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1. Preliminaries

Two operators T ∈ L(X), S ∈ L(Y ), X and Y Banach spaces, are said to be intertwined by A ∈ L(X, Y ) if S A = AT ; and
A is said to be a quasi-affinity if it has a trivial kernel and dense range. If T and S are intertwined by a quasi-affinity
then T is called a quasi-affine transform of S , and we write T ≺ S . In [4], it has been studied the preservation of Weyl
type theorems between two operators intertwined by a quasi-affinity A, and the more general case in which T and S are
asymptotically intertwined by A. An operator T ∈ L(X) is said to be polaroid if every isolated point of the spectrum is
a pole of the resolvent of T . It is known that the polaroid condition on T and the single-valued extension property (SVEP)
for T , or for its dual T ∗ , imply that both T and T ∗ satisfy Weyl’s theorem (see next Theorem 2.3). Moreover, if T ∗ has
SVEP (respectively, T has SVEP) then Weyl’s theorem for T (respectively, for T ∗) is equivalent to several other variants of
it, see [3]. The SVEP is preserved if T and S are intertwined by an injective map (see next Lemma 3.1). For this reason
it is interesting to study the preservation of the polaroid condition from S to T (or also some other related conditions)
in the case where T and S are intertwined or asymptotically intertwined by a quasi-affinity. In this paper we determine
some sufficient conditions which ensure this preservation and, as a consequence, we extend in several directions many of
the results established in [4], concerning the transmission of Weyl type theorems from S to T .

We first fix the terminology here used. Let X be an infinite-dimensional complex Banach space and let T ∈ L(X). We
denote by α(T ) the dimension of the kernel ker T and by β(T ) the codimension of the range T (X). Recall that the operator
T ∈ L(X) is said to be upper semi-Fredholm, T ∈ Φ+(X), if α(T ) < ∞ and the range T (X) is closed, while T ∈ L(X) is said
to be lower semi-Fredholm, T ∈ Φ−(X), if β(T ) < ∞. If either T is upper or lower semi-Fredholm then T is said to be
a semi-Fredholm operator, while if T is both upper and lower semi-Fredholm then T is said to be a Fredholm operator. If T is
semi-Fredholm then the index of T is defined by ind(T ) := α(T ) − β(T ). An operator T ∈ L(X) is said to be a Weyl operator,
T ∈ W (X), if T is a Fredholm operator having index 0. We also consider the set W+(X) := {T ∈ Φ+(X): ind T � 0}.
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The Weyl spectrum and the upper semi-Weyl spectrum are defined, respectively

σw(T ) := {
λ ∈ C: λI − T /∈ W (X)

}
,

σuw(T ) := {
λ ∈ C: λI − T /∈ W+(X)

}
.

The ascent of an operator T ∈ L(X) is defined as the smallest non-negative integer p := p(T ) such that ker T p = ker T p+1.
If such integer does not exist we put p(T ) = ∞. Analogously, the descent of T is defined as the smallest non-negative integer
q := q(T ) such that T q(X) = T q+1(X), and if such integer does not exist we put q(T ) = ∞. It is well known that if p(T ) and
q(T ) are both finite then p(T ) = q(T ), see [1, Theorem 3.3]. Moreover, if λ ∈ C then 0 < p(λI − T ) = q(λI − T ) < ∞ if and
only if λ is a pole of the resolvent of T . In this case λ is an eigenvalue of T and an isolated point of the spectrum σ(T ),
see [25, Proposition 50.2]. An operator T ∈ L(X) is said to be Browder if T ∈ Φ(X) and p(T ) = q(T ) < ∞. We denote by B(X)

the class of Browder operators and B+(X) := {T ∈ Φ+(X): p(T ) < ∞}. The Browder spectrum and the upper semi-Browder
spectrum of T are defined by

σb(T ) := {
λ ∈ C: λI − T /∈ B(X)

}
,

σub(T ) := {
λ ∈ C: λI − T /∈ B+(X)

}
.

Clearly, σw(T ) ⊆ σb(T ) and σuw(T ) ⊆ σub(T ).
Let σa(T ) denote the classical approximate point spectrum of T and let σs(T ) be the surjectivity spectrum of T . Define

π00(T ) := {
λ ∈ isoσ(T ): 0 < α(λI − T ) < ∞}

and

πa
00(T ) := {

λ ∈ isoσa(T ): 0 < α(λI − T ) < ∞}
,

where iso A is the set of isolated points of A. Let p00(T ) := σ(T ) \ σb(T ), i.e. p00(T ) is the set of all poles of the resolvent
of T having finite rank. Clearly, for every T ∈ L(X) we have

p00(T ) ⊆ π00(T ) ⊆ πa
00(T ). (1)

We now introduce the Weyl type theorems:

Definition 1.1. An operator T ∈ L(X) is said to satisfy (W ), Weyl’s theorem, if σ(T ) \ σw(T ) = π00(T ). T is said to satisfy
(aW), a-Weyl’s theorem, if σa(T ) \ σuw(T ) = πa

00(T ). T is said to satisfy property (w) if σa(T ) \ σuw(T ) = π00(T ).

The concept of semi-Fredholm operator has been generalized by Berkani [15,17] in the following way: for every T ∈ L(X)

and a non-negative integer n let us denote by T [n] the restriction of T to T n(X) viewed as a map from the space T n(X)

into itself (we set T [0] = T ). T ∈ L(X) is said to be semi-B-Fredholm (resp. B-Fredholm, upper semi-B-Fredholm, lower semi-B-
Fredholm) if for some integer n � 0 the range T n(X) is closed and T [n] is a semi-Fredholm operator (resp. Fredholm, upper
semi-Fredholm, lower semi-Fredholm). In this case T [m] is a semi-Fredholm operator with ind Tn = ind Tm for all m � n [17].
This enables one to define the index of a semi-B-Fredholm as ind T = ind T [n] .

An operator T ∈ L(X) is said to be B-Weyl (respectively, upper semi-B-Weyl) if for some integer n � 0 T n(X) is closed and
T [n] is Weyl (respectively, upper semi-Weyl). These classes of operators generate the B-Weyl spectrum σbw(T ) and the upper
B-Weyl spectrum σusbw(T ). Analogously, T ∈ L(X) is said to be B-Browder (respectively, upper semi-B-Browder) if for some
integer n � 0 T n(X) is closed and T [n] is Browder (respectively, upper semi-Browder). The B-Browder spectrum is denoted
by σbb(T ) and the upper semi-B-Browder spectrum by σusbb(T ).

If T ∈ L(X) define

E(T ) := {
λ ∈ isoσ(T ): 0 < α(λI − T )

}
,

and

Ea(T ) := {
λ ∈ isoσa(T ): 0 < α(λI − T )

}
.

Evidently, E(T ) ⊆ Ea(T ) for every T ∈ L(X). Now we introduce the generalized version of Weyl type theorems:

Definition 1.2. An operator T ∈ L(X) is said to satisfy (gW), the generalized Weyl’s theorem, if σ(T )\σbw(T ) = E(T ). T ∈ L(X)

is said to satisfy (gaW), the generalized a-Weyl’s theorem, if σa(T ) \ σusbw(T ) = Ea(T ). T ∈ L(X) is said to satisfy (gw), the
generalized property (w), if σa(T ) \ σusbw(T ) = E(T ).
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Both a-Weyl’s theorem and property (w) have been introduced by Rakočević [31,32]. In the following diagram we resume
the relationships between all Weyl type theorems, generalized or not:

(gw) ⇒ (w) ⇒ (W ),

(gaW) ⇒ (aW) ⇒ (W ),

see [13, Theorem 2.3], [10,16]. Generalized property (w) and generalized a-Weyl’s theorem are also independent, see [13].
Furthermore (see [13,16]),

(gw) ⇒ (gW) ⇒ (W ),

(gaW) ⇒ (gW) ⇒ (W ).

The following property has a relevant role in local spectral theory, see the recent monographs [28,1].

Definition 1.3. An operator T ∈ L(X) is said to have the single valued extension property at λ0 ∈ C (abbreviated SVEP at λ0), if
for every open neighborhood U of λ0, the only analytic function f : U → X which satisfies the equation (λI − T ) f (λ) = 0
for all λ ∈ U is the function f ≡ 0.

The operator T is said to have SVEP if it has SVEP at every λ ∈ C.

It follows from the identity theorem for analytic functions that T has SVEP at every point of the boundary of the
spectrum. In particular, T and T ∗ have SVEP at every isolated point of σ(T ). We also have (see [1, Theorem 3.8])

p(λI − T ) < ∞ ⇒ T has SVEP at λ, (2)

and dually

q(λI − T ) < ∞ ⇒ T ∗ has SVEP at λ. (3)

Two important T -invariant subspaces of T are defined as follows. The quasi-nilpotent part of T ∈ L(X) is defined as the
set

H0(T ) :=
{

x ∈ X: lim
n→∞

∥∥T nx
∥∥ 1

n = 0
}
.

Clearly, ker T n ⊆ H0(T ) for every n ∈ N. The analytic core of T ∈ L(X) is defined K (T ) := {x ∈ X: there exist c > 0 and
a sequence (xn)n�1 ⊆ X such that T x1 = x, T xn+1 = xn for all n ∈ N, and ‖xn‖ � cn‖x‖ for all n ∈ N}. Note that T (K (T )) =
K (T ) [1, Chapter 1]. Moreover (see [6]),

H0(λI − T ) closed ⇒ T has SVEP at λ. (4)

Remark 1.4. If λI − T is semi-Fredholm then the implications (2), (3), and (4) are equivalences, see [1, Chapter 3].

Weyl’s theorem may be characterized as follows:

Theorem 1.5. (See [2].) An operator T ∈ L(X) satisfies Weyl’s theorem if only if T has SVEP at every λ /∈ σw(T ) and p00(T ) = π00(T ).

Note that

T has SVEP at λ /∈ σw(T ) ⇔ T ∗ has SVEP at λ /∈ σw(T ), (5)

see [5, Theorem 2.3].
In the sequel, Π(T ) denotes the set of all poles of the resolvent of T . Obviously, Π(T ) ⊆ E(T ).

Theorem 1.6. (See [7].) An operator T ∈ L(X) satisfies generalized Weyl’s theorem if only if T has SVEP at every λ /∈ σusbw(T ) and
E(T ) = Π(T ).

2. Polaroid type operators

We now consider some variants of the polaroid property.

Definition 2.1. An operator T ∈ L(X) is said to be a-polaroid if every λ ∈ isoσa(T ) is a pole of the resolvent; T is said to be
left polaroid if for every λ ∈ isoσa(T ), p := p(λI − T ) < ∞ and T p+1(X) is closed; and T is said to be right polaroid if for
every λ ∈ isoσs(T ), q := q(λI − T ) < ∞ and T q+1(X) is closed.
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Trivially, every a-polaroid operator is left polaroid, while a polaroid operator may be not left polaroid, see [3]. We have
isoσ(T ) ⊆ σa(T ) for every T ∈ L(X), since the boundary of σ(T ) is contained in σa(T ) [1, Theorem 2.42]; hence,

T a-polaroid ⇒ T polaroid. (6)

Left and right polaroid operators are dual each other: T is left polaroid (respectively, right polaroid) if and only T ∗ is right
polaroid (respectively, left polaroid), see [3]. It is well known that λ is a pole of the resolvent of T if and only if λ is a
pole of the resolvent of T ∗ . Since σ(T ) = σ(T ∗) then T is polaroid if and only if T ∗ is polaroid. It should be noted that the
condition p00(T ) = π00(T ) which appears in Theorem 1.5 is equivalent to saying that there exists p := p(λI − T ) ∈ N such
that

H0(λI − T ) = ker(λI − T )p for all λ ∈ π00(T ) (7)

(see [8, Theorem 2.2]). Also the condition of being polaroid may be characterized by means of the quasi-nilpotent part:

Theorem 2.2. If T ∈ L(X) the following statements hold:

(i) T is polaroid if and only if there exists p := p(λI − T ) ∈ N such that

H0(λI − T ) = ker(λI − T )p for all λ ∈ isoσ(T ). (8)

(ii) If T is left polaroid then there exists p := p(λI − T ) ∈ N such that

H0(λI − T ) = ker(λI − T )p for all λ ∈ isoσa(T ). (9)

Proof. Suppose T satisfies (8) and that λ is an isolated point of σ(T ). Since λ is isolated in σ(T ) then, by [1, Theorem 3.74],

X = H0(λI − T ) ⊕ K (λI − T ) = ker(λI − T )p ⊕ K (λI − T ),

from which we obtain

(λI − T )p(X) = (λI − T )p(
K (λI − T )

) = K (λI − T ).

So X = ker(λI − T )p ⊕ (λI − T )p(X), which implies, by [1, Theorem 3.6], that p(λI − T ) = q(λI − T ) � p, hence λ is a pole
of the resolvent, so that T is polaroid. Conversely, suppose that T is polaroid and λ is an isolated point of σ(T ). Then λ is
a pole, and if p is its order then H0(λI − T ) = ker(λI − T )p , see Theorem 3.74 of [1].

(ii) See Theorem 2.4 of [11]. �
Trivially, for every polaroid operator the equality p00(T ) = π00(T ) is satisfied. The following result gives a very simple

and useful framework for establishing Weyl’s theorem for several classes of operators:

Theorem 2.3. It T ∈ L(X) is polaroid and either T or T ∗ has SVEP then both T and T ∗ satisfy Weyl’s theorem.

Proof. The polaroid condition for T entails that p00(T ) = π00(T ). If T is polaroid then T ∗ is polaroid and hence p00(T ∗) =
π00(T ∗). Weyl’s theorem for T and T ∗ then follows from Theorem 1.5. �
Theorem 2.4. (See [3].) Let T ∈ L(X) be polaroid. Then we have:

(i) If T ∗ has SVEP then (W ), (aW), (w), (gW), (gaW) and (gw) hold for T , while T ∗ satisfies (gW).
(ii) If T has SVEP then (W ), (aW), (w), (gW), (gaW) and (gw) hold for T ∗ , while T satisfies (gW).

In the sequel we shall use the expression T satisfies all Weyl type theorems in the case that T satisfies (W ), (aW), (w),
(gW), (gaW) and (gw).

Let Hnc(σ (T )) denote the set of all analytic functions, defined on an open neighborhood of σ(T ), such that f is non-
constant on each of the components of its domain. Define, by the classical functional calculus, f (T ) for every f ∈ Hnc(σ (T )).

Theorem 2.5. Let f ∈ Hnc(σ (T )). If T is polaroid then f (T ) is polaroid.

Proof. Let λ0 ∈ isoσ( f (T )). The spectral mapping theorem implies λ0 ∈ iso f (σ(T )). Let us show that λ0 ∈ f (isoσ(T )).
Select μ0 ∈ σ(T ) such that f (μ0) = λ0. Denote by Ω the connected component of the domain of f which contains μ0

and suppose that μ0 is not isolated in σ(T ). Then there exists a sequence (μn) ⊂ σ(T ) ∩ Ω of distinct scalars such that
μn → μ0. Since K := {μ0,μ1,μ2, . . .} is a compact subset of Ω , the principle of isolated zeros of analytic functions says
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to us that f may assume the value λ0 = f (μ0) only a finite number of points of K ; so for n sufficiently large f (μn) �=
f (μ0) = λ0, and since f (μn) → f (μ0) = λ0 it then follows that λ0 is not an isolated point of f (σ(T )), a contradiction.
Hence λ0 = f (μ0), with μ0 ∈ isoσ(T ). Since T is polaroid, μ0 is a pole of T and by [11, Theorem 2.9]; hence λ0 is a pole
for f (T ), which proves that f (T ) is polaroid. �
3. Polaroid type operators under quasi-affinities

If T ∈ L(X) and S ∈ L(Y ) the commutator C(S, T ) is the mapping on L(X, Y ) defined by C(S, T )(A) := S A − AT . By
induction it is easily to show the binomial identity

C(S, T )n(A) =
n∑

k=0

(
n

k

)
(−1)k Sn−k AT k. (10)

Obviously, C(λI − S, λI − T )n(A) = (−1)nC(S, T )n(A) for all λ ∈ C. From (10) we easily obtain

C(S, T )n(A)x = Sn Ax for all x ∈ ker T . (11)

Let now consider the higher order intertwining condition defined by

C(S, T )n(A) = 0 for some n ∈ N.

Clearly, this notion is a generalization of the condition C(S, T )(A) = 0 which appears in the definition of T ≺ S .

Lemma 3.1. Let T ∈ L(X), S ∈ L(Y ) and suppose that for some injective map A ∈ L(X, Y ) there exists an integer n ∈ N for which
C(S, T )n(A) = 0. If S has SVEP at λ0 then T has SVEP at λ0 . In particular, if T ∈ L(X) and S ∈ L(Y ) are intertwined by an injective
map A ∈ L(X, Y ) then localized SVEP carries over from S to T .

Proof. Let U ⊆ C be an open neighborhood of λ0 and f : U → X be an analytic function such that (λI − T ) f (λ) = 0, for all
λ ∈ U . Since f (λ) ∈ ker(λI − T ) taking into account (11) we then obtain

0 = (λI − S)
[
C(S, T )n(A) f (λ)

] = (λI − S)
[
C(λI − S, λI − T )n(A) f (λ)

]
= (λI − S)n+1 A f (λ).

Now, (λI − S)n+1 A f (λ) = (λI − S)[(λI − S)n A f (λ)] on U and the SVEP of S at λ0 implies (λI − S)n A f (λ) = 0. Repeating this
argument we easily deduce that (λI − S)(A( f λ)) = 0. Since S has SVEP at λ0 it then follows that A f (λ) = 0 for all λ ∈ U
and the injectivity of A entails f (λ) = 0 for all λ ∈ U . Therefore T has the SVEP at λ0. The last assertion is clear. �

The following example shows that converse of Lemma 3.1 does not hold, i.e. if T ≺ S the SVEP from T may be not
transmitted to S .

Example 3.2. Let C denote the Cesàro matrix. C is a lower triangular matrix such that the nonzero entries of the n-th row
are n−1 (n ∈ N)⎛

⎜⎜⎜⎜⎝

1 0 0 0 · · ·
1/2 1/2 0 0 · · ·
1/3 1/3 1/3 0 · · ·
1/4 1/4 1/4 1/4 · · ·
...

...
...

...
...

⎞
⎟⎟⎟⎟⎠ .

Let 1 < p < ∞ and consider the matrix C as an operator C p acting on 
p . Let q be such that 1/p + 1/q = 1. In [33] it has
been proved that σ(C p) is the closed disc Γq , where

Γq := {
λ ∈ C: |λ − q/2| � q/2

}
.

Moreover, it has been proved in [23] that for each μ ∈ intΓq the operator μI − C p is an injective Fredholm operator with
β(C p) = 1. Consequently, every μ ∈ intΓq belongs to the surjectivity spectrum σs(C p).

Let C∗
p ∈ L(
q) denote the conjugate operator of C p . Obviously, σs(C p) clusters at every μ ∈ int Γq and since μI − C p is

Fredholm it then follows that C∗
p does not have SVEP at these points μ, see [1, Theorem 3.27]. Every operator has SVEP

at the boundary of the spectrum, and since σ(C∗
p) = σ(C p) = Γq it then follows that C∗

p has SVEP at λ precisely when
λ /∈ int Γq . Choose 1 < p′ < p < ∞ and let q′ be such that 1/p′ + 1/q′ = 1. Then 1 < q < q′ < ∞. If we denote by A : 
q → 
q′
the natural inclusion then we have C∗

p′ A = AC∗
p and clearly A is an injective operator with dense range, i.e., C∗

p ≺ C∗
p′ . As

noted before the operator C∗
p has SVEP at every point outside of Γq , in particular at the points λ ∈ Γq′ \ Γq , while C∗

p′ fails
SVEP at the points λ ∈ Γq′ \ Γq which do not belong to the boundary of Γq′ .
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Recall from the classical functional calculus that to every λ ∈ isoσ(T ) we can associate to T and the spectral set {λ}, the
spectral projection P T (λ) defined by

P T (λ) := 1

2π i

∫
Γ

(μI − T )−1 dμ,

where Γ denotes an oriented closed path which separates λ from the remaining part of the spectrum.

Lemma 3.3. Suppose that T ∈ L(X) and S ∈ (Y ) are intertwined by A ∈ L(X, Y ). If λ ∈ isoσ(T ) ∩ isoσ(S) then P T (λ) and P S (λ)

are also intertwined by A, i.e. P S (λ)A = A P T (λ).

Proof. If T and S are intertwined by A ∈ L(X, Y ) we have (μI − S)A = A(μI − T ) for all μ ∈ C. Suppose that μ belongs
to the resolvent of T as well to the resolvent of S . Then A = (μI − S)−1 A(μI − T ) and hence A(μI − T )−1 = (μI − S)−1 A,
from which it easily follows that

P S(λ)A =
(

1

2π i

∫
Γ

(μI − S)−1 dμ

)
A = 1

2π i

∫
Γ

(μI − S)−1 A dμ

= 1

2π i

∫
Γ

A(μI − T )−1 dμ = A P T (λ). �

Recall that T ∈ L(X) and S ∈ L(Y ) are said to be quasi-similar if there exist two quasi-affinities A ∈ L(X, Y ), B ∈ L(Y , X)

for which S A = AT and B S = T B . If T ≺ S a classical result due to Rosenblum shows that σ(S) and σ(T ) must overlap,
see [34]. But quasi-similarity is, in general, not sufficient to preserve the spectrum. This happens only in some special cases,
for instance if T and S are quasi-similar hyponormal operators [18], or whenever T and S have totally disconnected spectra,
see [24, Corollary 2.5]. Therefore, it is not quite surprising that, if T ≺ S , the preservation of “certain” spectral properties
from S to T requires that some spectral inclusions are satisfied.

Remark 3.4. Classical examples show the polaroid property is not preserved if two bounded operators are intertwined by
an injective map. For instance by [22] or [26], there exist bounded linear operators U , V , B on a Hilbert space such that
BU = U V , B and its Hilbert adjoint B ′ are injective, V is quasi-nilpotent and the spectrum of U the unit disc D(0,1). Let
T := V ′ , S := U ′ and A := B ′ . Then S A = AT , so that T and S are intertwined by the injective operator A, S is polaroid,
since σ(S) = σ(U ) = D(0,1) has no isolated points, while T is also quasi-nilpotent and hence not polaroid.

The next example shows that a polaroid operator may be the quasi-affine transform of an operator which is not polaroid.
In the sequel, we refer to [35] for the general properties of shift operators.

Example 3.5. Let S ∈ L(
2(N)) be the weighted unilateral right shift defined as

S(x1, x2, . . .) :=
(

0,
x1

2
,

x2

3
, . . .

)
, (xn) ∈ 
2(N),

and let T ∈ L(
2(N)) the unilateral right shift defined by

T (x1, x2, . . .) := (0, x1, x2, . . .), (xn) ∈ 
2(N).

If A ∈ L(
2(N)) is the operator defined by

A(x1, x2, . . .) :=
(

x1

1! ,
x2

2! , . . .
)

, (xn) ∈ 
2(N),

then A is a quasi-affinity. Clearly, S A = AT , T is polaroid, since σ(T ) is the closed unit disc of C, while S is quasi-nilpotent
and hence not polaroid.

Theorem 3.6. Suppose that T ∈ L(X), S ∈ L(Y ) are intertwined by an injective map A ∈ L(X, Y ). If S is polaroid and isoσ(T ) ⊆
isoσ(S) then T is polaroid.

Proof. If σ(T ) has no isolated point then T is polaroid and hence there is nothing to prove. Suppose that isoσ(T ) �= ∅ and
let λ ∈ isoσ(T ). Then λ ∈ isoσ(S), hence λ is a pole of the resolvent of S . Let P T (λ) and P S (λ) be the spectral projections
associated to T and S with respect to {λ}, respectively. As we have seen in Lemma 3.3, P T (λ) and P S(λ) are intertwined
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by A, i.e. P S(λ)A = A P T (λ). Since λ is a pole of the resolvent of S then p := p(λI − S) = q(λI − S) < ∞ and ker(λI − S)p

coincides with the range of P S (λ), see [1, Theorem 3.74]. Therefore, (λI − S)p P S(λ) = 0, and consequently

0 = (λI − S)p P S(λ)A = (λI − S)p A P T (λ) = A(λI − T )p P T (λ).

Since A is injective, (λI − T )p P T (λ) = 0. Now, the range of P T (λ) coincides with the quasi-nilpotent part H0(λI − T ), see
[1, Theorem 3.74], so

H0(λI − T ) = P T (λ)(X) ⊆ ker(λI − T )p .

The opposite inclusion also holds, since ker(λI − T )n ⊆ H0(λI − T ) for all natural n ∈ N. Therefore, H0(λI − T ) = ker(λI − T )p

for all λ ∈ isoσ(T ). By Theorem 2.2 we then conclude that T is polaroid. �
The inclusion isoσ(T ) ⊆ isoσ(S) has a crucial role in Theorem 3.6. If T , S and A are as in Remark 3.4 we have

isoσ(S) = ∅, isoσ(T ) = {0} and the polaroid condition is not preserved by the quasi-affinity A. The example of Remark 3.4
also shows that the condition isoσ(T ) ⊆ isoσ(S) cannot be replaced by the weaker condition isoσ(T ) ⊆ σ(S).

Corollary 3.7. Suppose that T ∈ L(X) and S ∈ L(Y ) are intertwined by a quasi-affinity A ∈ L(X, Y ) and isoσ(T ) = isoσ(S). Then T
is polaroid if and only if S is polaroid.

Proof. By Theorem 3.6 we need only to prove that if T is polaroid then S is polaroid. Now, T ∗ is polaroid and S A =
AT implies T ∗ A∗ = A∗ S∗ , where A∗ ∈ L(Y ∗, X∗) is injective, since A has a dense range. Moreover, isoσ(T ∗) = isoσ(T ) =
isoσ(S) = isoσ(S∗). Since T ∗ is polaroid by Theorem 3.6 it then follows that S∗ is polaroid, or equivalently S is polaroid. �
Corollary 3.8. Let T ∈ L(X), S ∈ L(Y ) be intertwined by an injective map A ∈ L(X, Y ). Suppose that S is polaroid, has SVEP and
isoσ(T ) ⊆ isoσ(S). Then we have:

(i) f (T ) satisfies (gW) for all f ∈ Hnc(σ (T )).
(ii) f (T ∗) = f (T )∗ satisfies all Weyl type theorems for all f ∈ Hnc(σ (T )).

Proof. (i) T has SVEP by Lemma 3.1, hence f (T ) has SVEP for all f ∈ Hnc(σ (T )), see [1, Theorem 2.40]. Furthermore, f (T )

is polaroid by Theorem 2.5. By part (ii) of Theorem 2.4 then f (T ) satisfies generalized Weyl’s theorem.
(ii) Also this follows from part (ii) of Theorem 2.4. �
The operator C∗

p considered in Example 3.2 shows that in general a polaroid operator does not satisfy SVEP. In fact,

σ(C∗
p) has no isolated points. A more trivial example is given by the left shift T on 
2(N). This operator is polaroid, since

σ(T ) is the unit disc of C, and it is well known that T fails SVEP at 0.
In the sequel by a part of an operator T ∈ L(X) we mean the restriction of T to a closed T -invariant subspace.

Definition 3.9. An operator T ∈ L(X) is said to be hereditarily polaroid if every part of T is polaroid.

It is easily seen that the property of being hereditarily polaroid is similarity invariant, but is not preserved by a quasi-
affinity. Since every hereditarily polaroid operator has SVEP, see [20, Theorem 2.8], by Corollary 3.8 we readily obtain:

Corollary 3.10. Let T ∈ L(X), S ∈ L(Y ) be intertwined by an injective map A ∈ L(X, Y ). Suppose that S is hereditarily polaroid, and
isoσ(T ) ⊆ isoσ(S). Then f (T ) satisfies (gW) for all f ∈ Hnc(σ (T )), while (W ) and (W ), (aW), (w), (gW), (gaW), (gw) hold for
f (T ∗).

An interesting class of hereditarily polaroid operators is given by the H(p)-operators [20], where T ∈ L(X) is said to
belong to the class H(p) if there exists a natural p := p(λ) such that

H0(λI − T ) = ker(λI − T )p for all λ ∈ C. (12)

From the implication (4) we see that every operator T which belongs to the class H(p) has SVEP. Moreover, from (8)
it follows that every H(p) operator T is polaroid. The class H(p) has been introduced by Oudghiri in [29] and in [12]
this class of operators has been studied for p := p(λ) = 1 for all λ ∈ C. Property H(p) is satisfied by every generalized
scalar operator, and in particular for p-hyponormal, log-hyponormal or M-hyponormal operators on Hilbert spaces, see [29].
Therefore, algebraically p-hyponormal or algebraically M-hyponormal operators are H(p). Multipliers of commutative semi-
simple Banach algebras T are H(1), in particular every convolution Tμ operator on L1(G), G a locally compact Abelian
group is H(1). Note that a convolution operator Tμ on L1(G) is a-polaroid, since σa(Tμ) = σ(Tμ), see [1, Corollary 5.88].
The property of being H(p) is preserved by quasi-affinities [29, Lemma 3.2]. Furthermore, if T is H(p) then the every part
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of T is H(p) [29, Lemma 3.2], so every H(p) is hereditarily polaroid. Other examples of hereditarily polaroid operators are
given by the completely hereditarily normaloid operators on Banach spaces. In particular, all paranormal operators on Hilbert
spaces and the class of (p,k)-quasi-hyponormal operators on Hilbert spaces are hereditarily polaroid, see for details [20].
Also the algebraically quasi-class A operators on a Hilbert space considered in [14], are hereditarily polaroid. In fact, every
part of an algebraically quasi-class A operator T is algebraically quasi-class A and every algebraically quasi-class A operator
is polaroid [14, Lemma 2.3].

The next result shows that hereditarily polaroid operators are transformed, always under the assumption isoσ(T ) ⊆
isoσ(S), by quasi-affinities into a-polaroid operators.

Theorem 3.11. Suppose that T ∈ L(X), S ∈ L(Y ) are intertwined by an injective map A ∈ L(X, Y ). If S is hereditarily polaroid and
isoσ(T ) ⊆ isoσ(S) then T ∗ is a-polaroid.

Proof. By Theorem 3.6 T is polaroid, and hence also T ∗ is polaroid. As observed above, S has SVEP, so T has SVEP by
Lemma 3.3. The SVEP for T by [1, Corollary 2.45] entails that σ(T ∗) = σ(T ) = σs(T ) = σa(T ∗), and this trivially implies that
T ∗ is a-polaroid. �

Note that quasi-similar operators may have unequal approximate point spectrum, for an example see [18].

Theorem 3.12. Let T ∈ L(X), S ∈ L(Y ) be intertwined by an injective map A ∈ L(X, Y ) and suppose that isoσa(T ) ⊆ isoσa(S). If S
is left polaroid then T is polaroid.

Proof. We first show that A(H0(λI − T )) ⊆ H0(λI − S). Let x ∈ H0(λI − T ). Then

lim
n→∞

∥∥(λI − S)n Ax
∥∥1/n = lim

n→∞
∥∥A(λI − T )nx

∥∥1/n

� lim
n→∞

∥∥(λI − T )nx
∥∥1/n = 0,

thus Ax ∈ H0(λI − S) and hence A(H0(λI − T )) ⊆ H0(λI − S), as claimed.
Also here we can suppose that isoσ(T ) �= ∅. Let λ ∈ isoσ(T ). Since the approximate point spectrum of every operator

contains the boundary of the spectrum, in particular every isolated point of the spectrum, then λ ∈ isoσa(T ) ⊆ isoσa(S).
Since S is left polaroid by part (ii) of Theorem 2.2 there exists a positive integer p such that H0(λI − S) = ker(λI − S)p .
Consequently,

A
(

H0(λI − T )
) ⊆ H0(λI − S) = ker(λI − S)p,

so, if x ∈ H0(λI − T ) then

A(λI − T )px = (λI − S)p(Ax) = 0.

Since A is injective then (λI − T )p x = 0 and hence H0(λI − T ) ⊆ ker(λI − T )p . The opposite inclusion is still true, so that
H0(λI − T ) = ker(λI − T )p for every λ ∈ isoσ(T ), and hence by Theorem 2.2 T is polaroid. �

Also in Theorem 3.12 the assumption that isoσa(T ) ⊆ isoσa(S) is essential. For the operators S and T of Remark 3.4
we have σa(S) = Γ , Γ the unit circle of C, so isoσa(S) = ∅, while {0} = σa(T ) = isoσa(T ). Evidently, S is both left and
a-polaroid, while T is not polaroid.

Corollary 3.13. Let T ∈ L(X), S ∈ L(Y ) be intertwined by an injective map A ∈ L(X, Y ). Suppose that S is left polaroid operator which
has SVEP and isoσa(T ) ⊆ isoσa(S). Then we have:

(i) f (T ) satisfies (W ) or equivalently (gW) for all f ∈ Hnc(σ (T )).
(ii) f (T ∗) satisfies all Weyl type theorems for all f ∈ Hnc(σ (T )).

Proof. By Theorem 3.12 T is polaroid and by Lemma 3.1 has SVEP, so we can argue as in the proof of Corollary 3.8. �
Theorem 3.14. Suppose that S ∈ L(Y ) and T ∈ L(X) are intertwined by a map A ∈ L(Y , X) which has dense range. If isoσs(T ) ⊆
isoσs(S) and S is right polaroid then T is polaroid.

Proof. From T A = A S we have A∗T ∗ = S∗ A∗ with A∗ ∈ L(X∗, Y ∗) injective. Since S is right polaroid then S∗ is left-polaroid
and by duality we have σs(T ) = σa(T ∗) and σs(S) = σa(S∗). Therefore isoσa(T ∗) ⊆ isoσa(S∗). By Theorem 3.6 it then follows
that T ∗ is polaroid, or equivalently T is polaroid. �
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Corollary 3.15. Let S ∈ L(Y ) and T ∈ L(X) be intertwined by map A ∈ L(Y , X) having dense range. Suppose that S is right polaroid,
S∗ has SVEP and isoσs(T ) ⊆ isoσs(S). Then we have:

(i) f (T ∗) satisfies (gW) for all f ∈ Hnc(σ (T )).
(ii) f (T ) satisfies all Weyl type theorems for all f ∈ Hnc(σ (T )).

Proof. By Theorem 3.14 T , and hence T ∗ , is polaroid, so f (T ∗) is polaroid for all f ∈ Hnc(σ (T )), by Theorem 2.5. From
T A = A S we obtain S∗ A∗ = A∗T ∗ with A∗ is injective. By assumption S∗ has SVEP so, by Lemma 3.1, T ∗ , and hence f (T ∗),
has SVEP. Therefore part (i) of Theorem 2.4 applies. �

An important tool in local spectral theory is the glocal spectral subspace XT (F ). It is defined, for an operator T ∈ L(X) and
a closed subset F of C, as the set of all x ∈ X for which there exists an analytic function f : C \ F → X which satisfies the
identity

(λI − T ) f (λ) = x for all λ ∈ C \ F .

It is known that H0(λI − T ) = XT ({λ}) [1, Theorem 2.20]. Recall that an operator T ∈ L(X) is said to have Dunford’s
property (C) if, for each closed set F ⊆ C, XT (F ) is closed. It is well known that property (C) implies SVEP, see
[19, Proposition 1.2.19].

Let U be an open subset of C and denote by H(U , X) the Fréchet space of all analytic functions f : U → X with
respect the pointwise vector space operations and the topology of locally uniform convergence. T ∈ L(X) has the Bishop’s
property (β) if, for every open U ⊆ C and every sequence ( fn) ⊆ H(U , X) for which (λI − T ) fn(λ) converges to 0 uniformly
on every compact subset of U , then also fn → 0 in H(U , X). Subnormal operators (i.e. restrictions of normal operator to
closed invariant subspaces) have property (β). Note that

property (β) ⇒ property (C) ⇒ SVEP,

see [28, Proposition 1.2.19].
An operator T ∈ L(X) has the property (δ) if X = XT (U ) + XT (V ) for every open cover {U , V } of C. Decomposable

operators may be defined as those operators that satisfy property (β) and property (δ), see [28, Theorem 2.5.19]. Note that
property (δ) implies SVEP for T ∗ . In fact T has property (δ) if and only if T ∗ has property (β), see [28, Theorem 2.5.19].
Every generalized scalar operator is decomposable, see [28] for definitions and details.

Under the stronger conditions of quasi-similarity and property (β), the assumption on the isolated points of the spectra
of T and S in Theorem 3.6 may be omitted:

Theorem 3.16. Let T ∈ L(X), S ∈ L(Y ) be quasi-similar.

(i) If both T and S have property (β) then T is polaroid if and only if S is polaroid. In this case, T ∗ is a-polaroid.
(ii) If both T and S are Hilbert spaces operators for which property (C) holds then T is polaroid if and only if S is polaroid. In this case,

T ∗ is a-polaroid.

Consequently, under the assumptions (i) or (ii) on S and T , f (T ) satisfies (gW), while f (T ∗) satisfies all Weyl type theorems for all
f ∈ Hnc(σ (T )).

Proof. (i) By a result of Putinar [30] we have σ(S) = σ(T ), hence isoσ(T ) = isoσ(S). By Corollary 3.7 we then obtain that
T is polaroid exactly when S is polaroid. Evidently, in this case T ∗ is polaroid. Now, property (β) implies that S has SVEP
and hence, by Lemma 3.3, also T has SVEP. The SVEP for T , always by [1, Corollary 2.45], entails that σ(T ∗) = σa(T ∗), and
hence T ∗ is a-polaroid.

(ii) Also in this case, by a result of Stampfli [36], we have σ(S) = σ(T ), and property (C) entails SVEP, so the assertion
follows by using the same argument of part (i).

The last assertion is clear from Corollary 3.8. �
It is well known that hyponormal operators on Hilbert spaces have property (β). Theorem 3.16 then applies to these

operators, since they are H(1) and hence polaroid. Another class of polaroid operators to which Theorem 3.16 applies is the
class of all p∗ − Q H operators studied in [21]. In fact, these operators are H(1) and have property (β), see [21, Theorem 2.12
and Theorem 2.2].

Let us consider a very weak notion of intertwining which dates back to Foiaş: see [19, Chapter 4] and [28, Chapter 3].
An operator A ∈ L(X, Y ) is said to intertwine T ∈ L(X) and S ∈ L(Y ) asymptotically if

lim
∥∥C(S, T )n(A)

∥∥1/n = 0. (13)

n→∞
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Clearly, this notion is a generalization of the higher order intertwining condition C(S, T )n(A) = 0. Note that when T and
S are generalized scalar then condition (13) holds if and only if C(S, T )n(A) = 0 for some n ∈ N, see [19, Theorem 4.4.5].
If the pairs (S, T ) and (T , S) are both asymptotically intertwined by some quasi-affinity then T and S are said to be
asymptotically quasi-similar. We recall that if a pair (S, T ) is asymptotically intertwined by A ∈ L(X, Y ) then

AXT (F ) ⊆ Y S(F ) for all closed sets F ⊆ C, (14)

see Corollary 3.4.5 of [28] or [27].
A very particular case of asymptotically quasi-similar operators is defined as follows: T , S ∈ L(X) are said to be quasi-

nilpotent equivalent if each of the pairs (S, T ) and (T , S) are asymptotically intertwined by the identity operator I on X .
Note that any quasi-nilpotent operator and the 0 operator are quasi-nilpotent equivalent.

Example 3.17. The polaroid condition is not transmitted whenever S and T are asymptotically intertwined by a quasi-affinity,
even in the case that the inclusion isoσ(T ) ⊆ isoσ(S) is satisfied. For instance, if T ∈ L(
2(N)) is defined by

T (x1, x2, . . .) =
(

x2

2
,

x3

3
, . . .

)
for all (xn) ∈ 
2(N).

If S := 0 then S is polaroid, while the quasi-nilpotent operator T is not polaroid. T and S are, as observed above, quasi-
nilpotent equivalent.

Let now consider the very particular case that C(S, T )n(I) = 0 for some n ∈ N. If T and S commute then C(S, T )n(I) =
(S − T )n = 0. In this case T and S differ from a commuting nilpotent operator N and, without any condition, if S is polaroid
then T is also polaroid, see Theorem 2.10 of [9].

Remark 3.18. If α(T ) < ∞ then α(T n) < ∞ for all n ∈ N. This may be easily seen by an inductive argument. Suppose that
dim ker T n < ∞. Clearly T (ker T n+1) ⊆ ker T n , so the restriction T0 := T |ker T n+1 : ker T n+1 → ker T n has kernel equal to
ker T . Consequently, the canonical mapping

T̂ : ker T n+1/ker T → ker T n

is injective. Therefore we have dim ker T n+1/ker T � dim ker T n < ∞, and since dim ker T < ∞ we then conclude that
dim ker T n+1 < ∞.

Set

E∞(S) := {
λ ∈ isoσ(S): α(λI − S) < ∞}

.

Theorem 3.19. Let T ∈ L(X) and S ∈ L(Y ) be asymptotically intertwined by an injective map A ∈ L(X, Y ) and isoσ(T ) ⊆ E∞(S).

(i) If S is polaroid then T is polaroid.
(ii) If S is polaroid and T has SVEP then f (T ) satisfies (gW) while f (T ∗) satisfies all Weyl type theorems for all f ∈ Hnc(σ (T )).

Proof. (i) If λ ∈ iso(T ) then λ ∈ isoσ(T ). Since S is polaroid it then follows that H0(λI − S) = ker(λI − S)p for some
positive integer p. Since λ ∈ E∞(S) we have α(λI − S) < ∞, so, by Remark 3.18, α((λI − S)p) < ∞, thus H0(λI − S) is
finite-dimensional. By (14) we have

A
(

H0(λI − T )
) = A

(
XT

({λ})) ⊆ Y S
({λ}) = H0(λI − S),

and since A is injective it then follows that H0(λI − T ) is finite-dimensional. From the inclusion ker(λI − T )n ⊆ H0(λI − T )

for all n ∈ N it then easily follows that p(λI − T ) < ∞. But λ is an isolated point of σ(T ), so the decomposition X =
H0(λI − T ) ⊕ K (λI − T ) holds, consequently K (λI − T ) is finite co-dimensional, and since K (λI − T ) ⊆ (λI − T )(X) we then
conclude that β(λI − T ) < ∞. Therefore, λI − T is Fredholm. But λ is an isolated point of σ(T ∗) = σ(T ), so T ∗ has SVEP at
λ and, since λI − T is Fredholm, this implies that q(λI − T ) < ∞. Therefore, λ is a pole of the resolvent of T .

(ii) By part (i) T is polaroid and has SVEP, so Theorem 2.4 applies. �
Corollary 3.20. Suppose that S and T are quasi-nilpotent equivalent. If S is polaroid and every eigenvalue of S has finite multiplicity
then T is polaroid.

Proof. The quasi-nilpotent equivalence preserves the spectrum, see [19, Chapter 1, Theorem 2.2], hence isoσ(T ) = isoσ(S).
Now, if λ ∈ isoσ(S) then either λI − S is injective or λ is an eigenvalue of S . In both case λ ∈ E∞(S). �



P. Aiena et al. / J. Math. Anal. Appl. 371 (2010) 485–495 495
Example 3.17 shows that the result of Corollary 3.20 fails if the eigenvalues of S do not have finite multiplicity. Define

Ea∞(S) := {
λ ∈ isoσa(S): α(λI − S) < ∞}

.

Clearly, E∞(S) ⊆ Ea∞(S).

Theorem 3.21. Let T ∈ L(X) and S ∈ L(Y ) be asymptotically intertwined by an injective map A ∈ L(X, Y ) and isoσ(T ) ⊆ Ea∞(S).

(i) If S is left polaroid then T is polaroid.
(ii) If S is polaroid and T has SVEP then f (T ) satisfies (gW), while f (T ∗) satisfies all Weyl type theorems.

Proof. (i) If λ ∈ isoσ(T ) then λ ∈ isoσa(S). S is left polaroid so, by part (ii) of Theorem 2.2, there exists a positive integer
p such that H0(λI − S) = ker(λI − S)p . Since α(λI − S) < ∞ it then follows, again by Remark 3.18, that H0(λI − S) is
finite-dimensional. The remaining part of the proof is the same of part (i) of Theorem 3.19. �
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