 e < HojlngJPy*L(p | LY(~a.a)x(~T.T))
sup

ab
Py < q)+>
O<y<1 0x

¥ H sup [0, + (8|
O<y<1

LY((—a,a)x(=T,T))

. (24)
LY((—a,a)x(=T,T))

To estimate the terms on the right of the last inequality we need some lemmas. The first of
them is concerned with the standard (nonlocal) Hardy spike

Lemma4.3. Let 0 € C®°(R) with |Q™ (x)| < C,/(L+ |x)"2,n =0,1,2,3,.... Then

/ sud 0y * £ ()| dx < Cll f i, f € HAR).

y>0
R y

Proof. Let¢ € C°(—1,1) satisfy¢ (x) =1 for |x] < 1/2. Thus,
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1=¢(x)+ i(qﬁ(Z_k_lx) —¢(27*x)) and

k=1

0 =IO + Y 0 (27 ) —p(27*x)) =D 2% ()
k=0

k=1

with @@ (x) = ¢ (x) 0 (x) and®@® (x) = 2% (¢ (2~ 1x) — ¢ (x)) Q(2*x) for k > 1 (we are
using as always the notatiaby (x) = ¢ 1@ (¢~ 1x) for anye > 0).

Sinceg (271x) — ¢ (x) is supported in 12 < |x| < 2, the estimates satisfied gy and
its derivatives show that the collectidp ©)}; .y constitutes a bounded subset&(R).
Therefore,

suplf + 0y(0)| < 302 subels x )
y=> k >

< Y2 sugo x fo| <CM (),
X s>0

where M f is the grand maximal function associated {@®};cn, i.e., Mf(x) =

SUR.eny Mpmw f (x) andC is a constant. O

We return to the semilocal Hardy spaicein the next lemma.

Lemma 4.4. Let0 < « < oo, let P be the Poisson kernel iR2 and letQ be a function
satisfying| Q™ (x)| < C,,/(1+|x)"t2,n=0,1,2,3, ..., as in the previous lemma. There
existsC > 0 such that

o

fOSUp1|Py * fO|de <Cllfllagy e ®),
<y<

-
o

/ sup [Qy x f ()| dx < Cll flpamy [ € W (R).

O<y<1
—a

Proof. To prove the first inequality we need only show that there exXistsO such that

<C

H sub le *aluLl(fa o) =

O<y<1

for all hl-atomsa. Leta be ankhl-atom supported in the intervél= (xo — r, xo + r). If
r < 1/2 the atoma must satisfy the moment condition and it is alsoFh-atom so the
inequality is well known and valid even far= co. If r > 1/2 we observe that

-1
sup [Py xa(x)| < sup llallzeellPyllr < 1HIPll <Pl =1.
O<y<1 O<y<1
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The proof forQ is similar, it uses Lemma 4.3 fdif 1-atoms that can also be considered as
hl-atoms supported in small intervals and the fact fh@l ;1 < oo to deal with atoms that
do not satisfy the moment condition

Lemma4.5. Let0 < a < co. Assume thaP satisfies the hypotheses of the previous lemma,
B € L*®(R?) is such that for som& > 0,

|xo — yl
|x — xo|’

|B(x,y) — B(x,x0)| <K if |x — xo| > 2|y — xol-

Then there exist€ > 0 such that for everyf € h1(R) with supf f) C (—«a, «) holds the
inequality

o

/ sup [0y % (' )(0)| 0 < C1 e

<y<l
—a

whereg* (y) = B(x, y).

Proof. Since suppf) C (—a, @) we may, in view of Lemma A.3, expanf as a linear
combination of atoms supported {r« — 1, « + 1) and reduce the estimate to the case
of atoms with this property. Let be ani!-atom, withs(a) C I C (—a — 1, + 1),
I=(xo—r,xo+r). Ifr>1we have:

/ sup | Qy x (B*a)(x)|dx =/ sup

O<y<1 O<y<1

—a —o

/Qy(x —2)B*(2)a(z) dz|dx

o
< /IIﬂIILooIIaIILwIIQyIIlex
—a

< 2a)IBllL=l Q2.

Let us next assume that< 1. We recall the decomposition @ used in the proof of
Lemma 4.3 and observe that the functi@vﬁ) are supported in the set

Dy = {2 < x| < 261
Since supfu) C (—a — 1, a + 1), it follows that
supp(qbg,f) xa)N(—a,0) C[Dr+ (—a—La+D]|N(—a,a) =0 forlargek.

Hence, we may write

Oy x (B a)(x) = Zkaqbg,f)v x(Ba)(x), O0<y<1 x€e(—a,a)),
= )
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with n depending only om. Since the family4 = {¢§f)}0<k<n is finite, thus a bounded
subset ofS(R), the integral of the grand maximal function associated e majorized by
the integral of the maximal function of a single convenient function. In other words, it will
be enough to show that

/ Sup | * (B*a)(x)|dx < C,

O<e<1

for some fixedp € C2°(—1,1), [ ¢ = 1. First we note that

/ sup [¢e * (B%a)(x)|dx < ClIBl L.

H O<e<1
On the other hand, lek ¢ I*, y € I (in particular, |x — xp| > 2|y — xp|). Since
supf¢:) C (—¢,¢), it follows that whenever|x — xo| > 2¢ we will have that
|x — y| > |x — x0|l — |x0 — y| > € implying that¢, * (8*a)(x) = 0. Therefore, we need
only worry with those values of for which |x — xp| < 2¢. In that case, keeping in mind
that [‘a(y)dy =0 and O< ¢ < 1, we get:

e % (B%a) (0)] < / Ie.Cx — B — e x — x0)B (x0)||a(y)] dy

1 K -
< /{_2||¢/||L°O||ﬁ”L°O Ixo =yl + —ll¢llzee X0 y|}|a(Y)|dy
A e |x — xol
< c<ﬁ,1<)f KO0 gy dy.
[x — xo|
which yields
X r - !
[9c % (Ba) (0)] < C (8, K>m/|“(”|dy SCC RO
I
Thus,
[ sup 6. (5 a)o|de < g kor [ dv< ek
O<e<1 lx _x0|

(,’1* (71*
as we wished to prove.O

We observe that the functio® that appears in (24) satisfies the hypotheses of
Lemmas 4.4 and 4.5. Furthermore, Lemma 4.5 can be applied to the fugction) =
B*(y) defined in (22), sincéB|| =~ < ||b’||L~ and, for|x — xg| > 2|y — xo|, we have:

[b(x) —bW)|lxo—y| = [b(y) — b(x0)l ;o lxo—yl
<26 .
|x — y|lx — xol |x — xol |x — xol

|B* () — B* (x0)| <
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Thus, estimate (24) and its analogue ¢or now give:
Proposition 4.6. There is a constant > 0 such that

19% ] 1 aayir1y < CT (L@l 7.1y @y 10Nty i@y y)  (25)
forall g € C°((—a,a) x (=T, T)).

Proof. Applying Lemmas 4.4 and 4.5 to the right-hand side of (24) and its analogue for
@~ we obtain:

Hfﬂi('s " ”Ll((fa,d)X(*T’T))

<C(lLe* | prrmmay 17 Lo rrmey): (26)
which can be integrated with respectttbom —T to T in order to get
l| LY(~a,a)x(=T.T))
<CT (” Lo* ”Ll((fT,T),hl(]Rx)) + H‘/’i HLl((fT,T),hl(RX)))‘ (27)
Next we write, recalling (17),
Lo* =LP*p=P*Ly +[L, P¥]p. (28)

Observe thatP* is a pseudo-differential operator of order 0 (and types) = (1, 0))
acting in thex variable, so it is bounded in!(R). That would also be the case of
[L, PT]=[b(-,t)D,, PT] shouldh be smooth with bounded derivatives of all orders, but
since we are only assuming thats of classC*" we will invoke instead Proposition A.5
in Appendix A.3 to grant the continuity db(-, 1) D,, P*] in KX (R). Thus, (27) implies
(25). O

5. End of the proof
In view of (7), (10), (14) and (25) we may state the:
Proposition 5.1. There exists a constant > 0 such that
lellLra.myx—r.1) < € T(ILll 31,1y mioy + 103 T 1) MR0p)  (29)
forall g € C°((—a,a) x (—T,T)).
Notice that the error termfie|l . 1(_7.7).n1(r,)) ON the right-hand side of (29) cannot

be absorbed by taking small because the norm on the left-hand side is weaker. To
circumvent this difficulty we need to derive a stronger inequality, analogous to (29) but
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with the stronger norme|| 17,7 n1(r,)) ON its left-hand side. To achieve this we make

use of the mollified Hilbert transfor¥ defined byﬁf =(1- X)ﬁ?, whereH denotes

the usual Hilbert transformy € C°(—2,2), ¢ =1, for |£| < 1. The usefulness off,
which is a pseudo-differential operator of order zero, derives mainly from the fact that it
can be used to define an equivalent normk&R) without appealing to maximal functions,

as granted by the following estimates (cf. [6]):

CLlHf |, <l < Co(lf s+ | H S| 1), fen*®).
Another ingredient is the following lemma:

Lemma 5.2. Letr (D) be a pseudo-differential of order zero with symbot, §) = r (&)
independent af. Assume that for som@ > 0 the following inequality holds

1 e SCUf e+ [rD)f || 0),  fent
Let K be the kernel of (D) and for eacte > 0 write
r(D)f(x) = (x(e(x =))K, f)+{(1 = x(sx =) K, f)
= r{(D) f(x) +r5(D) f (x),

where y € C°(-2, 2) with x(y) =1 for |y| < 1. Then there existsg such that for all
0 < ¢ < gg there exist constaniS; = C1(g), C2 = C2(¢) > 0 such that

1A 1 < Ca(lf M2+ [ (D) £l 12) < C2ll f 11 (30)

Proof. Foreache > 0,r{ (D) is a pseudo-differential operator of order zero, thus bounded
in hl, so

Ifllzs+ [r5 D) f] 2 < U fllps + 75D £ 0 < C2) N flpa

On the other handyr5 (D) f ;1 < IK5 M2l fll2 and||K5]| 1 — 0 ase — 0. Therefore,
there existgo > 0 such thaf| K5 || ;1 < 1/2C for 0 < & < . Thus

1l SC(1 s+ (D) f] 1)

<
R 1
<C(IfNay + 15DV f | paggy + 56 1 e
. 1
SO Nga+ D) f[[2) + S0 f s
which implies

If e <2C(I1fliga+ 5D f] 1) ©
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Remark 5.3. Notice thatr{ (D) is given by convolution with a distribution supported in
the interval(—2/¢, 2/¢), in particular ifu € &' ([—r, r]) —i.e., ifu is distribution supported
in the interval[—r, r] —r$ (D)u is supported in the intervéb-r — 2671, r 4 2e71].

We are now able to complete the proof of Theorem 2.1. We must show that there exist
constants” andTp > 0 such that for any & T < Tp andy € C°((—a, a) x (—T,T)),

ol 1.1y mi@yy) S CTILON L (7. 1) 11 (R,))- (31)

Proof. Given a functionp € C°((—a, a) x (—T,T)), set

FoC.0E) = A— )EHo(.0 ), (32)

where H is the Hilbert transform and € C°(-2,2), x(§) =1 for || = 1. The
symbol of H is equal toh(§) = ¥+ (&) — ¥~ (£), wherey™ and ¢~ were defined at
the beginning of Section 2. We see thdtis a pseudo-differential operator satisfying
the hypotheses of Lemma 5.2 and we may write it as a s$im Hj + H5, where
H}:&'((—a,a)) — £'((—d’, a’)) satisfies (30), i.e.,

lec. 0 “hl(Rx) <C([eC.n ||L1(—a,a) +| ﬁf¢(" 1) ”Ll(—a’,a’)) (33)

for someC > 0. SinceH;¢(x, 1) € C°((—a’,a’) x (=T, T)), applying (29) (witha’ in
the place ofz) to H; ¢, we get:

” ﬁf‘/’ ” LY(~T.,T)x(~d".a’))
SCT(|LHLO| o r oy T 1HTO] iy mmy): (34)

SinceLﬁf = ﬁfL +[L, ﬁf] and, invoking once again Proposition A.5 in the Appendix,
H; and[L, H{] are bounded operatorsirt(R,), it follows from (34) that
H Hfgo”Ll((fT,T)x(fa’,a’))
SCT(ILoll i r.ryni@y) + 10l Lir.1)0iR,))- (35)

Integrating (33) with respect toand using (35) we see that
lelear.rymey < CUOILrmxaan + [HIO] L1 r myx caran)

< CT(lellpaq—r.1y0t @Ry + 1L 117y .01 R,))-

It is now enough to choosk) such thatlCT < 1/2if T < Tp to get

el i 7,11 w0 < 2C TIL@I L1 (—1.7).01(R,))

as desired. O
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6. Applications
6.1. Generalized similarity principle

Throughout this section we consider a vector field defined in some open rectangle
2 = I1 x I of the plane:

0 . 0
L=—+ibx,t)—, t R 36
8t+ (x’)ax’ ,xeR, (36)

and assume that

(i) b(x,r) is real and of classCt" for some0 < r < 1, i.e., D*b is bounded for all
multi-indexesa| < 1and|D¥b(p) — D¥b(g)| < C|lp —q|" forall p,q e R?, |a| =1;
(i) foranyx e I1 the functionl, > ¢ — b(x, t) does not change sign

p

Assume also thad is anL* function,w € L,

(£2) for some 1< p < oo, and that
Lw=Aw (37)

in the sense of distributions. We will also be interested in solutions of the homogeneous
equation

Lh=0. (38)

The next theorem describes a factorization fer involving the space
X = L®°(R;; bma(R,)) of measurable functions(x, r) such that for almost evenrye R
x = u(x,t) € bmaR) and|ju(z, -) lomo < C < oo for a.e.r € R. Observe thaX is invari-
ant under multiplication by test functions and X = |u| € X, because bm®) already
has these properties.

Theorem 6.1. Let L given by(36) satisfy (i) and (i) and assume thal < p < oo,
A e L>®(£2).

@ lfwe L{;C(Q) satisfieq(37), every point of2 has a neighborhoos?’” wherew may

be written as
w=¢€%h,

whereh e L{;,C(Q’) satisfieq38)in £2/, g € X ande? € Lfc;c(Q/) for somep’ € [1, p]

andq’ > p’/(p’ — 1). In addition, p’ may be chosen arbitrarily close to.
(b) Conversely, ifh € LY (£2) satisfies(38), every point of©2 has a neighborhood?’

loc
whereh may be written as

h=e3%w,
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wherew € L{gC(Q’) satisfies(37) in 2/, g € X ande ¢ € LIqO/C(Q’) for somep’ €

[1, plandg’ > p’/(p’ — 1). Again, p’ may be chosen arbitrarily close {.

Corollary 6.2. Let L be as abovel < p < 0o, A, B € L*°(£2) and assume that

w € Lf} (£2) satisfies

Lo=Aw+ Bb. (39)
Every point of2 has a neighborhoo&®’ wherew may be written as

w=¢e%h,

with i € L? (£2') satisfyingLh = 0in ', g € X andes e L% _(£2') for somep’ € [1, p]

loc loc
andq’ > p’'/(p’ — 1). In addition, p’ may be chosen arbitrarily close to.

Notice that the relationship betwe@handg’ in part (a) of the theorem (respectively in
part (b)) shows that the product of andh (respectively €8 andw) is locally integrable.
Corollary 6.2 extends the similarity principle presented in [1] in two ways. Ri(st,¢) is
only subjected to (i) and (ii), in particular, it is allowed to change sign in an appropriate
way prescribed by conditio(P), second, only low regularity is assumediof, ¢).

Example 6.3. If b(x,1) = x|x|", 0 < r < 1, thenL given by (36) satisfies the hypotheses
of Theorem 6.1.

The proof of Theorem 6.1 is essentially the same as the proof of the similarity principle
given in [1] and we only include it for the sake of completeness; the only new ingredient is
our stronger local solvability result. In particular, it depends on the following lemma stated
and proved in [1].

Lemma 64. (i) Let p,g € (1,00), 1/p+1/g =1, u, f € L} (£2), v, g € L] (£2), and
assume thatu = f andLv = g. Then

Luv) = fv+ug. (40)

(i) Let p € (1, 0] and assume thag € X satisfiesLg € LP(82). If | g|lx is sufficiently
small,

L) =¢eSLg ing. (41)
Now, we return to the proof of Theorem 6.1.

Proof. Consider a neighborhoo®’ of a given point of$2 where we may solve the
equation:

Lg=A ing. (42)



736 J. Hounie, E.R. da Silva / J. Math. Pures Appl. 81 (2002) 715-746

The right-hand side is bounded. Therefore, Theorem 2.3 implies that shrifing may
solve (42) with||g||x as small as we wish. Then, if we det= € 8w and use the Leibniz
and chain rules (40) and (41) provided by Lemma 6.4 we get:

Lh=¢e8Lw—wLg)=¢€¢(Aw— wA)=0.

Thus,w = e$h as we wished to prove. It is a consequence of the John—Nirenberg inequality
that by shrinking2’ we may take & € L7 with ¢’ arbitrarily large and this implies that

h e LP (2') with p’ < p arbitrarily close top. This proves (a). Similarly, to prove (b) one
definesw asw = e%h with g solving (42) and then checks thato = Aw and the other
required properties are valid in a sufficiently small neighborhood of the given paint.

The corollary follows from the theorem, part (a). Indeeiis a solution of (39) it
satisfies as well

Lo=Aw, whered=A+ BX& (43)
w

and x is the characteristic function of the dei(x) # 0}. It is clear thatA is measurable
and bounded so part (a) of the theorem gives the required representation for

We see that Theorem 6.1 establishes a one-to-one correspondence between the germs
— at a given point — of solutions il;|J1<p<oo L? of (37) and the germs of solutions in
U1<p<oo L? of (38). Let us now discuss briefly to what extent is the Nirenberg—Treves
condition(P) necessary for Theorem 6.1 to hold.

Example 6.5. Let L be any vector field. of the form (36) withb(x, r) smooth and let»
be a locally integrable function that satisfies the equation

Lo=w (44)

in a neighborhood of the origin, which amounts to takifig= 1. A simple computation
shows that solutions of (44) are of the formn= € h with Lk = 0 and conversely, for any
solution of Lh = 0 there exists a solution of (44) such that= € h. For instance, ifL is

the vector field constructed by L. Nirenberg in [13] with the property that any solitafn

Lh = 0 defined in a disk centered at the origin must be constant, it follows that all solutions
of (44) are of the formw = ¢€, ¢ = const. Thus, we may say that there is a correspondence
between solutions of (44) and solutions of the homogeneous equaiien0 in spite of

the fact thatl. may not satisfy conditioP).

Of course, the trick in the example above was to chobsel which is in the range of
L for whicheverL. On the other hand, we have the following fact:

Proposition 6.6. Let L be given by(36) with » smooth. Suppose that, for any smooth
function A, all smooth solution& of (38) may be locally written a& = e 8w, wherew,

g, Lg, € ande™¢ are locally integrablew satisfieg(37) and the chain rule.e® = e®Lg
holds. Then[ satisfies conditioniP).
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Proof. Fix a smooth functiom in a neighborhood of some point i? and take: = 1,
so Lh = 0. Then there is a local solutian of (37) such thato = €8. Thus,Lw = Aw or
e?Lg = Aes. Since O< |€%| < oo a.e., we conclude thdtg = A showing thatL is locally
solvable at an arbitrary point g2. This implies(P). O

6.2. Uniqueness in the Cauchy problem

Consider a vector field defined in some neighborh@od 2, x (-7, T) of the origin
in R+

9 ~ 9
L=—+iY bp(x,t)—,
8t+;k(x )axk

where eaclhy is real-valued, of class1*", 0 < r < 1. Assume furthermore thatsatisfies
condition(P), which in this context means thiatr eachx € §21, the vector-valued function

1> (br(x, 1), .. bu1(x, 1)) = b(x, 1)

never changes directiorConsider next a bounded, measurable complex valued function
f(x,1,2): 82 x C— C satisfying a Lipschitz condition in, i.e.,

|f(-x7 ta C) - f(-xv ta C/)| g ch - é‘/" (.X, t’ é‘)a (‘x7 ta C/) S ‘Q X (C
Finally, letu(x, 1), w(x,t) € LP(£2), p > 2, satisfy, in the weak sense,
Lu= f(x,u), Lw= f(x,w) in2 and u(x,0) =w(x,0).

The fact thatLu is bounded implies that for any test functigriix) € C>°(£21) the
integrable function—7,T) 5 ¢ — [u(x,1)¢(x)dx is a continuous function aof which
can be evaluated at= 0 and the same can be said abautThis lends a meaning to the
requirement:(x, 0) = v(x, 0).

Proposition 6.7. Under the above conditions,= w in a neighborhood of the origin.

Assuming that the coefficients éf are smooth, a better result — in the sense that it was
only required thai, w € L”, p > 1 —was proved in [1] as an application of the similarity
principle; here we demand that> 2 but work instead with rough coefficients.

Proof. Since we are working locally we may as well assume that2. The arguments in

[1] can be adapted without changes to reduce the situation to the case of an operator in two
variablesL = 9, +ib(x, 1)d, with 0 < b(x, r) € C1*" and solutions andv which coincide

for r < 0. The difference: — v satisfies an inequalityl. (« — v)| < M|u — v| S0 using the
similarity principle given by Theorem 6.1 we may write- v = €3k and the uniqueness
property for the original equation is further reduced to that of the homogeneous equation
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Lh = 0. The latter follows from arL2-type Carleman estimate first proved in [20] which
is known to hold wherb € C1[25,p.9]. O

The first result linking condition(?) to uniqueness in the Cauchy problem for
C! solutions of the linear equatiohu = 0 is due to Strauss and Treves [20]. Their
Carleman estimate proves as well uniqueness for solutiofagf< M|u|. Methods later
developed based on the Baouendi—Treves approximation scheme [22,23] give uniqueness
for solutions of Lu = 0 in the class of distributions but cannot handle directly solutions
of |Lu| < M|u|. Here we have used the similarity principle to reduce uniqueness of
|Lu| < M|u| to the study of the homogeneous equation= 0. Finally, we notice that, if
n > 2 condition(P) is essentially necessary if uniqueness in the Cauchy problem for the
inequality|Lu| < M|u is to hold. For instance, if conditiofi) is violated strongly at the
origin in the sense that(0, 0) and E,(O, 0) are linearly independent, there exist smooth
functionsu andc¢ supported orr > 0 and not vanishing identically in any neighborhood
of the origin, such thatu + cu = 0, in particular, the inequalityLu| < M|u| is valid in
a neighborhood of the origin. We refer to [16,25] on the subject of counterexamples to
unigueness based on the methods of geometrical optics.

Appendix A. Hardy space lemmas
A.1. Multipliers inkt

Consider a modulus of continuity(¢) that satisfies
h _1
1 nei 1
h_" o dt <K 1+Inﬁ , O<h<], (A1)
0

and the corresponding spa€€ (R").

LemmaA.l Letb € C2(R") and f € h*(R"). Thenbf € h1(R") and there exist& > 0
such that

IBf e < Cliblico | flls, b eC®(R"), f € h*(R").

Proof. Let b(x) € C. It is enough to check thatbf|| < C||b|c~ for everyhl-atoma
with C an absolute constant. This fact is obvious for atoms supported in Ballgh
radius p > 1 without moment condition becaugeis bounded sta/|b| L~ iS again
an atom without moment condition. B = B(xg, p), p < 1, we may writea(x)b(x) =
b(xo)a(x) + (b(x) — b(xo))a(x) = B1(x) + B2(x). Thenpi(x)/||b]lL= is again an atom
while 82(x) is supported inB and satisfies

C

B2l < 2[|bliLellalire < o
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C/

< x - <—.
B2l < Cllallz /w(lx xol) dx < AT 1inp)

B

We wish to conclude thafime 2,1 < co. Let B* = B(xg, 2p). Sincemg f2(x) <
Mpa(x), whereM is the Hardy—-Littlewood function, we have:

h= f moBa(x) dx < |B* Y2 MBall 2 < Co"2|1Ball 2 < C.
B*

It remains to estimate
Jo = / me B2(x)dx = / meg Bo(x) dx (A.2)
R\ B* 2p< | —x0|<2

(observe thatn g 82 is supported inB(xp, 2) because supp c B(0,1)).1f0 <e < 1 and
@, x B2(x) # 0 for some|x — xg| > 2p it is easy to conclude that> |x — xg|/2, which
implies

CliBallr _ C'lx = xol ™"
e (L+[Inp)’

| * Ba(x)] < ‘/fps(y)ﬂz(x - y)dy‘ <

SO

C/
< for |x — > 2p. A.3
me P20 S T T I lx —xol > 2p (A.3)

It follows from (A.2) and (A.3) that

C/
Jo < d
lx —xol"(L+[Inpl)
2p<lxr—x0l<2

"

~

which leads to
Iballp < IB1llp + l1B2llp < C1+ J14+ J2 < Ca.
Inspection of the proof shows th@b may be estimated b/ ||p||ce. O

Example A.2. Suppose that a modulus of continuityr) satisfies conditions:

w(t)/t" is a decreasing function of (A.4)
1
D:/@dmoo. (A5)
0
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A short and elegant argument shows (cf. [21, p. 25]) that under these conditid@®s is
stable under multiplication by elements@? (R"). On the other hand, (A.5) alone already
implies that

1 1

w(h)ln%:/%h)dtgfﬁdth, O<h <1,

h h

which keeping in mind the obvious estimate

h
i/a)(t)t"*ldtg wh)
hn
0

)
n

shows that the modulus of continuity satisfies (A.1) and Lemma A.1 can be applied,
proving the mentioned stability déf' (R") under multiplication by elements @ (R").
Consider now a modulus of continuitéy(r) such that

1-nint

In?

w(t) = forO<t<1/2.

t

Sincew(r) > |Int| 71, it follows thatfol/z(w(t)/t) dr = oo and the Dini condition (A.5) is
not satisfied. On the other hand,

h

1 = A 1\*

h—nfa)(t)t" dt:(lnE) ~(1+Inﬁ> , ash— 0,
0

so criterium (A.1) is satisfied. This shows that (A.5) is strictly more stringent than (A.1).
A.2. Alocal atomic decomposition

Lemma A.3. Let f € hY(RY) be supported in an intervai—a, «). There exists an
atomic decompositiorf = Zj Aja; with hl-atomSaj supported in(—a — 1, « + 1) and

1L gt ~ 325 121
Proof. We start from some atomic decompositioh = Y Aja; + > AxBi with
If s~ 3, 121+ 14, and atoms satisfying
SUPEB) C Jk = (yk — Sk Yk + %), sk =>1/2 and
suppa;) Clj=1I1(x; —rj,x;+rj), r;j<1/2

Let 0< x <1e C¥(—a — 1/2,a + 1/2) satisfy x(x) = 1 for |x| < «, and set
M =sup|y’|. We have:
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= rjxaj+Y_ AixB
= Z)»,/X(Xj)aj + ZM)\/(X — x(xj))(aj/ M)+ ZAkXBk
= Z)»jflj +ZMAij —i—ZAkEk,

where all terms withl; N supfx) = @ or Jiy N supfx) = & have been discarded.
This gives the deswed decomposition. Inded&d,= X By is clearly anhl-atom with
supp(Bk) C-e—la+1 for any k. FurthermoreA/ (x — x(xj))a;/M is also an
h'-atom because supp,) C I; C (x; — 1/2, x; + 1/2) and

| A7) <rillxlosllajlios/M < 1

Observe that no moment conditions are requirederand By. Finally, @; = x (x;)a;
has mean equal to zero and thus it is/&ratom with suppa;) C I;. Sincer; < 1/2 and
I; Nsupi(x) # ¥ we see that

Ij csupx)+(-=1/2,1/2) C (—a - L a+1)

and we conclude that all atoms are supported as we wished. Furthermore,

Il <L Mg+ Y1} <l O
A.3. Commutators

We consider now a bounded smooth functib(f), & € R, such that

1
‘d k‘/f(f)‘ Ckm, EGR,/{ZO,LZ,....

Thenyr (&) is a symbol of order zero and defines the pseudo-differential operator:

1 [ ~
1/;(D)u(x)=Z/e‘*%(&)u(é)dé, u € S(R).

R

In particular, (D) is boundedAirhl(R). The Schwartz kernel of (D) is the tempered
distributionk (x — y) defined byk(&) = ¥ (¢) which is smooth outside the diagona y.
Moreoverk(x — y) may be expressed as

k(x = y) = lim h/é@ ME—elEPy (&) dg = lim ke (x = ),
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where the limit holds both in the sense &f and pointwise forc # y. Furthermore, the
approximating kernelk. (x — y) satisfy uniformly in O< ¢ < 1 the pointwise estimates
Cj

|ks(x_y)| < |X—y|j’

j=12..., (A.6)

which of course also hold fdr(x — y) itself whenx # y.

We consider a functiorb(x) of classC1*?, 0 <o < 1, and wish to prove that
the commutatofy (D), bd,] is bounded ink1(R). A simple standard computation that
includes an integration by parts gives:

[¥(D), bdy Ju(x) = / k' (x = y)(b(y) = b(x)u(y)dy — ¢(D)(b'u),
where the integral should be interpreted as the pairing

(K'(x =) (b() = b(x)), u())

between a distribution depending on the parametesind a test functioru. Since
multiplication by#’ is bounded ini1(R) with norm controlled byi|d’||c-, we need only
worry with the remaining integral term that can be rewritten as

u(y)dy (A7)

b —b
Tu(x) = f (v — K (x — y)(xx%y(y)

_ / ka(x — ) e, Yu(y) dy,
1

where B(x,y) = /b’(tx +@—1)y)dr and ki(x)=—xk'(x).
0

Observe thag € C° (R?).

Lemma A.4. Assumer is given by(A.7) with kernelK (x, y) = k1(x — y) B(x, y). Then
T is bounded im1(R).

Proof. It follows thatks(€) = (£k(£)) = k(§) + £K'(£). In other wordsky(€) = y1(£)

is a symbol of order zero anfl has kerneki(x — y)B8(x, y). We may writeB(x, y) =
b (x) + |x — y|°r(x, y) with r(x, y) € L®(R?) so

Tu(x)

b'(x) Y1 (D)u(x) +/k1(x =) lx = y17r(x, y)u(y)dy
= Tiu(x) + Tou(x).

The first operatof is obviously bounded in! because it is the composite 9§ (D) with
multiplication by aC? function. To analyzd» we check — writingks = lim._.ok1,. and
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using (A.6) forky . — that its Schwartz kernel is a locally integrable distribution given by
the integrable functioka(x, y) = k1(x — y) |x — y|°r(x, ). Hence,

|k2(x, »)| < Calka(x = y)|1x = y17 = ka(x — y).
Observe thaks(x) < C min(|x|° 1, |x|~2) soks € L1(R). We will now show that

moks(x) = Sup |@ * k3(x)| € L*(R),

O<e<1

where @ > 0 e C°([-1/2,1/2)), fcpdz =1, ®.(x) = e 1P (x/e). Sincemapks is
pointwise majorized by the restricted Hardy—Littlewood maximal function

x+e

mk3z(x) = sup Zi / k3(r) dr,

O<e<1
x—e

we start by observing that
x+e

1 o—1
sup — f 111°Ldr < i (A.8)
O<e<1 2 . o

X—

In doing so we may assume that- 0. If 0 < ¢ < x, we have:

1 xte o o o—1 o—1

_/ltlafldt:(x—i_g) —(x—¢) <(-x—i_g) <X ’

2¢ 2e0 o o
x—e

where we have used the elementary inequality

b° —a®

5 <b° 1 0<a<bh, O<o <1l
—a
Similarly, if 0 < x < ¢,
xte o o o—1 o—1
1/|t|a_1dt=(x+e) e A T
2e 2s0 o o
X—€&

This proves (A.8). Thus,

meks(x) < Cmka(x) < C'|x[°7L,
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which shows thatn k3 is locally integrable. For largge| the inequalityks(x) < Clx| 2
easily impliesngka(x) < C|x|~2 and we conclude thate ks € L. Finally, we see that

|@e s Tou(x)| < P x kg ul(x) < maokz s ul(x),

S0 me Tou(x) < meks * |u|(x) which implies that| Tou||,1 < Cllull 1 < Cllull,e. This
proves thaf’ = Ty + T» is bounded i} (R). O

Summing up, we have proved the

Proposition A.5. If ¥ (£), £ € R, is a smooth symbol of orddr and b(x) € C1t (R),
0 < o < 1, the commutatofy (D), bd, ] is bounded it 1(R).

A.4. Change of variables

Consider a real functioff € C2(R) such that for som& > 1,

1
e SF)<K, |F'n|<K, xeR

Proposition A.6. The mapi!(R) 5 u +— u o F is bounded i1 (R).

Proof. It is enough to show that there is a constght- 0 such that|la o Fl|,» < C
for all hl-atomsa(x), i.e., |me(a o F)|l;1 < C where®@ > 0e C°([—1/2,1/2]) such
that [ @ dz = 1 has been fixed. If: is supported in an interval thenA =a o F is
supported in/ = F~1(I) andK ~Y1| < |J| < K|I|. Thus, if|7| > 1 and|a|z~ < |I|~1

it follows that A is supported in some interval with |J| = K|I| > K > 1 and
|AllLe = llallr~ < K|J|71 so A/K is an atom anda o F||,1 < C. Let us now assume
that |/| < 1 and [a(x)dx = 0. ChooseJ containing the support off = a o a such
that|J| = K |I|. Note thatme A is supported inJ = [—1/2,1/2] + J which has lenght
|J| < K + 1. We write

fm¢Adx=fm¢Adx~|— / meAdx =L1+ Lo,

J* j\]*
whereJ = [xg — £, xo + £] andJ* = [xg — 2¢, xo + 2¢]. We have
L1 <|meA|Le|J*| < 2K |lallL=|1] < 2K.

To estimatel., we studyme A(x) for |x — xo| > 2¢. In this case

xo+¢
D x A(x) = / Pe(x —y)A(y)dy

xo—4
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vanishes ife < |x — xp|/2, SO we may restrict our attention to valuessaf |x — xg|/2.
The Taylor formula of order one for— @, (x — y) aroundx — xg gives

Pe(x —y) = Pe(x —x0) +

X0—Yy
2 r(x,y),
where the remaindet(x, y) is bounded. We may write

X0 —

. (x — x0) f A(y)dy +f (e DA dy

8e(x) +he(x)

@y % A(x)

and

| % A< sup [ge@)|+  sup |he(x)| = g(x) +h(x).
(Jx—x0l/2)<e<1 (Jx—x0l/2)<e<1

Since|xp — y| < £ wheny belongs to the support of ande > |x — xg|/2 we obtain
|he(x)] < Cl]x — xo|~2 which yields

/ h(x)dx <C.

R\J*

To estimateg, (x) we introduce the change of variables- F(y) to get
/A(y) dy = fa(F(y)) dy = / a(z)8(z)dz wheres(z) = [F—l]’(z).

Setzo = F(xo) € I and writed(z) = 8(z0) + (z — z0)r (), Where|r|| . < |[[F ]| 1o <
K 2. Sincea has vanishing mean we get, recalling thiat< K ~1|J| < 2¢,

‘/A(y)dY‘ = ‘/a(z)(z—zo)r(z)dz < CHL.

The variable factor in the expression gf(x) is @.(x — xp) that may be estimated by
C/lx —xplOnR\ J*, so

K+1
ds K+1
glx)dx < C¢ — < CliIn—— < (Cq,
s 20
j\]* 2¢

asZ=|J| < K. SincemgpA(x) < g(x) + h(x) we see thal, is bounded by a constant
that dependsonlyoR. O

Additional literature [7,8].
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